
ar
X

iv
:1

61
2.

08
69

7v
2 

 [
m

at
h.

C
O

] 
 8

 J
an

 2
01

7

LATTICE PATHS INSIDE A TABLE, I

D.YAQUBI, , M. FARROKHI D. G., AND H. GHASEMIAN ZOERAM

Abstract. A lattice path L in Z
d of length k with steps in a given

set S ⊆ Z
d, or S-path for short, is a sequence ν1, ν2, . . . , νk ∈ Z

d

such that the steps νi − νi−1 lie in S for all i = 2, . . . , k. Let
Tm,n be the m × n table in the first area of xy-axis and put S =
{(1, 0), (1, 1), (1,−1)}. Accordingly, let Im(n) denote the number
of S-paths starting from the first column and ending at the last
column of T . We will study the numbers Im(n) and give explicit
formulas for special values of m and n. As a result, we prove a
conjecture of Alexander R. Povolotsky. We conclude the paper
with some applications to Fibonacci and Pell-Lucas numbers and
posing an open problem.

1. Introduction

A lattice path L in Z
d is a path in the d-dimensional integer lattice Zd,

which uses only points of the lattice; that is a sequence ν1, ν2, . . . , νk,
where νi ∈ Z

d for all i (see [9, 10]). The vectors ν2−ν1, ν3−ν2, . . . , νk−
νk−1 are called the steps of L. Recall that a Dyck path is a lattice
path in Z

2 starting from (0, 0) and ending at a point (2n, 0) (for some
n > 0) consisting of up-steps (1, 1) and down-steps (1,−1), which never
passes below the x-axis. It is well known that Dyck paths of length
2n are counted by the nth-Catalan number Cn = 1

n+1

(

2n
n

)

. The Catalan
numbers arise in many combinatorial problems, see Stanley [12] for an
extensive study of these numbers.
Let Tm,n be the m × n table in the first quadrant composed of mn

unit squares, whose (x, y)-blank is located in the xth-column from the
left and the yth-row from the bottom hand side of Tm,n. For a set
S ⊆ Z

d of steps, let L(i, j; s, t : S) denote the set of all lattice paths
in Tm,n starting form (i, j)-blank and ending at (s, t)-blank with steps
in S, where 1 6 i, s 6 m and 1 6 j, t 6 n. The number of such
lattice paths is denoted by l(i, j; s, t : S). For example, assuming S :=
{(1, 0), (1, 1), (1,−1)}, the set of all lattice paths in the table T starting
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from (1, 1) and ending at (n, 1), where allowed to move only to the right
(up, down or straight) is shown by L(1, 1;n, 1 : S) and the number of
such lattice paths, namely l(1, 1;n, 1 : S), is the nth-Motzkin number.
Lattice paths starting from the first column and ending at the n

column of Tm,n with steps in S, S being as above, are called perfect
lattice paths, and the number of all perfect lattice paths is denoted by
Im(n). Indeed,

Im(n) =
m
∑

i,j=1

l(1, i;n, j;S).

Figure 1 shows the number of all perfect lattice paths for m = 2 and
n = 3. Clearly, l(1, i;n, j : S) = l(1, i′;n, j′ : S) when i + i′ = m + 1
and j + j′ = m+ 1.

Figure 1. All perfect lattice paths in T2,3.

We intend to evaluate Im(n) for special cases of (m,n). In section 2,
we obtain Im(n) when m > n. Also, we prove a conjecture of Alexander
R. Povolotsky posed in [8]. In section 3, we shall compute Im(n) for
small values of m, namely m = 1, 2, 3, 4. Finally, we present some
results for I5(n) and use Fibonacci and Pell-Lucas numbers to prove
some relations concerning perfect lattice paths.

2. In(n) vs Alexander R. Povolotsky’s conjecture

Let T = Tm,n be the m× n table. For positive integers 1 6 i, t 6 m
and 1 6 s 6 n, the number of all perfect lattice paths from (1, i) to
(s, t) in T is denoted by Di(s, t), that is, Di(s, t) = l(1, i; s, t : S). Also,
we put

Dm,n(s, t) =

m
∑

i=1

Di(s, t).

