LATTICE PATHS INSIDE A TABLE, I

D.YAQUBI, , M. FARROKHI D. G., AND H. GHASEMIAN ZOERAM

Abstract

A lattice path L in \mathbb{Z}^{d} of length k with steps in a given set $\mathbf{S} \subseteq \mathbb{Z}^{d}$, or \mathbf{S}-path for short, is a sequence $\nu_{1}, \nu_{2}, \ldots, \nu_{k} \in \mathbb{Z}^{d}$ such that the steps $\nu_{i}-\nu_{i-1}$ lie in \mathbf{S} for all $i=2, \ldots, k$. Let $T_{m, n}$ be the $m \times n$ table in the first area of $x y$-axis and put $\mathbf{S}=$ $\{(1,0),(1,1),(1,-1)\}$. Accordingly, let $\mathcal{I}_{m}(n)$ denote the number of \mathbf{S}-paths starting from the first column and ending at the last column of T. We will study the numbers $\mathcal{I}_{m}(n)$ and give explicit formulas for special values of m and n. As a result, we prove a conjecture of Alexander R. Povolotsky. We conclude the paper with some applications to Fibonacci and Pell-Lucas numbers and posing an open problem.

1. Introduction

A lattice path L in \mathbb{Z}^{d} is a path in the d-dimensional integer lattice \mathbb{Z}^{d}, which uses only points of the lattice; that is a sequence $\nu_{1}, \nu_{2}, \ldots, \nu_{k}$, where $\nu_{i} \in \mathbb{Z}^{d}$ for all i (see $[9,10]$). The vectors $\nu_{2}-\nu_{1}, \nu_{3}-\nu_{2}, \ldots, \nu_{k}-$ ν_{k-1} are called the steps of L. Recall that a Dyck path is a lattice path in \mathbb{Z}^{2} starting from $(0,0)$ and ending at a point $(2 n, 0)$ (for some $n \geqslant 0)$ consisting of up-steps $(1,1)$ and down-steps $(1,-1)$, which never passes below the x-axis. It is well known that Dyck paths of length $2 n$ are counted by the $n^{t h}$-Catalan number $\mathcal{C}_{n}=\frac{1}{n+1}\binom{2 n}{n}$. The Catalan numbers arise in many combinatorial problems, see Stanley [12] for an extensive study of these numbers.

Let $T_{m, n}$ be the $m \times n$ table in the first quadrant composed of $m n$ unit squares, whose (x, y)-blank is located in the $x^{t h}$-column from the left and the $y^{\text {th }}$-row from the bottom hand side of $T_{m, n}$. For a set $\mathbf{S} \subseteq \mathbb{Z}^{d}$ of steps, let $L(i, j ; s, t: \mathbf{S})$ denote the set of all lattice paths in $T_{m, n}$ starting form (i, j)-blank and ending at (s, t)-blank with steps in \mathbf{S}, where $1 \leqslant i, s \leqslant m$ and $1 \leqslant j, t \leqslant n$. The number of such lattice paths is denoted by $l(i, j ; s, t: \mathbf{S})$. For example, assuming $\mathbf{S}:=$ $\{(1,0),(1,1),(1,-1)\}$, the set of all lattice paths in the table T starting

[^0]from $(1,1)$ and ending at $(n, 1)$, where allowed to move only to the right (up, down or straight) is shown by $L(1,1 ; n, 1: \mathbf{S}$) and the number of such lattice paths, namely $l(1,1 ; n, 1: \mathbf{S})$, is the $n^{\text {th }}$-Motzkin number.

