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Abstract

Shuffles of cards are n-multipermutations with suit multiplicities specified by some

subset R of {1, ..., n − 1}. Their “inverses” are ordered partitions of {1, ..., n}
whose block sizes derive from R; these are essentially our “R-permutations”. The

R-permutations depict the minimum length coset representatives in W J for the

quotient of Sn by the parabolic subgroup WJ , where J is the complement of R. We

refer to those that blockwise avoid the pattern 312 as “312-avoidingR-permutations”

and define the “parabolic R-Catalan number” to be the number of them. When

R = {1, ..., n − 1} this is the usual Catalan number, which counts 312-avoiding

permutations. Let λ be a partition of N with at most n parts whose set of shape

column lengths less than n is R. We show that the number of distinct flagged Schur

functions formed on the shape of λ is the parabolic R-Catalan number, and list over a

dozen other kinds of n-tuples and phenomena concerning flagged Schur functions and

Demazure characters that are also enumerated by this quantity. (Godbole, Goyt,

Herdan, and Pudwell had independently just introduced such a notion of pattern

avoiding for ordered partitions and had launched the study of their enumeration.)

Let π be an R-permutation. We view the Demazure character (key polynomial)

indexed by (λ, π) as the sum of the content weight monomials for our “π-Demazure”

semistandard Young tableaux of shape λ with entries from {1, ..., n}. We show

that the set of these tableaux is convex in ZN if and only if π is a 312-avoiding

R-permutation. As usual, a flagged Schur function is defined to be the sum of the

content weight monomials for the semistandard tableaux of shape λ whose entries are

row-wise bounded by a given weakly increasing n-tuple. We consider more general

“row bound sums” for which the row bounds may form any n-tuple. Reiner and

Shimozono and then Postnikov and Stanley obtained results concerning coincidences

between flagged Schur functions and Demazure characters: when λ is strict, the

flagged Schur functions exactly coincide with the 312-avoiding Demazure characters.

For general λ, we introduce more precise indexing sets of n-tuple bounds for the row

bound sums. These indexing schemes and the convexity results are used to sharpen

their coincidence results and to extend them to general row bound sums. Now

their coincidences are precisely indexed and are shown to hold at the deeper level of
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coinciding underlying tableau sets. The most efficient indexing n-tuples for the row

bound sums that can arise as flagged Schur functions are the new “gapless R-tuples”;

these bijectively arise from the 312-avoiding R-permutations via the application of

an “R-ranking” map.

Keywords. Catalan number, Flagged Schur function, Demazure character, Key polynomial, Pat-
tern avoiding permutation, Symmetric group parabolic quotient
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1 Introduction

This paper can be read by anyone interested in tableaux. Except for a few references to its tableau

precursors [Wi2] and [PW1] (and a few motivational remarks), it is self-contained. Fix n ≥ 1 and

set [n − 1] := {1, 2, ..., n − 1}. Choose a subset R ⊆ [n − 1] and set r := |R|. The section on R-

parabolic Catalan numbers, the last section, has been written so that much of it can be understood

independently when read in conjunction with this introduction. The “rightmost clump deleting”

chains of sets defined early in Section 6 (when R = [n−1]) are the recent addition Exercise 2.202 to

Stanley’s list [St3] of interpretations of the Catalan numbers Cn. Experimental combinatorialists

may be interested in Problem 14.5. Algebraic geometers may be interested in Problem 16.1.

Fix a partition λ of N ≥ 1 into no more than n parts such that the lengths of the columns in its

shape λ that are less than n form the set R. Let Tλ be the set of semistandard tableaux on the shape

λ whose values come from [n]. Flagged Schur functions (flag Schur polynomials) have been defined

to be sums of the content weight monomial over certain subsets of Tλ, and Demazure characters for

GL(n) (key polynomials) can also be viewed in this way. Beginning in 2011, our original motivation

for this project was to better understand results obtained by Reiner and Shimozono [RS] and then

by Postnikov and Stanley [PS] concerning coincidences between these two families of polynomials

in x1, x2, ..., xn. Demazure characters arose in 1974 when Demazure introduced certain B-modules

while studying singularities of Schubert varieties in flag manifolds G/P . Flag Schur polynomials
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arose in 1982 when Lascoux and Schützenberger were studying Schubert polynomials for the flag

manifold GL(n)/B.

The subset R can be used to specify r + 1 suit multiplicities for a deck of n cards that is

shuffled. Given a shuffle, its “inverse” is the ordered partition of [n] into r+ 1 blocks which list the

positions occupied by the cards in the corresponding suits. These ordered partitions are essentially

our “R-permutations”. Setting J := [n − 1]\R, these objects depict the minimum length coset

representatives in W J for the quotient Sn/WJ of the symmetric group by the parabolic subgroup

WJ . In 2012 we generalized the notion of 312-pattern avoidance for permutations to that of “R-

312-avoidance” for R-permutations. More recently we defined the R-parabolic Catalan number

CRn to be the number of R-312-avoiding R-permutations. We then learned that while this project

had been underway, Godbole, Goyt, Herdan, and Pudwell had independently introduced [GGHP] a

more general notion of pattern avoidance for such ordered partitions, and that Chen, Dai, and Zhou

had obtained further enumerative results [CDZ] concerning them. Giving what could be the first

appearance of this count “in nature”, we show that the number of flag Schur polynomials that can

be formed on the shape λ is CRn . When R = [n− 1], the R-permutations are merely permutations

and hence C
[n−1]
n = Cn. For a shape λ to be compatible with R = [n − 1], it must be strict (i.e.

not have any repeated row lengths).

The content weight monomial xΘ(T ) of a tableau T ∈ Tλ is formed from the census Θ(T ) of

the values 1, 2, ..., n appearing in T . Given a flag 1 ≤ ϕ1 ≤ ϕ2 ≤ ... ≤ ϕn ≤ n, the flag Schur

polynomial sλ(ϕ;x) has been defined to be the sum of xΘ(T ) over the T ∈ Tλ whose values in its ith

row do not exceed ϕi. Since we also require the “upper” condition ϕ ≥ i to ensure nonvanishing,

the number of indexing sequences is Cn. We denote this set of tableau Sλ(ϕ). As R varies over

subsets of [n−1], the Demazure characters dλ(π;x) for GL(n) (Demazure polynomials) are indexed

by pairs (λ, π) such that π is an R-permutation and λ is “compatible” with R. These polynomials

can be recursively specified with the divided difference formula cited in [PW1]. Taking advantage

of the improvements made in [Wi2] and [PW1] upon a description of Lascoux and Schützenberger,

here we define dλ(π;x) to be a sum of xΘ(T ) over a certain subset Dλ(π) ⊆ Tλ. Our terminology

wording choices of ‘flag Schur polynomial’ and ‘Demazure polynomial’ are explained in Section 14

when these polynomials are defined.

To count flag Schur polynomials, it must be decided when to regard two of them as being “the

same”. If by this it is meant that they are equal as polynomials (our first notion of “sameness”),

then the Cn counting assertion in [PS] on p. 158 may not seem to be correct: For n = 3 and

λ = (1, 1, 0), note that sλ((3, 3, 3);x) = x1x2 + x1x3 + x2x3 = sλ((2, 3, 3);x). So the desired count

of C3 = 5 is unattainable. Hence it must have been the case that they regarded these two flag

Schur polynomials to be distinct since they are indexed by distinct n-tuples of row bounds. In

other words two such polynomials were to be regarded as being the same only when their indexing
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n-tuples were the same n-tuple; this is a second notion of “sameness”.

Most of the results in this paper are much more straightforward (or even trivial) when R =

[n − 1], which corresponds to requiring λ to be strict. Then the distinct (by the first notion) flag

Schur polynomials are indeed counted by Cn. Permutations π index the Schubert varieties X(π)

of the full flag manifold GL(n)/B, where B is the Borel subgroup. Most of the phenomena in

which we are interested arise only when R ⊂ [n− 1], for which a compatible shape λ must have at

least one repeated row length. Here the R-permutations π index the Schubert varieties X(π) of the

partial flag manifold GL(n)/P , where P is the parabolic subgroup specified by R via WJ ⊆ Sn.

We consider a third notion of “sameness” for polynomials. Suppose a family of polynomials is

defined to consist of the sums of xΘ(T ) over various sets of semistandard tableau of various constant

shapes. If the polynomials p(x) and q(x) arise in this manner from sets P and Q of tableau of

constant shape, then we say that p(x) and q(x) are “identical as generating functions” (and write

p(x) ≡ q(x)) exactly when it can be shown that P = Q. In contrast to the first notion of sameness,

here the shape for the set P must à priori be the shape for the set Q.

To generalize flag Schur polynomials, we introduce two sets UR(n) ⊇ UGCR(n) of n-tuples that

both contain the set UFR(n) of upper flags ϕ described above. The subscript ‘R’ indicates that the

locations of the “dividers” in these n-tuples are to be “carried along”; hence the elements of these

three sets are certain kinds of “R-tuples”. In addition to the tableau sets Sλ(ϕ) for ϕ ∈ UFR(n)

we also consider the tableau sets Sλ(β) for β ∈ UR(n) and Sλ(η) for η ∈ UGCR(n) that consist

of the tableaux satisfying the row bounds β or η. Again summing xΘ(T ), the corresponding “row

bound sums” and “gapless core Schur polynomials” are denoted sλ(β;x) and sλ(η;x). The sλ(β;x)

are quite general, since UR(n) is defined by imposing on R-tuples of row bounds only the upper

requirement βi ≥ i that is needed to ensure nonvanishing. We develop precise indexing schemes

for these three classes of row bound sums. For two of these classes, these indexes enable us to give

the count of Cλn for flag (and gapless core) Schur polynomials that are distinct according to both

polynomial equality and generating function identicality.

Reiner and Shimozono and then Postnikov and Stanley described polynomial coincidences of the

form sλ(ϕ;x) = dλ(π;x) for ϕ ∈ UFR(n) and 312-avoiding permutations π. We extend their results

by also considering the sλ(β;x) and the sλ(η;x) introduced above. We sharpen their results by

precisely specifying the sλ(ϕ;x), the sλ(η;x), and the dλ(π;x) that participate in these coincidences.

We deepen their results by showing that a coincidence such as sλ(ϕ;x) = dλ(π;x) is actually

manifested at the tableau level by Sλ(ϕ) = Dλ(π), in other words sλ(ϕ;x) ≡ dλ(π;x). Two of

our four main results, Theorems 13.1 and 14.3, present our statements concerning coincidences.

The row bound sets Sλ(β) and sums sλ(β;x) that participate in such coincidences are those for

which β is a gapless core R-tuple, that is when β := η ∈ UGCR(n) ⊇ UFR(n). The Demazure sets

Dλ(π) and polynomials dλ(π;x) that participate are those that are indexed by the R-312-avoiding
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R-permutations π.

Our two other main results, Theorems 11.1 and 10.3, are perhaps our deepest results. The set

Tλ of tableaux is partially ordered by value-wise comparison, and it can be viewed as a subset of

ZN . Theorem 11.1 states that if the set Dλ(π) of Demazure tableaux is a principal ideal in Tλ,

or more generally if Dλ(π) is a convex polytope in ZN , then π must be R-312-avoiding. Theorem

10.3 states that if π is R-312-avoiding, then the set Dλ(π) is a principal ideal in Tλ and hence is

conversely a convex polytope in ZN . These two theorems play central roles in proving Theorems

13.1 and 14.3. None of these theorems could be proved without being able to get one’s hands on

Demazure tableaux. The scanning method developed in this second author’s thesis [Wi1] [Wi2]

for computing the right key of Lascoux and Schützenberger is used in the proofs of Theorems 11.1

and 10.3; the proof of the latter result also uses the more direct description of Dλ(π) we developed

in [PW1]. Postnikov and Stanley noted on p. 162 of [PS] that the Gelfand pattern conversions

of the tableaux in Sλ(ϕ) = Dλ(π) form a convex polytope in ZM , where M is the length of the

312-avoiding permutation π.

Let us return to considering the Schubert varieties X(π) ⊆ GL(n)/B and X(π) ⊆ GL(n)/P ,

where P is the parabolic subgroup specified by R. For each λ that is compatible with R, the

tableaux in Dλ(π) for a given R-permutation π index a basis for a vector space that describes a

projective embedding of X(π). The fact that the bases for all such λ enjoy the tableau convexity

property when π is R-312-avoiding hints that the Schubert variety X(π) might enjoy some nice

geometric properties. In fact, Postnikov and Stanley noted on p. 134 of [PS] that the 312-avoiding

permutations could be seen to be the Kempf elements of Sn considered by Lakshmibai. In [GL]

and earlier papers she showed that the varieties X(π) ⊆ GL(n)/B indexed by the Kempf elements

π did possess special geometric properties.

When we first considered the row bound sums sλ(β;x), it seemed needlessly restrictive to require

β1 ≤ β2 ≤ ... ≤ βn for the row bound sequence. But as we proceeded we found it difficult to say

much about the sλ(β;x) when we required only βi ≥ i and βi ≤ n for the R-tuples forming UR(n).

This led us to define the third, intermediate, set UR(n) ⊇ UGCR(n) ⊇ UFR(n) mentioned above.

For β, β′ ∈ UR(n), we define β ≈λ β′ when Sλ(β) = Sλ(β′). After we describe this equivalence and

its equivalence classes in Sections 12 and 5, in Proposition 12.3 we precisely index the tableau sets

that underly our three kinds of row bound sums. We refer to the R-tuple indexes we have chosen

for the gapless core bound tableau sets Sλ(η) as “gapless R-tuples” and we gather them into a set

denoted UGR(n). These are the minimal row bounds that can be used to describe both the Sλ(η)

and the flag bound tableau sets Sλ(ϕ); these R-tuples appear to have fundamental importance.

Our characterization of ≈λ in Proposition 12.2 and Lemma 5.1(i) describes when one can expect

sλ(β;x) and sλ(β′;x) to “obviously” be equal because their underlying tableau sets are the same. If

sλ(β;x) = sλ(β′;x) while Sλ(β) 6= Sλ(β′), we say that these two row bound sums are “accidentally”
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equal. Corollary 14.4 rules out an accidental equality between a gapless core Schur polynomial

sλ(η;x) and any row bound sum sλ(β;x) for β ∈ Uλ(n). The proof uses our characterization of

coincidences between row bound sums and Demazure polynomials (which depends upon Theorem

11.1) to refer to the known distinctness of the Demazure polynomials. Table 16.1 summarizes our

results that say when the polynomials we are studying coincide in either sense and when (using

precise indexing) they are distinct; counts for the equivalence classes of these polynomials are also

given. Problem 14.5 asks if there exist accidental equalities among the row bound sums that are

not gapless core Schur polynomials. Extending from flags to gapless core R-tuples allows us to use

R-tuples with smaller entries to serve as row bounds for the same set of tableaux. However, for

every η ∈ UGCR(n) there exists an equivalent ϕ ∈ UFR(n). Therefore every gapless core Schur

polynomial has already arisen as a flag Schur polynomial. But knowledge of UGCR(n) and UGR(n)

provides a clearer picture and more efficient row bounds.

Counting polynomials has revealed a new coincidence. We use
(
n
R

)
to denote the multinomial

coefficient that counts R-permutations. The total number of Demazure polynomials based upon the

shape λ is
(
n
R

)
. The number of these that arise as flag Schur polynomials is the parabolic Catalan

number CRn . The so-counted R-312-avoiding Demazure polynomials match up with the flag Schur

polynomials. Hence Theorems 13.1 and 14.3 provide a complete explanation for this first counting

coincidence, between the nicest Demazure polynomials and the nicest row bound sums. However,

up to generating function identicality, the number of our most general class of row bound sums

sλ(β) also happens to be
(
n
R

)
. Theorem 14.3 says that those that are not flag Schur polynomials

cannot arise as Demazure polynomials. For a fixed compatible shape λ, in Problem 16.1 we ask why

the number of row bound sums that are not Demazure polynomials and the number of Demazure

polynomials that are not flag Schur polynomials should both be
(
n
R

)
− CRn .

When Stanley expressed some row bound sums sλ(β;x) with a Gessel-Viennot determinant in

Theorem 2.7.1 of [St1] and Theorem 7.5.1 of [St2], he noted that taking β to be a flag would satisfy

a requirement that had been stipulated by Gessel and Viennot for employing their method. This

implicitly raised the problem of characterizing all β ∈ UR(n) for which the Gessel-Viennot method

can be applied to produce a determinant expression for a row bound sum sλ(β;x). Using concepts

that had already been developed for this paper, in [PW2] we characterize such β. This is previewed

in Section 17. Half of this characterization consists of the requirement β ∈ UGCR(n). In fact, using

the smallest equivalent bound sequences from UGR(n) (rather than those from UFR(n)) produces

determinants whose evaluations use the fewest possible number of monomials.

Relating our Theorems 13.1 and 14.3 to Theorems 23 and 25 of [RS] and to Theorem 14.1 of

[PS] takes significant effort in Section 15. Fortunately the tools we develop in earlier sections suffice:

In Section 7 we use the maps of R-tuples that were defined and developed in Sections 3, 4, and 6

for other purposes to describe the relationship of the notion of R-312-avoiding R-permutation to

6
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that of 312-avoiding permutation. Propositions 7.2 and 7.5 are then used in Section 15 to prove

the equivalence of Theorem 14.1 of [PS] with a weaker form of part of our Theorem 14.2. We are

able to repair one direction of Theorem 25 of [RS] and to extend the other direction to handle more

cases.

Other tools are developed in Section 4-6, 9, and 12. At times we re-express arbitrary R-

permutations as R-chains of subsets of [n] and as key tableaux of a compatible shape λ. More

specifically, it is useful to re-encode the information contained in an R-312-avoiding R-permutation

into other forms. Parts (i), (ii), (iii), and (v) of Theorem 18.1 list nine other sets of simple com-

binatorial structures that are also enumerated by CRn : Given an R-312-avoiding R-permutation

π, the unique corresponding upper gapless R-tuple γ ∈ UGR(n) provides the most efficient de-

scription of the set Dλ(π) in the form Sλ(γ). Two particular kinds of flags ϕ, the floors and the

ceilings, can be used to provide alternate precise labelling indexes for the flag bound tableau sets

Sλ(ϕ) = Sλ(γ) that arise here. The notions of R-rightmost clump deleting chain for general R

and of gapless λ-key give two more ways to encode the information in such a π. Propositions 5.4

and 6.6 and Theorem 9.2 describe bijections among the sets of these objects. These bijections

include the R-core map ∆R, which can more generally be applied to upper R-tuples, and the rank

R-tuple map ΨR, which can more generally be applied to R-permutations. These two maps play

central roles throughout this paper. It is striking that the gapless R-tuples arise in two indepen-

dent fashions: Not only are they the images of flags ϕ under the R-core map ∆R, they are also

the images of the R-312-avoiding R-permutations π under the rank R-tuple map ΨR. The equality

∆R(ϕ) = γ = ΨR(π) with γ ∈ UGR(n) is the central aspect of the connection between flag Schur

polynomials and R-312-avoiding Demazure polynomials. Given β ∈ UR(n), a maximization process

in [RS] produced a tableau that we denote Qλ(β). We introduce another maximization process in

Section 9 to produce a tableau denoted Mλ(β). Proposition 12.4 relates Mλ(β) to Qλ(β). For a

gapless R-tuple γ ∈ UGR(n), Theorem 9.2 says that Mλ(γ) is a λ-key Yλ(π) for an R-312-avoiding

R-permutation π. These two results provide the foundation for the bridge from flag bound tableau

sets to the R-312-avoiding Demazure tableau sets.