In case we are working in a single table, say T as above, we may simple
use D(s, t) for Dm,n(s, t). Also, we put Dn(s, t) := Dn,n(s, t). Clearly,
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D(s, t) is the number of all perfect lattice paths from first column to the
(s, t)-blank of T . The values of D(s, n) is computed in [4] in the cases
where m = n and T is a square table. By symmetry, D(s, t) = D(s, t′)
when t + t′ = m + 1. Table 1 illustrates the values of D(6, t), for all
1 6 t 6 6, where the number in (s, t)-blank of T determines the number
D(s, t).

D(6, t)
1 2 5 13 35 96
1 3 8 22 61 170
1 3 9 26 74 209
1 3 9 26 74 209
1 3 8 22 61 170
1 2 5 13 35 96

Table 1. Values of D(6, t)

Theorem 2.1. For any positive integer n we have

In(n) = 3In−1(n− 1) + 3n−1 − 2Dn−1(n− 1, n− 1).

Proof. Let T := Tn,n and T ′ := Tn−1,n−1 with T
′ in the left-bottom side

of T . Clearly, the number of perfect lattice paths of T which never
meet the nth row of T is

In−1(n) = 3In−1(n− 1)− 2Dn−1(n− 1, n− 1).

To obtain the number of all perfect lattice paths we must count those
who meet the nth-row of T , that is equal to 3n−1. Thus In(n) −
In−1(n) = 3n−1, from which the result follows. �

Michael Somos [4] gives the following recurrence relation for D(n, n).

Theorem 2.2. Inside the square n× n table we have

nD(n, n) = 2nD(n− 1, n− 1) + 3(n− 2)D(n− 2, n− 2).

Utilizing Theorems 2.1 and 2.2 for Dn(n, n), we can prove a conjec-
ture of Alexander R. Povolotsky posed in [8] as follows:

Conjecture 2.3. The following identity holds for the numbers In(n).

(n+ 3)In+4(n+ 4) = 27nIn(n) + 27In+1(n + 1)

− 9(2n+ 5)In+2(n+ 2) + (8n+ 2)In+3(n + 3).
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Proof. Put

A = (n + 3)In+4(n+ 4),

B = (8n+ 21)In+3(n + 3),

C = 9(2n+ 5)In+2(n + 2),

D = 27In+1(n + 1),

E = 27nIn(n).

Using Theorem 2.1, we can write

A =(3n+ 9)In+3(n + 3) + (n+ 3)3n+3 − (2n+ 6)D(n+ 3, n+ 3)

=(8n+ 21)In+3(n+ 3)− (5n+ 12)In+3(n+ 3) + (n+ 3)3n+3

− (2n+ 6)D(n+ 3, n+ 3)

=B + (n + 3)3n+3 − (5n+ 12)In+3(n+ 3)

− (2n+ 6)D(n+ 3, n+ 3).
(2.1)

Utilizing Theorem 2.1 once more for In+3(n+3) and In+2(n+2) yields

A =B + (n + 3)3n+3 − (5n+ 12)3n+2

− (18n+ 45)In+2(n+ 2)− (2n+ 6)D(n+ 3, n+ 3)

+ (10n+ 24)D(n+ 2, n+ 2) + (3n+ 9)In+2(n + 2) + (n+ 3)3n+3

=B − C − (5n+ 12)3n+2 − (2n+ 6)D(n+ 3, n+ 3)

+ (10n+ 24)D(n+ 2, n+ 2) + 9nIn+1(n+ 1)

+ 27In+1(n+ 1) + (3n+ 9)3n+1 − (6n+ 18)D(n+ 1, n+ 1).