Lattice paths starting from the first column and ending at the n column of $T_{m, n}$ with steps in \mathbf{S}, \mathbf{S} being as above, are called perfect lattice paths, and the number of all perfect lattice paths is denoted by $\mathcal{I}_{m}(n)$. Indeed,

$$
\mathcal{I}_{m}(n)=\sum_{i, j=1}^{m} l(1, i ; n, j ; \mathbf{S}) .
$$

Figure 1 shows the number of all perfect lattice paths for $m=2$ and $n=3$. Clearly, $l(1, i ; n, j: \mathbf{S})=l\left(1, i^{\prime} ; n, j^{\prime}: \mathbf{S}\right)$ when $i+i^{\prime}=m+1$ and $j+j^{\prime}=m+1$.

$\bigcirc-$	\longrightarrow	\longrightarrow
\bigcirc	\longrightarrow	\longrightarrow

Figure 1. All perfect lattice paths in $T_{2,3}$.
We intend to evaluate $\mathcal{I}_{m}(n)$ for special cases of (m, n). In section 2, we obtain $\mathcal{I}_{m}(n)$ when $m \geqslant n$. Also, we prove a conjecture of Alexander R. Povolotsky posed in [8]. In section 3, we shall compute $\mathcal{I}_{m}(n)$ for small values of m, namely $m=1,2,3,4$. Finally, we present some results for $\mathcal{I}_{5}(n)$ and use Fibonacci and Pell-Lucas numbers to prove some relations concerning perfect lattice paths.

2. $\mathcal{I}_{n}(n)$ vs Alexander R. Povolotsky's conjecture

Let $T=T_{m, n}$ be the $m \times n$ table. For positive integers $1 \leqslant i, t \leqslant m$ and $1 \leqslant s \leqslant n$, the number of all perfect lattice paths from $(1, i)$ to (s, t) in T is denoted by $\mathcal{D}^{i}(s, t)$, that is, $\mathcal{D}^{i}(s, t)=l(1, i ; s, t: \mathbf{S})$. Also, we put

$$
\mathcal{D}_{m, n}(s, t)=\sum_{i=1}^{m} \mathcal{D}^{i}(s, t)
$$

In case we are working in a single table, say T as above, we may simple use $\mathcal{D}(s, t)$ for $\mathcal{D}_{m, n}(s, t)$. Also, we put $\mathcal{D}_{n}(s, t):=\mathcal{D}_{n, n}(s, t)$. Clearly,
$\mathcal{D}(s, t)$ is the number of all perfect lattice paths from first column to the (s, t)-blank of T. The values of $\mathcal{D}(s, n)$ is computed in [4] in the cases where $m=n$ and T is a square table. By symmetry, $\mathcal{D}(s, t)=\mathcal{D}\left(s, t^{\prime}\right)$ when $t+t^{\prime}=m+1$. Table 1 illustrates the values of $\mathcal{D}(6, t)$, for all $1 \leqslant t \leqslant 6$, where the number in (s, t)-blank of T determines the number $\mathcal{D}(s, t)$.

				$\mathcal{D}(6, t)$	
1	2	5	13	35	96
1	3	8	22	61	170
1	3	9	26	74	209
1	3	9	26	74	209
1	3	8	22	61	170
1	2	5	13	35	96

TABLE 1. Values of $\mathcal{D}(6, t)$

Theorem 2.1. For any positive integer n we have

$$
\mathcal{I}_{n}(n)=3 \mathcal{I}_{n-1}(n-1)+3^{n-1}-2 \mathcal{D}_{n-1}(n-1, n-1)
$$

Proof. Let $T:=T_{n, n}$ and $T^{\prime}:=T_{n-1, n-1}$ with T^{\prime} in the left-bottom side of T. Clearly, the number of perfect lattice paths of T which never meet the $n^{\text {th }}$ row of T is

$$
\mathcal{I}_{n-1}(n)=3 \mathcal{I}_{n-1}(n-1)-2 \mathcal{D}_{n-1}(n-1, n-1)
$$

To obtain the number of all perfect lattice paths we must count those who meet the $n^{\text {th }}$-row of T, that is equal to 3^{n-1}. Thus $\mathcal{I}_{n}(n)-$ $\mathcal{I}_{n-1}(n)=3^{n-1}$, from which the result follows.