Please be aware of the two notation conventions noted at the end of this paragraph! The

primary independent variable for each section is either a subset R ⊆ [n − 1] or a partition λ with

at most n parts. Many sections are accordingly said to be in the “R-world” or in the “λ-world”.

The R-world is concerned with R-tuples and the λ-world is concerned with tableaux of shape λ.

If the independent variable is λ, then we soon find the set Rλ of column lengths in its shape that

are less than n and take R := Rλ when referring to R-world concepts and results. At the end of

Section 3 we say that the ‘R’ subscripts and prefixes will be omitted when R = [n − 1]. Near the

end of Section 8, we say that we will usually replace ‘Rλ’ in subscripts and in prefixes with ‘λ’.

In addition to the R versus λ dichotomy, another overarching dichotomy in this paper is between

7
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the “left hand side” entities and results concerned with flag Schur polynomials and their row bound

sum generalizations and the “right hand side” entities and results concerned with the Demazure

polynomials. Visualize a river that flows from north to south. The northern portion of each bank

lies in the preliminary R-world and the southern portion lies in the λ-world. After presenting the

definitions in Section 3 on an island in the R-world, in the northern portion of the left bank in

Sections 4 and 5 we prepare to later index row bound sums. We jump to the northern portion of

the right bank and prepare to later index Demazure polynomials in Sections 6 and 7. On an island

in the λ-world, Section 8 presents the definitions concerning shapes and tableaux. Back on the

right bank, Section 9 transitions from the R-world down the river to the λ-world. This prepares

us to obtain in Section 10 and 11 our results on the convexity of the Demazure tableau sets. After

we jump back to the left bank and land in the λ-world, Section 12 prepares to build a bridge to

the right bank. The bridge primarily consists of Section 13 and 14, which contain our results on

coincidences among, and distinctness for, the row bound sums and Demazure polynomials. Also on

the bridge, Section 15 compares our results to those of [RS] and [PS] and Section 16 summarizes

our distinctness results. Section 17 previews our further results in [PW2] and Section 18 contains

enumeration remarks.

To summarize: How “special” are flag Schur polynomials compared to general row bound sums?

When naming the members of the collections {sλ(β;x)}β∈Uλ(n) and {sλ(η;x)}η∈UGCλ(n) of newly

defined polynomials that extend the collection {sλ(ϕ;x)}ϕ∈UFλ(n) of flag Schur polynomials, we

decided to not honor the general row bound sums sλ(β;x) with the adjective ‘Schur’. Recall that

each flag Schur polynomial is a gapless core Schur polynomial. We show that each gapless core Schur

polynomial sλ(η;x) arises as a Demazure polynomial, we rule out accidental equalities between

gapless core Schur polynomials, we can count gapless core Schur polynomials up to polynomial

equality, and we show that each gapless core Schur polynomial can be expressed with a determinant.

We cannot show any of these things for the general row bound sums sλ(β;x). Since by Proposition

12.1 every gapless core Schur polynomial sλ(η;x) arises as a flag Schur polynomial sλ(ϕ;x) for

some upper flag ϕ, after that proposition is obtained one could think of the gapless core Schur

polynomials as being more-flexibly indexed versions of the flag Schur polynomials. We view the

larger indexing set UGCλ(n) of gapless core λ-tuples as being the most appropriate indexing set;

in particular, as is noted in Corollary 17.3 the gapless λ-tuples are the most efficient inputs for the

determinant expression.

2 General definitions

In posets we use interval notation to denote principal ideals and convex sets. For example, in Z

one has (i, k] = {i + 1, i + 2, ..., k}. Given an element x of a poset P , we denote the principal

8
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ideal {y ∈ P : y ≤ x} by [x]. When P = {1 < 2 < 3 < ...}, we write [1, k] as [k]. If Q is a set

of integers with q elements, for d ∈ [q] let rankd(Q) be the dth largest element of Q. We write

max(Q) := rank1(Q) and min(Q) := rankq(Q). A set D ⊆ ZN for some N ≥ 1 is a convex polytope

if it is the solution set for a finite system of linear inequalities.

Fix n ≥ 1 throughout the paper. Except for ζ, lower case Greek letters indicate n-tuples of

non-negative integers; their entries are denoted with the same letter. An nn-tuple ν consists of

n entries νi ∈ [n] that are indexed by indices i ∈ [1, n], which together form n pairs (i, νi). Let

P (n) denote the poset of nn-tuples ordered by entrywise comparison. It is a distributive lattice

with meet and join given by entrywise min and max. Fix an nn-tuple ν. A subsequence of ν is a

sequence of the form (νi, νi+1, ..., νj) for some i, j ∈ [n]. The support of this subsequence of ν is the

interval [i, j]. The cohort of this subsequence of ν is the multiset {νk : k ∈ [i, j]}. A staircase of

ν within a subinterval [i, j] for some i, j ∈ [n] is a maximal subsequence of (νi, νi+1, ..., νj) whose

entries increase by 1. A plateau in ν is a maximal constant nonempty subsequence of ν; it is trivial

if it has length 1.

An nn-tuple φ is a flag if φ1 ≤ . . . ≤ φn. The set of flags is a sublattice of P (n); it is essentially

the lattice denoted L(n, n) by Stanley. An upper tuple is an nn-tuple υ such that υi ≥ i for i ∈ [n].

The upper flags are the sequences of the y-coordinates for the above-diagonal Catalan lattice paths

from (0, 0) to (n, n). A permutation is an nn-tuple that has distinct entries. Let Sn denote the set

of permutations. A permutation π is 312-avoiding if there do not exist indices 1 ≤ a < b < c ≤ n

such that πa > πb < πc and πa > πc. Let S312
n denote the set of 312-avoiding permutations. By

Exercises 6.19(h) and 6.19(ff) of [St2] (or Exercises 116 and 24 of [St3]), these permutations and

the upper flags are counted by the Catalan number Cn := 1
n+1

(
2n
n

)
.

Tableau and shape definitions are in Section 8; polynomials definitions are in Section 14.

3 Carrels, cohorts, R-tuples, maps of R-tuples

Fix R ⊆ [n − 1] through the end of Section 7. Denote the elements of R by q1 < . . . < qr

for some r ≥ 0. Set q0 := 0 and qr+1 := n. We use the qh for h ∈ [r + 1] to specify the

locations of r + 1 “dividers” within nn-tuples: Let ν be an nn-tuple. On the graph of ν in the

first quadrant draw vertical lines at x = qh + ε for h ∈ [r + 1] and some small ε > 0. These

r + 1 lines indicate the right ends of the r + 1 carrels (qh−1, qh] of ν for h ∈ [r + 1]. An R-tuple

is an nn-tuple that has been equipped with these r + 1 dividers. Fix an R-tuple ν; we portray

it by (ν1, ..., νq1 ; νq1+1, ..., νq2 ; ...; νqr+1, ..., νn). Let UR(n) denote the sublattice of P (n) consisting

of upper R-tuples. Let UFR(n) denote the sublattice of UR(n) consisting of upper flags. Fix

h ∈ [r+ 1]. The hth carrel has ph := qh− qh−1 indices. The hth cohort of ν is the multiset of entries

of ν on the hth carrel.

9
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An R-increasing tuple is an R-tuple α such that αqh−1+1 < ... < αqh for h ∈ [r + 1]. Let

UIR(n) denote the sublattice of UR(n) consisting of R-increasing upper tuples. It can be seen that

|UIR(n)| =
∏r+1
h=1

(
n−qh−1
ph

)
= n!/

∏r+1
h=1 ph! =:

(
n

p1 ... pr+1

)
=:
(
n
R

)
. An R-permutation is a permuta-

tion that is R-increasing when viewed as an R-tuple. Let SRn denote the set of R-permutations.

Note that |SRn | =
(
n
R

)
. We refer to the cases R = ∅ and R = [n − 1] as the trivial and full

cases respectively. Here |S∅n| = 1 and |S[n−1]
n | = n! respectively. Given a permutation σ ∈ Sn,

its R-projection σ̄ ∈ SRn is the R-increasing tuple obtained by sorting its entries in each cohort

into increasing order within their carrel. An R-permutation π is R-312-containing if there exists

h ∈ [r − 1] and indices 1 ≤ a ≤ qh < b ≤ qh+1 < c ≤ n such that πa > πb < πc and πa > πc.

An R-permutation is R-312-avoiding if it is not R-312-containing. Let SR-312
n denote the set of

R-312-avoiding permutations. We define the R-parabolic Catalan number CRn by CRn := |SR-312
n |.

Consult Table 3.1 for examples of, and counterexamples for, our various kinds of R-tuples. Boldface

entries indicate failures.

Type of R-tuple Set Example Counterexample

Upper R-increasing tuple α ∈ UIR(n) (2, 6, 7; 4, 5, 7, 8, 9; 9) (3, 5,5; 6,4, 7, 8, 9; 9)

R-312-avoiding permutation π ∈ SR-312
n (2, 3, 6; 1, 4, 5, 8, 9; 7) (2, 4,6; 1,3, 7, 8, 9; 5)

Gapless R-tuple γ ∈ UGR(n) (2, 4, 6; 4, 5, 6, 7, 9; 9) (2, 4, 6; 4,6, 7, 8, 9; 9)

R-floor flag τ ∈ UFlrR(n) (2, 4, 5; 5, 5, 6, 8, 9; 9) (2, 4, 5; 5, 5,8,8, 9; 9)

R-ceiling flag ξ ∈ UCeilR(n) (1, 4, 4; 5, 5, 9, 9, 9; 9) (1, 4, 4; 5, 5,7,8, 9; 9)

Gapless core R-tuple η ∈ UGCR(n) (4, 5, 5; 4, 8, 7, 8, 8; 9) (4, 5, 5; 4, 8, 7, 8,9; 9)

Table 3.1. (Counter-)Examples of R-tuples for n = 9 and R = {3, 8}.

A gapless R-tuple is an R-increasing upper tuple γ such that whenever there exists h ∈ [r] with

γqh > γqh+1, then γqh −γqh+1 + 1 =: s ≤ ph+1 and the first s entries of the (h+ 1)st carrel (qh, qh+1]

are γqh − s+ 1, γqh − s+ 2, ..., γqh . Let UGR(n) ⊆ UIR(n) denote the set of gapless R-tuples. Note

that a gapless γ has γq1 ≤ γq2 ≤ ... ≤ γqr ≤ γqr+1 . So in the full R = [n − 1] case, each gapless

R-tuple is a flag. Hence UG[n−1](n) = UF[n−1](n).

An R-chain B is a sequence of sets ∅ =: B0 ⊂ B1 ⊂ . . . ⊂ Br ⊂ Br+1 := [n] such that |Bh| = qh

for h ∈ [r]. A bijection from R-permutations π to R-chains B is given by Bh := {π1, π2, . . . , πqh}
for h ∈ [r]. We indicate it by π ↔ B. Fix an R-permutation π and let B be the corresponding

R-chain. For h ∈ [r + 1], the set Bh is the union of the first h cohorts of π. Note that R-chains

B (and hence R-permutations π) are equivalent to the
(
n
R

)
objects that could be called “ordered

10
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R-partitions of [n]”; these arise as the sequences (B1\B0, B2\B1, . . . , Br+1\Br) of r + 1 disjoint

nonempty subsets of sizes p1, p2, . . . , pr+1.

Now create an R-tuple ΨR(π) =: ψ as follows: For h ∈ [r+1] specify the entries in its hth carrel

by ψi := rankqh−i+1(Bh) for i ∈ (qh−1, qh]. As well as being R-increasing, it can be seen that ψ

is upper: So ψ ∈ UIR(n). We call ψ the rank R-tuple of π. See Table 3.2. For a model, imagine

there are n discus throwers grouped into r + 1 heats of ph throwers for h ∈ [r + 1]. Each thrower

gets one throw, the throw distances are elements of [n], and there are no ties. After the hth heat

has been completed, the ph longest throws overall are announced in ascending order.

Name From/To Input Image

Rank R-tuple ΨR : SRn → UIR(n) (2, 4, 6; 1, 5, 7, 8, 9; 3) (2, 4, 6; 5, 6, 7, 8, 9; 9)

Undoes ΨR|SR-312
n

ΠR : UGR(n)→ SR-312
n (2, 4, 6; 4, 5, 6, 7, 9; 9) (2, 4, 6; 1, 3, 5, 7, 9; 8)

R-core ∆R : UR(n)→ UIR(n) (7, 9, 6; 5, 5, 9, 8, 9; 9) (4, 5, 6; 4, 5, 7, 8, 9; 9)

R-floor ΦR : UGR(n)→ UFlrR(n) (3, 4, 6; 4, 5, 6, 8, 9; 9) (3, 4, 6; 6, 6, 6, 8, 9; 9)

R-ceiling ΞR : UGR(n)→ UCeilR(n) (3, 4, 5; 4, 5, 6, 8, 9; 9) (5, 5, 5; 6, 6, 6, 9, 9; 9)

Table 3.2. Examples for maps of R-tuples for n = 9 and R = {3, 8}.

In Proposition 6.6(ii) it will be seen that the restriction of ΨR to SR-312
n is a bijection to

UGR(n) whose inverse is the following map ΠR. Let γ ∈ UGR(n). Define an R-tuple ΠR(γ) =: π

by: Initialize πi := γi for i ∈ (0, q1]. Let h ∈ [r]. If γqh > γqh+1, set s := γqh − γqh+1 + 1. Otherwise

set s := 0. For i in the right side (qh + s, qh+1] of the (h+ 1)st carrel, set πi := γi. For i in the left

side (qh, qh + s], set d := qh + s− i+ 1 and πi := rankd( [γqh ] \ {π1, ..., πqh} ). (Since γ is a gapless

R-tuple, when s ≥ 1 we have γqh+s = γqh . Since ‘gapless’ includes the upper property, here we have

γqh+s ≥ qh + s. Hence | [γqh ] \ {π1, ..., πqh} | ≥ s, and so there are enough elements available to

define these left side πi. ) Since γqh ≤ γqh+1
, it can inductively be seen that max{π1, ..., πqh} = γqh .

Let υ ∈ UR(n). The information that we need from υ will often be distilled into a skeletal

substructure with respect to R: Fix h ∈ [r + 1]. Working within the hth carrel (qh−1, qh] from the

right we recursively find for u = 1, 2, ... : At u = 1 the rightmost critical pair of υ in the hth carrel

is (qh, υqh). Set x1 := qh. Recursively attempt to increase u by 1: If it exists, the next critical pair

to the left is (xu, υxu), where qh−1 < xu < xu−1 is maximal such that υxu−1 − υxu > xu−1 − xu.

Otherwise, let fh ≥ 1 be the last value of u attained. The set of critical pairs of υ for the hth

carrel is {(xu, υxu) : u ∈ [fh]} =: Ch. Equivalently, here fh is maximal such that there exists indices

x1, x2, ..., xfh such that qh−1 < xfh < ... < x1 = qh and υxu−1 − υxu > xu−1 − xu for u ∈ (1, fh].

11
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The R-critical list for υ is the sequence (C1, ...,Cr+1) =: C of its r + 1 sets of critical pairs. The

R-critical list for the gapless R-tuple γ of Table 3.1 is ({(1, 2), (2, 4), (3, 6)}; {(7, 7), (8, 9)}; {(9, 9)}).
Without having any υ specified, for h ∈ [r + 1] we define a set {(xu, yxu) : u ∈ [fh]} =: Ch of

pairs for some fh ∈ [ph] to be a set of critical pairs for the hth carrel if: xu ≤ yxu , qh−1 < xfh < ... <

x1 = qh, and yxu−1 − yxu > xu−1 − xu for u ∈ (1, fh]. A sequence of r + 1 sets of critical pairs for

all of the carrels is an R-critical list. The R-critical list of a given υ ∈ UR(n) is an R-critical list. If

(x, yx) is a critical pair, we call x a critical index and yx a critical entry. We say that an R-critical

list is a flag R-critical list if whenever h ∈ [r] we have yqh ≤ yk, where k := xfh+1
. This condition

can be restated as requiring that the sequence of all of its critical entries be weakly increasing. If

υ ∈ UFR(n), then its R-critical list is a flag R-critical list.

We illustrate some recent definitions. First consider an R-increasing upper tuple α ∈ UIR(n):

Each carrel subsequence of α is a concatenation of the staircases within the carrel in which the

largest entries are the critical entries for the carrel. Now consider the definition of a gapless R-tuple,

which begins by considering a γ ∈ UIR(n): This definition is equivalent to requiring for all h ∈ [r]

that if γqh > γqh+1, then the leftmost staircase within the (h + 1)st carrel must contain an entry

γqh .

Here are four kinds of nn-tuples that will be seen in Proposition 4.3 to arise from extending

(flag) R-critical lists in various unique ways:

Definition 3.1. Let R ⊆ [n− 1].

(i) We say that ρ ∈ UR(n) is an R-shell tuple if ρi = n for every non-critical index i of ρ.

(ii) We say that κ ∈ UR(n) is an R-canopy tuple if it is an R-shell tuple whose critical list is a flag

critical list.

(iii) We say that τ ∈ UFR(n) is an R-floor flag if the leftmost pair of each non-trivial plateau in τ

has the form (qh, τqh) for some h ∈ [r].

(iv) We say that ξ ∈ UFR(n) is an R-ceiling flag if it is a concatenation of plateaus whose rightmost

pairs are the R-critical pairs of ξ.

It will be seen in Corollary 4.4 that R-increasing upper tuples and R-shell tuples bijectively corre-

spond to R-critical lists. Hence the number of R-critical lists and of R-shell tuples is also
(
n
R

)
. Let

UFlrR(n) and UCeilR(n) respectively denote the sets of R-floor flags and of R-ceiling flags.

There are various ways in which the skeletal structure specified by a (flag) R-critical list will

be extended in Proposition 4.3 to form an R-tuple without changing the R-critical list; this will be

done by specifying the entries at the non-critical indices in certain fashions. Here we describe the

most fundamental way of doing this. We form the R-critical list of an upper R-tuple and then fill it

out in a minimal increasing fashion without changing the R-critical list. Let υ ∈ UR(n). Create an

R-tuple ∆R(υ) =: δ as follows: Let x be a critical index for υ. If x is the leftmost critical index set

12
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x′ := 0; otherwise let x′ be the largest critical index that is less than x. For every critical pair (x, υx)

for υ, set δx := υx. For x′ < i < x, set δi := υx − (x − i). This forms a staircase toward the left

from each critical index. Clearly δ ∈ UIR(n). We call ∆R the R-core map from UR(n) to UIR(n).

At the end of Section 5 it will be noted that the restrictions of ∆R to UFlrR(n) and UCeilR(n)

are bijections to UGR(n). Their inverse maps ΦR and ΞR are introduced there. A gapless core

R-tuple is an upper R-tuple η whose R-core ∆R(η) is a gapless R-tuple. Let UGCR(n) denote the

set of gapless core R-tuples. In Section 4 we will see that UFR(n) ⊆ UGCR(n) ⊆ UGR(n). So

UF[n−1](n) = UGC[n−1](n) = UG[n−1](n).