It can be easily shown that

A =B − C +D

+ (n + 3)3n+3 − (2n+ 6)D(n+ 3, n+ 3)− (5n+ 12)3n+2

+ (10n+ 24)D(n+ 2, n+ 2) + 9nIn+1(n+ 1)

+ (3n+ 9)3n+1 − (6n+ 18)D(n+ 1, n+ 1). (2.2)

Replacing 9nIn+1(n+ 1) by 27nIn(n) + n3n+2 − 18nIn(n) in 2.2 gives

A = B − C +D + E

− (2n+ 6)D(n+ 3, n+ 3) + (10n+ 24)D(n+ 2, n+ 2)

− 18nD(n, n)− (6n+ 18)D(n+ 1, n+ 1).
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Since the coefficient of D(n+3, n+3) is 2(n+3), it follow from Theorem
2.2 that

A =B − C +D + E − (4n+ 12)D(n+ 2, n+ 2)− 18nD(n, n)

+ (10n+ 24)D(n+ 2, n+ 2)− (6n+ 6)D(n+ 1, n+ 1)

− (6n+ 18)D(n+ 1, n+ 1)

=B − C +D + E − (4n+ 12)D(n+ 2, n+ 2)

− (6n+ 6)D(n+ 1, n+ 1) + 18nD(n, n)− 18nD(n, n)

− (12n+ 24)D(n+ 1, n+ 1) + (6n+ 18)D(n+ 1, n+ 1)

=B − C +D + E,

as required. �

Theorem 2.4. Inside the m× n table we have

Im(n) = m3n−1 − 2

n−1
∑

s=1

3n−s−1D(s, 1). (2.3)

Proof. Let T := Tm,n. The number of all lattice paths from the first
column to the last column is simply n3n−1 if they are allowed to get
out of T . Now we count all lattice paths that go out of T in some
step. First observe that the number of lattice paths that leave T from
the bottom row equals to those leave T from the the top row in the
first times. Suppose a lattice path goes out of T from the bottom in
column s for the first times. The number of all partial lattice paths
from the first column to the (s− 1, 1)-blank is simply D(s− 1, 1), and
every such path continues in 3n−s ways until it reaches the last column
of T . Hence we have 3n−sD(s− 1, 1) paths leave the table T from the
bottom in column s for any s = 2, . . . , n. Hence, the number of perfect
lattice paths is simply

Im(n) = m3n−1 − 2

n
∑

i=2

3n−sD(s− 1, 1)

= m3n−1 − 2

n−1
∑

s=1

3n−s−1D(s, 1),

as required. �

Example 2.5. Let T be the square 6×6 table. In Table 1, every blank
represents the number of all perfect lattice paths from first column to
that blank. Summing up the last column yields

I6(6) = 96 + 170 + 209 + 209 + 170 + 96 = 950.
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Now, utilizing Theorem 2.4, we calculate I6(6) in another way, as fol-
lows:

I6(6) =6 · 36−1 − 2
(

36−1−1D(1, 1) + 36−2−1D(2, 1) + 36−3−1D(3, 1)

+36−4−1D(4, 1) + 36−5−1D(5, 1)
)

=1458− 2
(

34 · 1 + 33 · 2 + 32 · 5 + 31 · 13 + 30 · 35
)

= 950.

Remind that the number of lattice paths L(1, 1;n + 1, 1 : S) in Z
2

that never slides below the x-axis, is the nth-Motzkin number (n > 0),
denoted by Mn. Motzkin numbers begin with 1, 1, 2, 4, 9, 21, . . . (see
[2]) and can be expressed in terms of binomial coefficients and Catalan
numbers via

Mn =

⌊n

2
⌋

∑

k=0

(

n

2k

)

Ck.

