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Abstract

The number of conjugate classes of derangements of order n is the same
as the number h(n) of the restricted partitions with every portion greater
than 1. It is also equal to the number of isotopy classes of 2 x n Latin
rectangles. In this paper, a recursion formula of h(n) will be obtained, also
will some elementary approximation formulae with high accuracy for h(n) be
presented. These estimation formulae can be used to obtain the approximate
value of h(n) by a pocket calculator without programming function.
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1 Introduction

Below n is a positive integer.

A permutation of a sequence [x1, s, - - - ,] is the reordering of it. For example [2, 4,
2, 3] is a permutation of [2, 2, 3, 4], sois [4, 2, 3, 2]. Let S,, be the symmetry group of
the set X = {1, 2, ---, n}, i.e., the set (together with the operation of combination)
of the bijections from X to itself. An element ¢ in the symmetry group S, is also
called a permutation (of order n). For any o € S,,, if 0(i) = a;, (1 =1, 2, -+, n;
b2z ) When
ap Gz -+ Qp

x1, X9, - T, are distinct pairwise, the two definitions are equivalent in essence. E|
If o €8S, 0(i) # i (Vi € X), o will be called a derangement of order n. When o
transforms no element to itself, the sequence [o(1),0(2),--- ,0(n)] will also be called
a derangement. The number of derangements of order n is denoted by D,, (or In in
some literatures). It is mentioned in nearly every combinatorics textbook that,

{ai1, ag, --+, a,} = X ), then ¢ is usually denoted by (

" (=1) 1
Dn—<n—1><Dn1+Dn2>—mz%—{%+ﬂ, n>l.
i=0 ’

Here | z] is the floor function, it stands for the maximum integer that will not exceed
the real .

For z,y €S, if 3z € S,,, s.t. = zyz~!, then z and y will be called conjugate, and
y is called the conjugation of z. Of course the conjugacy relation is an equivalence

L' When z;, = i, (i = 1, 2, ---, n), o(z;) = a;, then <21 Zz i" ) =
n
1 92 ... . . . .
( o a : ) can be written by the sequence [a1, a2, -+ , a,] for short without difficulties.
1 a2 - ap
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relation. So the set of derangements of order n can be divided into some conjugate
classes. This paper is mainly concerned on the number of conjugate classes of
derangements of order n. The main method is the same as described in reference
[34].

A matrix of size k x n (1 < k < n — 1) with every row being a reordering of a
fixed set of n elements and every column being a part of a reordering of the same
set of n elements, is called a Latin rectangle. Usually, the set of the n elements
is assumed to be {1, 2, 3, ---, n}. (in some literatures, the members in a Latin
rectangle is assumed in the set {0, 1, 2, ---, n — 1}.) A Latin rectangle will be
called reduced when the first row is in increasing order and the first column is 1, 2,
3, .-+, k. A Latin rectangle will be called normalized (normalised) if the first row
is the sequence [1, 2, 3, -+, n| and the first column is in increasing order. But in
some references, such as [37] or [I7], a Latin rectangle is called normalised if it is
reduced. In references by an excellent expert on Latin squares, Douglas S. Stone,
such as [49], [50], [52], a normalized Latin rectangle matches only the condition that
the first row is in natural order. | Here the conception “normalized” is defined a
little differently from some other references.

A normalized 2 x n Latin rectangle can be considered as a derangement. An isotopy
class of 2 x n Latin rectangles will correspond to a unique conjugate class of de-
rangements. So it is naturally to find out that the number of isotopy classes of 2 xn
Latin rectangles is the same as the number of conjugate classes of derangements of
order n.

All the members in a conjugate class share the same cycle structure. A cycle struc-
ture of a derangement can be considered as an integer solution of the equation

81+82+"'+Sq:n, (2<31<32<...<3q), (1)

For a fixed ¢, designate the number of integer solutions of the equation as Hy(n),
where ¢ is less than {gJ + 1 (otherwise H,(n) is defined by 0), and denote h(n)
the number of all the integer solutions of Equation for all the possible ¢, i.e.,

3]
h(n) = Hy(n).

So the number of conjugate classes of derangements of order n is h(n). Since h(n)
is the number of a type of restricted partitions, it is tightly connected with the
partition number.

Following the notation of [36], denote by P,(n) the number of integer solutions of
equation

81+32+"'+Sq:n, (1<81<82<“'<3q) (2)

2 Besides the 3 papers on the number of Latin rectangles by Douglas, more information on the
number of Latin rectangles can be found in [51] and [53].
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for a fixed ¢, where 1 < ¢ < n, and by p(n) the number of all the (unrestricted)
partitions of n. It is clear that [}

p(n) = Py(n). (3)

There is a brief introduction of the important results on the partition number (or
partition function) p(n) and P,(n) in reference [36], such as the recursion formula of
p(n) and P,(n). More information about the partition number p(n) may be found
in reference [55]. There is a list of some important papers and book chapters on the
partition number in [46] (including the “LINKS” and “REFERENCES ”) and [3].

There are also a lot of literatures on the number of some types of restricted partitions
of n (such as [41], [29], [30], [31], [X8], [38], [32], [8, [33], [10], [1], [35], [44], [22],
[23], [27], [15], [5]) or on the congruence properties of (restricted) partition function
(such as [54], [20], [16], [13], [7], [12], [7], [11], [25], [26], [6], [2], [28]).

In [45], we can find many cases of Restricted Partitions (some of them are intro-
duced in [9], [43] or [42]). One class are concerned on the restriction of the sizes of
portions, such as portions restricted to Fibonacci numbers; powers (of 2 or 3), unit,
primes, non-primes, composites or non-composites; another class are related to the
restriction of the number of portions, such as the cases that the number of parts
will not exceed k; the third class are about the restrictions for both, for example,
the cases that the number of parts is restricted while the parts restricted to powers
or primes.

But the author has not found too much information on the number h(n), especially
on the approximate calculation, although we can find a lot of information on other
restricted partition numbers.

2 Some Formulae for h(n)

In this section, a recursion formula will be obtained by the method mentioned in
reference [36] (page 53~55). []

It is mentioned in [36] (page 52) that in 1942 Auluck gave a estimation of P,(n)

1 (n-1

by P,(n) ~ — ) when n is large enough. By the same method shown in

g\ g—1
reference [36] (page 53, 57), we can obtain the generation function of h(n):
= n 1 1 1 1 1 -1
G(x):;h(n)x =T oT ST T :g(1_x) . (4)

3 In a lot of articles, p(n,q) is used in stead of P,(n), but in some other literatures, p(n, q)
stands for some other number.
4 This section was first written in 2012, contained in the Ph. D. thesis of the author.
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and a formula

1 G(z)

h(n) = 7 ) o dx, (5)

where h(0) = 1, A(1) = 0, and C'is a contour around the original point. The original
integral formula in [36] (page 57) for p(n) is

p(”) = 5 o+l dez, (6)

where F(z) = [ (1 — ') " is the generation function of p(n), i.e., F(z) = 3 p(n)z".
: n=0

It is difficult to get a simple formula to count the solutions of Equation (1)) in general.
But for a fixed integer ¢, the number H,(n) of solutions is 0 (when ¢ > Li ) or

BIE= T S

$1=2 S2=8] Sq—1=8q—2
pllay)  [EEEme]
— 1_82..._Sq_2
— .« — S, _ + 1
312:2 szgsl Squqfﬁg ( 2 - )
= Py(n—q) (when ¢ < |5 ]).