When we restrict our attention to the full R = [n − 1] case, we will suppress all prefixes and

subscripts of ‘R’. Above we would have written UF (n) = UGC(n) = UG(n). It can be seen that

UFlr(n) = UCeil(n) = UF (n), and that this is also the set of [n− 1]-canopy tuples. The number

of nn-tuples in each of these sets is Cn.

4 Cores, shells, gapless tuples, canopies, floors, ceilings

In this section we use the critical list substructure to relate six kinds of R-tuples that can be used

as indexes for row bound tableau sets in Section 12. Over Section 3, this section, and Section 5 we

are defining three versions of some of these notions, which have a word such as ‘floor’ in common

in their names. When delineation of these three similar concepts is needed, one should consult the

summary paragraph at the end of Section 5.

Fact 4.1. Let υ ∈ UR(n). Its R-core ∆R(υ) =: δ is an R-increasing upper tuple: δ ∈ UIR(n). Here

δ ≤ υ in UR(n) and δ has the same critical list as υ. So υ′ ∈ UR(n) has the same critical list as υ

if and only if ∆R(υ′) = ∆R(υ). If υ ∈ UIR(n), then ∆R(υ) = υ.

The process used to define the R-core map can also be used to bijectively produce the R-tuples in

UIR(n) from the set of all R-critical lists: To see surjectivity, note that the staircases within the

carrels of a given α ∈ UIR(n) can be formed toward the left from the critical pairs of α.

We will be defining more maps from sets of upper R-tuples to sets of upper R-tuples. We will

always require that the R-critical list of an upper R-tuple be preserved. At times we will need to

have the range contained in UFR(n). In those cases, to produce an upper R-tuple whose R-critical

list is a flag R-critical list, we must exclude from the domain the υ ∈ UR(n) that do not have flag

R-critical lists. Sometimes we will already want the domain to be UFR(n); this will suffice. Part

(iii) of the next statement characterizes the upper R-tuples with flag R-critical lists. Here Part (i)

restates part of the fact above to provide contrast for Part (ii). Part (iv) notes that the relationship

of ‘gapless’ to ‘increasing upper’ is analogous to the relationship of ‘canopy’ to ‘shell’.

Proposition 4.2. Let υ ∈ UR(n), η ∈ UGCR(n), φ ∈ UFR(n), and α ∈ UIR(n).

13
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(i) The R-core ∆R(υ) of υ is an R-increasing upper tuple.

(ii) The R-cores ∆R(η) and ∆R(φ) of η and φ are gapless R-tuples. We have UGR(n) ⊆ UGCR(n)

and UFR(n) ⊆ UGCR(n).

(iii) The R-critical list of υ is a flag R-critical list if and only if υ ∈ UGCR(n).

(iv) The R-critical list of α is a flag R-critical list if and only if α ∈ UGR(n).

Proof. For (ii), recall that ∆R(η) ∈ UGR(n) by definition. Since UGR(n) ⊆ UIR(n), we have

∆R(γ) = γ for γ ∈ UGR(n). Hence UGR(n) ⊆ UGCR(n). To show ∆R(φ) ∈ UGR(n) and to begin

the proof of (iii), let υ ∈ UR(n). Set δ := ∆R(υ). Fix h ∈ [r]. Let k be the leftmost critical index of

υ in (qh, qh+1]. Here δqh = υqh and δk = υk. The index qh + 1 is included in the leftmost staircase

of υ within (qh, qh+1]. Here δqh+1 ≤ δk. Suppose the hypothesis δqh > δqh+1 of the definition of

‘gapless’ is satisfied. Here the entry δqh occurs in the cohort of the leftmost staircase, which is on

[δqh+1, δk], if and only if δqh ≤ δk. To finish (ii), note that this is satisfied since υ is a flag, because

δqh = υqh ≤ υk = δk. Part (iii) holds since δqh ≤ δk is the same as the flag R-critical list defining

condition of υqh ≤ υk. Part (iv) follows from Fact 4.1 and (iii).

Most of our kinds of R-tuples correspond bijectively to R-critical lists or to flag R-critical lists.

The following six R-tuples α, ρ, γ, κ, τ, and ξ will be considered in the proposition below. Let C be

an R-critical list. For each critical pair (x, yx) in C, if x is the leftmost critical index set x′ := 0;

otherwise let x′ be the largest critical index that is less than x. Set ξx := τx := κx := γx := ρx :=

αx := yx. Then for x′ < i < x: Set αi := αx − (x − i). Set ρi := n. Now suppose that C is a

flag R-critical list. Set γi := γx − (x − i). Set κi := n. If x is the leftmost critical index in the

(h+ 1)st carrel for some h ∈ [r], then x′ = qh and we set τi := max{τqh , τx− (x− i)} for i ∈ (qh, x).

Otherwise set τi := τx − (x− i) for i ∈ (x′, x). Set ξi := ξx.

Proposition 4.3. Let C be an R-critical list.

(i) The R-tuples α and ρ above are respectively the unique R-increasing upper tuple and the unique

R-shell tuple whose R-critical lists are C.

(ii) If C is a flag R-critical list, the R-tuples γ, κ, τ, and ξ above are respectively the unique gapless

R-tuple, the unique R-canopy tuple, the unique R-floor flag, and the unique R-ceiling flag whose

R-critical lists are C.

Proof. It is clear that the R-critical list of each of these six tuples is the given R-critical list. We

confirm that the six definitions are satisfied: Since the R-tuples α and γ are produced as in the

definition of the R-core map ∆R, we see that α, γ ∈ UIR(n). Since the R-critical list given for γ is

a flag R-critical list, Proposition 4.2(iv) implies γ ∈ UGR(n). Clearly ρ is an R-shell tuple. Since

κ = ρ, the flag R-critical list hypothesis implies that κ is an R-canopy tuple. If τ has a non-trivial

plateau it must occur when τi is set to τqh for some h ∈ [r] and some consecutive indices i at the

14
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beginning of the (h+ 1)st carrel. If this τqh is greater than τqh−1 then the definition of R-floor flag

is satisfied. Otherwise τqh = τqh−1, which implies that all entries in the hth carrel have the value

τqh−1
. This plateau will necessarily terminate at the rightmost entry in some earlier carrel, since

the entries in the first carrel are strictly increasing. Clearly ξ is an R-ceiling flag.

For the uniqueness of α, recall that it was noted earlier that this construction is bijective from

R-critical lists to UIR(n). Restrict this bijection to the flag R-critical lists to get uniqueness for γ.

It is clear from the definitions of R-shell tuple, R-canopy tuple, and R-ceiling flag that for each of

these notions any two R-tuples with the same R-critical list must also have the same non-critical

entries. Let τ ′ be any R-floor flag with flag R-critical list C. Let h ∈ [r]. Let x be the leftmost

critical index in (qh, qh+1]. Then for i ∈ (qh, x) it can be seen that the critical entries at qh and

x force τ ′i = max{τ ′qh , τ
′
x − (x − i)}. On (x, qh+1] and (0, q1] the flag τ ′ must be increasing. So

on (x, qh+1) and (0, q1) the entries of τ ′ are uniquely determined by the critical pairs via staircase

decomposition for α.

Here we say that α and ρ are respectively the R-increasing upper tuple and the R-shell tuple for the

R-critical list C. We also say that γ, κ, τ, and ξ are respectively the gapless R-tuple, the R-canopy

tuple, the R-floor flag, and the R-ceiling flag for the flag R-critical list C.

Corollary 4.4. The six constructions above specify bijections from the set of R-critical lists (flag R-

critical lists) to the sets of R-increasing upper tuples and R-shell tuples (gapless R-tuples, R-canopy

tuples, R-floor flags, and R-ceiling flags).

Proof. These maps are injective since they preserve the (flag) R-critical lists. To show surjectivity,

first find the R-critical list of the target R-tuple.

In passing we note:

Fact 4.5. The subposet UGR(n) of UR(n) is a meet sublattice. Let υ, υ′ ∈ UR(n). If υ ≤ υ′ then

∆R(υ) ≤ ∆R(υ′). This implies that the R-core map on UR(n) preserves meet. Hence the subposet

UGCR(n) of UR(n) is a meet sublattice.

Both UGR(n) and UGCR(n) fail to be join sublattices.

5 Equivalence classes in UR(n) and UFR(n), inverses

Here we present results needed to study the sets of tableaux of shape λ with given row bounds in

Section 12. There we reduce that study to the study of the following sets of R-increasing tuples,

after we determine R := Rλ ⊆ [n − 1] from λ: For β ∈ UR(n), set {β}R := {ε ∈ UIR(n) : ε ≤ β}.
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This is not á priori a principal ideal in UIR(n), since it is possible that β /∈ UIR(n). But we will

see that for any β there exists α ∈ UIR(n) such that {β}R is the principal ideal [α] in UIR(n).

Define an equivalence relation ∼R on UR(n) as follows: Let υ, υ′ ∈ UR(n). We define υ ∼R υ′

if {υ}R = {υ′}R. Sometimes we restrict ∼R from UR(n) to UGCR(n), or further to UFR(n). We

denote the equivalence classes of ∼R in these three sets respectively by 〈υ〉∼R , 〈η〉G∼R , and 〈φ〉F∼R .

We indicate intervals in UGCR(n) and UFR(n) respectively with [·, ·]G and [·, ·]F .

Lemma 5.1. Let υ ∈ UR(n), η ∈ UGCR(n), and φ ∈ UFR(n).

(i) Here {υ}R = [∆R(υ)] ⊆ UIR(n). So υ′ ∼R υ for some υ′ ∈ UR(n) if and only if ∆R(υ′) = ∆R(υ)

if and only if υ′ has the same R-critical list as υ.

(ii) The equivalence classes 〈υ〉∼R , 〈η〉G∼R , and 〈φ〉F∼R are closed respectively in UR(n), UGCR(n),

and UFR(n) under the meet and the join operations for UR(n).

Proof. First we show that {υ}∼R ⊆ [∆R(υ)], which is the most interesting step for (i). Set δ :=

∆R(υ) and let α ∈ UIR(n) be such that α ≤ υ. Let x be a critical index of υ. So δx = υx. Here

α ≤ υ implies αx ≤ δx. Now let i be a non-critical index of υ and let x be the smallest critical index

of υ that is larger than i. Here δi = υx − (x− i). Since α ∈ UIR(n) we have αi ≤ αx − (x− i). So

α ≤ υ implies αi ≤ δi. For (ii), note that the critical lists of the join and the meet of two elements

of UR(n) that share a critical list are that mutual critical list. If the two such elements were in

UGCR(n), it can be seen that their meet and join are in UGCR(n). Recall that UR(n) and UFR(n)

are lattices.

So by Part (i) we can view these three equivalence classes as consisting of R-tuples that share

(flag) R-critical lists. And by Part (ii), each of these equivalence classes has a unique minimal

and a unique maximal element under the entrywise partial orders. We denote the minimums of

〈υ〉∼R ⊆ UR(n) and of 〈η〉G∼R ⊆ UGCR(n) by υ˜ and η. respectively. We call the maximums of

〈υ〉∼R ⊆ UR(n) and of 〈η〉G∼R ⊆ UGCR(n) the R-shell of υ and the R-canopy of η and denote them

by υ̃ and η̇ respectively. For the class 〈φ〉F∼R ⊆ UFR(n), we call and denote these respectively the

R-floor φ
¯

of φ and the R-ceiling φ̄ of φ.

These definitions give the containments 〈υ〉∼R ⊆ [υ˜,υ̃], 〈η〉G∼R ⊆ [η. , η̇]G, and 〈φ〉F∼R ⊆ [φ
¯
,φ̄]F for

our next result:

Proposition 5.2. Let υ ∈ UR(n), η ∈ UGCR(n), and φ ∈ UFR(n).

(i) Here υ˜ = ∆R(υ), the R-core of υ. In UR(n) we have 〈υ〉∼R = [υ˜, υ̃]. The R-core υ˜ of υ

(respectively R-shell υ̃ of υ) is the R-increasing upper tuple (respectively R-shell tuple) for the

R-critical list of υ.

(ii) We have [υ˜, υ̃] ⊆ UGCR(n) or [υ˜, υ̃] ⊆ UR(n)\UGCR(n), depending on whether υ ∈ UGCR(n)

or not. We also have η. = η˜ and η̇ = η̃. And 〈η〉G∼R = [η. , η̇]G = [η˜, η̃] = 〈η〉∼R : The equivalence
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classes UGCR(n) ⊇ 〈η〉G∼R and 〈η〉∼R ⊆ UR(n) are the same subset of UR(n), which is an interval in

both contexts. The R-core η. of η (respectively R-canopy η̇ of η) is the gapless R-tuple (respectively

R-canopy tuple) for the flag R-critical list of η.

(iii) In UFR(n) we have 〈φ〉F∼R = [φ
¯

, φ̄]F . The R-floor φ
¯

of φ (respectively R-ceiling φ̄ of φ) is the

R-floor flag (respectively R-ceiling flag) for the flag R-critical list of φ. We have [φ
¯

, φ̄]F ⊆
[φ. , φ̇] = 〈φ〉∼R ⊆ UGCR(n).

So for υ ∈ UR(n) the equivalence classes 〈υ〉∼R are intervals [υ˜, υ̃] that lie entirely in UR(n)\UGCR(n)

or entirely in UGCR(n), in which case they coincide with the equivalence classes 〈η〉G∼R = [η. , η̇]G for

η ∈ UGCR(n) originally defined by restricting ∼R to UGCR(n). However, although for φ ∈ UFR(n)

the equivalence class 〈φ〉F∼R is an interval [φ
¯
, φ̄]F when working within UFR(n), it can be viewed as

consisting of some of the elements of the interval [φ. , φ̇]G of UGCR(n) (or of UR(n)) that is formed

by viewing φ as an element of UGCR(n).

Proof. The assertions in (i) and (ii) pertaining to υ˜ alone are apparent from Fact 4.1, Proposition

4.3, Lemma 5.1, and Proposition 4.2. We know 〈η〉∼R = [η˜, η̃]. The first statement in (ii) gives

[η˜, η̃] ⊆ UGCR(n). So 〈η〉∼R ⊆ UGCR(n). Hence 〈η〉G∼R = 〈η〉∼R . Thus η.= η˜ and η̇ = η̃. To

begin working on the five “critical list for” claims beyond that for ∆R(υ), apply the constructions

given in the paragraph preceeding Proposition 4.3 to the R-critical list of υ and the flag R-critical

lists of η and φ. By Proposition 4.3 this produces the unique R-shell tuple ρ, the unique gapless

R-tuple γ, the unique R-canopy tuple κ, the unique R-floor flag τ , and the unique R-ceiling flag

ξ for these (flag) R-critical lists. We want to show that υ̃ = ρ, η. = γ, η̇ = κ, φ
¯

= τ , and φ̄ = ξ;

the statements about the R-core map ∆R will then follow from these equalities since all of these

pairs of R-tuples would have the same (flag) R-critical lists. Here we indicate how to confirm only

φ
¯

= τ ; the other four confirmations are easier. By construction τ had the same critical list as φ, so

τ ∈ 〈φ〉∼R. Recall the prescription for the non-critical entries of τ . It can be seen that decreasing

any of these non-critical entries would produce an R-tuple that is not a flag or that has a different

R-critical list. Thus τ is the minimum element φ
¯

of 〈φ〉∼R ⊆ UFR(n).

Next we show the non-trivial containment only for (iii): Let ε ∈ [φ
¯
,φ̄]F ⊆ UFR(n). Here

φ
¯
≤ ε ≤ φ̄ in UFR(n) implies {φ

¯
}R ⊆ {ε}R ⊆ {φ̄}R in UIR(n). But φ

¯
∼R φ ∼R φ̄ implies

{φ
¯
}R = {φ̄}R. Thus {ε}R = {φ}R, and so ε ∼R φ.

Corollary 5.3. The equivalence classes of ∼R can be indexed as follows:

(i) In UR(n), they are precisely indexed by the R-increasing upper tuples or the R-shell tuples (or

by the R-critical lists).

(ii) In UGCR(n), they are precisely indexed by the gapless R-tuples or the R-canopy tuples (or by

the flag R-critical lists, the R-floor flags, or the R-ceiling flags).
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(iii) In UFR(n), they are precisely indexed by the R-floor flags or the R-ceiling flags (or by the flag

R-critical lists, the gapless R-tuples, or the R-canopy tuples).

If the gapless R-tuple label for an equivalence class in UFR(n) is not a flag, we may want to

convert it to the unique R-floor (or R-ceiling) flag that belongs to the same class. Let γ ∈ UGR(n).

Find the R-critical list of γ; by Proposition 4.2(iv) it is a flag R-critical list. As in Section 4,

compute the R-floor flag τ and the R-ceiling ξ for this flag R-critical list. Define the R-floor map

ΦR : UGR(n) −→ UFlr(n) and R-ceiling map ΞR : UGR(n) −→ UCeilR(n) by ΦR(γ) := τ and

ΞR(γ) := ξ. By Proposition 4.3(ii) and Corollary 4.4 these maps are well defined bijections; it

can be seen that each has inverse ∆R. Part (iii) of the following proposition previews Proposition

6.6(ii).

Proposition 5.4. The following maps are bijections:

(i) ΦR : UGR(n) −→ UFlrR(n) has inverse ∆R.

(ii) ΞR : UGR(n) −→ UCeilR(n) has inverse ∆R.

(iii) ΠR : UGR(n) −→ SR-312
n has inverse ΨR.

To summarize: In Section 3 the six notions of R-increasing upper tuple, R-shell tuple, gapless

R-tuple, R-canopy tuple, R-floor flag, and R-ceiling flag were defined with conditions on the entries

of an R-tuple. While introducing the word ‘for’ into these terms, in Section 4 one such R-tuple was

associated to each (flag) R-critical list. While introducing the word ‘of’ into four of these terms,

in this section these kinds of R-tuples arose as the extreme elements of equivalence classes. This

began with the classes in UR(n). Here these extreme elements were respectively R-increasing upper

and R-shell tuples. When these classes were restricted to the subset UGCR(n) of upper R-tuples

with gapless cores, these extreme elements were respectively gapless R-tuples and R-canopy tuples.

When these classes were restricted further to the subset UFR(n) of upper flags, these extreme

elements were respectively R-floor and R-ceiling flags.

6 Rightmost clump deleting chains

In this section and the next section we process the R-permutations π that will index the Demazure

tableau sets Dλ(π).

Given a set of integers, a clump of it is a maximal subset of consecutive integers. After

decomposing a set into its clumps, we index the clumps in the increasing order of their ele-

ments. For example, the set {2, 3, 5, 6, 7, 10, 13, 14} is the union L1 ∪ L2 ∪ L3 ∪ L4, where

L1 := {2, 3}, L2 := {5, 6, 7}, L3 := {10}, L4 := {13, 14}.
For the first part of this section we temporarily work in the context of the full R = [n − 1]

case. A chain B is rightmost clump deleting if for h ∈ [n− 1] the element deleted from each Bh+1

18
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to produce Bh is chosen from the rightmost clump of Bh+1. More formally: It is rightmost clump

deleting if for h ∈ [n−1] one has Bh = Bh+1\{b} only when [b,m] ⊆ Bh+1, where m := max(Bh+1).

The five rightmost clump deleting chains for n = 3 are shown here:

1 2 �3
1 �2

�1

1 2 �3

�1 2

�2

1 �2 3
1 �3

�1

�1 2 3
2 �3

�2

�1 2 3

�2 3

�3

To form the corresponding π, record the deleted elements from bottom to top.