Trinomial triangles are defined by the same steps (1, 1), (1,−1) and
(1, 0) (in our notation) with no restriction by starting from a fixed
blank. The number of ways to reach a blank is simply the sum of
three numbers in the adjacent previous column. The kth-entry of the
nth column is denoted by

(

n

k

)

2
, where columns start by 0. The mid-

dle entries of the Trinomial triangle, namely 1, 1, 3, 7, 19, . . . (see [6])
are studied by Euler. Analogously, Motzkin triangle are defined by
recurrence sequence

T (n, k) = T (n− 1, k − 2) + T (n− 1, k − 1) + T (n− 1, k),

for all 1 6 k 6 n− 1 and satisfy

T (n, n) = T (n− 1, n− 2) + T (n− 1, n− 1)

for all n > 1 (see [5]).
Table 2 illustrates initial parts of the above triangles with Motzkin

triangle in the left and trinomial triangle in the right. For a positive
integer 1 6 s 6 n, each entry of the column Ds(s, 1) is the sum of all
entries in the sth-row in the rotated Motzkin triangle, that is, Ds(s, 1) =
∑s

i=1 T (s, i). For example,

D(4, 1) = T (4, 1) + T (4, 2) + T (4, 3) + T (4, 4) = 4 + 5 + 3 + 1 = 13.

The entries in the first column of rotated Motzkin triangle are indeed
the Motzkin numbers.

Lemma 2.6. Inside the square n× n table we have

D(s, 1) = 3D(s− 1, 1)−Ms−2,

for all 1 6 s 6 n.
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Ds(s, 1)
1 1
2 1 1
5 2 2 1
13 4 5 3 1
35 9 12 9 4 1
96 21 30 25 14 5 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Table 2. Motzkin triangle (left) and trinomial triangle
(right) rotates 90◦ clockwise

Proof. Let T := Tn,n. By the definition, D(s, 1) is the number of all
lattice paths from the first column to (s, 1)-blank. This number equals
the number of lattice paths from (s, 1)-blank to the first column with
reverse steps that lie inside the table T , which is equal to 3s−1 minus
those paths that leave T at some point. Consider all those lattice paths
staring from (s, 1)-blank with reverse steps that leaves T at (i, 0) for
the first time, where 1 6 i 6 s− 1. Clearly, the number of such paths
are 3i−1Ms−i−1. Thus

D(s, 1) = 3s−1 −
s−1
∑

i=1

3i−1Ms−i−1,

from which it follows that D(s, 1) = 3D(s− 1, 1)−Ms−2, as required.
�

Example 2.7. Consider the Table 2. Using Lemma 2.6 we can calcu-
late D(6, 1) as

D(6, 1) = 3D(5, 1)−M4 = 3 · 35− 9 = 96.

Corollary 2.8. Inside the n× n table we have

In(n) = (n + 2)3n−2 + 2

n−3
∑

k=0

(n− k − 2)3n−k−3Mk.

Proof. The result follows from Theorem 2.4 and Lemma 2.6. �

The next result shows that the number of perfect lattice paths in
Tm,n is independent of the number m or rows provided that m is big
enough.
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Theorem 2.9. Inside the m× n table (m > n) we have

Im+1(n)− Im(n) =
n−1
∑

i=0

D(i, 1)D(n− i, 1).

Proof. Consider the table T := Tm,n. We construct the table T ′ by
adding a new row m+ 1 at the top of T . Now to count the number of
all perfect lattice paths in T ′, it is sufficient to consider perfect lattice
paths that reach to the new row m + 1 for the first time. Assume a
perfect lattice path reach to row m + 1 at column i for the first time.
Then its initial part from column 1 to column i − 1 is a lattice path
from the first column of T to (i− 1, m)-blank. Also, its terminal part
from column i to column n is a lattice path from (i,m+1)-blank of T ′

to its last column, which is in one to one correspondence with a lattice
path from (i,m)-blank of T to its last column as m > n. Hence, the
number of such paths is simply D(i − 1, m)D(n − i + 1, m), which is
equal to D(i− 1, 1)D(n− i+ 1, 1) by symmetry. Therefore

Im+1(n)− Im(n) =
n

∑

i=1

D(i− 1, 1)D(n− i+ 1, 1)

and the result follows. �

Corollary 2.10. For m > n we have

Im(n) = (n+ 2)3n−2 + (m− n)

n−1
∑

i=0

D(i, 1)D(n− i, 1)

+ 2

n−3
∑

k=0

(n− k − 2)3n−k−3Mk.