Here H,(n) = P,(n — q) (when ¢ < LEJ) holds because

2
S14 So+ -+ s,=n (2< 5 <sy <o < sy)
= (s1—1)+(sa—1)+ -+ (s,—1)=n—q (2<s <s2< -+ < 59)
=ttt o+ te=n—q (1<t <ty < <ty, where t; =s; — 1, i=1, 2,

s q )7
hence, for a fixed ¢, there is a 1-1 correspondence between the solutions of Equation

for (n,q) and the solutions of Equation for (n,n —q). So

h(n) =) Hy(n) =Y Fy(n—aq). (7)
And there is a recursion for P,(n) in reference [36] (page 51)
Ry(n) = 3 Pi(n = a) )

where ¢t = min{g, n — ¢}, so there is no difficulty to obtain the values of P,(n) and
h(n) when n is small.



For the value of p(n) there is a recursion,

p(”):p(n_1)+p(n—2)—p(n—5)—p(n—7)+...+

11y (n B 3/&; k)

= i(—l)klp <n - 3k22+ k) + f:(_n“p (n - 3k22_ k) : (9)

where

! {\/24n+1—1J i VMHJFlJFlJ
1= |~ |>» 2= |\~ | >
6 6

and assume that p(0) = 1. (Refer [36], page 55)

We can obtain the same recursion for h(n),

h(n)=h(n—1)4+h(n—2)—h(n—5)—h(n—7)+---+

- i(_l)klh (n - 3’“2; k) + i(—l)’“lh (n — 3k22_ k) ;o (1)

k=1

where k; and ko are determined by Equation (10) and assume that h(0) = 1.
The proof of Equation ([11)) is easy to understand.
By Equation , we have

ih(n)az” ﬁ(1—xi) =1 (12)
(S (Il )

=2

Since F(z) = nfo p(n)a” = T] (1 — 2), where p(0) = 1. So ( nio p(n)x”) (ﬁ (1- xi)) -

=1

<.
Il
—

1, or

(ip(n)x“) (1—2) (ﬁ ( _g;i)) _1 (13)

=2

Compare Equation and Equation , we have

> h(n)a" = (ZW@)%”) (1—2)=> (p(n) —p(n—1))z",
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assume that h(k) = p(k) = 0 when k < 0. Hence, []

By Equation @D, we have

2
(_1)k71p (n —_ 1 — Bk :l: k; ......
9
i 3k2 1+ k
:Z( 1)k 1p(n—l— )
2
k=1
2 3k — k
> (=1 <n—1— 5 ) (15)
k=1

where ki and ks are described in Equation .

3k* — k 3k* — k

By assumption, p <n —-1- > =0 whenn—1-— < 0, and the term

2 2
D (n -1- Sk 2+ k) will vanish from the equation when n — 1 — Sk 2+ b < 0.
By Equation @D and Equation , we have
p(n) —p(n —1)
= (p(n—=1) = p(n—2)) + (p(n - 2) = p(n - 3)) -
(p(n —=5) = p(n—6)) = (p(n =7) —=p(n —8)) + -+
Zj: 2:i:
(1)1 (p <n_3k k) —p(n—l—gk k>) n
2 2
By Equation ,
h(n)=h(n—1)+h(n—2)—h(n—5)—h(n—=T7T)+---+
K+ k
(=1 'h (n _3 ) ......
o B2+ k) & 3k2 — k
= —1’f—1h(— >+ —1’“‘%(— )
’;( ) n 5 ;( ) n 5

(16)

5 A year after this formula is obtained, the author found an identity
p(n+1)—pn)=p2,n+1), n>1,

in reference [48], where p(2,n + 1) is the number of partitions (of n 4+ 1) with every part greater
than 1, which is different from the notation here. This equation is essentially the same as Equation

[T).



We can easily obtain the solutions of Equation by hand when n < 13. By
Equation (1)), we can obtain the number h(n) of solutions of Equation (1)) with-
out technical difficulties with the help of some Computer Algebra System (CAS)

softwares such as “maple”, “maxima”, “axiom” or some other softwares likewise (be
aware of that 0 is not a valid index value in some software such like maple).

The value of h(n) when n < 250 are shown on Table [1] (on page[J)) and Table 3] (on
page [10). Some value of Hy(n) are shown on Table 2] (on page [9).

Obviously, h(n) < p(n) holds by definition (when n > 1). As p(n) grows much more
slowly than exponential functions, i.e., for any r > 1, p(n) < r™ will hold when n
is large enough, which means we can not estimate p(n) and h(n) by an exponential
function. As p(n) grows faster than any power of n, which means we can not estimate
p(n) by a polynomial function. (refer [36], page 53) So, h(n) can not be estimated by
a polynomial function, either; otherwise, if h(n) can be estimated by a polynomial

of order m, by Equation (14)), p(n) = > h(n) +p(2) (n > 2) can be estimated by a
k=2

polynomial of order m + 1. Contradiction.

3 The Estimation of h(n)

The recursion formula Equation for h(n) is not convenient in practical for a lot
of people who do not want to write programs.

The figure of the data (n, In(h(n))) (n =60+20k, k=1, 2, ---, 397) are shown on
Figure [I] on page [14] The shape is the same as that of the data (n, In (p(n))) and
(n, In (Ry(n) —p(n))) in reference [34], at least we can not find the difference by our
eyes. Here the data points are displayed by small hollow circles, and the circles are
very crowded that we may believe that the circles themselves be a very thick curve
if we notice only the right-hand part. In this figure, the data points in the lower left
part are sparse (compared with the points in the right upper part), and we may find
some hollow circles easily. If there is a curve passes through these hollow circles, we
will notice it (as shown on Figure (3| on page . But later in Figure |2, the circles
distribute uniformly on a curve, it will be difficult to distinguish the circles and a
curve passes through the centers of the them.