Michael Somos [4] gives the following recurrence relation for $\mathcal{D}(n, n)$.
Theorem 2.2. Inside the square $n \times n$ table we have

$$
n \mathcal{D}(n, n)=2 n \mathcal{D}(n-1, n-1)+3(n-2) \mathcal{D}(n-2, n-2)
$$

Utilizing Theorems 2.1 and 2.2 for $\mathcal{D}_{n}(n, n)$, we can prove a conjecture of Alexander R. Povolotsky posed in [8] as follows:

Conjecture 2.3. The following identity holds for the numbers $\mathcal{I}_{n}(n)$.

$$
\begin{aligned}
(n+3) \mathcal{I}_{n+4}(n+4) & =27 n \mathcal{I}_{n}(n)+27 \mathcal{I}_{n+1}(n+1) \\
& -9(2 n+5) \mathcal{I}_{n+2}(n+2)+(8 n+2) \mathcal{I}_{n+3}(n+3)
\end{aligned}
$$

Proof. Put

$$
\begin{aligned}
& A=(n+3) \mathcal{I}_{n+4}(n+4), \\
& B=(8 n+21) \mathcal{I}_{n+3}(n+3), \\
& C=9(2 n+5) \mathcal{I}_{n+2}(n+2), \\
& D=27 \mathcal{I}_{n+1}(n+1), \\
& E=27 n \mathcal{I}_{n}(n) .
\end{aligned}
$$

Using Theorem 2.1, we can write

$$
\begin{align*}
A= & (3 n+9) \mathcal{I}_{n+3}(n+3)+(n+3) 3^{n+3}-(2 n+6) \mathcal{D}(n+3, n+3) \\
= & (8 n+21) \mathcal{I}_{n+3}(n+3)-(5 n+12) \mathcal{I}_{n+3}(n+3)+(n+3) 3^{n+3} \\
& -(2 n+6) \mathcal{D}(n+3, n+3) \\
= & B+(n+3) 3^{n+3}-(5 n+12) \mathcal{I}_{n+3}(n+3) \\
& -(2 n+6) \mathcal{D}(n+3, n+3) . \tag{2.1}
\end{align*}
$$

Utilizing Theorem 2.1 once more for $\mathcal{I}_{n+3}(n+3)$ and $\mathcal{I}_{n+2}(n+2)$ yields

$$
\begin{aligned}
A= & B+(n+3) 3^{n+3}-(5 n+12) 3^{n+2} \\
& -(18 n+45) \mathcal{I}_{n+2}(n+2)-(2 n+6) \mathcal{D}(n+3, n+3) \\
& +(10 n+24) \mathcal{D}(n+2, n+2)+(3 n+9) \mathcal{I}_{n+2}(n+2)+(n+3) 3^{n+3} \\
= & B-C-(5 n+12) 3^{n+2}-(2 n+6) \mathcal{D}(n+3, n+3) \\
& +(10 n+24) \mathcal{D}(n+2, n+2)+9 n \mathcal{I}_{n+1}(n+1) \\
& +27 \mathcal{I}_{n+1}(n+1)+(3 n+9) 3^{n+1}-(6 n+18) \mathcal{D}(n+1, n+1) .
\end{aligned}
$$

It can be easily shown that

$$
\begin{align*}
A= & B-C+D \\
& +(n+3) 3^{n+3}-(2 n+6) \mathcal{D}(n+3, n+3)-(5 n+12) 3^{n+2} \\
& +(10 n+24) \mathcal{D}(n+2, n+2)+9 n \mathcal{I}_{n+1}(n+1) \\
& +(3 n+9) 3^{n+1}-(6 n+18) \mathcal{D}(n+1, n+1) . \tag{2.2}
\end{align*}
$$