Proof. Let m = n+ k, where k is a positive integer. Then

Im(n)− In(n) = (Im(n)− Im−1(n)) + · · ·+ (In+1(m)− In(m))

= (m− n)

n−1
∑

i=0

D(i, 1)D(n− i, 1).

Now the result follows from Corollary 2.8. �

Theorem 2.11. Inside the m× n table with m > 2n− 2 we have

(i)
∑n−1

i=0 D(i, n)D(n− i, n) = 3n−1;

(ii)
∑n−1

i=1 D(i, n)D(n− i, n) =
∑n−2

i=0 3n−i−1Mi;

(iii) Im(n) = (3m− 2n+ 2)3n−2 + 2
∑n−3

k=0(n− k − 2)3n−k−3Mk.
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Proof. (i) Let T := Tm,n with m = 2n− 2 and T ′ be the table obtained
by adding a new row in the middle of T . It is sufficient to obtain
Im+1(n)−Im(n). Clearly, the number of perfect lattice paths reaching
to any (i, n)-blank of T or T ′ is the same for all i = 1, . . . , n − 1. On
the other hand, the number of all perfect lattice paths of T ′ reaching at
(n, n)-blank is 3n−1 since we may begin the paths form the last (n, n)-
blank and apply reverse steps with no limitation until to reach the first
column. Thus

3n−1 = Im+1(n)− Im(n) =
n−1
∑

i=0

D(i, 1)D(n− i, 1).

(ii) Put D(0, 1) = 1. Then

D(n, 1) = 3n−1 −
n−1
∑

i=1

D(i, 1)D(n− i, 1).

On the other hand, by Lemma 2.6, we have

D(n, 1) = 3n−1 −
n−2
∑

i=0

3n−i−2Mi,

from which the result follows.
(iii) It follows from (i) and Corollary 2.10. �

Lemma 2.12. Inside the n× n table we have

D(n, k + 2)−D(n, k) =

n−1
∑

i=1

(D(i, k + 3)−D(i, k − 1))

for all 1 6 k 6 n.

Proof. For n = 2, the result is trivially true. For any ℓ < n we have

D(ℓ+ 1, k + 2) = D(ℓ, k + 3) +D(ℓ, k + 2) +D(ℓ, k + 1)

D(ℓ+ 1, k) = D(ℓ, k + 1) +D(ℓ, k) +D(ℓ, k − 1),

which imply that

D(ℓ+ 1, k + 2)−D(ℓ+ 1, k)

= D(ℓ, k + 3)−D(ℓ, k − 1) + (D(ℓ, k + 2)−D(ℓ, k)) .

Thus

D(n, k + 2)−D(n, k) =

n−1
∑

i=1

(D(i, k + 3)−D(i, k − 1))

as D(1, k + 2)−D(1, k) = 0. This completed the proof. �
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3. Concluding some remarks and one conjecture

In this section, we shall compute Im(n) for m = 1, 2, 3, 4 and arbi-
trary positive integers n. Some values of the I3(n) and I4(n) are given
in [3] and [7], respectively.

Lemma 3.1. I1(n) = 1 and I2(n) = 2n for all n > 1.

Let x and y be arbitrary real numbers. By the binomial theorem,
we have the following identity,

xn + yn = (x+ y)n

+

⌊n

2
⌋

∑

k=1

(−1)k
[(

n− k

k

)

+

(

n− k − 1

k − 1

)]

(xy)k(x+ y)n−2k,

where n > 1. This identity also can rewritten as

xn + yn

=

⌊n

2
⌋

∑

k=0

(−1)k
[(

n− k

k

)

+

(

n− k − 1

k − 1

)]

(xy)k(x+ y)n−2k, (3.1)

where
(

r

−1

)

= 0. Pell-Lucas sequence [11] is defined as Q1 = 1, Q2 = 3,
and Qn = 2Qn−1 + Qn−2 for all n > 3. It can also be defined by the
so called Binet formula as Qn = (αn + βn)/2, where α = 1 +

√
2 and

β = 1−
√
2 are solutions of the quadratic equation x2 = 2x+ 1.