After Part (0) restates the definition of this concept, we present four reformulations of it:

Fact 6.1. Let B be a chain. Set {bh+1} := Bh+1\Bh for h ∈ [n − 1]. Set mh := max(Bh) for

h ∈ [n]. The following conditions are equivalent to this chain being rightmost clump deleting:

(0) For h ∈ [n− 1], one has [bh+1,mh+1] ⊆ Bh+1.

(i) For h ∈ [n− 1], one has [bh+1,mh] ⊆ Bh+1.

(ii) For h ∈ [n− 1], one has (bh+1,mh) ⊂ Bh.

(iii) For h ∈ [n− 1]: If bh+1 < mh, then bh+1 = max([mh]\Bh).

(iii′) For h ∈ [n− 1], one has bh+1 = max([mh+1]\Bh).

The following characterization is related to Part (ii) of the preceeding fact via the correspondence

π ←→ B:

Fact 6.2. A permutation π is 312-avoiding if and only if for every h ∈ [n− 1] we have

(πh+1,max{π1, ..., πh}) ⊂ {π1, ..., πh}.

Since the following result will be generalized by Proposition 6.6, we do not prove it here.

Proposition 6.3. For the full R = [n− 1] case we have:

(i) The restriction of the global bijection π 7→ B from Sn to S312
n is a bijection to the set of rightmost

clump deleting chains. Hence there are Cn rightmost clump deleting chains.

(ii) The restriction of the rank tuple map Ψ from Sn to S312
n is a bijection to UF (n) whose inverse

is Π.

When R = [n− 1], the map ΠR =: Π : UF (n) −→ S312
n has a simple description. It was introduced

in [PS] for Theorem 14.1. Given an upper flag φ, recursively construct Π(φ) =: π as follows: Start

with π1 := φ1. For i ∈ [n− 1], choose πi+1 to be the maximum element of [φi+1]\{π1, ..., πi}.
We now return to our fixed R ⊆ [n − 1]. Let B be an R-chain. More generally, we say B is

R-rightmost clump deleting if this condition holds for each h ∈ [r]: Let Bh+1 =: L1 ∪ L2 ∪ ... ∪ Lf
decompose Bh+1 into clumps for some f ≥ 1. We require Le ∪ Le+1 ∪ ... ∪ Lf ⊇ Bh+1\Bh ⊇
Le+1 ∪ ... ∪ Lf for some e ∈ [f ]. This condition requires the set Bh+1\Bh of new elements that

augment the set Bh of old elements to consist of entirely new clumps Le+1, Le+2, ..., Lf , plus some
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further new elements that combine with some old elements to form the next clump Le in Bh+1.

Here are some reformulations of the notion of R-rightmost clump deleting:

Fact 6.4. Let B be an R-chain. For h ∈ [r], set bh+1 := min(Bh+1\Bh) and mh := max(Bh). This

R-chain is R-rightmost clump deleting if and only if each of the following holds:

(i) For h ∈ [r], one has [bh+1,mh] ⊆ Bh+1.

(ii) For h ∈ [r], one has (bh+1,mh) ⊂ Bh+1.

(iii) For h ∈ [r], let s be the number of elements of Bh+1\Bh that are less than mh. These must be

the s largest elements of [mh]\Bh.

The following characterization is related to Part (ii) of the preceding fact via the correspondence

π ←→ B:

Fact 6.5. An R-permutation π is R-312-avoiding if and only if for every h ∈ [r] one has

(min{πqh+1, ..., πqh+1
},max{π1, ..., πqh}) ⊂ {π1, ..., πqh+1

}.

Is it possible to characterize the rank R-tuple ΨR(π) =: ψ of an R-permutation π? An R-flag

is an R-increasing upper tuple ε such that εqh+1+1−u ≥ εqh+1−u for h ∈ [r] and u ∈ [min{ph+1, ph}].
It can be seen that ψ is necessarily an R-flag. But the three conditions required so far (upper,

R-increasing, R-flag) are not sufficient: When n = 4 and R = {1, 3}, the R-flag (3, 2, 4, 4) cannot

arise as the rank R-tuple of an R-permutation. In contrast to the upper flag characterization in

the full case, it might not be possible to develop a simply stated sufficient condition for an R-tuple

to be the rank R-tuple ΨR(π) of a general R-permutation π. But it can be seen that the rank

R-tuple ψ of an R-312-avoiding permutation π is necessarily a gapless R-tuple, since a failure of

‘gapless’ for ψ leads to the containment of an R-312 pattern. Building upon the observation that

UG(n) = UF (n) in the full case, this seems to indicate that the notion of “gapless R-tuple” is

the correct generalization of the notion of “flag” from [n − 1]-tuples to R-tuples. (It can be seen

directly that a gapless R-tuple is necessarily an R-flag.)

Proposition 6.6. For general R ⊆ [n− 1] we have:

(i) The restriction of the global bijection π 7→ B from Sn to SR-312
n is a bijection to the set of

R-rightmost clump deleting chains.

(ii) The restriction of the rank R-tuple map ΨR from Sn to SR-312
n is a bijection to UGR(n) whose

inverse is ΠR.

Proof. Setting bh = min{πqh+1, ..., πqh+1
} and mh = max{π1, ..., πqh}, use Fact 6.5, the π 7→ B

bijection, and Fact 6.4(ii) to confirm (i).

As noted above, the restriction of ΨR to SR-312
n gives a map to UGR(n). Let γ ∈ UGR(n) and

construct ΠR(γ) =: π. Let h ∈ [r]. Recall that max{π1, ..., πqh} = γqh . Since γ is R-increasing it
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can be seen that the πi are distinct. So π is an R-permutation. Let s ≥ 0 be the number of entries

of {πqh+1, ..., πqh+1
} that are less than γqh . These are the s largest elements of [γqh ]\{π1, ..., πqh}.

If in the hypothesis of Fact 6.4 we take Bh := {π1, ..., πqh}, we have mh = γqh . So the chain B

corresponding to π satisfies Fact 6.4(iii). Since Fact 6.4(ii) is the same as the characterization of

an R-312-avoiding permutation in Fact 6.5, we see that π is R-312-avoiding. It can be seen that

ΨR[ΠR(γ)] = γ, and so ΨR is surjective from SR-312
n to UGR(n). For the injectivity of ΨR, now

let π denote an arbitrary R-312-avoiding permutation. Form ΨR(π), which is a gapless R-tuple.

Using Facts 6.5 and 6.4, it can be seen that ΠR[ΨR(π)] = π. Hence ΨR is injective.

7 Projecting and lifting the notion of 312-avoiding

In Propositions 7.2 and 7.5 we use the six maps Ψ,Π,ΨR,ΠR,∆R, and ΦR that we developed

for other purposes to relate the notion of R-312-avoiding to that of 312-avoiding. Some of the

applications of these maps “sort” the entries of the R-tuples within their carrels.

If σ ∈ Sn is 312-avoiding, it is easy to see that its R-projection σ̄ ∈ SRn is R-312-avoiding. Let

π ∈ SRn be R-312-avoiding. Is it the R-projection σ̄ of some 312-avoiding permutation σ ∈ Sn? The

following procedure for constructing an answer to this question can be naively developed, keeping

in mind Fact 6.4(iii): Form the R-rightmost clump deleting chain B associated to π. Set σi := πi

on the first carrel (0, q1]. Let h ∈ [r]. Let s ≥ 0 be the number of elements of Bh+1\Bh that are

less than max(Bh) =: m. List these elements in decreasing order to fill the left side (qh, qh + s] of

the (h+ 1)st carrel (qh, qh+1] of σ. Fill the right side (qh + s, qh+1] of this carrel of σ by listing the

other t := ph+1 − s elements of Bh+1\Bh in increasing order. Part (ii) of the following result refers

to the “length” of a permutation in the sense of Proposition 1.5.2 of [BB].

Proposition 7.1. Suppose π ∈ SRn is R-312-avoiding.

(i) The permutation σ ∈ Sn constructed here is 312-avoiding and σ̄ = π.

(ii) This σ is the unique minimum length 312-avoiding lift of π.

Proof. The construction of σ re-orders the cohorts of π within their carrels, and so σ̄ = π. Such

re-orderings cannot create a violation of 312-avoiding that involves three cohorts. Let h ∈ [r] and

consider the (h+1)st carrel. The first s entries here are decreasing, the last t entries are increasing,

and the first s entries are smaller than the last t entries. So there is no 312-violation entirely within

this cohort. Consider a ‘3’ entry in an earlier cohort being in a potential violation. Since the last

t entries here are all greater than that entry, a violation with the ‘12’ entries being here would

have to involve two of the first s entries. But these are decreasing. The ‘31’ entries cannot occur

on (0, q1]. Consider having the ‘31’ entries in this (h + 1)st cohort. To decrease, both would have

to come from the first s entries. The ‘3’ entry would be less than m. But then the fact rules out
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having the ‘2’ entry occur in a later cohort.

Let σ′ be any 312-avoiding lift of π. Any other ordering of the entries on (0, q1] would make

σ′ longer than σ. If the t largest entries of the (h + 1)st cohort did not appear in the rightmost

positions or if they were not listed in ascending order, then σ′ would be longer than σ. The s

smallest entries here are all smaller than m. If these entries do not appear in descending order,

then m could serve as the ‘3’ entry for a violation in which the ‘12’ entries would be drawn from

these first s entries.

This lifting process can also be described using three existing maps. To pass from the “degener-

ate” R-world to the full R = [n− 1] world of ordinary permutations, for the second equality below

we use the map Π. This produces a final output of a permutation from the given R-permutation

input. We will use the following result to derive a weaker version of our Theorem 14.2(ii) from

Theorem 14.1 of [PS]:

Proposition 7.2. Suppose π ∈ SRn is R-312-avoiding. Let σ ∈ Sn be the minimum length 312-

avoiding lift of π. Then ∆R[Ψ(σ)] = ΨR(π) and so σ = Π[ΦR(ΨR(π))].

Proof. Let φ denote the upper flag Ψ(σ) and let γ denote the gapless R-tuple ΨR(π). Let h ∈ [r]

and consider the (h+ 1)st carrel (qh, qh+1]. On the right side (qh + s, qh+1] of (qh, qh+1] we defined

σi := πi. The first entry πqh+s+1 =: σqh+s+1 here was larger than all earlier entries of π, and

so σqh+s+1 is also larger than all earlier entries of σ. Hence applying Ψ (respectively ΨR) does

nothing on (qh + s, qh+1] to σ (respectively π) since its entries there are increasing. So φi = γi

for i ∈ (qh + s, qh+1]. As ΨR ranks the ph largest elements of Bh+1 onto (qh, qh+1] from the right,

when it arrives at the index qh + s the next largest element of Bh+1 available is m. From the fact

it can be seen that the s− 1 next largest elements available are m− 1,m− 2, ...,m− s+ 1. Hence

γi = m − (qh + s − i) for i ∈ (qh, qh + s]. Clearly φi = m for i ∈ (qh, qh + s]. Now regard the

[n − 1] tuple φ as an R-tuple and set δ := ∆R(φ). We find the δi on (qh, qh+1] from the right as

we apply ∆R to φ: Nothing happens on (qh + s− 1, qh+1] since φ is increasing there, starting with

φqh+s = m. So δi = φi = γi for i ∈ (qh + s, qh+1]. Since one also has φi = m on (qh, qh + s− 1], we

get δi = m − (qh + s − i) for i ∈ (qh, qh + s]. So δi = γi on (qh, qh + s]. Take s := 0 above to see

that δi = γi on (0, q1]. For the second equality, note that φ is an R-floor flag and that ΦR[ΨR(π)]

is an upper flag. Apply (i) and then Proposition 5.4(iii).

We further consider an R-312-avoiding permutation π and its associated R-rightmost clump

deleting chain, keeping in mind the picture provided by Fact 6.4(iii). We want to describe all 312-

avoiding lifts σ′ of π. Let h ∈ [r]. As in Section 6, let Bh+1 =: L1 ∪ L2 ∪ ... ∪ Lf decompose Bh+1

into clumps for some f ≥ 1. Restating the clump deleting condition in Section 6, we take e ∈ [f ]

to be maximal such that Le ∩Bh 6= ∅ and Bh+1\Bh ⊇ Le+1 ∪ ... ∪ Lf . The s elements of Bh+1\Bh
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that are smaller than m are in the clump Le. It is possible that some elements m + 1,m + 2, ...

from Bh+1\Bh are also in Le. Set m′ := max(Le) and s′ := |Le\Bh|. Since π is R-increasing, when

s′ > s we have πqh+s+1 = m + 1, ..., πqh+s′ = m′ with m′ −m = s′ − s. So then π contains this

staircase within the subinterval (qh + s, qh + s′] of (qh, qh+1]. In any case we refer to the cohort

Le\Bh on (qh, qh + s′] as the (possibly empty) subclump L′e of Le.

Fact 7.3. With respect to the entities introduced above for h ∈ [r]: Corresponding to the clumps

Le+1, ..., Lf of Bh+1 there are respective staircases of π within (qh, qh+1]. When s′ > s there is also

a staircase of π within (qh + s, qh + s′]. The supports of these staircases “pave” (qh + s, qh+1]. An

analogous statement with no subclump holds for π on the first carrel (0, q1].

Proposition 7.4. Suppose π ∈ SRn is R-312-avoiding. Let σ′ be a 312-avoiding lift of π. In terms

of the entities above, this lift σ′ may be obtained from the minimum length 312-avoiding lift σ of

π as follows: Let h ∈ [r]. For each of the clumps Le+1, ..., Lf of Bh+1, its entries in σ may be

locally rearranged on its support in any 312-avoiding fashion when forming σ′. The entries for the

subclump L′e may be locally rearranged on (qh, qh + s′] in any 312-avoiding fashion provided that

its entries less than m remain in decreasing order. The entries for each of the clumps of B1 may

be locally rearranged as for Le+1, ..., Lf . Conversely, any such rearrangement of the entries of σ

produces a 312-avoiding lift of π.

Proof. The p1!p2! · · · pr+1! lifts of π can be obtained from σ by forming all rearrangements of its

r + 1 cohorts within their carrels. Let σ′ be a 312-avoiding lift of π. Let h ∈ [r]. We continue to

refer to the entities above, noting that the analysis of the chain and the clumps for π can be used

when working with σ. According to these clumps, we split the (h+1)st cohort of σ into subcohorts,

whose supports (qh, qh+s′], (qh+s′, ·], ..., (·, qh+1] “paved” the (h+1)st carrel (qh, qh+1]. The entries

in each of these subcohorts are smaller than the entries in later subcohorts. Since these subcohorts

correspond to clumps (or a subclump) of the set Bh+1 for π, there exist “gap” entries of π in its

later carrels when h + 1 < r + 1. Now we attempt to create a 312-avoiding permutation σ′ from

σ: Intermingling entries among these subcohorts would produce a 312-violation in which the ‘2’

entry would be one of these gap entries. (Such intermingling is not possible when h + 1 = r + 1

because then there is just one non-empty subcohort for this last carrel.) So each subcohort must

stay on its original support. If the decreasing order in which the s entries of σ that are less than m

appeared on (qh, qh + s] is changed among themselves as they are rearranged on (qh, qh + s′], then

a 312-violation would arise in which the entry m from an earlier carrel would be the ‘3’. Creating

a local 312-violation within one of our subintervals obviously would create a 312-violation for σ′

as a whole. These considerations also apply to the first carrel (0, q1] if one takes s′ := 0. We

have ruled out all of the rearrangements not permitted by the statement. Conversely, suppose σ′

is produced from the 312-avoiding σ with one of the permitted rearrangements. As noted in the
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proof of Proposition 7.1(i) for σ, a 312-violation cannot involve three carrels. Having only the ‘3’

entry come from an earlier carrel can be ruled out as before. Can a violation with the ‘31’ entries

coming from the carrel at hand arise for σ′? Since the entries in any new ‘31’ pair created by a

permitted rearrangement must come from the same clump, there will not exist a later entry that

can serve as the ‘2’. And 312-violations within one subinterval are not permitted.

We will use the following result to derive Theorem 14.1 of [PS] from our Theorem 14.2(ii):

Proposition 7.5. Suppose π ∈ SRn is R-312-avoiding. Let σ′ ∈ Sn be a 312-avoiding lift of π.

Then ∆R[Ψ(σ′)] = ΨR(π) and so π = ΠR[∆R[Ψ(σ′)]].

Proof. We return to the proofs of Propositions 7.2 and 7.4, now knowing by Proposition 7.4 how

σ′ can be formed from the minimum length 312-avoiding lift σ. Since ∆R[Ψ(σ)] = ΨR(π), by

Proposition 7.2 we only need to show ∆R[Ψ(σ′)] = ∆R[Ψ(σ)]. Let h ∈ [r]. We prepare to compute

∆R[Ψ(σ′)] within the (h+ 1)st carrel (qh, qh+1] by splitting (qh, qh+1] into the subintervals created

for Proposition 7.4. We then work from the right one subinterval at a time. For now ignore the

subinterval (qh, qh + s′] for the subclump L′e. On the other subintervals, the entries of σ formed

staircases. On each of these subintervals the local rearranging for the new entries of σ′ followed

by the application of Ψ produces entries that are index-wise no smaller than the original staircase

entries of σ. Therefore it can be seen that the subsequent application of ∆R to these subintervals

one at a time reproduces those staircases of σ. Since the application of ∆R ◦Ψ did nothing to these

entries of σ in the proof of Proposition 7.2, on these subintervals we have obtained the desired

equality. This argument also works on the subintervals of (0, q1]. Returning to the (h+ 1)st carrel,

this argument still works on the right portion (qh+s, qh+s′] of the leftmost subinterval (qh, qh+s′].

If s′ ≥ 1, it produces an entry of m+ 1 for ∆R[Ψ(σ′)] at the index qh + s+ 1. On the left portion

(qh, qh + s] of this subinterval, note that following the application of Ψ every entry will be no less

than m. So the subsequent application of ∆R on this left portion will reproduce the staircase on

(qh, qh + s] that ∆R[Ψ(σ)] had in the proof of Proposition 7.2. Use Proposition 6.6(ii) to produce

the second equality.

8 Shapes, tableaux, connections to Lie theory

A partition is an n-tuple λ ∈ Zn such that λ1 ≥ . . . ≥ λn ≥ 0. Let Λ+
n denote the set of partitions.

Fix such a λ for the rest of the paper. We say it is strict if λ1 > . . . > λn. The shape of λ, also

denoted λ, consists of n left justified rows with λ1, . . . , λn boxes. We denote its column lengths

by ζ1 ≥ . . . ≥ ζλ1 . The column length n is called the trivial column length. Since the columns

are more important than the rows, the boxes of λ are transpose-indexed by pairs (j, i) such that

1 ≤ j ≤ λ1 and 1 ≤ i ≤ ζj . Sometimes for boundary purposes we refer to a 0th latent column of

24



“zzarx2” — 2017/2/28 — 1:56 — page 25 — #25

boxes, which is a prepended 0th column of trivial length. If λ = 0, its shape is the empty shape ∅.
Define Rλ ⊆ [n− 1] to be the set of distinct non-trivial column lengths of λ. Note that λ is strict

if and only if Rλ = [n− 1], i.e. R is full. Set |λ| := λ1 + . . .+ λn.