The author has not found a practical estimation formula with good accuracy of the
number h(n) before. [

6 In 2015, the author find that in [47] (or some related pages in The On-Line Encyclopedia
of Integer Sequences, OEIS for short) the values of h(n) when 1 < n < 50, together with some
programs to calculate h(n) written by MAPLE or MATHEMATICA, and some “FORMULA 7s of
h(n), but these formulae are not convenient in practical use for engineers who are not willing to
write a program, either.



1 0 21| 165 || 41 | 7245 61 | 155038 81 | 2207851
2 1 22| 210 || 42| 8591 62 | 178651 82 | 2501928
3 1 23 | 253 || 43 | 10087 || 63 | 205343 83 | 2832214
4 2 24 | 320 | 44 | 11914 || 64 | 236131 84 | 3205191
5 2 25 | 383 || 45| 13959 | 65 | 270928 85 | 3623697
6 4 26 | 478 || 46 | 16424 | 66 | 310962 86 | 4095605
7 4 27 | 574 || 47 | 19196 || 67 | 356169 87 | 4624711
8 7 28 | 708 || 48 | 22519 || 68 | 408046 88 | 5220436
9 8 29 | 847 || 49 | 26252 || 69 | 466610 89 | 5887816
10| 12 30 | 1039 || 50 | 30701 || 70 | 533623 90 | 6638248
11 14 31 (1238 || 51 | 35717 || 71 | 609237 91 | 7478186
12 ] 21 32 | 1507 || 52 | 41646 || 72 | 695578 92 | 8421448
13| 24 33 | 1794 || 53 | 48342 || 73 | 792906 93 | 9476370
14| 34 34 | 2167 || 54 | 56224 || 74 | 903811 94 | 10659543
15| 41 35 | 2573 || 55 | 65121 || 75 | 1028764 || 95 | 11981699
16 | 55 36 | 3094 || 56 | 75547 || 76 | 1170827 || 96 | 13462885
17| 66 37 13660 || 57 | 87331 || 77 | 1330772 || 97 | 15116626
18 | 88 38 | 4378 || 58 | 101066 || 78 | 1512301 || 98 | 16967206
19 | 105 || 39 | 5170 || 59 | 116600 || 79 | 1716486 || 99 | 19031739
20 | 137 || 40 | 6153 || 60 | 134647 || 80 | 1947826 || 100 | 21339417
Table 1: The value of h(n) when 1 < n < 100

| n | h(n) || Hi(n) | Hy(n) | Hs(n) | Hy(n) | Hs(n) | Hg(n) | Hr(n) |

4 2 1 1

5 2 1 1

6 4 1 2 1

7 4 1 2 1

8 7 1 3 2 1

9 8 1 3 3 1

10 12 1 4 4 2 1

11 14 1 4 5) 3 1

12 21 1 5 7 5 2 1

13 24 1 5 8 6 3 1

14 34 1 6 10 9 5 2 1
15 41 1 6 12 11 7 3 1

Table 2: The number of solutions of Equation for different ¢




[ n ] A [ n] b)) [ n] hrw) [|n] Ao |
101 | 23911834 || 116 | 124763797 || 131 | 593224104 | 146 2608194590
102 | 26784253 || 117 | 138801828 || 132 | 656291385 | 147 2871619379
103 | 29983571 || 118 | 154364067 || 133 | 725798623 | 148 3160747519
104 | 33552415 || 119 | 171594522 || 134 | 802411183 | 149 3477935703
105 | 37524344 | 120 | 190680895 || 135 | 886795381 | 150 3825880113
106 | 41950627 | 121 | 211798491 || 136 | 979745604 | 160 9775430911
107 | 46873053 || 122 | 235172861 || 137 | 1082063336 | 170 | 24329692015
108 | 52353455 || 123 | 261017329 || 138 | 1194696815 | 180 | 59110637816
109 | 58443396 | 124 | 289602259 || 139 | 1318608064 | 190 | 140453804468
110 | 65217506 | 125 | 321186852 || 140 | 1454928240 | 200 | 326926597263
111 | 72739457 || 126 | 356095340 || 141 | 1604811073 || 210 | 746521272980
112 | 81098953 | 127 | 394641603 || 142 | 1769604112 | 220 | 1674422848222
113 | 90374472 || 128 | 437214305 || 143 | 1950689437 || 230 | 3693304861665
114 | 100674037 || 129 | 484193270 || 144 | 2149671688 | 240 | 8019313019148
115 | 112093786 || 130 | 536043530 || 145 | 2368203564 || 250 | 17156634544056

Table 3: The value of h(n) when 101 < n < 250

Since we have several accurate estimation formula of p(n) (refer [34]), such as

n exp <\/§7r\/ﬁ) . 1 > 80
n) = 510 n =z
b 43 (n+ asy/n + ez + by) 2
and
exp (\/gﬂ\/ﬁ> 1
Riy(n) = +=], 1< n<100,
443 (n+Ch(n)) 2

where ay = 0.4432884566, by = 0.1325096085, co = 0.274078 and

() 0.4527092482 x v/n + 4.35278 — 0.05498719946, n = 3,5,7,---
n)=
? 0.4412187317 x v/n — 2.01699 + 0.2102618735, n =4,6,8---

By Equation ([14)), we can obtain h(n) by

Rig(n) = Ryp(n — 1),

ha () 2 < n < 80;
n =
' Rjyy(n) — Rjpy(n — 1),

n > &0.

(18)

and the error of this formula will not exceed twice of the error of Rj,(n) or Rj,(n).
Of course, this formula will not be simple enough, but the accuracy is very good.
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3.1 Asymptotic Formula

As h(n) = p(n) — p(n — 1), by Hardy-Ramanujan’s asymptotic formula

1 2
p(n) ~ m exp <\/;7T\/ﬁ>

(vefer [19], [14], [39], [40], [55], [4], [34]), we assume that, when n > 1, h(n) ~

ﬁ exp <\/g7r\/ﬁ> — m exp <\/g7r\/m> So,

h(n) ~ 4\1/§ exp <\/§7T\/n - 1‘) (eXP <7T\/; (\/: —Vn— 1)) - i 1))

exp( T/2/3 )
5 Vn++n—1
:4%/38"1’(\/;“”_1) " _(nil)

o <7r 2/3)
. 2\/n
b ﬁe’(p (v3mvi) ( n - (nll))

e

_ e (f3ry) () )

- ﬁ“p (\/g”ﬁ) r:@ N (n11)>

(e" =1+ x, when z < 1. Whenn>>1,i<<1.)

Von

u — 14+ L
- 4—\1/§exp <\/§W\/ﬁ> ( \/én(n — 1)\/6_n)

11



™ ™

— —12\/%(” .y exp (@W\/ﬁ) ~ VT exp <\/g7r\/ﬁ> )
So,

0 2
h(n) ~ 12—\/2_ngexp (\/%ﬂ'\/ﬁ) . (19)

In coincidence, the author find an asymptotic formula

P, y(n)~T (9) Ab/a=19=(3/2)=(b/20) 3 (b/20) o~ (1/2)+(6/20) =552 <7T _”> (20)
) a )

n [24]. When a = 1, b = 2, we will have

T 2
Pl’z(n)w]_Q\/ﬁ exp (ﬂ' §n) s (21)

which coincides with the asymptotic formula obtained here.

