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Abstract. A natural approach to software quality assurance consists in writing unit tests
securing programmer-declared code invariants. Throughout the literature a great body of work
has been devoted to tools and techniques automating this labour-intensive process. A prominent
example is the successful use of randomness, in particular random typeable λ-terms, in testing
functional programming compilers such as the Glasgow Haskell Compiler. Unfortunately, due
to the intrinsically difficult combinatorial structure of typeable λ-terms no effective uniform
sampling method is known, setting it as a fundamental open problem in the random software
testing approach. In this paper we combine the framework of Boltzmann samplers, a powerful
technique of random combinatorial structure generation, with today’s Prolog systems offering a
synergy between logic variables, unification with occurs check and efficient backtracking. This
allows us to develop a novel sampling mechanism able to construct uniformly random closed
simply-typed λ-terms of up size 120. We apply our techniques to the generation of uniformly
random closed simply-typed normal forms and design a parallel execution mechanism pushing
forward the achievable term size to 140.

1. Introduction

Simply-typed λ-terms [11, 1] constitute the theoretical foundations of modern functional pro-
gramming languages, such as Haskell or OCaml. Types in the language provide an additional
safety layer as typeable λ-terms are necessarily strongly normalizing, i.e. terminate in all eval-
uation orders, hindering the programmer from introducing some easy to avoid software bugs.
Moreover, via the famous Curry-Howard isomorphism, closed λ-terms that are inhabitants of
simple types can be seen as proofs for tautologies in the implicational fragment of minimal logic
which, in turn, correspond to the simple types itself.

In [14] the authors used random typeable λ-terms as a tool for testing the prominent Glasgow
Haskell Compiler (GHC). Though successful for the purpose of finding optimisation bugs in GHC,
their random terms were not uniformly random with respect to size. In other words, some kinds
of typeable λ-terms were favoured over other kinds of equal size terms. Uniform generation,
on the other hand, assigns equal probability to terms of equal size and hence produces ‘typical’
typeable λ-terms, without introducing an unintended nor explicit bias in the sampling process.

Recent work on the combinatorics of λ-terms [9, 3, 5], relying on generating functions and
techniques from analytic combinatorics [8], has provided counts for several families of λ-terms
and clarified important quantitative properties of interesting subclasses of λ-terms. With the
techniques provided by generating functions [8], it was possible to separate the counting of
the terms of a given size for several families of λ-terms from their more computation intensive
generation, resulting in several additions (e.g., A220894, A224345, A114851) to the On-Line
Encyclopedia of Integer Sequences [15].

On the other hand, the combinatorics of simply-typed λ-terms, given the absence of closed
formulas or context-free grammar-based generators, due to the intricate interaction between type
inference and the applicative structure of λ-terms, has left important problems open, including
the very basic one of counting the number of closed simply-typed λ-terms of a given size. At this
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point, obtaining counts for simply-typed λ-terms requires going through the more computation-
intensive generation process.

Fortunately, by taking advantage of the synergy between logic variables, unification with oc-
curs check and efficient backtracking it is possible to significantly accelerate the generation of
simply-typed lambda terms [16] by interleaving it with type inference steps. While the genera-
tors described in the aforementioned paper can push the size of the simply-typed λ-terms by a
few steps higher, one may want to obtain uniformly sampled random terms of significantly larger
size, especially if one is concerned not only about correctness but also about scalability of com-
pilers and program transformation tools used in the implementation of functional programming
languages and proof assistants.

This brings us to the main contribution of this paper. We will first build efficient generators
for simply-typed λ-terms that work by interleaving term building and type inference steps. From
them, we will derive Boltzmann samplers returning random simply-typed λ-terms [10] of sizes
between 120 and 140, assuming a slight variation of the ‘natural size’ introduced in [2], assigning
to each constructor a size given by its arity. We will also extend this technique to the random
generation of simply-typed closed normal forms, based on the same definition of size.

The paper is organized as follows. Section 2 describes generators for plain, closed and simply-
typed terms of a given size. Section 3 revisits key notions from analytic combinatorics and
the general design of Boltzmann samplers. Section 4 derives Boltzmann samplers for random
generation of simply-typed closed λ-terms. Section 5 describes generators for λ-terms in normal
form as well as their closed and simply-typed subsets. Section 6 derives Boltzmann samplers for
random generation of simply-typed closed λ-terms in normal form. Section 7 describes a simple
parallel execution model using multiple independent threads. Section 8 discusses techniques for
possibly pushing higher the sizes of generated random terms. Finally, section 9 overviews related
work and section 10 concludes the paper.

The paper is structured as a literate Prolog program. The code has been tested with SWI-
Prolog 7.3.8 and YAP 6.3.4. It is also available as a separate file at http://www.cse.unt.edu/
~tarau/research/2016/bol.pro.

2. Generators for λ-terms of a given natural size

We start by generating all λ-terms of a given size, in the de Bruijn notation.

2.1. De Bruijn notation. De Bruijn indices [6] provide a robust name-free representation of
lambda term variables. Closed terms1 that are identical up to renaming of variables, i.e. are α-
convertible, share a unique representation. This allows each variable occurrence to be replaced
by a non-negative integer marking the number of lambda abstractions between the variable
and its binder. Following [2] we assume a unary notation of integers using the constant 0 and
the constructor s/1 for the successor. Lambda abstraction and application constructors are
represented using l/1 and a/2, respectively. And so, the set L of plain λ-terms is given by the
following grammar:

L = LL | λL | D,
where D denotes the set {0, s(0), s(s(0)), . . .} of de Bruijn indices.