Lemma 3.2. For all n > 1 we have I3(n) = Qn+1.

Proof. The number of lattice paths to entries in columns n− 2, n− 1
and n of T3,n looks like

n− 2 n− 1 n

x x+ y 3x+ 2y
y 2x+ y 4x+ 3y
x x+ y 3x+ 2y

which imply that I3(n− 2) = 2x+ y, I3(n− 1) = 4x+3y and I3(n) =
10x+ 7y. Thus the following linear recurrence exists for I3.

I3(n) = 2I3(n− 1) + I3(n− 2). (3.2)

Since I3(1) = Q2 = 3 and I3(2) = Q3 = 7, it follows that I3(n) = Qn+1

for all n > 1, as required. �
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Corollary 3.3. Let n be a positive integer. Then

I3(n) =

⌊n+1

2
⌋

∑

k=0

[(

n− k + 1

k

)

+

(

n− k

k − 1

)]

2n−2k.

Proof. It is sufficient to put x = α and y = β in 3.1. �

The Fibonacci sequence [1] starts with the integers 0 and 1, and
every other term is the sum of the two preceding ones, that is, F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for all n > 2. This recursion gives the

Binet’s formula Fn = ϕn−ψn

ϕ−ψ , where ϕ = 1+
√
5

2
and ψ = 1−

√
5

2
.

Lemma 3.4. For all n > 1 we have I4(n) = 2F2n+1.

Proof. The number of lattice paths to entries in columns n− 2, n− 1
and n of T4,n looks like

n− 2 n− 1 n

x x+ y 2x+ 3y
y x+ 2y 3x+ 5y
y x+ 2y 3x+ 5y
x x+ y 2x+ 3y

which imply that I4(n − 2) = 2x + 2y, I4(n − 1) = 4x + 6y and
I4(n) = 10x+16y. Hence we get the following linear recurrence for I4.

I4(n) = 3I4(n− 1)− I4(n− 2). (3.3)

On the other hand,

F2n+1 = F2n + F2n−1

= 2F2n−1 + F2n−2

= 3F2n−1 −F2n−3

= 3F2(n−1)+1 −F2(n−2)+1.

Now since I4(1) = 2F3 and I4(2) = 2F5, it follows that I4(n) = 2F2n+1

for all n > 1. The proof is complete. �

Corollary 3.5. For all n > 1 we have

I4(n) =
n

∑

k=0

(−1)k
[

2n+ 1

k

(

2n− k

k − 1

)]

5n−k. (3.4)

Proof. It is sufficient to put x = ϕ and y = ψ in 3.1. �
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Consider the m × n table T with 2n > m. For positive integers
ℓ1, ℓ2, . . . , ℓ⌈m

2
⌉, we can write Im(n) as

Im(n) = ℓ1Im(n− 1) + ℓ2Im(n− 2) + · · ·+ ℓ⌈m

2
⌉Im(n− ⌈m

2
⌉).

Also, for positive integers 0 6 s 6 ⌈m
2
⌉ and k1,s, k2,s, . . . , k⌈m

2
⌉,s, we put

Im(n− s) = k1,sx1 + k2,sx2 + · · ·+ k⌈m

2
⌉,sx⌈m

2
⌉,

where xt = D(n − ⌈m
2
⌉, t) =

∑m

i=1Di(n − ⌈m
2
⌉, t) is the number of all

perfect lattice paths from the first column to the (n− ⌈m
2
⌉, t)-blank of

T , for each 1 6 i 6 m and 1 6 t 6 ⌈m
2
⌉. Utilizing the above notations,

we can can write

Im(n) =k1,0x1 + k2,0x2 + · · ·+ k⌈m

2
⌉,0x⌈m

2
⌉

=ℓ1In−1 + ℓ2In−2 + · · ·+ ℓ⌈m

2
⌉In−⌈m

2
⌉

=ℓ1(k1,1x1 + k2,1x2 + · · ·+ k⌈m

2
⌉,1x⌈m

2
⌉)

+ ℓ2(k1,2x1 + k2,2x2 + · · ·+ k⌈m

2
⌉,2x⌈m

2
⌉)

...