Replacing $9 n \mathcal{I}_{n+1}(n+1)$ by $27 n \mathcal{I}_{n}(n)+n 3^{n+2}-18 n \mathcal{I}_{n}(n)$ in 2.2 gives

$$
\begin{aligned}
& A=B-C+D+E \\
& -(2 n+6) \mathcal{D}(n+3, n+3)+(10 n+24) \mathcal{D}(n+2, n+2) \\
& -18 n \mathcal{D}(n, n)-(6 n+18) \mathcal{D}(n+1, n+1) \text {. }
\end{aligned}
$$

Since the coefficient of $\mathcal{D}(n+3, n+3)$ is $2(n+3)$, it follow from Theorem 2.2 that

$$
\begin{aligned}
A= & B-C+D+E-(4 n+12) \mathcal{D}(n+2, n+2)-18 n \mathcal{D}(n, n) \\
& +(10 n+24) \mathcal{D}(n+2, n+2)-(6 n+6) \mathcal{D}(n+1, n+1) \\
& -(6 n+18) \mathcal{D}(n+1, n+1) \\
= & B-C+D+E-(4 n+12) \mathcal{D}(n+2, n+2) \\
& -(6 n+6) \mathcal{D}(n+1, n+1)+18 n \mathcal{D}(n, n)-18 n \mathcal{D}(n, n) \\
& -(12 n+24) \mathcal{D}(n+1, n+1)+(6 n+18) \mathcal{D}(n+1, n+1) \\
= & B-C+D+E,
\end{aligned}
$$

as required.
Theorem 2.4. Inside the $m \times n$ table we have

$$
\begin{equation*}
\mathcal{I}_{m}(n)=m 3^{n-1}-2 \sum_{s=1}^{n-1} 3^{n-s-1} \mathcal{D}(s, 1) . \tag{2.3}
\end{equation*}
$$

Proof. Let $T:=T_{m, n}$. The number of all lattice paths from the first column to the last column is simply $n 3^{n-1}$ if they are allowed to get out of T. Now we count all lattice paths that go out of T in some step. First observe that the number of lattice paths that leave T from the bottom row equals to those leave T from the the top row in the first times. Suppose a lattice path goes out of T from the bottom in column s for the first times. The number of all partial lattice paths from the first column to the $(s-1,1)$-blank is simply $\mathcal{D}(s-1,1)$, and every such path continues in 3^{n-s} ways until it reaches the last column of T. Hence we have $3^{n-s} \mathcal{D}(s-1,1)$ paths leave the table T from the bottom in column s for any $s=2, \ldots, n$. Hence, the number of perfect lattice paths is simply

$$
\begin{aligned}
\mathcal{I}_{m}(n) & =m 3^{n-1}-2 \sum_{i=2}^{n} 3^{n-s} \mathcal{D}(s-1,1) \\
& =m 3^{n-1}-2 \sum_{s=1}^{n-1} 3^{n-s-1} \mathcal{D}(s, 1),
\end{aligned}
$$

as required.
Example 2.5. Let T be the square 6×6 table. In Table 1, every blank represents the number of all perfect lattice paths from first column to that blank. Summing up the last column yields

$$
\mathcal{I}_{6}(6)=96+170+209+209+170+96=950 .
$$

Now, utilizing Theorem 2.4, we calculate $\mathcal{I}_{6}(6)$ in another way, as follows:

$$
\begin{aligned}
\mathcal{I}_{6}(6)= & 6 \cdot 3^{6-1}-2\left(3^{6-1-1} \mathcal{D}(1,1)+3^{6-2-1} \mathcal{D}(2,1)+3^{6-3-1} \mathcal{D}(3,1)\right. \\
& \left.+3^{6-4-1} \mathcal{D}(4,1)+3^{6-5-1} \mathcal{D}(5,1)\right) \\
= & 1458-2\left(3^{4} \cdot 1+3^{3} \cdot 2+3^{2} \cdot 5+3^{1} \cdot 13+3^{0} \cdot 35\right)=950
\end{aligned}
$$