Throughout the paper we assume that each constructor is of weight equal to its arity and the
size of a λ-term is the sum of the weights of its building constructors.

2.2. Generating plain λ-terms. Generation of plain λ-terms of a given size proceeds by con-
suming at each step a size unit, represented by the constructor s/1. This ensures that, for a size
definition allocating a number of size units to each of the constructors of a term, generation is
constrained to terms of a given size. As there are n+ 1 leaves (labeled 0) in a tree with n a/2
constructors, we implement our generator to consume as many size-units as the arity of each

1A λ-term is called closed if it has no free variables and open otherwise. A term is called plain if it is either
closed or open.
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constructor, in particular 0 for 0 and 2 for the constructor a/2. This means that we will obtain
the counts for terms of natural size n+ 1 when consuming n size-units.

genLambda(s(S),X):-genLambda(X,S,0).

genLambda(X,N1,N2):-nth_elem(X,N1,N2).
genLambda(l(A),s(N1),N2):-genLambda(A,N1,N2).
genLambda(a(A,B),s(s(N1)),N3):-

genLambda(A,N1,N2),
genLambda(B,N2,N3).

Note that nth_elem/3 consumes progressively larger size-units for variables of a higher de Bruijn
index, a property that conveniently mimics the fact that, in practical programs, variables located
farther from their binders are likely to occur less frequently than those closer to their binders.

nth_elem(0,N,N).
nth_elem(s(X),s(N1),N2):-nth_elem(X,N1,N2).

Example 1. Plain λ-terms of size 2 (with size of each constructor given by its arity).
?- genLambda(s(s(s(0))),X).
X = s(s(0)) ; X = l(s(0)) ; X = l(l(0)) ; X = a(0, 0) .

Counts for plain λ-terms are given by the sequence A105633 in [15].

2.3. Generating closed λ-terms. We derive a generator for closed λ-terms by counting with
help of a list of logic variables. At each lambda binder l/1 step, a new variable is added to the
list associated with a path from the root. For now, we simply use the length of the list as a
counter for l/1 nodes on the path.

The predicate genClosed/2 builds this list of logic variables as it generates binders. When
generating a leaf variable, it picks ‘non-deterministically’ one of the variables among the list of
variables corresponding to binders encountered on a given path from the root Vs. In fact, this
list of variables will be ready to be used later to store the types inferred for a given binder.

genClosed(s(S),X):-genClosed(X,[],S,0).

genClosed(X,Vs,N1,N2):-nth_elem_on(X,Vs,N1,N2).
genClosed(l(A),Vs,s(N1),N2):-genClosed(A,[_|Vs],N1,N2).
genClosed(a(A,B),Vs,s(s(N1)),N3):-

genClosed(A,Vs,N1,N2),
genClosed(B,Vs,N2,N3).

Like nth_elem in the case of plain λ-terms, the predicate nth_elem_on consumes progressively
larger size-units for variables of a higher de Bruijn index. At the same time, its second (list)
argument ensures that on each branch leading from a leaf to the root of the tree, there is a variable
introduced by a lambda binder above it. This gets our code ready for the next refinement, where
we will use these variables to store our inferred types.

nth_elem_on(0,[_|_],N,N).
nth_elem_on(s(X),[_|Vs],s(N1),N2):-nth_elem_on(X,Vs,N1,N2).

Example 2. Closed λ-terms of natural size 5.
?- genClosed(s(s(s(s(s(0))))),X).
X = l(l(l(s(0)))) ; X = l(l(l(l(0)))) ; X = l(l(a(0, 0))) ;
X = l(a(0, l(0))) ; X = l(a(l(0), 0)) ; X = a(l(0), l(0)) .

Counts for closed λ-terms are given by the sequence A275057 in [15].
3



2.4. Generating simply-typed λ-terms. We will derive a generator for simply-typed λ-terms
with help from the logic variables used simply as counters in the case of closed terms, to contain
the types on which de Bruijn indices pointing to the same binder should agree.

genTypable(X,V,Vs,N1,N2):-genIndex(X,Vs,V,N1,N2).
genTypable(l(A),(X->Xs),Vs,s(N1),N2):-genTypable(A,Xs,[X|Vs],N1,N2).
genTypable(a(A,B),Xs,Vs,s(s(N1)),N3):-

genTypable(A,(X->Xs),Vs,N1,N2),
genTypable(B,X,Vs,N2,N3).

The predicate genIndex/5 ensures, via unification with occurs-check, that the same non-cyclic
type is assigned to each leaf corresponding to an occurrence of a variable introduced by a given
lambda binder.

genIndex(0,[V|_],V0,N,N):-unify_with_occurs_check(V0,V).
genIndex(s(X),[_|Vs],V,s(N1),N2):-genIndex(X,Vs,V,N1,N2).

We expose this algorithm via two interfaces: one for plain terms and one for closed terms.
Their only difference is the constraint that the list of available variables for closed terms is
initially empty.

genPlainTypable(S,X,T):-genTypable(S,_,X,T).

genClosedTypable(S,X,T):-genTypable(S,[],X,T).

genTypable(s(S),Vs,X,T):-genTypable(X,T,Vs,S,0).