+ ℓ⌈m

2
⌉(k1,⌈m

2
⌉x1 + k2,⌈m

2
⌋x2 + · · ·+ k⌈m

2
⌉,⌈m

2
⌉x⌈m

2
⌉). (3.5)

From 3.5, we obtain the following system of linear equations


















k1,1ℓ1 + · · · + k1,⌈m

2
⌉ℓ⌈m

2
⌉ = k1,0,

k2,1ℓ1 + · · · + k2,⌈m

2
⌉ℓ⌈m

2
⌉ = k2,0,

...
...

. . .
...

...
...

...
k⌈m

2
⌉,1ℓ1 + · · · + k⌈m

2
⌉,⌈m

2
⌉ℓ⌈m

2
⌉ = k⌈m

2
⌉,0.

(3.6)

Now consider the following coefficient matrix A of the system 3.6

A =











k1,1 k1,2 · · · k1,⌈m

2
⌉

k2,1 k2,2 · · · k2,⌈m

2
⌉

...
...

. . .
...

k⌈m

2
⌉,1 k⌈m

2
⌉,2 · · · k⌈m

2
⌉,⌈m

2
⌉











,

which we call the coefficient matrix of the table T and denote it by
C(T ). We concluded this section by the following conjecture.

Conjecture 3.6. For a given m × n table T (2n > m), we have
det(C(T )) = −2⌊

m

2
⌋.

Example 3.7. Let T be a 5×n table. The columns n−3, n−2, n−1,
and n of T are given by
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n− 3 n− 2 n− 1 n

x1 x1 + x2 2x1 + 2x2 + x3 4x1 + 6x2 + 3x3
x2 x1 + x2 + x3 2x1 + 4x2 + 2x3 6x1 + 10x2 + 6x3
x3 2x2 + x3 2x1 + 4x2 + 3x3 6x1 + 12x2 + 7x3
x2 x1 + x2 + x3 2x1 + 4x2 + 2x3 6x1 + 10x2 + 6x3
x1 x1 + x2 2x1 + 2x2 + x3 4x1 + 6x2 + 3x3

from which it follows that

I5(n− 3) = 2x1 + 2x2 + x3,

I5(n− 2) = 4x1 + 6x2 + 3x3,

I5(n− 1) = 10x1 + 16x2 + 9x3,

I5(n) = 28x1 + 44x2 + 25x3

Clearly,

I5(n) = ℓ1I5(n− 1) + ℓ2I5(n− 2) + ℓ3I5(n− 3)

for some ℓ1, ℓ2, ℓ3, and that the coefficient matrix of the table T is

C(T ) =





10 4 2
16 6 2
9 3 1



. It is obvious that det(C(T )) = −2⌊
5

2
⌋ = −4.

4. Some result about perfect lattice paths by using of

Fibonacci and Pell-Lucas numbers

In this section, we obtain some results about perfect lattice paths
in the 5 × n table . Also, we get some relations and properties about
Fibonacci and Pell-Lucas sequences by the aid of perfect lattice paths.

Proposition 4.1. Inside the 5× n table we have

D(s+ 2, 1) = I5(s) and D(s+ 2, 3) = 2I5(s)− 1

for all 1 6 s 6 n.

Proof. From the table in Example 3.7, it follows simply that I5(s) =
D(s+ 2, 1) for all s > 1. Also, from the table, it follows that

2D(s+ 1, 1)−D(s+ 1, 3) = 2D(s, 1)−D(s, 3)

for all s > 1, that is, 2D(s, 1)− D(s, 3) is constant. Since 2D(1, 1)−
D(1, 3) = 1, we get 2D(s+2, 1)−D(s+2, 3) = 1, from which the result
follows. �

Proposition 4.2. Inside the 5× n table we have

D(s, 1)×D(s+ t, 3)−D(s, 3)×D(s+ t, 1) =

s+t−1
∑

i=s

D(i, 2)
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for all 1 6 s, t 6 n.