The formula will also be called the Ingham-Meinardus asymptotic formula in
this thesis, since Daniel mentioned in [24] that the more general asymptotic for-
mula was first given by A. E. Ingham in [21I] and the proof was refined by G.
Meinardus later in another two papers written in German.

Later in this thesis exp <\/g7r\/ﬁ) will be denoted by I;(n) for short.

T
12v/2n3

3.2 Estimation of h(n) Method A: Fit the Denominator

It is not satisfying to estimate h(n) by I4(n) when n is small. The relative error of
I,(n) to h(n) is shown on Table 4] (on page [13)). The round approximation

I'(n) = ng(n) " %J

will not change the accuracy distinctly, as shown on Table [5| (on page .

So it is necessary to modify the asymptotic formula in order to obtain better ac-
curacy. In reference [34], we found that the accuracy of the estimation formula to
modify the exponent parts was not as good as that to modify the denominator part.

[

T If we fit h(n) by I, = HWW exp (\/gm/n + Cl(n)), or fit
n

3 — 2
( (ln (%Sh("))) —n) (n=60+20k, k=1, 2, ---, 397) by a function Cy(n), the

" ore
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n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 16 | 50.30% | 40 | 32.10% | 220 | 13.10% || 520 8.39%
2 1146.24% || 17 | 56.82% | 50 | 28.60% || 240 | 12.50% || 540 8.23%
3 1202.89% || 18 | 46.69% | 60 | 25.90% | 260 | 12.00% | 560 8.08%
4| 95.59% | 19| 52.75% | 70 | 23.90% | 280 | 11.50% | 580 7.93%
5 | 156.43% || 20 | 44.94% | 80 | 22.30% | 300 | 11.10% || 600 7.79%
6 | 68.62% | 21 | 48.48% | 90 | 20.90% | 320 | 10.80% | 640 7.54%
7 1121.38% || 22 | 43.47% | 100 | 19.80% || 340 | 10.40% || 680 7.31%
8 | 65.43% | 23| 46.00% || 110 | 18.80% | 360 | 10.10% | 720 7.10%
9 | 88.38% | 24 | 41.09% | 120 | 18.00% | 380 | 9.86% || 760 6.91%
10| 62.58% | 25| 43.68% || 130 | 17.20% | 400 | 9.60% | 800 6.73%
11 79.47% | 26 | 39.93% || 140 | 16.60% || 420 | 9.36% || 840 6.56%
121 53.29% | 27| 41.27% || 150 | 16.00% || 440 | 9.14% || 880 6.41%
13| 70.98% | 28 | 38.50% | 160 | 15.40% | 460 | 8.93% | 920 6.27%
14| 53.12% | 29 | 39.70% | 180 | 14.50% | 480 | 8.74% | 960 6.13%
15| 60.35% | 30 | 37.00% || 200 | 13.70% || 500 | &8.56% || 1000 | 6.01%
Table 4: The relative error of I,(n) to h(n) when n < 1000.

H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 16 | 50.91% | 40 | 32.10% || 220 | 13.08% || 520 8.39%
2 100% || 17 | 57.58% || 50 | 28.55% | 240 | 12.50% | 540 8.23%
3 200% || 18 | 46.59% | 60 | 25.92% | 260 | 11.99% | 560 8.08%
4 100% || 19 | 52.38% || 70 | 23.89% || 280 | 11.54% | 580 7.93%
5 150% | 20 | 45.26% || 80 | 22.25% || 300 | 11.13% || 600 7.79%
6 75% | 21 | 48.48% | 90 | 20.91% | 320 | 10.77% || 640 7.54%
7 125% || 22 | 43.33% || 100 | 19.77% | 340 | 10.44% | 680 7.31%
8 | 71.43% | 23| 45.85% || 110 | 18.80% | 360 | 10.13% || 720 7.10%
9 | 87.50% | 24 | 40.94% || 120 | 17.96% || 380 | 9.86% || 760 6.91%
10| 66.67% | 25 | 43.60% || 130 | 17.22% | 400 | 9.60% | 800 6.73%
11 78.57% | 26 | 39.96% || 140 | 16.56% || 420 | 9.36% | 840 6.56%
121 52.38% | 27 | 41.29% || 150 | 15.97% || 440 | 9.14% | 880 6.41%
13| 70.83% | 28 | 38.56% | 160 | 15.44% | 460 | 8.93% | 920 6.27%
14 | 52.94% | 29 | 39.67% | 180 | 14.52% | 480 | &.74% | 960 6.13%
151 60.98% | 30 | 37.05% || 200 | 13.74% || 500 | 8.56% | 1000 | 6.01%

1
Table 5: The relative error of {[g(n) + §J to h(n) when n < 1000.
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Since h(n) ~ p <\/g7r\/ﬁ>, we first consider estimating h(n) by

7r
———ex
12v/2n3

o 7% exp (27r \/g \/ﬁ>
—————exp <\/§7T\/ﬁ>, (i.e., fit 5
124/2C5(n) 288h%(n)
C3(n) is a cubic function or a function like

by a function C3(n)), where

az® + bx*® + ca® + da'® + ex + f2¥° 4 g.

But the results are worse, as the relative errors are obviously much greater than the
relative error of I,(n) when n < 350.

T
Then we consider consider estimating h(n) by ——— ex <\/§7r n), or fit
8 hn) by o e S Wamvn

oo e

12v/2h(n

Cy(n) = agx™® + byx + cya™® + dy. (22)

(o)

12v/2h(n

fitting curve Cy(n) are shown on Figure [2] on page . Here the fitting curve is
displayed by a thick full curve, which lies in the middle of the area the circles
occupied. Since the circles are too crowded, the circles themselves look like a very
thick curve.

by a function

The result is very good. The figure of the data | n, and the

The values of the coefficients in the expression of Cy(n) are as follow,

as =1.000010809,
by =1.862505234,
¢y =1.169930087,
dy = — 0.7005460222.

The value of a4 is very close to 1, which means that this fitting function coincides
with the Ingham-Meinardus asymptotic formula very well.

result is
. a
Cl (n) = \/1%61 + bl;

where a; = 0.5145272581, by = —1.453631562, c;= —0.555555.

Here it is not valid to obtain the coefficients in Cy(n) by iteration method described in reference
[34].