For convenience, we shift the sequence by one to match the size definition where both application
nodes and 0 leaves have size 1 as originally given in [2]. As there are n + 1 leaf nodes for n
application nodes, consuming two units for an application rather than one for an application
and one for a leaf as done in [2], speeds up the generation process as we are able to apply the
size constraints at application nodes, earlier in the recursive descent.

Example 3. Plain simply-typed λ-terms of natural size 3.
?- genPlainTypable(s(s(s(s(0)))),X,T).
X = s(s(s(0))),T = A ;
X = l(s(s(0))),T = (A->B) ;
X = l(l(s(0))),T = (A->B->A) ;
X = l(l(l(0))),T = (A->B->C->C) ;
X = a(0, s(0)),T = A ;
X = a(0, l(0)),T = A ;
X = a(s(0), 0),T = A ;
X = a(l(0), 0),T = A .

Counts for plain simply-typed λ-terms, up to size 16, are given by the sequence:

0, 1, 2, 3, 8, 17, 42, 106, 287, 747, 2069, 5732, 16012, 45283, 129232, 370761, 1069972.

Counts for closed simply-typed λ-terms are given by the sequence A272794 in [15]. The first
17 entries are:

0, 0, 1, 1, 2, 5, 13, 27, 74, 198, 508, 1371, 3809, 10477, 29116, 82419, 233748.

3. Analytic combinatorics

Our approach to random λ-term generation relies on the powerful theory of analytic combi-
natorics and, in particular, the design of Boltzmann samplers. In this section we excerpt the
main ideas and notions used throughout the remainder of the paper. We refer the curious reader
to [8, 18] for a detailed exposition on generating functions, the singularity analysis process and
its applications, as well as [7] for a reference on Boltzmann samplers in general.

4



3.1. Symbolic method. Let A be a denumerable set of combinatorial objects, e.g. inhabitants
of an algebraic data type. Suppose thatA is additionally equipped with a size notion |·| : A → N,
assigning each α ∈ A its size |α| in such a way that for each n ∈ N there are only finitely many
objects in A of size n. Then, A together with |·| form a combinatorial class – the central object in
the theory of analytic combinatorics [8]. Through analytic combinatorics, we obtain systematic
methods of creating, manipulating and studying the behaviour of combinatorial structures, in
particular, the properties of large typical objects, as well as their effective random generation.

Let an denote the number of objects in A of size n. Then, (an)n∈N becomes the counting
sequence of A. Suppose that we assign a formal power series A(z) to A’s counting sequence in
such a way that an becomes A(z)’s nth coefficient (denoted [zn]A(z)), i.e.

A(z) =
∑
n≥0

anz
n.

The series A(z) is called then the generating function of A (see, e.g. [18]).
Such a compact representation of A’s counting sequence enjoys a number of elegant manip-

ulation properties. Suppose we have two disjoint combinatorial classes A and B and wish to
construct a combinatorial class C = A+ B consisting of the union of A and B with unmodified
size functions. Then, the generating function C(z) of C is given by

C(z) =
∑
n≥0

(an + bn)zn.

Hence, using the formal series addition,

C(z) = A(z) +B(z).

Now, suppose that we wish to construct a combinatorial class C = A× B consisting of pairs
in the form of (α, β) where α ∈ A, β ∈ B and the size of (α, β) is the sum of α’s and β’s sizes.
In other words, on the level of generating functions

C(z) =
∑
n≥0

n∑
k=0

(an−kbk)z
n.

Note that this is precisely the Cauchy product formula, therefore

C(z) = A(z)B(z).

The above, so called admissible constructions, allow us to find generating functions for a
broad class of algebraic data types, including λ-terms in the de Bruijn notation, by means of
the following symbolic method [8].

Let us start with de Bruijn indices. Recall that de Bruijn indices are defined by the following
grammar

D = 0 | S(D).

Note that on the right-hand side we have two disjoint sets of indices – a singleton class consisting
of 0 and a class of successors. Since zero is of size 0 (as it is a constant), its corresponding
generating function is simply equal to z0 = 1. The class of successors, on the other hand, is a
bit more involved. Suppose that we construct an auxiliary class S consisting of a single object
s of size 1. Then, we can bijectively assign to each successor in D a pair from S × D. Since
S(z) = z, we obtain the following functional equation on D’s generating function D(z)

D(z) = 1 + zD(z)

=
1

1− z
.

Now, let us consider the class L of λ-terms, given by the following grammar

L = D | λL | LL.
Again, on the right-hand side we have three disjoint combinatorial classes – the set of de Bruijn
indices, the set of λ-terms starting with an abstraction, and finally the class of term applications.
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Using the same symbolic method as for D, we obtain the following functional equation defining
L(z) (recall that the abstraction is of size 1 whereas the application is of size 2):

L(z) = D(z) + zL(z) + z2L(z)2

=
1

1− z
+ zL(z) + z2L(z)2.

Solving the above quadratic equation in L(z) we obtain two possible solutions:

L(z) =
1− z +

√
1−3z−z2−z3√

1−z
2z2

or L(z) =
1− z −

√
1−3z−z2−z3√

1−z
2z2

.