A (semistandard) tableau of shape λ is a filling of λ with values from [n] that strictly increase

from north to south and weakly increase from west to east. Let Tλ denote the set of tableaux of

shape λ. Under entrywise comparison ≤, this set Tλ becomes a poset that is the distributive lattice

L(λ, n) introduced by Stanley. The principal ideals in Tλ are clearly convex polytopes in Z|λ|. Fix

T ∈ Tλ. For j ∈ [λ1], we denote the one column “subtableau” on the boxes in the jth column by Tj .

Here for i ∈ [ζj ] the tableau value in the ith row is denoted Tj(i). The set of values in Tj is denoted

B(Tj). Columns Tj of trivial length must be inert, that is B(Tj) = [n]. The 0th latent column T0 is

an inert column that is sometimes implicitly prepended to the tableau T at hand: We ask readers

to refer to its values as needed to fulfill definitions or to finish constructions. We say T is a λ-key

if B(Tl) ⊇ B(Tj) for 1 ≤ l ≤ j ≤ λ1. To define the content Θ(T ) := θ of T , for i ∈ [n] take θi to be

the number of values in T equal to i. The empty shape has one tableau on it, the null tableau. Fix

a set Q ⊆ [n] with |Q| =: q ≥ 0. The column Y (Q) is the tableau on the shape for the partition

(1q, 0n−q) whose values form the set Q. Then for d ∈ [q], the value in the (q+ 1− d)th row of Y (Q)

is rankd(Q).

Fix a partition λ ∈ Λ+
n and determine the set Rλ. For us, the most important values in a

tableau of shape λ occur at the ends of its rows. Using the latent column when needed, these n

values from [n] are gathered into an Rλ-tuple as follows: We group the boxes at the ends of the

rows of λ into “cliffs”. Note that for h ∈ [r+ 1] one has λi = λi′ for i, i′ ∈ (qh−1, qh]. For h ∈ [r+ 1]

the coordinates of the ph boxes in the hth cliff form the set {(λi, i) : i ∈ (qh−1, qh]}. Let T ∈ Tλ.

The λ-row end list Ωλ(T ) =: ω of T is the Rλ-tuple defined by ωi := Tλi(i) for i ∈ [n]. Here for

h ∈ [r+ 1] the hth cohort of ω is the set of the values of T that increase down the boxes of the hth

cliff. So ω ∈ UIRλ(n).

Let π be an Rλ-permutation and form the corresponding Rλ-chain B. The λ-key Yλ(π) of π is

the tableau of shape λ formed by juxtaposing from left to right λn inert columns and λqh − λqh+1

copies of Y (Bh) for r ≥ h ≥ 1. The map π 7→ Yλ(π) =: Y is a bijection from Rλ-permutations to

λ-keys that is denoted π ↔ Y . The bijection from Rλ-chains to λRλ-keys is denoted B ↔ Y . It is

easy to see that the λ-row end list Ωλ[Yλ(π)] of the λ-key of π is the rank Rλ-tuple ΨRλ(π) =: ψ of

π: Here ψi = Yλi(i) for i ∈ [n].

Let α ∈ UIRλ(n). Define Zλ(α) to be the subset of tableaux T ∈ Tλ such that Ωλ(T ) = α. To

see that Zλ(α) 6= ∅, for i ∈ [n] take Tj(i) := i for j ∈ [1, λi) and Tλi(i) := αi. This subset is closed

under the join operation for the lattice Tλ. We define the λ-row end max tableau Mλ(α) for α to

be the unique maximal element of Zλ(α). The definition of Qλ(β), a close relative to Mλ(α), can

be found in Section 12.
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When we are considering tableaux of shape λ, much of the data used will be in the form of

Rλ-tuples. Many of the notions used will be definitions from Section 3 that are being applied with

R := Rλ. The structure of each proof will depend only upon Rλ and not upon any other aspect

of λ: If λ′, λ′′ ∈ Λ+
n are such that Rλ′ = Rλ′′ , then the development for λ′′ will in essence be the

same as for λ′. To emphasize the original independent entity λ and to reduce clutter, from now

on rather than writing ‘R’ or ‘Rλ’ we will replace ‘R’ by ‘λ’ in subscripts and in prefixes. Above

we would have written ω ∈ UIλ(n) instead of having written ω ∈ UIRλ(n) (and instead of having

written ω ∈ UIR(n) after setting R := Rλ). When λ is a strict partition, we omit the ‘λ-’ prefixes

and the subscripts.

To connect to Lie theory, fix R ⊆ [n − 1] and set J := [n − 1]\R. The R-permutations are

the one-rowed forms of the inverses of the minimum length representatives collected in W J for

the cosets in W/WJ , where W is the Weyl group of type An−1 and WJ is its parabolic subgroup

〈si : i ∈ J〉. Fix a partition λ. It is strict exactly when the weight it depicts for GL(n) is strongly

dominant. If we take the set R above to be Rλ, then the restriction of the partial order ≤ on Tλ

to the λ-keys depicts the Bruhat order on that W J . Consult the second and third paragraphs of

Section 14 for the Demazure and flag Schur polynomials. Further details appear in Sections 2 and

3 and the appendix of [PW1].

9 312-Avoiding (gapless) keys, row end max tableaux

Here we re-express the R-permutations with tableaux.

Let α ∈ UIλ(n). The values of the λ-row end max tableau Mλ(α) =: M can be determined as

follows: For h ∈ [r] and j ∈ (λqh+1
, λqh ], first set Mj(i) = αi for i ∈ (qh−1, qh]. When h > 1, from

east to west among columns and south to north within a column, also setMj(i) := min{Mj(i+1)−1,

Mj+1(i)} for i ∈ (0, qh−1]. Finally, set Mj(i) := i for j ∈ (0, λn] and i ∈ (0, n]. (When ζj = ζj+1,

this process yields Mj = Mj+1.)

Lemma 9.1. Let γ be a gapless λ-tuple. The λ-row end max tableau Mλ(γ) =: M is a key. For

h ∈ [r] and j := λqh+1
, the s ≥ 0 elements in B(Mj)\B(Mj+1) that are less than Mj+1(qh) = γqh

are the s largest elements of [γqh ]\B(Mj+1).

Proof. Let h ∈ [r] and set j := λqh+1
. We claim B(Mj+1) ⊆ B(Mj). If Mj(qh + 1) = γqh+1 > γqh =

Mj+1(qh), then Mj(i) = Mj+1(i) for i ∈ (0, qh] and the claim holds. Otherwise γqh+1 ≤ γqh . The

gapless condition on γ implies that if we start at (j, qh+1) and move south, the successive values in

Mj increment by 1 until some lower box has the value γqh . Let i ∈ (qh, qh+1] be the index such that

Mj(i) = γqh . Now moving north from (j, i), the values in Mj decrement by 1 either all of the way to

the top of the column, or until there is a row index k ∈ (0, qh) such that Mj+1(k) < Mj(k+ 1)− 1.
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In the former case set k := 0. If k > 0 we have Mj(x) = Mj+1(x) for x ∈ (0, k]. Now use

Mj(k+ 1) ≤Mj+1(k+ 1) to see that the values Mj+1(k+ 1),Mj+1(k+ 2), ...,Mj+1(qh) each appear

in the interval of values [Mj(k + 1),Mj(i)]. Thus B(Mj+1) ⊆ B(Mj). Using the parenthetical

remark above, we see that M is a key. There are qh+1 − i elements in B(Mj)\B(Mj+1) that are

larger than Mj+1(qh) = γqh . So s := (qh+1 − qh) − (qh+1 − i) ≥ 0 is the number of values in

B(Mj)\B(Mj+1) that are less than γqh . These s values are the complement in [Mj(k + 1),Mj(i)]

of the set {Mj+1(x) : x ∈ [k + 1, qh] }, where Mj(i) = Mj+1(qh) = γqh .

A λ-key Y is gapless if the condition below is satisfied for h ∈ [r−1]: Let b be the smallest value

in a column of length qh+1 that does not appear in a column of length qh. For j ∈ (λqh+2
, λqh+1

],

let i ∈ (0, qh+1] be the shared row index for the occurrences of b = Yj(i). Let m be the bottom

(largest) value in the columns of length qh. If b > m there are no requirements. Otherwise: For

j ∈ (λqh+2
, λqh+1

], let k ∈ (i, qh+1] be the shared row index for the occurrences of m = Yj(k). For

j ∈ (λqh+2
, λqh+1

] one must have Yj(i+ 1) = b+ 1, Yj(i+ 2) = b+ 2, ..., Yj(k − 1) = m− 1 holding

between Yj(i) = b and Yj(k) = m. (Hence necessarily m− b = k − i.)
The bijections π 7→ B and ΨR of Proposition 6.6 are respectively implicitly present here, from

AR to BR and from AR to CR:

Theorem 9.2. Let λ ∈ Λ+
n and set R := Rλ. Consider the following three pairs of sets:

(a) The set AR of R-312-avoiding permutations and the set Pλ of their λ-keys.

(b) The set BR of R-rightmost clump deleting chains and the set Qλ of gapless λ-keys.

(c) The set CR of gapless R-tuples and the set Rλ of their λ-row end max tableaux.

(i) The process of tableau portrayal is a bijection from BR to Qλ and the process of constructing the

λ-row end max tableau is a bijection from CR to Rλ.

(ii) We have Pλ = Qλ. The restriction of the global bijection π 7→ B to AR induces a map from

Pλ to Qλ that is the identity. So an R-permutation is R-312-avoiding if and only if its λ-key is

gapless.

(iii) If an R-permutation is R-312-avoiding, then the λ-row end max tableau of its rank R-tuple is

its λ-key. We have Pλ = Rλ. The map ΨR from AR to CR induces a map from Pλ to Rλ that is

the identity.

In the full case when λ is strict and R = [n − 1], the converse of the first statement of Part (iii)

holds: If the row end max tableau of the rank tuple of a permutation is the key of the permutation,

then the permutation is 312-avoiding. A counterexample to this converse for general λ appears

in Section 15. The bijection from CR to Rλ and the equality Qλ = Rλ imply that an R-tuple is

R-gapless if and only if it arises as the λ-row end list of a gapless λ-key.

27



“zzarx2” — 2017/2/28 — 1:56 — page 28 — #28

Proof. For the first part of (i), use the B 7→ Y bijection to relate Fact 6.4(i) to the definition of

gapless λ-key. The map in the second part is surjective by definition and is also obviously injective.

Use the construction of the bijection π 7→ B from AR to BR and the first part of (i) to confirm (ii).

Let π ∈ SR-312
n . Create the R-chain B corresponding to π and then its λ-key Y := Yλ(π).

Set γ := ΨR(π) and then M := Mλ(γ). Clearly B(Yλv) = B1 = {γ1, ..., γv} = B(Mλv) for

v := q1. Proceed by induction on h ∈ [r]: For v := qh assume B(Yλv) = B(Mλv). Note that

Yλv(v) = max[B(Yλv)] and γv = Mλv(v). Proposition 6.6(ii) says that γ is R-gapless; this implies

max[B(Yλv)] = γv. Set v′ := qh+1. Let sB be the number of values in B(Yλv′ )\B(Yλv) that

are less than γv. Since γv ∈ B(Yλv), the number of values in B(Yλv′ )\B(Yλv) that exceed γv is

ph+1 − sB. These values are the entries in {πv+1, ..., πv′} that exceed γv. So from γ := ΨR(π) and

the description of Mλ(γ) it can be seen that these values are exactly the values in B(Mλv′ )\B(Mλv)

that exceed γv. Since M is a key by Lemma 9.1 and γv ∈ B(Mλv), the number sM of values in

B(Mλv′ )\B(Mλv) that are less than γv is ph+1− (ph+1−sB) = sB =: s. From Proposition 6.6(i) we

know that B is R-rightmost clump deleting. By Fact 6.4(iii) applied to B and Lemma 9.1 applied

to γ, we see that for both Y and for M the “new” values that are less than γv are the s largest

elements of [γv]\B(Yλv) = [γv]\B(Mλv). Hence Yλv′ = Mλv′ . Since we only need to consider the

rightmost columns of each length when showing that two λ-keys are equal, we have Y = M . The

rest of (iii) is evident.

Corollary 9.3. When λ is strict, there are Cn gapless λ-keys.

10 Sufficient condition for Demazure convexity

Fix a λ-permutation π. We define the set Dλ(π) of Demazure tableaux. Then we show that if π is

λ-312-avoiding one has Dλ(π) = [Yλ(π)].

First we need to specify how to find the scanning tableau S(T ) for a given T ∈ Tλ. See page 394

of [Wi2] for an example of this method. Given a sequence x1, x2, ..., its earliest weakly increasing

subsequence (EWIS) is xi1 , xi2 , ..., where i1 = 1 and for u > 1 the index iu is the smallest index

satisfying xiu ≥ xiu−1 . Let T ∈ Tλ. Draw the shape λ and fill its boxes as follows to produce

S(T ): Form the sequence of the bottom values of the columns of T from left to right. Find the

EWIS of this sequence, and mark each box that contributes its value to this EWIS. The sequence

of locations of the marked boxes for a given EWIS is its scanning path. Place the final value of this

EWIS in the lowest available location in the leftmost available column of S(T ). This procedure can

be repeated as if the marked boxes are no longer part of T , since it can be seen that the unmarked

locations form the shape of some n-partition. Ignoring the marked boxes, repeat this procedure to

fill in the next value of S(T ). Once all of the scanning paths originating in the first column have
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been found, every location in T has been marked and the first column of S(T ) has been created.

For j > 1, to fill in the jth column of S(T ): Ignore the leftmost (j − 1) columns of T , remove all

of the earlier marks from the other columns, and repeat the above procedure. The scanning path

originating at a location (l, k) ∈ λ is denoted P(T ; l, k). It was shown in [Wi2] that S(T ) is the

“right key” of Lascoux and Schützenberger for T , which was denoted R(T ) there.

As in [PW1], we now use the λ-key Yλ(π) of π to define the set of Demazure tableaux : Dλ(π) :=

{T ∈ Tλ : S(T ) ≤ Yλ(π)}. We list some basic facts concerning keys, scanning tableaux, and sets

of Demazure tableaux. Part (i) is elementary. Parts (ii) and (iii) either appear in [Wi2], [PW1],

and/or [Wi3], or can be deduced from results therein using S(T ) = R(T ). The remaining parts

follow in succession from Part (iii).

Fact 10.1. Let T ∈ Tλ and let Y ∈ Tλ be a key.

(i) If Θ(Y ) = Θ(U) for some U ∈ Tλ, then U = Y .

(ii) S(T ) is a key.

(iii) T ≤ S(T ) and S(Y ) = Y .

(iv) Yλ(π) ∈ Dλ(π) and Dλ(π) ⊆ [Yλ(π)].

(v) The unique maximal element of Dλ(π) is Yλ(π).

(vi) The Demazure sets Dλ(σ) of tableaux are nonempty subsets of Tλ that are precisely indexed by

the σ ∈ Sλn.

For U ∈ Tλ, define m(U) to be the maximum value in U . (Define m(U) := 1 if U is the null

tableau.) Let (l, k) ∈ λ. As in Section 4 of [PW1], define U (l,k) to be the tableau formed from T by

finding and removing the scanning paths that begin at (l, ζl) through (l, k+ 1), and then removing

the 1st through lth columns of T . (If l = λ1, then U (l,k) is the null tableau for any k ∈ [ζλ1 ].) Set

S := S(T ). Lemma 4.1 of [PW1] states that Sl(k) = max{Tl(k),m(U (l,k))}.
To reduce clutter in the proofs we write Yλ(π) =: Y .

Proposition 10.2. Let π ∈ Sλn and T ∈ Tλ be such that T ≤ Yλ(π). If there exists (l, k) ∈ λ such

that Yl(k) < m(U (l,k)), then π is λ-312-containing.

Proof. Reading the columns from right to left and then each column from bottom to top, let (l, k) be

the first location in λ such that m(U (l,k)) > Yl(k). In the rightmost column we have m(U (λ1,i)) = 1

for all i ∈ [ζλ1 ]. Thus m(U (λ1,i)) ≤ Yλ1(i) for all i ∈ [ζλ1 ]. So we must have l ∈ [1, λ1).

There exists j > l and i ≤ k such that m(U (l,k)) = Tj(i). Since T ≤ Y , so far we have

Yl(k) < Tj(i) ≤ Yj(i). Note that since Y is a key we have k < ζl. Then for k < f ≤ ζl we have

m(U (l,f)) ≤ Yl(f). So T ≤ Y implies that Sl(f) ≤ Yl(f) for k < f ≤ ζl.
Assume for the sake of contradiction that π is λ-312-avoiding. Theorem 9.2(ii) says that its

λ-key Y is gapless. If the value Yl(k) does not appear in Yj , then the columns that contain Yl(k)

29



“zzarx2” — 2017/2/28 — 1:56 — page 30 — #30

must also contain [Yl(k), Yj(i)]: Otherwise, the rightmost column that contains Yl(k) has index

λqh+1
for some h ∈ [r − 1] and there exists some u ∈ [Yl(k), Yj(i)] such that u /∈ Yλqh+1

. Then Y

would not satisfy the definition of gapless λ-key, since for this h+ 1 in that definition one has b ≤ u
and u ≤ m. If the value Yl(k) does appear in Yj , it appears to the north of Yj(i) there. Then i ≤ k
implies that some value Yl(f) < Yj(i) with f < k does not appear in Yj . As above, the columns

that contain the value Yl(f) < Yl(k) must also contain [Yl(f), Yj(i)]. In either case Yl must contain

[Yl(k), Yj(i)]. This includes Tj(i).

Now let f > k be such that Yl(f) = Tj(i). Then we have Sl(f) > Sl(k) = max{Tl(k),m(U (l,k))}
≥ Tj(i) = Yl(f). This is our desired contradiction.

As in Section 5 of [PW1]: When m(U (l,k)) > Yl(k), define the set Aλ(T, π; l, k) := ∅. Otherwise,

define Aλ(T, π; l, k) := [k,min{Yl(k), Tl(k + 1) − 1, Tl+1(k)}]. (Refer to fictitious bounding values

Tl(ζl + 1) := n+ 1 and Tλl+1(l) := n.)

Theorem 10.3. Let λ be a partition and π be a λ-permutation. If π is λ-312-avoiding, then

Dλ(π) = [Yλ(π)].

Proof. Let T ≤ Y and (l, k) ∈ λ. The contrapositive of the proposition gives Aλ(T, π; l, k) =

[k,min{Yl(k), Tl(k + 1) − 1, Tl+1(k)}]. Since T ≤ Y , we see that Tl(k) ∈ Aλ(T, π; l, k) for all

(l, k) ∈ λ. Theorem 5.1 of [PW1] says that T ∈ Dλ(π).

Since principal ideals in Tλ are convex polytopes in Z|λ|, we immediately obtain:

Corollary 10.4. If π is λ-312-avoiding, then Dλ(π) is a convex polytope in Z|λ|.

11 Necessary condition for Demazure convexity

Continue to fix a λ-permutation π. We show that π must be λ-312-avoiding for the set of Demazure

tableaux Dλ(π) to be a convex polytope in Z|λ|. We do so by showing that if π is λ-312-containing,

then Dλ(π) does not contain a particular semistandard tableau that lies on the line segment defined

by two particular keys that are in Dλ(π).