The relative error of Iy, when n < 1000 is obviously greater than that of I,;; and I,» obtained
later in this section by modifying the denominator part ; when 4000 < n < 10000, the relative
error of Iy is about 1000 times of that of Igo.

Here the relative error of Iy, is not shown.
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H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 16 | -1.63% | 40 |-2.21E-05 | 220 | 7.23E-05 || 520 | 1.04E-06
2 | -7.23% | 17| 3.82% | 50 | 5.35E-04 | 240 | 5.74E-05 || 540 | 3.01E-07
31 29.97% | 18| -1.87% || 60 | 6.16E-04 | 260 | 4.59E-05 | 560 |-3.53E-07
4 | -8.44% | 19| 3.18% | 70 | 6.15E-04 || 280 | 3.68E-05 | 580 |-8.95E-07
51 27.94% | 20| -1.21% || 80 | 5.35E-04 | 300 | 2.97E-05 | 600 |-1.37E-06
6 |-11.61% | 21| 2.06% || 90 | 4.56E-04 | 320 | 2.40E-05 | 640 |-2.10E-06
71 20.76% | 22| -0.61% || 100 | 3.89E-04 | 340 | 1.93E-05 | 680 | -2.64E-06
8 | -6.74% | 23| 1.89% | 110 | 3.30E-04 | 360 | 1.55E-05 | 720 | -2.97E-06
9 9.21% | 24 | -0.85% | 120 | 2.80E-04 || 380 | 1.24E-05 | 760 |-3.20E-06
10 | -3.44% | 25| 1.63% | 130 | 2.40E-04 || 400 | 9.79E-06 | 800 |-3.36E-06
11 8.85% || 26 | -0.40% | 140 | 2.06E-04 | 420 | 7.63E-06 || 840 | -3.43E-06
12| -5.28% | 27| 1.14% || 150 | 1.78E-04 || 440 | 5.82E-06 | 880 |-3.51E-06
13 7.42% || 28 | -0.29% | 160 | 1.55E-04 || 460 | 4.32E-06 | 920 |-3.49E-06
14 -2.35% (29| 1.08% | 180 | 1.18E-04 || 480 | 3.04E-06 | 960 |-3.43E-06
15| 3.66% | 30| -0.32% || 200 | 9.20E-05 || 500 | 1.97E-06 | 1000 | -3.37E-06

Table 6: The relative error of Iy (n) to h(n) when n < 1000.

H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 16 | -1.82% | 40 0| 220 | 7.23E-05 || 520 | 1.06E-06
2 017 4.55% | 50 |5.21E-04 | 240 | 5.74E-05 | 540 | 2.95E-07
3 0 18] -2.27% || 60 | 6.16E-04 | 260 | 4.59E-05 | 560 | -3.55E-07
4 0119 2.86% | 70 |6.15E-04 | 280 | 3.68E-05 | 580 |-9.07E-07
5 50% || 20 | -1.46% | 80 | 5.35E-04 || 300 | 2.97E-05 || 600 |-1.38E-06
6 0(21] 1.82% | 90 | 4.56E-04 | 320 | 2.39E-05 || 640 |-2.10E-06
7 25% || 22 | -0.48% | 100 | 3.89E-04 || 340 | 1.93E-05 || 680 |-2.62E-06
8 0(23] 1.98% | 110 | 3.30E-04 | 360 | 1.55E-05 || 720 |-2.98E-06
9 12.5% | 24 | -0.94% || 120 | 2.80E-04 | 380 | 1.24E-05 || 760 |-3.22E-06
10 0(25| 1.57% | 130 | 2.40E-04 || 400 | 9.78E-06 || 800 |-3.37E-06
11| 7.14% | 26 | -0.42% | 140 | 2.06E-04 || 420 | 7.63E-06 | 840 |-3.45E-06
12| -4.76% | 27| 1.22% || 150 | 1.78E-04 | 440 | 5.83E-06 | 880 | -3.48E-06
13 ] 8.33% | 28 | -0.28% || 160 | 1.55E-04 || 460 | 4.32E-06 | 920 | -3.48E-06
141 -2.94% | 29| 1.06% || 180 | 1.18E-04 || 480 | 3.05E-06 | 960 | -3.44E-06
15| 4.88% | 30 | -0.29% | 200 | 9.20E-05 | 500 | 1.97E-06 || 1000 | -3.39E-06

1
Table 7: The relative error of {Igl(n) + §J to h(n) when n < 1000.
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So we have an estimation formula

s 2
h(n) ~ Iz (n) = mexp (\/;W\/ﬁ> : (23)

We may call it the Ingham-Meinardus revised estimation formula 1. The graph
of In (15 (n)) is shown on Figure 3] on page [18] together with the data points of
(n,In h(n)). This revised estimation formula is much more accurate than the asymp-
totic formula. The relative error is less than 1 x 107% when n > 2000 (as shown on
Figure 4] on page , and less than 3% when n > 30 (as shown on Table |§| on page

1
16). The relative error of the round approximation I, (n) = L] g1(n) + §J is shown
on Table [7] on page [16]

But Equation is not so satisfying when n < 30, especially when n < 15 as the
relative error is not negligible for some value of n.

T
As we already know that h(n) ~ ex (\/ET(' n), or
Y ()~ vz &P LV amvn

3/2 T 2 Texp < \/>\/_>
n3? ~ ————ex \/;r n), which means that when fittin
12v2h(n) 7 ( STV & T 12v2h(n)
by a function Cy(n) shown in Equation , the coefficient a4 should be exactly 1
T exp <7r \/g \/ﬁ>
hence we should fit by a function Cj(n) = x3/% + bsx + csx'/? + ds,

12v/2h(n)

ey

or fi — n®? by a function

12v/2h(n
Cs(n) = bsz + csz/? + ds. (24)

roo(ey/i)
The figure of the data | n,
12v/2h(n)

(together with the figure of the fitting function Cs(n) generated by the least
square method).

The values of the coefficients in Equation are as follow

is shown on Figure |5/ on page

bs =1.864260743,
c5 =1.084436400,
ds =0.4754177757.

So we have another estimation formula for h(n),

T 2
h(n) ~ g2(n> - 12\/§ (n3/2 + 05(71)) exp (\/;ﬂ-\/ﬁ> : (25)
17
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We may call it the Ingham-Meinardus revised estimation formula 2. The graph of

In (Ig2(n)) is nearly the same as that of In (I (n)) shown on Figure 2 on page [14]

The second revised estimation formula is much more accurate than the first one.

The relative error is less than 2 x 1072 when n > 3000 (as shown on Figure |§| on
1

page , about =00 of the relative error of Iy (n). When n < 10, the relative error

is also distinctly less than that of I (n) (as shown on Table |§ on page 20). The
1
relative error of the round approximation Ij,(n) = | Igp(n) + 5 is shown on Table

9 (on page [20).