Remind that the number of lattice paths $L(1,1 ; n+1,1: \mathbf{S})$ in \mathbb{Z}^{2} that never slides below the x-axis, is the $n^{\text {th }}$-Motzkin number $(n \geqslant 0)$, denoted by \mathcal{M}_{n}. Motzkin numbers begin with $1,1,2,4,9,21, \ldots$ (see [2]) and can be expressed in terms of binomial coefficients and Catalan numbers via

$$
\mathcal{M}_{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k} \mathcal{C}_{k} .
$$

Trinomial triangles are defined by the same steps $(1,1),(1,-1)$ and $(1,0)$ (in our notation) with no restriction by starting from a fixed blank. The number of ways to reach a blank is simply the sum of three numbers in the adjacent previous column. The $k^{\text {th }}$-entry of the $n^{\text {th }}$ column is denoted by $\binom{n}{k}_{2}$, where columns start by 0 . The middle entries of the Trinomial triangle, namely $1,1,3,7,19, \ldots$ (see [6]) are studied by Euler. Analogously, Motzkin triangle are defined by recurrence sequence

$$
\mathcal{T}(n, k)=\mathcal{T}(n-1, k-2)+\mathcal{T}(n-1, k-1)+\mathcal{T}(n-1, k),
$$

for all $1 \leqslant k \leqslant n-1$ and satisfy

$$
\mathcal{T}(n, n)=\mathcal{T}(n-1, n-2)+\mathcal{T}(n-1, n-1)
$$

for all $n \geqslant 1$ (see [5]).
Table 2 illustrates initial parts of the above triangles with Motzkin triangle in the left and trinomial triangle in the right. For a positive integer $1 \leqslant s \leqslant n$, each entry of the column $\mathcal{D}_{s}(s, 1)$ is the sum of all entries in the $s^{\text {th }}$-row in the rotated Motzkin triangle, that is, $\mathcal{D}_{s}(s, 1)=$ $\sum_{i=1}^{s} \mathcal{T}(s, i)$. For example,

$$
\mathcal{D}(4,1)=\mathcal{T}(4,1)+\mathcal{T}(4,2)+\mathcal{T}(4,3)+\mathcal{T}(4,4)=4+5+3+1=13
$$

The entries in the first column of rotated Motzkin triangle are indeed the Motzkin numbers.

Lemma 2.6. Inside the square $n \times n$ table we have

$$
\mathcal{D}(s, 1)=3 \mathcal{D}(s-1,1)-\mathcal{M}_{s-2},
$$

for all $1 \leqslant s \leqslant n$.

Table 2. Motzkin triangle (left) and trinomial triangle (right) rotates 90° clockwise

Proof. Let $T:=T_{n, n}$. By the definition, $D(s, 1)$ is the number of all lattice paths from the first column to $(s, 1)$-blank. This number equals the number of lattice paths from $(s, 1)$-blank to the first column with reverse steps that lie inside the table T, which is equal to 3^{s-1} minus those paths that leave T at some point. Consider all those lattice paths staring from $(s, 1)$-blank with reverse steps that leaves T at $(i, 0)$ for the first time, where $1 \leqslant i \leqslant s-1$. Clearly, the number of such paths are $3^{i-1} \mathcal{M}_{s-i-1}$. Thus

$$
\mathcal{D}(s, 1)=3^{s-1}-\sum_{i=1}^{s-1} 3^{i-1} \mathcal{M}_{s-i-1}
$$

from which it follows that $\mathcal{D}(s, 1)=3 \mathcal{D}(s-1,1)-\mathcal{M}_{s-2}$, as required.