Note that since there exists just a single λ-term of size equal to 0 (the de Bruijn index 0), we
expect that limz→0 L(z) = [z0]L(z) = 1. This condition holds only for the latter equation, hence
finally

(1) L(z) =
1− z −

√
1−3z−z2−z3√

1−z
2z2

.

3.2. Singularity analysis. Although generating functions, as discussed previously, are formal
series, analytic combinatorics [8] links their analytic properties, when viewed as complex func-
tions in one variable z, with the properties of the underlying counting sequences. Surprisingly
profound questions regarding the asymptotic behaviour and statistical properties of the under-
lying counting sequences might be addressed by carefully examining the dominant singularities
of the corresponding generating functions (so called singularity analysis).

And so, for a broad class of combinatorial classes, including λ-terms in the de Bruijn notation,
it is possible to give accurate approximations on the number of objects of size n, or investigate
the properties of large random structures. In [2] the authors gave the following asymptotic
approximation of [zn+1]L(z) (note that [zn+1]L(z) in their size notion is equal to [zn]L(z) as
given by Equation (1)):

[zn+1]L(z) ∼
(

1

ρ

)n C

n3/2
,

where ρ ≈ 0.29560 (hence 1/ρ ≈ 3.38298) and C ≈ 0.60676. Here, ρ is the dominant singularity
of L(z), i.e. the radius of convergence of L(z).

Note that in the case of L(z), the location of ρ dictates the exponential rate of growth of
[zn+1]L(z). The precise nature and neighbourhood of ρ determine the sub-exponential factor
C
n3/2 . For the purpose of this paper, we are interested in the approximation of ρ and the evaluation
of L(z) in arbitrary parameters from (0, ρ), as we use them in the construction of a rejection
Boltzmann sampler for λ-terms.

3.3. Boltzmann samplers. In their breakthrough paper [7], Duchon et al. introduced a power-
ful framework of Boltzmann samplers meant for random generation of combinatorial structures.
Suppose we have a generating function

A(z) =
∑
n≥0

anz
n.

We wish to design an efficient algorithm, which returns a random structure α ∈ A in such a way
that any two structures of equal size have the same probability of being chosen. In other words,
we want the probability P(α) that α ∈ A of size n is the sampler’s outcome to be equal to

P(α) =
1

an
.

Duchon et al. proposed the following approach. Suppose we relax our restriction that the
sampler’s outcome size is deterministic and parametrize the sampler with an additional real
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parameter x ∈ (0, ρ) where ρ is the dominating singularity of A(z). Let us set a probability
space on A such that Px(α), the probability that α ∈ A is the sampler’s outcome, is equal to

Px(α) =
x|α|

A(x)
.

Let N be the random variable marking the size of the sampler’s outcome. Then, the proba-
bility Px(N = n) that the sampler returns an object of size n is equal to

Px(N = n) =
anx

n

A(x)
.

Note that this is indeed a probability since∑
n≥0

Px(N = n) =
1

A(x)

∑
n≥0

anx
n = 1.

We can therefore consider the expected outcome size and all its higher moments. In particular,
it is easy to verify that the expected size Ex(N) and the standard deviation σx(N) are given by

(2) Ex(N) = x
A′(x)

A(x)
and σx(N) =

√
x2A′′(x) + xA′(x)

A(x)
−
(
x
A′(x)

A(x)

)2

.

Hence, in this model we do not control the exact size of the sample, although we can calibrate
its expected size and standard deviation by choosing a suitable parameter x.

3.4. Constructing Boltzmann samplers. Let A be a combinatorial class for which we want
to design a Boltzmann sampler Γx(A). The process of constructing Γx(A) described by Duchon
et al. [7] follows the recursive structure of A.

Suppose that A = B + C. Let α ∈ A. Since both B and C are disjoint, the probabilities
PΓ,x(α ∈ B) that α ∈ B and PΓ,x(α ∈ C) that α ∈ C are equal to

PΓ,x(α ∈ B) =
B(x)

A(x)
and PΓ,x(α ∈ C) =

C(x)

A(x)
.

It means therefore that in order to sample an object from A we have to make a probabilistic
decision which branch, i.e. B or C, to choose. We draw uniformly at random a real r ∈ [0, 1] and
compare it with the branching probabilities B(x)

A(x) and C(x)
A(x) . Then, we call recursively one of the

corresponding samplers Γx(B) or Γx(C), continuing the sampling process.
Now, suppose that A = B × C. Let α = (β, γ) ∈ A. Note that

PΓ,x(α ∈ A) =
x|α|

A(x)
=

x|β|+|γ|

B(x)C(x)
= PΓ,x(β ∈ B) · PΓ,x(γ ∈ C).

In other words, in order to sample an object from A we have to sample two objects – indepen-
dently one from B and one from C – and make a pair out of them.

The recursion stops at the level of singleton classes. In such a case, we simply return the
single object in our class, since

PΓ,x(α ∈ A) = Px(α) =
x|α|

A(x)
=
x|α|

x|α|
= 1.

Using the above design patterns, we can now easily construct a Boltzmann sampler for plain
λ-terms, exploiting the generating function L(z) (see Equation (1)) and its dominant singularity
ρ.