It should be mentioned that in Figure [5] on page 21} the graph of the data points lie
in a line, so we might be willing to fit this line by a first order equation. The result
is

Ci(n) = 1.873818457 x n + 27.08318017.

If we use this fitting function instead of Cj(n) generated above, the relative error to
fit h(n) will be about 10000 times more, that is about 20 times more than that of

ren(ei)_

12v/2h(n

1

¢1(n). So we do not use linear function to fit the data | n,

before.
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‘ n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 16 | -2.49% | 40 -0.21% | 220 | 2.15E-06 | 520 | 1.78E-07
2 |-18.69% | 17| 2.99% || 50 |-9.06E-04 | 240 | 1.76E-06 | 540 | 1.83E-07
3 19.75% | 18 | -2.59% | 60 |-4.33E-04 || 260 | 1.46E-06 | 560 | 1.59E-07
4 1-13.56% | 19| 2.48% || 70 |-1.80E-04 | 280 | 1.20E-06 | 580 | 1.51E-07
51 22.51% | 20| -1.83% || 80 | -8.70E-05 | 300 | 9.94E-07 | 600 | 1.32E-07
6 | -14.58% | 21| 1.46% | 90 |-4.13E-05 || 320 | 8.51E-07 | 640 | 1.03E-07
7 17.43% | 22| -1.15% || 100 | -1.68E-05 || 340 | 7.18E-07 | 680 | 5.80E-08
8 | -889% | 23| 1.37% || 110 | -5.98E-06 | 360 | 6.14E-07 | 720 | 6.80E-08
9 7.06% || 24 | -1.32% | 120 | -7.10E-07 || 380 | 5.23E-07 | 760 | 6.70E-08
10| -5.09% | 25| 1.18% || 130 | 2.07E-06 || 400 | 4.61E-07 | 800 | 5.10E-08
11 7.23% || 26 | -0.82% | 140 | 3.17E-06 || 420 | 3.90E-07 | 840 | 5.40E-08
12| -6.53% | 27| 0.74% || 150 | 3.54E-06 || 440 | 3.34E-07 | 880 | -4.30E-09
13| 6.16% | 28 | -0.66% || 160 | 3.59E-06 || 460 | 2.96E-07 | 920 | 7.00E-09
14| -3.38% (29| 0.72% | 180 | 3.16E-06 || 480 | 2.50E-07 | 960 | 2.80E-08
15| 2.67% | 30| -0.66% || 200 | 2.64E-06 || 500 | 2.22E-07 | 1000 | 3.30E-08

Table 8: The relative error of Iy3(n) to h(n) when n < 1000.

H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 16 | -1.82% | 40 -0.21% | 220 | 2.15E-06 | 520 | 2.00E-07
2 0 17| 3.03% || 50 |-9.12E-04 || 240 | 1.75E-06 | 540 | 1.77E-07
3 018 -2.27% | 60 |-4.31E-04 || 260 | 1.44E-06 || 560 | 1.57E-07
4 019| 2.86% || 70 |-1.80E-04 || 280 | 1.19E-06 | 580 | 1.39E-07
5 020 -2.19% || 80 |-8.68E-05 || 300 | 9.96E-07 | 600 | 1.24E-07
6 -25% | 21| 1.21% || 90 | -4.13E-05 | 320 | 8.38E-07 | 640 | 9.81E-08
7 25% || 22| -0.95% | 100 | -1.69E-05 | 340 | 7.10E-07 | 680 | 7.91E-08
8 |-14.29% | 23| 1.19% || 110 | -6.00E-06 || 360 | 6.05E-07 | 720 | 6.28E-08
9 12.5% | 24 | -1.25% || 120 | -7.08E-07 | 380 | 5.19E-07 | 760 | 5.04E-08
10| -8.33% | 25| 1.31% || 130 | 2.08E-06 || 400 | 4.48E-07 | 800 |4.07E-08
11 7.14% | 26 | -0.84% | 140 | 3.17E-06 | 420 | 3.88E-07 || 840 | 3.22E-08
12| -4.76% | 27| 0.70% | 150 | 3.54E-06 || 440 | 3.37E-07 | 880 | 2.59E-08
13| 4.17% | 28| -0.71% || 160 | 3.57TE-06 || 460 | 2.95E-07 | 920 | 2.01E-08
14| -2.94% (29| 0.71% || 180 | 3.16E-06 || 480 | 2.58E-07 | 960 | 1.52E-08
151 2.44% | 30| -0.67% | 200 | 2.63E-06 || 500 | 2.27E-07 | 1000 | 1.26E-08

1
Table 9: The relative error of {Igg(n) + §J to h(n) when n < 1000.
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3.3 Estimation of h(n) Method B: Fit I,(n) — h(n)

We wander whether we can fit I,(n) — h(n) by a function r(n), then estimate h(n)
by I;(n) — r(n) which may be believed more accurate than I,»(n) at the price of
being more complicated.

By the same tricks used at the beginning of this subsection, we will have

I,(n) — Iy(n —t) ~ QZLL\/;”L? exp <\/§ﬁ\/ﬁ> . (t<n)

So we may fit I,(n)—h(n) by exp (\/gﬂ'\/ﬁ) where Cg(n) is a quadratic

function or a function like

azr® + bx'® + cx + dz®® + e.

72 exp <\/g7r\/ﬁ>

243 (I(n) — h(n))

by a function Cg(n). But the result

7% exp <\/g7r\/ﬁ>

243 (Iy(n) — h(n))

That means, we can fit

is useless. Although Cg(n) will fit the data

2

very well, but the

T
relative error of I,(n) — ————ex (\/EW n) to h(n) is much greater than
)~ e e (4f3mv) o ) g
that of Iy (n) or Iy(n), and the relative error differs very little with that of I,(n)
2
when n is small. Besides, the formula I,(n) — ———— ex <\/§7r n) are much
g( ) 24\/§Cﬁ(n) p 3 \/_

more complicated than I, (n) and Iy (n).

2 exp (\/gﬂ'\/ﬁ)
2032 (Ly(n) — ()

the form = +bor ¢ + —5 + ¢, the result is useless either. If C7(n) is in the form
n non

b d
% +0b, it will be barely satisfactory. If C7(n) is in the form % bop oy — te
no- n%® " n n

nls

a b c

or ——= + —+ — = + ¢, the result will be much better than the previous forms, but
no- n nb

the accuracy (when estimating h(n)) is not as good as that of Iy1(n) and I (n).