Theorem 11.1. Let λ be a partition and let π be a λ-permutation. If Dλ(π) is the principal ideal

[Yλ(π)] in Tλ, then π is λ-312-avoiding. More generally: If Dλ(π) is convex in Z|λ|, then π is

λ-312-avoiding.

Proof. For the contrapositive, assume that π is λ-312-containing. Here |Rλ| =: r ≥ 2. There

exists 1 ≤ g < h ≤ r and some a ≤ qg < b ≤ qh < c such that πb < πc < πa. Among such

patterns, we specify one that is optimal for our purposes. Figure 11.1 charts the following choices

for π = (4, 8; 9; 2, 3; 1, 5; 6, 7) in the first quadrant. Choose h to be minimal. So b ∈ (qh−1, qh]. Then

30



“zzarx2” — 2017/2/28 — 1:56 — page 31 — #31

choose b so that πb is maximal. Then choose a so that πa is minimal. Then choose g to be minimal.

So a ∈ (qg−1, qg]. Then choose any c so that πc completes the λ-312-containing condition.

These choices have led to the following two prohibitions; see the rectangular regions in Figure

11.1:

(i) By the minimality of h and the maximality of πb, there does not exist e ∈ (qg, qh] such that

πb < πe < πc.

(ii) By the minimality of πa, there does not exist e ∈ [qh−1] such that πc < πe < πa.

If there exists e ∈ [qg] such that πb < πe < πc, choose d ∈ [qg] such that πd is maximal with respect

to this condition; otherwise set d = b. So πb ≤ πd with d ≤ b. We have also ruled out:

(iii) By the maximality of πd, there does not exist e ∈ [qg] such that πd < πe < πc.

Figure 11.1. Prohibited regions (i), (ii), and (iii) for π = (4, 8; 9; 2, 3; 1, 5; 6, 7).

Set Y := Yλ(π). Now let χ be the permutation resulting from swapping the entry πb with the

entry πd in π; so χb := πd, χd := πb, and χe := πe when e /∈ {b, d}. (If d = b, then χ = π with

χb = πb = χd = πd.) Let χ̄ be the λ-permutation produced from χ by sorting each cohort into

increasing order. Set X := Yλ(χ̄). Let j denote the column index of the rightmost column with
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length qh; so the value χb = πd appears precisely in the 1st through jth columns of X. Let f ≤ h

be such that d ∈ (qf−1, qf ], and let k ≥ j denote the column index of the rightmost column with

length qf . The swap producing χ from π replaces πd = χb in the (j + 1)st through kth columns of

Y with χd = πb to produce X. (The values in these columns may need to be re-sorted to meet the

semistandard criteria.) So χd ≤ πd implies X ≤ Y via a column-wise argument.

Forming the union of the prohibited rectangles for (i), (ii), and (iii), we see that there does not

exist e ∈ [qh−1] such that πd = χb < πe < πa. Thus we obtain:

(iv) For l > j, the lth column of X does not contain any values from [χb, πa).

Let (j, i) denote the location of the χb in the jth column of X (and hence Y ). So Yj(i) = πd. By

(iv) and the semistandard conditions, we have Xj+1(u) = πa for some u ≤ i. By (i) and (iii) we

can see that Xj(i+ 1) > πc.

Let m denote the column index of the rightmost column of λ with length qg. This is the

rightmost column of X that contains πa. Let µ ⊆ λ be the set of locations of the πa’s in the

(j + 1)st through mth columns of X; note that (j + 1, u) ∈ µ. Let ω be the permutation obtained

by swapping χa = πa with χb = πd in χ; so ωa := χb = πd, ωb := χa = πa, ωd := χd = πb, and

ωe := πe when e /∈ {d, a, b}. Let ω̄ be the λ-permutation produced from ω by sorting each cohort

into increasing order. Set W := Yλ(ω̄). By (iv), obtaining ω from χ is equivalent to replacing the

πa at each location of µ in X with χb (and leaving the rest of X unchanged) to obtain W . So

χb < πa implies W < X.

Figure 11.2. Values of X (respectively T ) are in upper left (lower right) corners.
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Let T be the result of replacing the πa at each location of µ in X with πc (and leaving the

rest unchanged). So T < X ≤ Y . See the conceptual Figure 11.2 for X and T ; the shaded boxes

form µ. In particular Tj+1(u) = πc. This T is not necessarily a key; we need to confirm that it is

semistandard. For every (q, p) /∈ µ we have Wq(p) = Tq(p) = Xq(p). By (iv), there are no values in

X in any column to the right of the jth column from [πc, πa). The region µ is contained in these

columns. Hence we only need to check semistandardness when moving from the jth column to µ in

the (j + 1)st column. Here u ≤ i implies Tj(u) ≤ Tj(i) = πd < πc = Tj+1(u). So T ∈ Tλ.

Now we consider the scanning tableau S(T ) =: S of T : Since (j, i+ 1) /∈ µ, we have Tj(i+ 1) =

Xj(i + 1). Since Xj(i + 1) > πc = Tj+1(u), the location (j + 1, u) is not in a scanning path

P(T ; j, i′) for any i′ > i. Since Tj(i) = χb = πd < πc, the location (j + 1, v) is in P(T ; j, i) for

some v ∈ [u, i]. By the semistandard column condition one has Tj+1(v) ≥ Tj+1(u) = πc. Thus

Sj(i) ≥ πc > χb = πd = Yj(i). Hence S(T ) � Y , and so T /∈ Dλ(π). Since T ∈ [Y ], we have

Dλ(π) 6= [Y ].

In R|λ|, consider the line segment U(t) = W + t(X −W ), where 0 ≤ t ≤ 1. Here U(0) = W

and U(1) = X. The value of t only affects the values at the locations in µ. Let x := πc−χb
πa−χb . Since

χb < πc < πa, we have 0 < x < 1. The values in µ in U(x) are χb + πc−χb
πa−χb (πa − χb) = πc. Hence

U(x) = T . Since X and W are keys, we have S(X) = X and S(W ) = W . Then W < X ≤ Y

implies W ∈ Dλ(π) and X ∈ Dλ(π). Thus U(0), U(1) ∈ Dλ(π) but U(x) /∈ Dλ(π). If a set E is

a convex polytope in ZN and U(t) is a line segment with U(0), U(1) ∈ E, then U(t) ∈ E for any

0 < t < 1 such that U(t) ∈ ZN . Since 0 < x < 1 and U(x) = T ∈ Z|λ| with U(x) /∈ Dλ(π), we see

that Dλ(π) is not a convex polytope in Z|λ|.

When one first encounters the notion of a Demazure polynomial dλ(π;x), given Facts 10.1(iv)(v)

it is natural to hope that dλ(π;x) is simply the sum of xΘ(T ) over all T ∈ [Yλ(π)]. Combining

Theorems 10.3 and 11.1, we can now say:

Corollary 11.2. Let π ∈ Sλn. The set Dλ(π) of Demazure tableaux of shape λ is a convex polytope

in Z|λ| if and only if π is λ-312-avoiding if and only if Dλ(π) = [Yλ(π)].

When λ is the strict partition (n, n− 1, ..., 2, 1), this convexity result appeared as Theorem 3.9.1 in

[Wi1].

12 Sets of tableaux specified by row bounds

We use some of the R-tuples studied in Section 4 and 5 to develop precise indexing schemes for

row bound tableau sets.

Determine the subset Rλ ⊆ [n− 1] for our fixed partition λ. We must temporarily suspend our

notation shortcuts regarding ‘Rλ’. Let β be an Rλ-tuple. We define the row bound set of tableaux
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to be Sλ(β) := {T ∈ Tλ : Tj(i) ≤ βi for j ∈ [0, λ1] and i ∈ [ζj ]}. In Section 8 for α ∈ UIλ(n) we

set Zλ(α) := {T ∈ Tλ : Tλi(i) = αi for i ∈ [n]}. Set δ := ∆Rλ(β) and note that δ ≤ β is upper if

and only if β is upper. The set Sλ(β) is empty if and only if β fails to be upper: This condition is

clearly necessary for Sλ(β) 6= ∅; for sufficiency since δ ∈ UIRλ(n) we can re-use the T ∈ Tλ given

in Section 8 to see that ∅ 6= Zλ(δ) ⊆ Sλ(β). Henceforth we assume that β is upper: β ∈ URλ(n).

To interface with the literature for flagged Schur functions, we give special attention to the flag

bound sets Sλ(ϕ) for upper flags ϕ ∈ UFRλ(n). We also want to name the row bound sets Sλ(η)

for η ∈ UGCRλ(n); we call these the gapless core bound sets.

We can focus on the row ends of the tableaux at hand because Sλ(β) = {T ∈ Tλ : Tλi(i) ≤
βi for i ∈ [n]}. Let α ∈ URλ(n). In Section 8 we noted that Zλ(α) 6= ∅ if and only if α ∈ UIRλ(n).

These Zλ(α) are disjoint for distinct α ∈ UIRλ(n). Clearly Sλ(β) =
⋃
Zλ(α), taking the union

over the α in the subset {β}Rλ ⊆ UIRλ(n) defined in Section 5. This observation and Lemma

5.1 allow us to study the three kinds of row bound sets Sλ(β) by considering the principal ideals

[∆Rλ(β)] = {β}Rλ of UIRλ(n) for β ∈ URλ(n) or β ∈ UGCRλ(n) or β ∈ UFRλ(n). The results of

Sections 4 and 5 can be used to show:

Proposition 12.1. Let β ∈ URλ(n). The row bound set Sλ(β) is a flag bound tableau set if and

only if β ∈ UGCRλ(n). For the “if” statement use Sλ(β) = Sλ(ϕ) for ϕ := ΦRλ [∆Rλ(β)].

At times for indexing reasons we will prefer the “gapless core” viewpoint.

When λ is not strict, it is possible to have Sλ(β) = Sλ(β′) for distinct β, β′ ∈ URλ(n). We want

to study how much such labelling ambiguity is present for Sλ(.), and we want to develop unique

labelling systems for the tableau sets Sλ(β), Sλ(η), and Sλ(ϕ). For β, β′ ∈ URλ(n), define β ≈λ β′

if Sλ(β) = Sλ(β′). Sometimes we restrict ≈λ to UGCRλ(n) or further to UFRλ(n). We denote the

equivalence class of β ∈ URλ(n), η ∈ UGCRλ(n), and ϕ ∈ UFRλ(n) by 〈β〉λ, 〈η〉Gλ , and 〈ϕ〉Fλ . By

the Sλ(β) =
⋃
Zλ(α) observation and the fact that the Zλ(α) are non-empty and disjoint, it can

be seen that this relation ≈λ on URλ(n) or UGCRλ(n) or UFRλ(n) is the same as the relation ∼Rλ
defined on these sets in Section 5: Each relation can be expressed in terms of principal ideals of

UIRλ(n).

Proposition 12.2. On the sets URλ(n), UGCRλ(n), and UFRλ(n), the relation ≈λ coincides with

the relation ∼Rλ.

Now that we know that these relations coincide, we can safely return to replacing ‘Rλ’ with ‘λ’ in

subscripts and prefixes. Definitions and results from Sections 4 and 5 will be used by always taking

R := Rλ. In particular, the three (five) unique labelling systems listed in Corollary 5.3 for the

equivalence classes of ∼λ can now be used for the equivalence classes of ≈λ. Henceforth we more

simply write ‘∼’ for ‘≈λ’.
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We state some applications of the work in Sections 4 and 5 to the current context:

Proposition 12.3. Below we take β, β′ ∈ Uλ(n) and η, η′ ∈ UGCλ(n) and ϕ,ϕ′ ∈ UFλ(n):

(i) The row bound sets Sλ(β) are precisely indexed by the λ-increasing upper tuples α ∈ UIλ(n),

which are the minimal representatives in Uλ(n) for the equivalence classes 〈β〉λ. One has Sλ(β) =

Sλ(β′) if and only if β ∼ β′ if and only if ∆λ(β) = ∆λ(β′).

(ii) The gapless core bound sets Sλ(η) are precisely indexed by the gapless λ-tuples γ ∈ UGλ(n),

which are the minimal representatives in UGCλ(n) for the equivalence classes 〈η〉Gλ = 〈η〉λ. One

has Sλ(η) = Sλ(η′) if and only if η ∼ η′ if and only if ∆λ(η) = ∆λ(η′).

(iii) The flag bound sets Sλ(ϕ) are precisely indexed by the λ-floor flags τ ∈ UFlrλ(n), which are

the minimal representatives in UFλ(n) for the equivalence classes 〈ϕ〉Fλ . One has Sλ(ϕ) = Sλ(ϕ′)

if and only if ϕ ∼ ϕ′ if and only if Φλ[∆λ(ϕ)] = Φλ[∆λ(ϕ′)]. The flag bound sets Sλ(ϕ) can also be

faithfully depicted as the sets Sλ(γ) for γ ∈ UGλ(n) by taking γ := ∆λ(ϕ).

Let β ∈ Uλ(n). Following Theorem 23 of [RS], we define the λ-row bound max tableau Qλ(β) to

be the least upper bound in Tλ of the tableaux in Sλ(β). It can be seen that Qλ(β) ∈ Sλ(β). Let

α ∈ UIλ(n). Recall that the λ-row end max tableau Mλ(α) is the least upper bound in Tλ of the

tableaux in Zλ(α).

Proposition 12.4. Let β, β′ ∈ Uλ(n) and set ∆λ(β) =: δ ∈ UIλ(n).

(i) Here Sλ(β) = [Qλ(β)] and so Sλ(β) = Sλ(β′) if and only if Qλ(β) = Qλ(β′).

(ii) Here Mλ(δ) = Qλ(β) and so Sλ(β) = [Mλ(δ)].

Proof. Only the first claim in (ii) is not already evident: Recall that Sλ(β) =
⋃
Zλ(α), union over

α ∈ {β}λ ⊆ UIλ(n). By Proposition 12.2 and Lemma 5.1(i) we have {β}λ = [δ]. So Sλ(β) =⋃
Zλ(α) = Sλ(δ), union over α ≤ δ in UIλ(n). Here δ ∈ UIλ(n) implies Zλ(δ) 6= ∅. Let U ∈ Zλ(δ)

and T ∈ Zλ(α) for some α ∈ UIλ(n). Here α < δ would imply T ≯ U . Hence Qλ(β) ∈ Zλ(δ). So

both Qλ(β) and Mλ(δ) are the maximum tableau of Zλ(δ).

13 Coincidences of row or flag bound sets with

Demazure tableau sets

When can one set of tableaux arise both as a row bound set Sλ(β) for some upper λ-tuple β and

as a Demazure set Dλ(π) for some λ-permutation π? Since we will seek coincidences between flag

Schur polynomials sλ(ϕ;x) and Demazure polynomials dλ(π;x), we should also pose this question

for the flag bound set Sλ(ϕ) for some upper flag ϕ. Our deepest result, Theorem 11.1, gave a

necessary condition for a Demazure tableau set to be convex. Initially we refer to it here for

guiding motivation. Then we use it to prove the hardest part, Part (iii) for necessity, of the
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theorem below. Out next deepest result, Theorem 10.3, implied a sufficient condition (Corollary

10.4) for a Demazure tableau set to be convex. We use it here to prove Part (ii), for sufficiency, of

the theorem below.

For motivation, note that any set Sλ(β) is convex in Z|λ|: Proposition 12.4(i) says that it

is the principal ideal [Qλ(β)] of Tλ, where Qλ(β) is the λ-row bound max tableau for β. And

Theorem 11.1 says that Dλ(π) is convex only if the λ-permutation π is λ-312-avoiding. So, to

begin the proof of Part (ii) below, fix π ∈ Sλ-312
n . Find the key Yλ(π) of π. Theorem 10.3 says

that Dλ(π) = [Yλ(π)]. (Since [Yλ(π)] is convex, we now know that the sets Dλ(π) for such π are

exactly the convex candidates to arise in the form Sλ(β).) Form the rank λ-tuple Ψλ(π) =: γ of

π. By Proposition 6.6(ii) we know that γ is a gapless λ-tuple: γ ∈ UGλ(n). Theorem 9.2(iii) says

that Yλ(π) = Mλ(γ), the λ-row end max tableau for γ. Proposition 12.4(ii) gives Mλ(γ) = Qλ(γ),

since UGλ(n) ⊆ UIλ(n) by definition and ∆λ(γ) = γ by Fact 4.1. So Dλ(π) = [Qλ(γ)]. Hence by

Proposition 12.4(i) it arises as Sλ(γ) = [Qλ(γ)].

Parts (i) and (ii) of the following theorem give sufficient conditions for a coincidence from two

perspectives, Part (iii) gives necessary conditions for a coincidence, and Part (iv) presents a neutral

precise indexing. But the theorem statement begins with a less technical summary:

Theorem 13.1. Let λ be a partition. A row bound set Sλ(β) of tableaux for an upper λ-tuple β

arises as a Demazure set if and only if the λ-core ∆λ(β) of β is a gapless λ-tuple. Therefore every

flag bound set of tableaux arises as a Demazure set, and a row bound set arises as a Demazure set

if and only if it arises as a flag bound set. A Demazure set Dλ(π) of tableaux for a λ-permutation

π arises as a row bound set if and only if π is λ-312-avoiding. Specifically:

(i) Let β ∈ Uλ(n). If β ∈ UGCλ(n), set π := Πλ[∆λ(β)]. Then Sλ(β) = Dλ(π), and π is the unique

λ-permutation for which this is true. Here π ∈ Sλ-312
n .

(ii) Let π ∈ Sλn. If π ∈ Sλ-312
n , set γ := Ψλ(π). Then Dλ(π) = Sλ(γ), and Dλ(π) = Sλ(β) for some

β ∈ Uλ(n) implies ∆λ(β) = γ. Here γ ∈ UGλ(n) and so β ∈ UGCλ(n).

(iii) Suppose some β ∈ Uλ(n) and some π ∈ Sλn exist such that Sλ(β) = Dλ(π). Then one has

Qλ(β) = Yλ(π) and ∆λ(β) = Ψλ(π). Here β ∈ UGCλ(n) and π ∈ Sλ-312
n .

(iv) The collection of the sets Sλ(ϕ) for ϕ ∈ UFλ(n) is the same as the collection of sets Dλ(π) for

π ∈ Sλ-312
n . These collections can be simultaneously precisely indexed by γ ∈ UGλ(n) as follows:

Given such a γ, produce Φλ(γ) =: ϕ ∈ UFlrλ(n) and Πλ(γ) =: π ∈ Sλ-312
n .

Proof. First confirm (i) - (iv): The first and last two claims in (ii) were deduced above. For (i),

use Proposition 6.6(ii) to see π ∈ Sλ-312
n and to express ∆λ(β) as Ψλ(π). The first claim in (ii) then

tells us that Sλ[∆λ(β)] = Dλ(π). But Proposition 12.3(i) gives Sλ[∆λ(β)] = Sλ(β). We return to

the second claims in (i) and (ii) after we confirm (iii). So suppose we have Sλ(β) = Dλ(π). Since

Sλ(β) is a principal ideal in Tλ, Theorem 11.1 tells us that we must have π ∈ Sλ-312
n . The unique

36



“zzarx2” — 2017/2/28 — 1:56 — page 37 — #37

maximal elements of Sλ(β) and of Dλ(π) (see Proposition 12.4(i) and Fact 10.1(v)) must coincide:

Qλ(β) = Yλ(π). Via consideration of Mλ[∆λ(β)], Proposition 12.4(ii) implies Ωλ[Qλ(β)] = ∆λ(β).