Proof. From Proposition 4.1, we know that D(s, 3) = 2D(s, 1)− 1 for
all 1 6 s 6 n. Then

D(s, 1)D(s+ t, 3)−D(s, 3)D(s+ t, 1)

=D(s, 1)(2D(s+ t, 1)− 1)− (2D(s, 1)− 1)D(s+ t, 1)

=2D(s, 1)D(s+ t, 1)−D(s, 1)− 2D(s, 1)D(s+ t, 1) +D(s+ t, 1)

=D(s+ t, 1)−D(s, 1).

On the other hand,

D(s+ t, 1)−D(s, 1)

=D(s+ t− 1, 1) +D(s+ t− 1, 2)−D(s, 1)

=D(s+ t− 2, 1) +D(s+ t− 2, 2) +D(s+ t− 1, 2)−D(s, 1)

...

=

s+t−1
∑

i=s

D(i, 2) +D(s, 1)−D(s, 1)

=
s+t−1
∑

i=s

D(i, 2),

from which the result follows. �

Proposition 4.3. Inside the 4× n table we have

D(s, 1) = F2s−1 and D(s, 2) = F2s

for all s > 1. As a result,

D(s, 1)×D(s+ t, 2)−D(s, 2)×D(s+ t, 1) = D(s, 2).

for all s, t > 1.

Proof. Clearly D(1, 1) = D(1, 2) = F1 = F2 = 1. Now since

D(s, 1) = D(s− 1, 1) +D(s− 1, 2),

D(s, 2) = 2D(s− 1, 2) +D(s− 1, 1).

we may prove, by using induction that, D(s, 1) = F2s−1 and D(s, 2) =
F2s for all s > 1. The second claim follows from the fact that

F2s−1F2s+2t − F2sF2s+2t−1 = F2s.

The proof is complete. �
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Proposition 4.4. Inside the 4× n table we have

I4(2s+ 1) =
1

4
I4(s+ 1)2 +D(s, 2)2

for all 1 6 s 6 n.

Proof. Following Lemma 3.4 and Proposition 4.3, it is enough to show
that

2F4s+3 = F2
2s+3 + F2

2s.

First observe that the equation F2n−1 = F2
n + F2

n−1 yields F4s+1 =
F2

2s+1 + F2
2s+2 and F4s+5 = F2

2s+3 + F2
2s+2. Now, by combining these

two formulas, we obtain

F2
2s+3 + F2

2s = F4s+5 + F4s+1 − (F2
2s+1 + F2

2s+2)

= F4s+4 + F4s+3 + F4s+1 −F4s+3

= F4s+3 + F4s+2 + F4s+1

= 2F4s+3,

as required. �

Pell numbers Pn are defined recursively as P1 = 1, P2 = 2, and
Pn = 2Pn−1 + Pn−2 for all n > 3. The Binet’s formula corresponding
to Pn is Pn = αn−βn

α−β , where α = 1 +
√
2 and β = 1−

√
2.

Proposition 4.5. Inside the 3× n table we have

D(s, 1) = Ps and D(s, 2) = Qs

for all s > 1. As a result,

D(s, 1)×D(s+ t, 2)−D(s, 2)×D(s+ t, 1) = (−1)s+1D(t, 1).

for all s, t > 1.

Proof. From the table in Lemma 3.2, we observe that

D(s, 1) = 2D(s− 1, 1) +D(s− 2, 1),

D(s, 2) = 2D(s− 1, 2) +D(s− 2, 2)

for all s > 3. Now since D(1, 1) = P1 = 1, D(2, 1) = P2 = 2, D(1, 2) =
Q1 = 1, and D(2, 2) = Q2 = 3 one can show, by using induction, that
D(s, 1) = Ps and D(s, 2) = Qs for all s. To prove the second claim, we
use the following formula

PsQs+t −QsPs+t = (−1)s+1Pt
that can be proves simply using Binet’s formulas. �
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