Then we consider fitting by a function C7(n). If C7(n) is in
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H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
16 0| 40 |-8.13E-04 || 220 | -1.74E-06 | 520 | 3.10E-07
2 100% || 17| 4.55% | 50 |-3.26E-04 | 240 | -1.51E-06 | 540 | 3.29E-07
3 100% || 18 | -1.14% || 60 | -1.49E-04 | 260 | -1.25E-06 | 560 | 3.42E-07
4 50% || 19| 3.81% | 70 | -2.81E-05 | 280 | -9.91E-07 | 580 | 3.51E-07
5 50% | 20| -0.73% | 80 |-4.62E-06 | 300 | -7.56E-07 | 600 | 3.56E-07
6
7
8

—_

0)21] 2.42% | 90 | 3.46E-06 | 320 | -5.49E-07 | 640 | 3.57E-07
50% || 22| -0.48% || 100 | 6.70E-06 | 340 | -3.72E-07 | 680 | 3.49E-07
0123 1.98% | 110 | 5.27E-06 || 360 | -2.23E-07 || 720 | 3.36E-07
9 | 125% | 24| -0.63% | 120 | 3.37E-06 || 380 | -9.87E-08 | 760 | 3.19E-07

10 0]25] 1.83% | 130 | 1.93E-06 | 400 | 3.54E-09 | 800 | 3.00E-07
11} 14.29% | 26 | -0.21% | 140 | 5.77E-07 || 420 | 8.70E-08 | 840 | 2.80E-07
12 027] 1.22% | 150 | -4.01E-07 | 440 | 1.55E-07 | 880 | 2.59E-07
13| 8.33% | 28| -0.28% | 160 | -1.04E-06 || 460 | 2.09E-07 | 920 | 2.39E-07
14 0129 1.06% || 180 |-1.72E-06 || 480 | 2.51E-07 || 960 | 2.19E-07

15| 4.88% (30| -0.29% | 200 | -1.86E-06 || 500 | 2.85E-07 | 1000 | 1.99E-07

Table 10: The relative error of | Fr,(n) 4+ 3| to h(n) when n < 1000.

H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 16 | -1.82% | 40 -0.16% | 220 | -1.21E-06 | 520 |-1.11E-06
2 0117 3.03% || 50 |-6.19E-04 || 240 | -1.77E-06 | 540 |-1.01E-06
3 0 18] -2.27% | 60 |-2.60E-04 || 260 | -2.08E-06 || 560 | -9.24E-07
4 019| 2.86% || 70 |-7.50E-05 || 280 | -2.21E-06 || 580 |-8.41E-07
5) 50% || 20 | -1.46% || 80 | -1.85E-05 || 300 | -2.24E-06 | 600 |-7.64E-07
6 0121 1.82% | 90 | 3.62E-06 || 320 | -2.20E-06 | 640 |-6.25E-07
7 25% || 22 | -0.95% || 100 | 1.30E-05 || 340 | -2.12E-06 | 680 |-5.05E-07
8 0(23| 1.58% || 110 | 1.37E-05 || 360 | -2.02E-06 || 720 | -4.00E-07

9 | 125% | 24| -1.25% || 120 | 1.21E-05 || 380 | -1.90E-06 | 760 |-3.10E-07
10 0)25] 1.31% | 130 | 1.01E-05 | 400 | -1.78E-06 | 800 |-2.31E-07
11| 7.14% | 26 | -0.63% | 140 | 7.74E-06 || 420 | -1.66E-06 | 840 |-1.63E-07
12| -4.76% | 27| 0.87% | 150 | 5.68E-06 || 440 | -1.54E-06 | 880 |-1.04E-07
13| 833% | 28| -0.56% | 160 | 3.97E-06 || 460 | -1.42E-06 | 920 |-5.24E-08
14| -2.94% | 29| 0.83% | 180 | 1.40E-06 || 480 | -1.31E-06 | 960 |-7.83E-09
15| 2.44% | 30 | -0.58% | 200 | -2.22E-07 | 500 | -1.21E-06 | 1000 | 3.08E-08

Table 11: The relative error of | Fry(n) + 1| to h(n) when n < 1000.

The result of C7(n) is

0.8782296151 0.2567016063 3.580442785 21.28305831
Cra(n) = + - + +0.6879945549

105 n nl-5 n?
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or

0.8861039149  0.05719053203 n 0.9843423289

Cry(n) = =52 +0.6879343652.

n nlo

The relative error of

2 2
Fra(n) = In) = 5 e (\@m) (26)

and

2 2
F?b(n) = Ig(n) B 24\/§H2C7b(n) exp (\/;W\/ﬁ> (27)

to h(n) when 1000 < n < 10000 are shown on Figure [7] and Figure [§ (page [25),
respectively. In this interval (1000, 10000), F7,(n) is obviously more accurate than
Fry(n). When n < 1000 the relative error of | Fr,(n) + 1] and | Fry(n) + 5| are shown
on Table [10| (page and Table [11] ( page . In this case, Fry(n) is better than
Fr4(n). But neither of them is as good as Iy (n) or I (n), although they are more
complicated than I, (n) and Iy (n).
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3.4 Estimate h(n) When n < 100

All the estimation function for h(n) found now are with very good accuracy when
n is greater than 1000, but they are not so accurate when n < 50, especially when
n < 25. Although I3, (n) and [3,(n) are better than others, the relative error are
still greater than 1% when n < 40.

1 ned JZ_ 7‘/3
150 ks R(n)
160
140
120 COCQ
100 OOCO
COCO
CX)CO
20 OOOO
(e8]
o
(99
60 OOOO
o.fo
0.
40 [ele]
o) OO (o]
o o
20 Ie) o OO o
O
D~ ©

Figure 9: The graph of the data (n, Cg(n))

olefi)
When n < 40, it is too difficult to fit n3/?
12v/2h(n

function with high accuracy, as shown on Figure (on page . The figure of the

ren(ei)

12+/2h(n

shown on Figure @ It seems that we can fit them by a simple piecewise function
with 2 pieces, as the even points (where n is even) lie roughly on a smooth curve, so
do the odd points. If we try to fit them respectively, we will have the fitting function
below:

by a simple smooth

points | n, (n=3,4,---,100) is not so complicated (as

Colr) = 1.942141112 X 2 — 0.4796781366 X /T + 8.291226268, n = 3,5,7,--- ,99;
ST ) 1.803056782 x o + 2.356539877 x /T — 6.043824511, n =4,6,8--- 1

(28)
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Hence we can calculate h(n) ( 3 < n < 100) by

s 2
h(n) ~ Iy(n) = 1272 (0372 1 Ca(n) exp (\/%W\/ﬁ) , 3<n<100. (29)

Consider that h(n) is an integer, we can take the round approximation of Equation

29,

! = T gﬂ' n 1 n
Io(n) = 1273 (0372 1 Cu(n) exp (\/; \/_> + 2J , 3<n<100. (30)

Lg(1) — (1)

g0

h(1)
and Ig(2) differs from h(2) a lot. Besides, the value of h(1) and h(2) are clear by
definition, so there is no need to use a complicated formula to estimate them.