7



4. A Boltzmann sampler for simply-typed terms

The Boltzmann sampler approach allows us to rapidly generate random plain λ-terms of sizes
of order 500,000. Unfortunately, given the asymptotic sparsity of closed simply-typed λ-terms in
the set of plain ones [2], the sampling process has to be interleaved with a rejection phase where
undesired terms are discarded as soon as possible and the whole process is restarted. Due to the
immense number of expected retrials, the power of Boltzmann samplers is therefore significantly
constrained.

Following our empirical experiments, we calibrated the branching probabilities so to set the
expected outcome size to 120 – the currently biggest practical size achievable. In order to find
the suitable x, we solve numerically Equation (2) for x with Ex(N) = 120. The numerical
approximation of x is then

x ≈ 0.29558095907.

Following the construction of Boltzmann samplers in the case of plain λ-terms, we have
to compute three branching probabilities deciding whether the sampler generates a random
de Bruijn index, an abstraction or an application. And so

• the probability of constructing a de Bruijn index becomes 0.35700035696434995,
• the probability of a lambda abstraction becomes 0.29558095907, and finally
• the probability of an application becomes 0.34741868396.

Furthermore, whenever we decide to create a de Bruijn index, the probability of constructing 0
is equal to 0.7044190409261122, while a successor is chosen with probability 0.29558095907.

4.1. Deriving a Boltzmann sampler from an exhaustive generator. When generating all
terms of a given size, the Prolog system explores all possibilities via backtracking. For a random
generator, deterministic steps will be used instead, guided by the probabilities determined by
the Boltzmann sampler.

Our code is parametrized by the size interval for the generated random terms as well as the
maximum number of steps until the being closed and being simply-typed constraints are both
met. Moreover, the code relies on precomputed branching probabilities. At each step of the
construction process we draw uniformly at random a real from the interval [0, 1] and on its
basis, we decide which constructor to add.

min_size(120).
max_size(150).
max_steps(10000000).
boltzmann_index(R):-R<0.35700035696434995.
boltzmann_lambda(R):-R<0.6525813160382378.
boltzmann_leaf(R):-R<0.7044190409261122.

The very high value of retries, max_steps, is coming from the discussed sparsity of simply-typed
terms among all plain terms. The Boltzmann sampler can be fine-tuned via min_size and
max_size to search for terms in an interval for which the probabilities of the sampler have been
calibrated. The predicate ranTypable returns a term X, its type T as well as the size of the term
and the number of trial steps it took to find the term.

ranTypable(X,T,Size,Steps):-
max_size(Max),
min_size(Min),
max_steps(MaxSteps),
between(1,MaxSteps,Steps),

random(R),
ranTypable(Max,R,X,T,[],0,Size0),

Size0>=Min,
!,
Size is Size0+1.
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Note that it calls the predicate random/1, returning a random value between 0 and 1, with the
convention that each predicate provides such a value for the next one(s) it calls, convention that
will be consistently followed in the code.

The predicate ranTypable/7 follows the outline of the corresponding non-deterministic gen-
erator, except that it is driven by deterministic choices provided by the Boltzmann branching
probabilities that decide which branch is taken.

Note that the parameter Max preempts growing a term above the specified size interval as early
as that happens. Like in the generator, on which it is based, type inference is interleaved with
term building. As a result, we prevent building terms with subterms that are not simply-typed,
as soon as such a subterm is found.

ranTypable(Max,R,X,V,Vs,N1,N2):-boltzmann_index(R),!,
random(NewR),
pickIndex(Max,NewR,X,Vs,V,N1,N2).

ranTypable(Max,R,l(A),(X->Xs),Vs,N1,N3):-boltzmann_lambda(R),!,
next(Max,NewR,N1,N2),
ranTypable(Max,NewR,A,Xs,[X|Vs],N2,N3).

ranTypable(Max,_R,a(A,B),Xs,Vs,N1,N5):-
next(Max,R1,N1,N2),
ranTypable(Max,R1,A,(X->Xs),Vs,N2,N3),
next(Max,R2,N3,N4),
ranTypable(Max,R2,B,X,Vs,N4,N5).

Besides ensuring that types assigned to a leaf are consistent with the type acquired so far by
their binder, the predicate pickIndex/7 also enforces the property of being a closed term by
picking variables from the list of possible binders above it, on the path to the root.

pickIndex(_,R,0,[V|_],V0,N,N):-boltzmann_leaf(R),!,
unify_with_occurs_check(V0,V).

pickIndex(Max,_,s(X),[_|Vs],V,N1,N3):-
next(Max,NewR,N1,N2),
pickIndex(Max,NewR,X,Vs,V,N2,N3).

Finally, the helper predicate next/4 ensures that the size count accumulated so far is not above
the required interval, while providing a random value to be used by the next call.

next(Max,R,N1,N2):-N1<Max,N2 is N1+1,random(R).