Section 8 noted that Ωλ[Yλ(π)] = Ψλ(π). Hence ∆λ(β) = Ψλ(π) ∈ UGλ(n). The uniqueness in

(i) is obtained by applying the inverse Πλ of Ψλ to the requirements in (iii) that π ∈ Sλ-312
n and

that Ψλ(π) = ∆λ(β). The uniqueness-up-to-∆λ-equivalence in (ii) restates the second claim of (iii).

For (iv): Proposition 12.3(iii) says that the collection of the sets Sλ(ϕ) is precisely indexed by the

λ-floor flags. By restricting Fact 10.1(vi), these sets Dλ(π) are already precisely indexed by their

λ-312-avoiding permutations. By Proposition 5.4(i) and Proposition 6.6(ii), apply the bijections ∆λ

and Ψλ to re-index these collections with gapless λ-tuples. Use (ii) and Proposition 12.3(ii) to see

that the same set Sλ(ϕ) = Dλ(π) will arise from a given gapless λ-tuple γ when these re-indexings

are undone via ϕ := Φλ(γ) and π := Πλ(γ). Three of the four initial summary statements of this

theorem should now be apparent. The third statement follows from Proposition 12.1.

14 Flagged Schur functions and key polynomials

We use Theorem 13.1 to improve upon the results in [RS] and [PS] concerning coincidences between

flag Schur polynomials and Demazure polynomials.

Let x1, . . . , xn be indeterminants. Let T ∈ Tλ. The monomial xΘ(T ) of T is xθ11 . . . xθnn , where

θ is the content Θ(T ).

Let β be an upper λ-tuple: β ∈ Uλ(n). We introduce the row bound sum sλ(β;x) :=
∑
xΘ(T ),

sum over T ∈ Sλ(β). In particular, to relate to the literature [RS] [PS], at times we restrict our

attention to flag row bounds. Here for ϕ ∈ UFλ(n) we define the flag Schur polynomial to be

sλ(ϕ;x). (Often ‘upper’ is not required at the outset; if ϕ is not upper then the empty sum would

yield 0 for the polynomial. Following Stanley we write ‘flag’ instead of ‘flagged’ [St2], and following

Postnikov and Stanley we write ‘polynomial’ for ‘function’ [PS].) More generally, for η ∈ UGCλ(n)

we define the gapless core Schur polynomial to be sλ(η;x).

Let π be a λ-permutation: π ∈ Sλn . Here we define the Demazure polynomial dλ(π;x) to be∑
xΘ(T ), sum over T ∈ Dλ(π). For Lie theorists, we make two remarks: Using the Appendix and

Sections 2 and 3 of [PW1], via the right key scanning method and the divided difference recursion

these polynomials can be identified as the Demazure characters for GL(n) and as the specializations

of the key polynomials κα of [RS] to a finite number of variables. In the axis basis, the highest

and lowest weights for the corresponding Demazure module are λ and Θ[Yλ(π)]. (Postnikov and

Stanley chose ‘Demazure character’ over ‘key polynomial’ [PS]. By using ‘Demazure polynomial’

for the GL(n) case, which should be recognizable to Lie theorists, we leave ‘Demazure character’

available for general Lie type.)

We say that two polynomials that are defined as sums of monomials over sets of tableaux are
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identical as generating functions if the two tableau sets coincide. So we write sλ(β;x) ≡ sλ′(β′;x)

if and only if λ = λ′ and then β ∼ β′. It is conceivable that the polynomial equality sλ(β;x) =

sλ′(β
′;x) could “accidentally” hold between two non-identical row bound sums, that is when λ 6= λ′

and/or β � β′.

It is likely that Part (ii) of the following preliminary result can be deduced from the linear inde-

pendence aspect of the sophisticated Corollary 7 of [RS]: One would need to show that specializing

xn+1 = xn+2 = ... = 0 there does not create problematic linear dependences.

Proposition 14.1. Let λ, λ′ ∈ Λ+
n .

(i) Let β ∈ Uλ(n) and β′ ∈ Uλ′(n). If sλ(β;x) = sλ′(β
′;x), then λ = λ′.

(ii) Let π ∈ Sλn and let π′ ∈ Sλ
′

n . If dλ(π;x) = dλ′(π
′;x), then λ = λ′ and π = π′. Hence

dλ(π;x) ≡ dλ′(π′;x).

Proof. Let T 0
λ denote the unique minimal element of Tλ. Note that Θ(T 0

λ ) = λ. Clearly T 0
λ ∈ Sλ(β)

and T 0
λ ≤ Yλ(π). Note that if T, T ′ ∈ Tλ are such that T < T ′, then when P (n) is ordered

lexicographically from the left we have Θ(T ) > Θ(T ′). So when T 0
λ is in a subset of Tλ, it is the

unique tableau in that subset that attains the lexicographic maximum of the contents in P (n) for

that subset. Since T 0
λ is a key, we have S(T 0

λ ) = T 0
λ . So S(T 0

λ ) ≤ Yλ(π), and we have T 0
λ ∈ Dλ(π).

We can now see that sλ(β;x) = sλ′(β
′;x) and dλ(π;x) = dλ′(π

′;x) each imply that λ = λ′. By

Fact 10.1(v), we know that Yλ(π) is the unique maximal element of Dλ(π). So Yλ(π) is the unique

tableau in Dλ(π) that attains the lexicographic minimum of the contents for Dλ(π). By Fact

10.1(i), since Yλ(π) is a key it is the unique tableau in Tλ with its content. So dλ(π;x) = dλ(π′;x)

implies Yλ(π) ∈ Dλ(π′) and Yλ(π′) ∈ Dλ(π). Hence Yλ(π) = Yλ(π′), which implies π = π′.

We now compare row bound sums to Demazure polynomials. The first two parts of the following

“sufficient” theorem quickly restate most of Parts (i) and (ii) of Theorem 13.1 in the current context,

and the third similarly recasts Part (iv).

Theorem 14.2. Let λ be a partition.

(i) If η ∈ UGCλ(n), then Πλ[∆λ(η)] =: π ∈ Sλ-312
n and sλ(η;x) ≡ dλ(π;x).

(ii) If π ∈ Sλ-312
n , then Ψλ(π) =: γ ∈ UGλ(n) and dλ(π;x) ≡ sλ(γ;x).

(iii) Every flag Schur polynomial is identical to a uniquely determined Demazure polynomial and

every λ-312-avoiding Demazure polynomial is identical to a uniquely determined flag Schur poly-

nomial.

Next we obtain necessary conditions for having equality between a row bound sum and a

Demazure polynomial: we see that working merely with polynomials does not lead to any new

coincidences.
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Theorem 14.3. Let λ and λ′ be partitions. Let β be an upper λ-tuple and let π be a λ′-permutation.

Suppose sλ(β;x) = dλ′(π;x). Then Qλ(β) = Yλ′(π). Hence λ = λ′ and ∆λ(β) = Ψλ(π). Here π is

λ-312-avoiding and ∆λ(β) is a gapless λ-tuple (and so β ∈ UGCλ(n)). Hence the only row bound

sums that can arise as Demazure polynomials are the flag Schur polynomials. We have sλ(β;x) ≡
dλ′(π;x). The row bound sum sλ(β;x) is identical to the flag Schur polynomial sλ(Φλ[∆λ(β)];x).

Proof. Reasoning as in the first part of the proof of Proposition 14.1 implies λ = λ′. Since Sλ(β) =

[Qλ(β)] by Proposition 12.4(i), the tableau Qλ(β) is the unique tableau in Sλ(β) that attains the

lexicographic minimum of the contents for Sλ(β). Since the analogous remark was made in the proof

of Proposition 14.1 for Yλ(π) ∈ Dλ(π), we must have Θ[Qλ(β)] = Θ[Yλ(π)]. But Yλ(π) is the unique

tableau in Tλ with its content. So we must have Qλ(β) = Yλ(π). As for Theorem 13.1, this implies

∆λ(β) = Ψλ(π). Since Dλ(π) ⊆ [Yλ(π)], we have Dλ(π) ⊆ [Qλ(β)] = Sλ(β). Suppose that π is

λ-312-containing. Then Corollary 11.2 says Dλ(π) 6= [Qλ(β)]. So Dλ(π) ⊂ Sλ(β). This implies that

dλ(π;x) 6= sλ(β;x), a contradiction. So π must be λ-312-avoiding. Therefore Ψλ(π) =: γ ∈ UGλ(n).

Use Proposition 12.1 for the “only row bound sums that can arise” statement. Theorem 13.1(ii)

now says that Dλ(π) = Sλ(γ). And γ = ∆λ(β) gives Sλ(γ) = Sλ(β). Since γ ∈ UGλ(n), we can

form the λ-floor flag Φλ[∆λ(β)] ∼ β.

By using the relating of row bound sums to Demazure polynomials in this theorem, we can

extend what was said in Proposition 14.1(i) concerning accidental equalities between row bound

sums. There we learned that sλ(β;x) = sλ(β′;x) forced λ = λ′. So here we need consider only one

λ:

Corollary 14.4. Let λ be a partition.

(i) Let β ∈ Uλ(n) and η ∈ UGCλ(n). If sλ(β;x) = sλ(η;x) then β ∼ η. Hence β ∈ UGCλ(n) and

sλ(β;x) ≡ sλ(η;x).

(ii) The partitionings of UGCλ(n) into the equivalence class intervals in Proposition 5.2(ii) give a

complete description of the indexing ambiguity and of non-equality for gapless core Schur polyno-

mials.

(iii) More specifically, the analogous statement for UFλ(n) and flag Schur polynomials follows from

Proposition 5.2(iii).

Parts (ii) and (iii) could have been derived from Theorem 14.2.

Proof. Create Πλ[∆λ(η)] =: π ∈ Sλ-312
n from ∆λ(η) ∈ UGλ(n). Apply Theorem 14.2(ii) to obtain

dλ(π;x) ≡ sλ(∆λ(η);x) ≡ sλ(η;x). Then apply Theorem 14.3 to sλ(β;x) = dλ(π;x) to obtain

sλ(β;x) ≡ dλ(π;x). So sλ(β;x) ≡ sλ(η;x), which implies β ∼ η and β ∈ UGCλ(n).
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We do not know if it is possible to rule out accidental coincidences between all pairs of row

bound sums:

Problem 14.5. Find n ≥ 1, λ ∈ Λ+
n , and β, β′ ∈ Uλ(n)\UGCλ(n) such that sλ(β;x) = sλ(β′;x)

but ∆λ(β) 6= ∆λ(β′).

Improving upon Equation 13.1 and Corollary 14.6 of [PS], in [PW2] we will give a “maximum

efficiency” determinant expression for the Demazure polynomials dλ(π;x) with π ∈ Sλ-312
n .

15 Connecting to earlier work

Working with an infinite number of variables x1, x2, ..., Reiner and Shimozono studied [RS] coin-

cidences between “skew” flag Schur polynomials and Demazure polynomials in their Theorems 23

and 25. To indicate how those statements are related to our results, we consider only their “non-

skew” flag Schur polynomials and specialize those results to having just n variables x1, ..., xn. Then

their key polynomials κα(x) are indexed by “(weak) compositions α (into n parts)”. The bijection

from our pairs (λ, π) with λ ∈ Λ+
n and π ∈ Sλn to their compositions α that was noted in Section

3 of [PW1] is indicated in the sixth paragraph of the Appendix to that paper: Let π ∈ Sλn . After

creating α via απi := λi for i ∈ [n], here we write π.λ := α. Under this bijection the Demazure

polynomial dλ(π;x) of [PW1] and their key polynomial κα(x) are defined by the same recursion.

Reiner and Shimozono characterized the coincidences between the sλ(φ;x) for φ ∈ UFλ(n) and the

dλ′(π;x) for π ∈ Sλ′n from the perspectives of both the flag Schur polynomials and the Demazure

polynomials. To relate the index φ to the index π ∈ Sλ′n , their theorems refer to the tableau we

denote Qλ(φ). Part (i) of the following fact extends the sixth paragraph of the Appendix of [PW1].

Part (ii) can be confirmed with Proposition 12.4(ii), Proposition 4.2(ii) and Lemma 9.1.

Fact 15.1. Let π ∈ Sλn. Let φ ∈ UFλ(n).

(i) The content Θ[Yλ(π)] of the key of π is the composition that has the unique decomposition π.λ.

(ii) The tableau Qλ(φ) is a λ-key Yλ(σ) for a uniquely determined σ ∈ Sλn.

From the perspective of flag Schur polynomials, in our language their Theorem 23 first said that

every sλ(φ;x) arises as a dλ′(π;x) for at least one pair (λ′, π) with λ′ ∈ Λ+
n and π ∈ Sλ′n . Second,

that dλ′(π;x) must be the Demazure polynomial for which π.λ′ = Θ[Qλ(φ)]. Their first statement

appears here as a weaker form of the first part of Theorem 14.2(iii). The fact above can be used to

show that their second (uniqueness) claim is equivalent to the first (and central) “necessary” claim

Qλ(φ) = Yλ′(π) in our Theorem 14.3 that is produced by taking β := φ.

From the other perspective, their Theorem 25 put forward a characterization for a Demazure

polynomial dλ(π;x) that arises as a flag Schur polynomial sλ′(φ;x) for some φ ∈ UFλ′(n). This
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characterization is stated in terms of a flag φ(α) that is specified by a recipe to be applied to a

composition α; this is given before the statement of Theorem 25. Let (λ, π) be the pair correspond-

ing to α. It appears that the recipe for φ(α) should have ended with ‘having size λi’ instead of

‘having size αi’; we take this fix for granted for the remainder of the discussion. But no recipe of

this form can be completely useful for general partitions λ since any λ-tuple φ(α) produced will be

constant on the carrels of [n] determined by λ. So first we consider only strict λ. Here it can be

seen that their φ(α) becomes our Ψ(π) =: ψ. Thus their Tλ(α),φ(α) is our Q(ψ), and so the condition

Key(α) = Tλ(α),φ(α) translates to Y (π) = Q(ψ). Following the statement of Theorem 9.2, we noted

that the converse of the first part of its Part (iii) held when λ is strict. Using Proposition 12.4(ii),

Theorem 9.2(iii), and that fact we see that this Y (π) = Q(ψ) condition is equivalent to requiring

π ∈ S312
n . So when λ is strict the two directions of Theorem 25 appear in this paper as parts of

Theorem 14.2(ii) and Theorem 14.3.

Now consider Theorem 25 for general λ. Its hypothesis κ(α) = Sλ/µ(Xφ) translates to dλ(π;x) =

sλ′(φ;x). In the necessary direction a counterexample to their condition Key(α) = Tλ(α),φ(α), which

translates to Yλ(π) = Qλ(φ(α)), is given by α = (1, 2, 0, 1). Turning to the sufficient direction: From

looking at Ωλ[Yλ(π)] it can be seen that the nn-tuple φ(α) =: φ is in UFλ(n) ⊆ UGCλ(n) as well as

being constant on the carrels of λ. Suppose that their condition Yλ(π) = Qλ(φ) is satisfied, and set

∆λ(φ) =: γ ∈ UGλ(n). Then Yλ(π) = Qλ(γ), and Theorem 9.2 gives π ∈ Sλ-312
n . Then Theorem

14.2(ii) implies that dλ(π;x) = sλ(φ;x), which confirms this part of Theorem 25. However, the

set of cases (λ, π) that are produced by this sufficient condition is smaller than that produced

by the λ-312-avoiding sufficient condition: It can be seen that each index γ produced above has

only a single critical entry in each carrel of λ, while the general indexes γ′ that can arise for such

coincidences range over all of the larger set UGλ(n).

Discussing Theorem 25 for general λ further, the necessary condition can be completely “loos-

ened up” by replacing ‘Tλ(α),φ(α)’ with ‘Tλ′,φ’, which translates to Qλ′(φ). This repaired version

now gives the necessary condition Yλ(π) = Qλ′(φ), which is the central claim of Theorem 14.3. To

include more cases, one might attempt to extend our view of the sufficient part of Theorem 25 for

strict λ to general λ as follows: Let π ∈ Sλn and set ψ := Ψλ(π). Since ψ is not constant on the

carrels of λ, it is hoped that all cases will now be included. Does having Yλ(π) = Qλ(ψ) imply

that the Demazure polynomial dλ(π;x) is equal to the row bound sum sλ(ψ;x)? If this were true,

then Theorem 14.3 tells us that π ∈ Sλ-312
n and ψ ∈ UGCλ(n). So to provide a counterexample,

we do not need to compute polynomials. It will suffice to specify an example of Yλ(π) = Qλ(ψ)

with either π ∈ Sλn\Sλ-312
n or with ψ ∈ Uλ(n)\UGCλ(n). We do the former, since at the same time

it will also provide a counterexample to the converse of the first part of Theorem 9.2(iii). Choose

n = 4, λ = (2, 1, 1, 0) and π = (4; 1, 2; 3). Then Yλ(π) = Qλ(ψ) with π /∈ Sλ-312
n . So this proposed

condition is “too loose”. (The proof of the sufficient direction of Theorem 25 cites the converse of
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the second part of Theorem 23, not the implication itself.)

We prepare to discuss a related result [PS] of Postnikov and Stanley. Let π ∈ Sλn . Our definitions

of the λ-chain B and the λ-key Yλ(π) can be extended to all of Sn so that Yλ(σ′) = Yλ(π) exactly

for the σ′ ∈ Sn such that σ̄′ = π. Then our definition of Demazure polynomial can be extended

from Sλn to Sn such that dλ(σ′;x) = dλ(π;x) for exactly the same σ′. Their paper used this “looser”

indexing for the Demazure polynomials.

In their Theorem 14.1, Postnikov and Stanley stated a sufficient condition for a coincidence to

occur from the perspective of Demazure polynomials: If π ∈ Sn is 312-avoiding, then dλ(π;x) =

sλ(φ;x) for a certain φ ∈ UFλ(n). After noting that this theorem followed from Theorem 20 of [RS],

they provided their own proof of it. Their bijective recipe for forming φ from π was complicated.

Their inverse for this bijection is our inverse map Π of Proposition 6.3(ii), which takes upper flags

to 312-avoiding permutations. Since the inverse of the inverse of a bijection must be the bijection,

from that proposition it follows that their recipe for φ must be the restriction of our Ψ to S312
n .

The following result uses the machinery provided by our maps of n-tuples in Propositions 7.2 and

7.5 to prove that their theorem is equivalent to a weaker version of one of ours:

Theorem 15.2. Theorem 14.1 of [PS] is equivalent to our Theorem 14.2(ii), once ‘≡’ in the latter

result has been replaced by ‘=’.

Proof. Let σ′ be a 312-avoiding permutation. Set π := σ̄′ and γ := Ψλ(π). Then π is λ-312-

avoiding and dλ(σ′;x) = dλ(π;x) ≡ sλ(γ;x) by Theorem 14.2(ii). Recall the remark above that

noted that our map Ψ is the map b(·) of [PS]. Set ϕ := Ψ(σ′); this is the upper flag used in

Theorem 14.1 of [PS]. Then ϕ ∼ Ψλ(π) by Proposition 7.5. So sλ(γ;x) = sλ(ϕ;x) gives us the

result dλ(σ′;x) = sλ(ϕ;x) of [PS]. Conversely, let π be a λ-312-avoiding λ-permutation. Let σ be

the minimum length lift of π. Again ϕ := Ψ(σ) is the upper flag used in Theorem 14.1 of [PS]. So

that result gives us dλ(π;x) = dλ(σ;x) = sλ(ϕ;x). And Proposition 7.2 implies ϕ ∼ Ψλ(π) =: γ.