The relative error of Iyo(n) (or Ii(n)) to h(n) are shown on Table (12| (or Table
on page 28, Compared them with Table[9on page we will find that when n > 80,

I35(n) is more accurate than I (n); when n < 80, I (n) is better.

Here n begins from 3, not 1 or 2, because is meaningless since h(1) = 0,

4 Summary

In this paper, we have presented a recursion formula and several practical estimation
formulae with high accuracy to calculated h(n).

If we want to obtain the accurate value of h(n), we can use the recursion formula
and write a program based on it, while sometimes (not always) we need to
know the estimation value in the program for technique reason especially when we
use a general programming language.

If we want to obtain the approximation value of h(n) with high accuracy, we can
use the formulae , , , etc.

When 2 < n < 80, we can use I (n) (Equation (30)) , with a relative error less than
0.11% (while 32 < n < 80) or mainly 0 with very few exceptions (while 2 < n < 31);
when n > 80, we can use I},(n) (Equation (25)).

When n > 100, formulae I}, (n) (Equation (23)), Frq(n) (Equation (26)) and Fry(n)
(Equation ([27))) are also very accurate although they are not as good as Equations

(25).
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H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 - 21 -0.16% | 41 | -5.72E-04 | 61 | -1.04E-04 | 81 | 7.19E-05
- | 22 0.12% | 42 | 3.75E-04 | 62 | 1.43E-04 | 82 |-5.18E-05
-14.85% || 23 0.05% | 43 | -4.68E-04 | 63 | -1.04E-04 | 83 | 8.12E-05
12.72% || 24 -0.28% | 44 | 491E-04 | 64 | 1.18E-04 | 84 |-6.50E-05

1.99% | 25 | 8.37TE-04 | 45 | -6.29E-04 || 65 | -5.63E-05 | 85 | 8.69E-05
-1.83% | 26 | 4.75E-04 | 46 | 5.45E-04 | 66 | 7.10E-05 | 86 |-6.90E-05
4.76% || 27 -0.17% | 47 | -4.45E-04 | 67 | -2.40E-05 | 87 | 8.65E-05
-0.64% | 28 | 6.69E-04 | 48 | 3.17E-04 | 68 | 5.74E-05 | 88 |-7.40E-05
9 | -0.92% || 29 | -3.78E-04 | 49 | -3.42E-04 || 69 | -1.67E-05 | 89 | 9.01E-05
10| 0.69% || 30 | -4.43E-04 | 50 | 3.79E-04 | 70 | 4.05E-05| 90 |-8.07E-05
11 1.44% || 31 | -1.98E-04 | 51 | -3.98E-04 | 71 | 1.30E-05 | 91 | 9.09E-05
12| -2.46% | 32| 4.21E-04 || 52 | 3.55E-04 | 72 | 6.81E-06 | 92 |-8.24E-05
13 1.86% || 33 -0.12% | 53 | -2.81E-04 || 73 | 3.41E-05| 93 | 8.80E-05
14| -0.24% || 34| 9.27E-04 | 54 | 2.47E-04 | 74 | -1.74E-06 | 94 |-8.37E-05
15| -0.54% || 35 | -7.86E-04 | 55 | -2.21E-04 || 75 | 3.84E-05| 95 | 8.70E-05
16 | -0.04% || 36 | 1.82E-04 | 56 | 2.44E-04 | 76 | -1.56E-05 | 96 |-8.65E-05
17| 0.46% | 37 | -4.80E-04 || 57 | -2.25E-04 | 77 | 5.70E-05 | 97 | 8.44E-05
18| -0.67% | 38 | 6.53E-04 || 58 | 2.29E-04 | 78 | -3.58E-05 | 98 | -8.56E-05
19| 047% | 39 |-9.11E-04 || 59 | -1.55E-04 | 79 | 6.90E-05 || 99 | 7.92E-05
20| -0.28% | 40 | 6.34E-04 || 60 | 1.44E-04 || 80 | -4.41E-05 || 100 | -8.48E-05

Q| | O U = W DN

Table 12: The relative error of Io(n) to h(n) when n < 100.

H n ‘Rel—Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H n ‘ Rel-Err H
1 -1 21 0| 41]|-5.52E-04 | 61 | -1.03E-04 || 81 | 7.20E-05
2 -1 22 042| 3.49E-04 | 62| 1.46E-04 | 82 |-5.20E-05
3 01 23 0] 43 | -4.96E-04 | 63 | -1.02E-04 | 83 | 8.12E-05
4 0|24 -0.31% | 44 | 5.04E-04 | 64 | 1.19E-04 | 84 |-6.49E-05
5 01 25 0| 45 | -6.45E-04 | 65 | -5.54E-05 | 85 | 8.69E-05
6 0] 26 0 46| 5.48E-04 | 66 | 7.07TE-05 | 86 | -6.89E-05
7 01 27 -0.17% | 47 | -4.69E-04 | 67 | -2.53E-05 | 87 | 8.65E-05
8 0] 28 0 48| 3.11E-04 | 68 | 5.64E-05 | 88 |-7.39E-05
9 01 29 0149 |-3.43E-04 | 69 | -1.71E-05 | 89 | 9.02E-05
10 01 30 0 50| 3.91E-04 | 70 | 4.12E-05 | 90 | -8.07E-05
11 0|31 0 51|-3.92E-04 | 71| 1.31E-05| 91 | 9.09E-05
12| -4.76% | 32 0.07% | 52 | 3.60E-04 | 72| 7.19E-06 | 92 |-8.24E-05
13 01 33 -0.11% | 53 | -2.90E-04 | 73 | 3.41E-05 | 93 | 8.80E-05
14 01 34| 9.23E-04 | 54 | 2.49E-04 | 74 | -2.21E-06 | 94 | -8.38E-05
15 01 35 |-7.77TE-04 | 55 | -2.15E-04 | 75| 3.89E-05 | 95 | 8.70E-05
16 01 36| 3.23E-04 | 56 | 2.38E-04 | 76 | -1.54E-05 | 96 | -8.65E-05
17 01 37 |-5.46E-04 | 57 | -2.29E-04 | 77 | 5.71E-05 | 97 | 8.44E-05
18 | -1.14% | 38 | 6.85E-04 | 58 | 2.28E-04 | 78 | -3.57E-05 | 98 | -8.56E-05
19 0139 [-9.67E-04 | 59 | -1.54E-04 | 79 | 6.87E-05| 99 | 7.92E-05
20 01 40| 6.50E-04 | 60 | 1.41E-04 | 80 | -4.42E-05 | 100 | -8.48E-05

Table 13: The relative error of I y(n) to h(n) when n < 100.
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