Example 4. A uniformly random simply-typed λ-term of size 137 and its type, obtained after
1070126 trial steps in 4.388 seconds.
l(a(l(l(l(l(l(a(s(s(0)),a(l(a(l(l(l(0))),l(a(0,a(0,a(s(s(0)),

a(l(a(l(0),a(a(l(l(l(l(s(s(s(0))))))),s(s(0))),a(0,a(0,a(l(l(0)),
l(a(l(l(l(s(s(s(0)))))),s(0))))))))),l(0)))))))),a(0,a(s(s(0)),
a(a(s(0),0),0)))))))))),l(a(l(a(0,a(l(l(s(0))),l(l(l(0)))))),
l(a(l(a(0,a(l(a(l(l(l(l(s(0))))),l(s(s(0))))),l(s(0))))),a(l(l(a(l(0),
l(a(l(l(l(a(0,a(0,l(l(0))))))),l(s(0))))))),s(s(0)))))))))

(A->B->((C->D->D)->E->F->G)->(((E->F->G)->G)->
((E->F->G)->G)->C->D->D)->((E->F->G)->G)->E->F->G)

5. Generating simply-typed normal forms

Normal forms are λ-terms that cannot be further β-reduced. In other words, they avoid
redexes as subterms, i.e. applications with lambda abstractions on their left branches.
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5.1. Generating normal forms of given size. To generate normal forms we simply add to
genLambda the constraint notLambda/1 ensuring that the left branch of an application node is
anything except an l/1 lambda node.

genNF(s(S),X):-genNF(X,S,0).

genNF(X,N1,N2):-nth_elem(X,N1,N2).
genNF(l(A),s(N1),N2):-genNF(A,N1,N2).
genNF(a(A,B),s(s(N1)),N3):-notLambda(A),genNF(A,N1,N2),genNF(B,N2,N3).

notLambda(0).
notLambda(s(_)).
notLambda(a(_,_)).

Example 5. Plain normal forms of natural size 5.
?- genNF(s(s(s(s(0)))),X).
X = s(s(s(0))) ;
X = l(s(s(0))) ;
X = l(l(s(0))) ;
X = l(l(l(0))) ;
X = l(a(0, 0)) ;
X = a(0, s(0)) ;
X = a(0, l(0)) ;
X = a(s(0), 0) .

Counts for plain (untyped) normal forms, up to size 16, are given by the sequence:

0, 1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, 3562, 9360, 24871, 66706, 180340, 490912.

5.2. Interleaving generation and type inference. Like in the case of the set of simply-
typed λ-terms, we can define the more efficient combined generator and type inferrer predicate
genTypableNF/5.

genPlainTypableNF(S,X,T):-genTypableNF(S,_,X,T).

genClosedTypableNF(S,X,T):-genTypableNF(S,[],X,T).

genTypableNF(s(S),Vs,X,T):-genTypableNF(X,T,Vs,S,0).

genTypableNF(X,V,Vs,N1,N2):-genIndex(X,Vs,V,N1,N2).
genTypableNF(l(A),(X->Xs),Vs,s(N1),N2):-genTypableNF(A,Xs,[X|Vs],N1,N2).
genTypableNF(a(A,B),Xs,Vs,s(s(N1)),N3):-notLambda(A),

genTypableNF(A,(X->Xs),Vs,N1,N2),
genTypableNF(B,X,Vs,N2,N3).

Example 6. Simply-typed normal forms of size 6 and their types.
?- genClosedTypableNF(s(s(s(s(s(0))))),X,T).
X = l(l(l(s(0)))),T = (A->B->C->B) ;
X = l(l(l(l(0)))),T = (A->B->C->D->D) ;
X = l(a(0, l(0))),T = (((A->A)->B)->B) ;

We are now able to efficiently generate counts for simply-typed normal forms of a given size.

Example 7. Counts for closed simply-typed normal forms up to size 18.

0, 0, 1, 1, 2, 3, 7, 11, 25, 52, 110, 241, 537, 1219, 2767, 6439, 14945, 35253, 83214.
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6. Boltzmann sampler for simply-typed normal forms

When restricted to normal forms, the Boltzmann sampler is derived in a similar way from the
corresponding exhaustive generator. In order to find the appropriate branching probabilities,
we exploit the following combinatorial system defining the set N of normal forms using the set
M of so called neutral forms.

N = M | λN
M = MN | D

A normal form is either a neutral term, or an abstraction followed with a normal form. A neutral
term, in turn, is either an application of a neutral term to a normal form, or a de Bruijn index.

With this description of normal forms, we are ready to recompute the branching probabilities
(see [7] for details) for a Boltzmann sampler generating normal forms. Similarly as in the case
of plain terms, we calibrated the branching probabilities so to set the expected outcome size to
120.

The resulting probabilities and limits are given by the following predicates:

boltzmann_nf_lambda(R):-R<0.3333158264186935. % an l/1, otherwise neutral
boltzmann_nf_index(R):-R<0.5062759837493023. % neutral: index, not a/2
boltzmann_nf_leaf(R):-R<0.6666841735813065. % neutral: 0, otherwise s/1
min_nf_size(60).
max_nf_size(80).
max_nf_steps(10000000).

The predicate ranTypableNF generates a simply-typed term X in normal form and its type T,
while computing the size of the term and the number of trial steps used to find it. Note the use
of Prolog’s cut (!) operation to stop the search once the right size is reached.

ranTypableNF(X,T,Size,Steps):-
max_nf_size(Max),
min_nf_size(Min),
max_nf_steps(MaxSteps),
between(1,MaxSteps,Steps),

random(R),
ranTypableNF(Max,R,X,T,[],0,Size0),

Size0>=Min,
!,
Size is Size0+1.

First, a probabilistic choice is made between a normal form wrapped up by a lambda binder
and a neutral term.

ranTypableNF(Max,R,l(A),(X->Xs),Vs,N1,N3):-
boltzmann_nf_lambda(R),!, %lambda
next(Max,NewR,N1,N2),
ranTypableNF(Max,NewR,A,Xs,[X|Vs],N2,N3).