So sλ(ϕ;x) = sλ(γ;x) gives us the dλ(π;x) = sλ(γ;x) consequence of Theorem 14.2(ii).

To convert their index σ′ ∈ S312
n for a Demazure polynomial to an index for a flag Schur polynomial,

Postnikov and Stanley set ϕ′ := Ψ(σ′). For one such σ′, our unique corresponding element of Sλ-312
n

is π := σ̄′. Let σ be the minimum length λ-312-avoiding lift of π, and let σ′′ be any other such lift.

We work with Ψλ(π) =: γ ∈ UGλ(n) and sλ(γ;x). As they apply Ψ to various σ′′, they produce

various upper flags ϕ′′. By Proposition 7.5 we see ϕ′′ ∼ γ. By Proposition 7.2 it can be seen that

our “favored” Ψ(σ) is the λ-floor flag Φλ[γ] =: τ that is the unique minimal upper flag such that

sλ(τ ;x) = sλ(ϕ′′;x) = dλ(σ′′;x).
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16 Distinctness of polynomials

Table 16.1 summarizes our results concerning the generating functions for our tableau sets; there

λ, λ′ ∈ Λ+
n . The three bi-implications for the row bound sums in the “identical” column restate

Proposition 12.3; the two for the Demazure generating functions restate (or specialize from) Fact

10.1(vi). The four sufficient-for-polynomial-equality implications in Rows 3,4,6, and 7 in the “equal”

column follow immediately. In those rows the necessary implications for equality for the two

row bound sums are in Corollary 14.4(ii)(iii); those for the two Demazure polynomials restate

(or specialize from) Proposition 14.1(ii). In Row 5, the bi-implications respectively come from

Theorems 13.1 and 14.3. For the non-identicality in Row 1, refer to the definition of ‘≡’ or note

∆λ(η) 6= ∆λ(β) and use Proposition 12.3(i). The non-equality follows from Proposition 14.1(i) and

Corollary 14.4(i).

The count notations
(
n
R

)
and CRn were defined in Section 3. For the count in Row 2, recall

that the equivalence classes 〈β〉≈λ of tableau sets Sλ(β) can be indexed by the elements of UIλ(n)

according to Proposition 12.3(i). We know that |UIλ(n)| =
(
n
Rλ

)
=:
(
n
λ

)
. The Demazure tableau sets

Dλ(π) are indexed by π ∈ Sλn by Fact 10.1(vi), and we know |Sλn | =
(
n
Rλ

)
. The counts of Cλn := CRλn

appearing in the table will be justified in the proof of Theorem 18.1. It is mysterious that
(
n
λ

)
−Cλn

counts both the number of row bound sums that cannot arise as Demazure polynomials as well as

the number of Demazure polynomials that cannot arise as row bound sums. Can this be explained

by an underlying phenomenon?

Problem 16.1. Let λ be a partition. Set J := [n−1]\Rλ. Is there a non-T -equivariant deformation

of the Schubert varieties in the GL(n) flag manifold G/PJ that bijectively moves the torus characters

dλ(π;x) to the sλ(α;x) for π ∈ Sλn and α ∈ UIλ(n) with exactly CRn fixed points, namely dλ(σ;x) =

sλ(γ;x) for σ ∈ Sλ-312
n , γ ∈ UGλ(n), and Ψλ(σ) = γ?

Finding such a bijection would rule out accidental equalities among all row bound sums. To get

started, first compute the dimensions |Dλ(π)| and |Sλ(α)| for all π ∈ Sλn and α ∈ UIλ(n) for some

small λ ∈ Λ+
n . Use this data to propose a guiding bijection from UIλ(n) to Sλn that extends our

bijection Πλ : UGλ(n)→ Sλ-312
n .

17 Characterization of Gessel-Viennot determinant inputs

In Theorem 2.7.1 of [St1], Stanley used the Gessel-Viennot technique to give a determinant expres-

sion for a generating function for certain sets of n-tuples of non-intersecting lattice paths. Then in

his proof of Theorem 7.16.1 of [St2], he recast that generating function for some cases by viewing
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Identical as Equal as
generating functions? Count polynomials? Count

(1) η ∈ UGCλ(n) and η ∈ UGCλ(n) and
λ 6= λ′ or β /∈ UGCλ(n) − λ 6= λ′ or β /∈ UGCλ(n) −
⇒ sλ(η;x)��≡ sλ′(β;x) ⇒ sλ(η;x) 6= sλ′(β;x)

(2) β ∈ Uλ(n), β′ ∈ Uλ′(n): β ∈ Uλ(n), β′ ∈ Uλ′(n):

sλ(β;x) ≡ sλ′(β′;x)⇔
(
n
λ

)
sλ(β;x) = sλ′(β

′;x)⇔ ? −
λ = λ′, β ∼ β′ (Problem 14.5)

(3) η ∈ UGCλ(n), η′ ∈ UGCλ′(n): η ∈ UGCλ(n), η′ ∈ UGCλ′(n):
sλ(η;x) ≡ sλ′(η′;x)⇔ Cλn sλ(η;x) = sλ′(η

′;x)⇔ Cλn
λ = λ′, η ∼ η′ λ = λ′, η ∼ η′.

(4) ϕ ∈ UFlrλ(n), ϕ′ ∈ UFlrλ′(n): ϕ ∈ UFlrλ(n), ϕ′ ∈ UFlrλ′(n):
sλ(ϕ;x) ≡ sλ′(ϕ′;x)⇔ Cλn sλ(ϕ;x) = sλ′(ϕ

′;x)⇔ Cλn
λ = λ′, ϕ ∼ ϕ′ λ = λ′, ϕ ∼ ϕ′

(5) β ∈ Uλ(n), π ∈ Sλ′n : β ∈ Uλ(n), π ∈ Sλ′n :
sλ(β;x) ≡ dλ′(π;x)⇔ Cλn sλ(β;x) = dλ′(π;x)⇔ Cλn
λ = λ′,∆λ(β) = Ψλ(π), λ = λ′,∆λ(β) = Ψλ(π),
β ∈ UGCλ(n), π ∈ Sλ-312

n β ∈ UGCλ(n), π ∈ Sλ-312
n

(6) σ ∈ Sλ-312
n , σ′ ∈ Sλ′-312

n : σ ∈ Sλ-312
n , σ′ ∈ Sλ′-312

n :
dλ(σ;x) ≡ dλ′(σ′;x)⇔ Cλn dλ(σ;x) = dλ′(σ

′;x)⇔ Cλn
λ = λ′, σ = σ′ λ = λ′, σ = σ

(7) π ∈ Sλn , π′ ∈ Sλ
′

n : π ∈ Sλn , π′ ∈ Sλ
′

n :

dλ(π;x) ≡ dλ′(π′;x)⇔
(
n
λ

)
dλ(π;x) = dλ′(π

′;x)⇔
(
n
λ

)
λ = λ′, π = π′ λ = λ′, π = π′

Table 16.1

such n-tuples of lattice paths as tableaux. After restricting to non-skew shapes and to a finite num-

ber of variables, his generating function becomes our row bound sum sλ(β;x) for certain β ∈ Uλ(n).

Theorem 2.7.1 required that the pair (λ, β) satisfies the requirement that Gessel and Viennot call

[GV] “nonpermutable”. In [PW2] we will present the following combination of his Theorems 2.7.1

and 7.16.1:

Proposition 17.1. Let β ∈ Uλ(n). If the pair (λ, β) is nonpermutable, then the row bound sum

sλ(β;x) is given by the n× n determinant |hλj−j+i(i, βj ;x)|

In Theorem 2.7.1 Stanley noted that (λ, φ) is nonpermutable for every φ ∈ UFλ(n); this im-

plicitly posed the problem of characterizing all β ∈ Uλ(n) for which (λ, β) is nonpermutable. The
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ceiling map Ξλ : UGλ(n) −→ UFλ(n) defined in Sections 5 and 4 can be extended to all of Uλ(n)

by ignoring the requirement in Section 4 that the critical list at hand satisfy the flag condition. We

will refer to this extension as the platform map Ξλ : Uλ(n) −→ Uλ(n). For a given λ ∈ Λ+
n , the

main result of [PW2] will characterize the β ∈ Uλ(n) for which (λ, β) is nonpermutable:

Theorem 17.2. Let λ be a partition. Let β ∈ Uλ(n). The pair (λ, β) is nonpermutable if and only

if β ∈ UGCλ(n) and β ≤ Ξλ(β).

Hence we will again see that restricting consideration from all upper λ-tuples β ∈ Uλ(n) down

to at least the gapless core λ-tuples η ∈ UGCλ(n) enables saying something nice about the row

bound sums sλ(η;x). By Corollary 14.4, we know that sλ(η;x) = sλ(β;x) for η ∈ UGCλ(n)

and β ∈ Uλ(n) if and only if β ∼ η. Then β ∈ UGCλ(n). So to compute sλ(η;x) for a given

η ∈ UGCλ(n), the possible inputs for the Gessel-Viennot determinant are the η′ ∈ UGCλ(n)

such that η′ ∼ η and η′ ≤ Ξλ(η′). We will say that a particular such λ-tuple attains maximum

efficiency if the corresponding determinant has fewer total monomials among its entries than does

the determinant for any other application of Proposition 17.1 to a β ∈ Uλ(n) that produces sλ(η;x).

Corollary 17.3. Let η ∈ UGCλ(n). The gapless λ-tuple ∆λ(η) attains maximum efficiency.

18 Parabolic Catalan counts

The section (or paper) cited at the beginning of each item in the following statement points to the

definition of the concept:

Theorem 18.1. Let R ⊆ [n − 1]. Write the elements of R as q1 < q2 < ... < qr. Set q0 := 0 and

qr+1 := n. Let λ be a partition λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 whose shape has the distinct column lengths

qr, qr−1, ..., q1. Set ph := qh − qh−1 for 1 ≤ h ≤ r + 1. The number CRn =: Cλn of R-312-avoiding

permutations is equal to the number of:

(i) [GGHP]: ordered partitions of [n] into blocks of sizes ph for 1 ≤ h ≤ r+1 that avoid the pattern

312, and R-σ-avoiding permutations for σ ∈ {123, 132, 213, 231, 321}.
(ii) Section 3: gapless R-tuples γ ∈ UGR(n), R-canopy tuples κ, R-floor flags τ ∈ UFlrR(n),

R-ceiling flags ξ ∈ UCeilR(n).

(iii) Section 3: flag R-critical lists and (here only) r-tuples (µ(1), ..., µ(r)) of shapes such that µ(h)

is contained in a ph × (n− qh) rectangle for 1 ≤ h ≤ r and for 1 ≤ h ≤ r − 1 the length of the first

row in µ(h) does not exceed the length of the psth+1 (last) row of µ(h+1) plus the number of times that

(possibly zero) last row length occurs in µ(h+1).

(iv) Sections 5 and 12: the four collections of equivalence classes in UGCR(n) ⊇ UFR(n) and

UGCλ(n) ⊇ UFλ(n) that are defined by the equivalence relations ∼R and ≈λ respectively.
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(v) Sections 6 and 9: R-rightmost clump deleting chains and gapless λ-keys.

(vi) Section 10: sets of Demazure tableaux of shape λ that are convex in Z|λ|.

(vii) Sections 10 and 12: distinct sets Dλ(π) of Demazure tableaux of shape λ indexed by π ∈ Sλ-312
n ,

and distinct sets Sλ(η) (or Sλ(φ)) of gapless core (or flag) bound tableaux of shape λ indexed by

η ∈ UGCλ(n) (or φ ∈ UFλ(n)).

(viii) Sections 12 and 10: coincident pairs (Sλ(β),Dλ(π)) of sets of tableaux of shape λ for upper

λ-tuples β ∈ Uλ(n) and λ-permutations π ∈ Sλn.

(ix) Section 14: Demazure polynomials dλ(π;x) indexed by π ∈ Sλ-312
n that are distinct as polyno-

mials, and gapless core Schur polynomials sλ(η;x) (or flag Schur polynomials sλ(φ;x)) indexed by

η ∈ UGCλ(n) (or φ ∈ UFλ(n)) that are distinct as polynomials.

(x) Section 14: coincident pairs (sλ(β;x), dλ(π;x)) of polynomials indexed by upper λ-tuples β ∈
Uλ(n) and λ-permutations π ∈ Sλn.

(xi) Section 17: valid upper λ-tuple inputs to the Gessel-Viennot determinant expressions for flag

Schur polynomials on the shape λ that attain maximum efficiency.

As in Table 16.1, Item (vii) can be restated as: generating functions dλ(π;x) for π ∈ Sλ-312
n and

sλ(η;x) for η ∈ UGCλ(n) (or sλ(φ;x) for φ ∈ UFλ(n)) that are distinct within their respective

collections in the sense of not being identical as generating functions. Item (viii) can be similarly

restated using the notion of the pairs of associated generating functions not being identical.

Proof. Part (i) restates our CRn definition with the terminology of [GGHP]; for the second claim see

the discussion below. Use Proposition 6.6(ii), Corollary 4.4, Corollary 5.3, and Proposition 12.2 to

confirm (ii), the first part of (iii), and (iv). For the second part of (iii), destrictify gapless R-tuples.

Use Proposition 6.6(i) and Theorem 9.2(i) to confirm (v); Part (vi) follows from Corollary 11.2.

Use the specialization of Fact 10.1(vi), Proposition 12.3, and Theorem 13.1(iii) to confirm (vii) and

(viii). Use Proposition 14.1(ii), Corollary 14.4, and Theorem 14.3 to confirm (ix) and (x). Part

(xi) is confirmed with Proposition 12.3(iii) and Corollary 17.3.

To use the Online Encyclopedia of Integer Sequences [Slo] to determine if the counts CRn had

been studied, we had to form sequences. Define the total parabolic Catalan number CΣ
n to be∑

CRn , sum over R ⊆ [n − 1]. We also computed CΣ
n for small n and found N.J.A. Sloane’s 2013

contribution A226316. These “hits” led us to the papers [GGHP] and [CDZ].

Let R be as in the theorem. Let 2 ≤ t ≤ r + 1. Fix a permutation σ ∈ St. Apparently for

the sake of generalization in and of itself with new enumeration results as a goal, Godbole, Goyt,

Herdan and Pudwell defined [GGHP] the notion of an ordered partition of [n] with block sizes

b1, b2, ..., br+1 that avoids the pattern σ. It appears that that paper was the first paper to consider

a notion of pattern avoidance for ordered partitions that can be used to produce our notion of
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R-312-avoiding permutations: Take b1 := q1, b2 := q2 − q1, ... , br+1 := n − qr, t := 3, and

σ := (3; 1; 2). Their Theorem 4.1 implies that the number of such ordered partitions that avoid σ

is equal to the number of such ordered partitions that avoid each of the other five permutations

for t = 3. This can be used to confirm that the CR2m sequence defined above is indeed Sequence

A220097 of the OEIS (which is for avoiding the pattern 123). Chen, Dai, and Zhou gave generating

functions [CDZ] in Theorem 3.1 and Corollary 2.3 for the CR2m for R = {2, 4, 6, ..., 2m−2} for m ≥ 1

and for the CΣ
n for n ≥ 1.

How can the CΣ
n total counts be modeled? Gathering the R-312-avoiding permutations or the

n-tuples from Theorem 18.1(ii) for this purpose would require retaining the “semicolon dividers”

in those R-tuples. Some other objects retain the information concerning R more elegantly. We

omit definitions for some of the concepts in the next statement. We also suspend our convention

of omitting the prefix ‘[n− 1]-’: Before, a ‘rightmost clump deleting’ chain deleted one element at

each stage. Now this unadorned term describes a chain that deletes any number of elements in any

number of stages, provided that they constitute entire clumps of the largest elements still present

plus possibly a subset from the rightmost of the other clumps. When n = 3 one has CΣ
n = 12. Five

of these chains were displayed in Section 6. A sixth is �1 �2 �3. Here are the other six, plus one such

chain for n = 17:

1 2 �3

�1 �2
1 �2 3

�1 �3
�1 2 3

�2 �3
1 �2 �3

�1
�1 2 �3

�2
�1 �2 3

�3

1 2 �3 4 5 �6 7 8 9 10 11 ��12 13 14 ��15 16 17
1 2 4 5 7 �8 9 ��10 11 ��13 ��14 ��16 ��17

1 2 �4 5 �7 �9 ��11

�1 �2 �5

Corollary 18.2. The total parabolic Catalan number CΣ
n is the number of:

(i) ordered partitions of {1, 2, ..., n} that avoid the pattern 312.

(ii) rightmost clump deleting chains for [n], and gapless keys whose columns have distinct lengths

less than n.

(iii) for each m ≥ 1, the flag Schur polynomials in n variables on shapes with at most n − 1 rows

in which there are m columns of each column length that is present.

(iv) Schubert varieties in all of the flag manifolds SL(n)/PJ for J ⊆ [n− 1] such that their “asso-

ciated” Demazure tableaux form convex sets as in Section 11.

Part (iv) highlights the fact that the convexity result of Corollary 11.2 depends only upon the

information from the indexing R-permutation for the Schubert variety, and not upon any further

information from the partition λ ∈ Λ+
n . In addition to their count opn[(3; 1; 2)] = CΣ

n , the authors
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of [GGHP] and [CDZ] also considered the number opn,k(σ) of such σ-avoiding ordered partitions

with k blocks. The models above can be adapted to require the presence of exactly k blocks, albeit

of unspecified sizes.

Added Note. We learned of the paper [MW] after posting this paper on the arXiv. As at the end of

Section 8, let R and J be such that R∪J = [n−1] and R∩J = ∅. It could be interesting to compare

the definition for what we would call an ‘R-231-avoiding’ R-permutation (as in [GGHP]) to Mühle’s

and Williams’ definition of a ‘J-231-avoiding’ R-permutation in Definition 5 of [MW]. There they

impose an additional condition wi = wk+1 upon the pattern to be avoided. For their Theorems 21

and 24, this condition enables them to extend the notions of “non-crossing partition” and of “non-

nesting partition” to the parabolic quotient Sn/WJ context of R-permutations to produce sets of

objects that are equinumerous with their J-231-avoiding R-permutations. Their Theorem 7 states

that this extra condition is superfluous when J = ∅. In this case their notions of J-non-crossing

partition and of J-non-nesting partition specialize to the set partition Catalan number models that

appeared as Exercises 6.19(pp) and 6.19(uu) of [St2] (or as Exercises 159 and 164 of [St3]). So

if it is agreed that their reasonably stated generalizations of the notions of non-crossing and non-

nesting partitions are the most appropriate generalizations that can be formulated for the Sn/WJ

context, then the mutual cardinality of their three sets of objects indexed by J and n becomes a

competitor to our CRn count for the name “R-parabolic Catalan number”. This development has

made the obvious metaproblem more interesting: Now not only must one determine whether each

of the 214 Catalan models compiled in [St3] is “close enough” to a pattern avoiding permutation

interpretation to lead to a successful R-parabolic generalization, one must also determine which

parabolic generalization fits the model at hand.
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