The choice between the next two clauses is decided by the guard boltzmann_nf_index. If
satisfied, the recursive path towards a de Bruijn index is chosen. Otherwise, an application is
generated. Note the use of the cut operation (!) to commit to the first clause when its guard
succeeds.

ranTypableNF(Max,R,X,V,Vs,N1,N2):-boltzmann_nf_index(R),!,
random(NewR),
pickIndexNF(Max,NewR,X,Vs,V,N1,N2). % an index

ranTypableNF(Max,_R,a(A,B),Xs,Vs,N1,N5):- % an application
next(Max,R1,N1,N2),
ranTypableNF(Max,R1,A,(X->Xs),Vs,N2,N3),
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next(Max,R2,N3,N4),
ranTypableNF(Max,R2,B,X,Vs,N4,N5).

Finally, the choice is made between the two alternatives deciding how many successor steps
are taken until a 0 leaf is reached.
pickIndexNF(_,R,0,[V|_],V0,N,N):-boltzmann_nf_leaf(R),!, % zero

unify_with_occurs_check(V0,V).
pickIndexNF(Max,_,s(X),[_|Vs],V,N1,N3):- % successor

next(Max,NewR,N1,N2),
pickIndexNF(Max,NewR,X,Vs,V,N2,N3).

Example 8. A random simply-typed term of size 63 in normal form and its type, generated
after 1312485 trial steps in less than a second.
l(l(l(l(a(a(s(s(0)),l(a(0,a(l(l(s(0))),l(l(l(l(l(a(s(0),l(l(a(s(0),
l(s(0))))))))))))))),l(a(a(l(l(a(l(s(0)),a(a(a(l(s(0)),a(l(0),0)),
l(s(s(0)))),l(l(l(0))))))),0),l(0))))))))

(A->((((B->C->D->E->((((F->G)->H)->G->H)->I)->J->I)->K)->K)->
(L->((M->N->O->O)->L)->(M->N->O->O)->L)->P)->Q->R->P)

As there are fewer λ-terms of a given size in normal form, one may wonder why we are not
reaching comparable or larger sizes to plain λ-terms, where our sampler was able to generate
terms over size 120. An investigation of the relative densities of simply-typed terms in the two
sets provides the explanation.

The table in fig. 1 compares the changes in density for simply-typed terms and simply-typed
normal forms. The first column lists the sizes of the terms. Column A lists the number of
closed simply-typed terms of a given size. Column B lists the ratio between plain terms and
simply-typed terms. Column C lists counts for closed simply-typed normal forms. Column D
lists the ratio between terms in normal form and closed simply-typed terms in normal form.
Finally, column E computes the ratio of the two densities given in columns B and D.

Size A: typed B: plain/typed C: TNF D: NF/TNF E: Density ratios
5 5 4.400 3 5.666 0.776
10 508 6.988 110 12.490 0.559
15 82,419 10.568 6,439 28.007 0.377
20 16,019,330 15.800 473,628 60.040 0.263

Figure 1. Comparison of the ratios of simply-typed terms and simply-typed
normal forms.

The plot in fig. 2 shows the much faster growing sparsity of simply-typed normal forms,
measured as the ratio between plain terms and their simply-typed subset and respectively the
ratio between normal forms and their simply-typed subset, i.e. the results shown in columns B
and D, for sizes up to 20.

Finally, the plot in fig. 3 shows the ratio between these two quantities, i.e. those listed in
column E, for sizes up to 20. In both charts the horizontal axis stands for the size, while the
vertical one for the number of terms.

Therefore, we see that closed simply-typed normal forms are becoming very sparse much
earlier than their plain counterparts. While, e.g. for size 20 there are around 1/16 closed simply-
typed terms for each term, at the same size, for each term in normal form there are around 1/60
simply-typed closed terms in normal form. As at sizes above 50 the total number of terms is
intractably high, the increased sparsity of the simply-typed terms in normal form becomes the
critical element limiting the chances of successful search.

We leave as an open problem the study of the asymptotic behaviour of the ratio between
the density of simply-typed closed normal forms in the set of all normal forms and the density
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Figure 2. Sparsity of simply-typed terms (lower curve) vs. simply-typed normal
forms (upper curve).

Figure 3. Ratio between the density of simply-typed closed normal forms and
that of simply-typed closed λ-terms.

of simply-typed closed λ-terms in the set of λ-terms. While our empirical data hints to the
possibility that it is asymptotically 0 for n→∞, it is still possible to converge to a small finite
limit. Also, this behaviour could be dependent on the size definition we are using.

7. Parallelizing the search

As multiple independent fresh restarts are used in the search for a simply-typed term or
normal form, it makes sense to run them in parallel. For multiple threads to work as efficiently as
possibly on this task, their number needs to be close to the number of actual processing elements
(cores and/or ‘hyper-threads’, depending on the actual computer running the program). Then,
each thread can run exactly the same code until a simply-typed term of the desired size is found,
at which point all the other threads should be terminated and the answer returned.

Implementing this model is unusually simple in SWI-Prolog, by using the built-in predicate
first_solution, that does exactly what we just described, for a list of goals that match the
detected number of processing elements. The predicate multi_gen/1 returns a simply-typed
closed X, its type T as well as its size and the number of steps it took to find it. First it
generates its list of goals by replicating the ranTypable/4 query based on the number of available
cpu_count flag. Then, the predicate first_solution is called to spawn as many threads as
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the number of goals. The on_fail(continue) property hint ensures that one thread failing will
allow the others to keep searching.

multi_gen(Res):-
Res=[X,T,Size,Steps],
prolog_flag(cpu_count,MaxThreads),
G=ranTypable(X,T,Size,Steps),
length(Goals,MaxThreads),
maplist(=(G),Goals),
first_solution(Res,Goals,[on_fail(continue)]).

Our experiments on a 8-threads Ubuntu Linux Machine, with an Intel i-7 processor have con-
sistently returned simply-typed terms of size 140 and larger in less than a minute.

Similarly, the predicate multi_gen_nf/1 returns a simply-typed normal form X, its type T as
well as its size and the number of steps it took to find it.

multi_gen_nf(Res):-
Res=[X,T,Size,Steps],
prolog_flag(cpu_count,MaxThreads),
G=ranTypableNF(X,T,Size,Steps),
length(Goals,MaxThreads),
maplist(=(G),Goals),
first_solution(Res,Goals,[on_fail(continue)]).

With 8 threads running, our experiments have consistently returned simply-typed normal forms
of size 70 and larger in less than a minute.

8. Discussion

An interesting open problem is if our method can be pushed significantly farther. We have
looked into deep hashing based indexing (term_hash in SWI Prolog) and tabling-based dynamic
programming algorithms, using de Bruijn terms. Unfortunately as subterms of closed terms are
not necessarily closed, even if de Bruijn terms can be used as ground keys, their associated types
are incomplete and dependent on the context in which they are inferred.

While it only offers a constant factor speed-up, parallel execution, as shown in section 7,
is quite effective in generating closed simply-typed terms of size 140 and larger and simply-
typed normal forms of size 70 and higher. This mechanism is based on independent threads,
running identical programs. Experiments with more fine-grained execution models (e.g. allowing
some sharing of generated subterms) might need more sophisticated inter-thread communication
mechanisms, with possible changes to the underlying runtime system.

Note also that for exhaustive generation, given the small granularity of the generation and
type inference process, the most useful parallel execution mechanism would simply split the
task of combined generation and inference process into a number of disjoint sets. For instance,
assuming size n and k l/1 constructors for k ≤ n, one would launch a thread exploring all
possible choices, with the remaining n − k size-units to be shared by the applications a/2 and
the weights of indices s/1.

9. Related work

The problem of counting and generating uniformly random λ-terms is extensively studied in
the literature. In [5] authors considered a canonical representation of closed λ-terms in which
variables do not contribute to the overall term size. The same model was investigated in [9],
where a sampling method based on a ranking-unranking approach was developed. A binary
variant of lambda calculus was considered in [10], leading to a generation method employing
Boltzmann samplers. The natural size notion was introduced in [2]. The presented results
included quantitative investigations of certain semantic properties, such as strong normalization
or typability.
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Other, non-uniform generation, approaches are also studied in the context of automated soft-
ware verification. Prominent examples include Quickcheck [4] and GAST [12] – two frameworks
offering facilities for random (yet not necessarily uniform) and exhaustive test generation, used
in the verification of user-defined function properties and invariants. In [14] a ‘type-directed’
mechanism for generation of random terms was introduced, resulting in more realistic (from the
particular use case point of view) terms, employed successfully in discovering optimization bugs
in the Glasgow Haskell Compiler (GHC). Function synthesis, given a finite set of input-output
examples, was considered in [13]. In this approach, the set of candidate functions is restricted to
a subset of primitive recursive functions with abstract syntax trees defined by some context-free
grammar, yielding an effective method of finding ‘natural’ functions matching the given exam-
ple set. A statistical exploration of the structure of the simple types of λ-terms of a given size
in [17] gives indications that some types frequent in human-written programs are among the
most frequently inferred ones for terms of a given size.

10. Conclusion

We have derived from logic programs for exhaustive generation of λ-terms programs that
generated uniformly distributed simply-typed λ-terms via Boltzmann samplers. This has put
at test a simple but effective program transformation technique naturally available in logic pro-
gramming languages: interleaving generators and constraints by integrating them in the same
predicate. For the exhaustive generation, we have also managed to work within the minimal-
ist framework of Horn clauses with sound unification, showing that non-trivial combinatorial
problems can be handled without any of Prolog’s impure features.

Our empirical study of Boltzmann samplers has revealed an intriguing discrepancy between
the case of simply-typed terms and simply-typed normal forms. While these two classes of terms
are both known to asymptotically vanish, the significantly faster sparsity growth of the latter
has limited our Boltzmann sampler to sizes roughly equal to 70.

Our techniques, combining unification of logic variables with Prolog’s backtracking mech-
anism, recommend logic programming as a convenient metalanguage for the manipulation of
various families of λ-terms and the study of their combinatorial and computational properties.
The ability to generate uniformly random simply-typed closed λ-terms of sizes above 120 opens
the doors for applications to testing compiler components for functional languages and proof
assistants, not only for correctness but also for scalability. We hope that simply-typed λ-terms
above 120 can be also useful to spot out performance and memory management issues for several
algorithms used in these tools, including β-reduction, lambda lifting and type inference.
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