Example 2.7. Consider the Table 2. Using Lemma 2.6 we can calculate $\mathcal{D}(6,1)$ as

$$
\mathcal{D}(6,1)=3 \mathcal{D}(5,1)-\mathcal{M}_{4}=3 \cdot 35-9=96
$$

Corollary 2.8. Inside the $n \times n$ table we have

$$
\mathcal{I}_{n}(n)=(n+2) 3^{n-2}+2 \sum_{k=0}^{n-3}(n-k-2) 3^{n-k-3} \mathcal{M}_{k}
$$

Proof. The result follows from Theorem 2.4 and Lemma 2.6.
The next result shows that the number of perfect lattice paths in $T_{m, n}$ is independent of the number m or rows provided that m is big enough.

Theorem 2.9. Inside the $m \times n$ table $(m \geqslant n)$ we have

$$
\mathcal{I}_{m+1}(n)-\mathcal{I}_{m}(n)=\sum_{i=0}^{n-1} \mathcal{D}(i, 1) \mathcal{D}(n-i, 1)
$$

Proof. Consider the table $T:=T_{m, n}$. We construct the table T^{\prime} by adding a new row $m+1$ at the top of T. Now to count the number of all perfect lattice paths in T^{\prime}, it is sufficient to consider perfect lattice paths that reach to the new row $m+1$ for the first time. Assume a perfect lattice path reach to row $m+1$ at column i for the first time. Then its initial part from column 1 to column $i-1$ is a lattice path from the first column of T to $(i-1, m)$-blank. Also, its terminal part from column i to column n is a lattice path from $(i, m+1)$-blank of T^{\prime} to its last column, which is in one to one correspondence with a lattice path from (i, m)-blank of T to its last column as $m \geqslant n$. Hence, the number of such paths is simply $\mathcal{D}(i-1, m) \mathcal{D}(n-i+1, m)$, which is equal to $\mathcal{D}(i-1,1) \mathcal{D}(n-i+1,1)$ by symmetry. Therefore

$$
\mathcal{I}_{m+1}(n)-\mathcal{I}_{m}(n)=\sum_{i=1}^{n} \mathcal{D}(i-1,1) \mathcal{D}(n-i+1,1)
$$

and the result follows.
Corollary 2.10. For $m \geqslant n$ we have

$$
\begin{aligned}
\mathcal{I}_{m}(n)=(n+2) 3^{n-2}+(m-n) \sum_{i=0}^{n-1} \mathcal{D}(& i, 1) \mathcal{D}(n-i, 1) \\
& +2 \sum_{k=0}^{n-3}(n-k-2) 3^{n-k-3} \mathcal{M}_{k}
\end{aligned}
$$

Proof. Let $m=n+k$, where k is a positive integer. Then

$$
\begin{aligned}
\mathcal{I}_{m}(n)-\mathcal{I}_{n}(n) & =\left(\mathcal{I}_{m}(n)-\mathcal{I}_{m-1}(n)\right)+\cdots+\left(\mathcal{I}_{n+1}(m)-\mathcal{I}_{n}(m)\right) \\
& =(m-n) \sum_{i=0}^{n-1} \mathcal{D}(i, 1) \mathcal{D}(n-i, 1)
\end{aligned}
$$

Now the result follows from Corollary 2.8.
Theorem 2.11. Inside the $m \times n$ table with $m \geqslant 2 n-2$ we have
(i) $\sum_{i=0}^{n-1} \mathcal{D}(i, n) \mathcal{D}(n-i, n)=3^{n-1}$;
(ii) $\sum_{i=1}^{n-1} \mathcal{D}(i, n) \mathcal{D}(n-i, n)=\sum_{i=0}^{n-2} 3^{n-i-1} \mathcal{M}_{i}$;
(iii) $\mathcal{I}_{m}(n)=(3 m-2 n+2) 3^{n-2}+2 \sum_{k=0}^{n-3}(n-k-2) 3^{n-k-3} \mathcal{M}_{k}$.

Proof. (i) Let $T:=T_{m, n}$ with $m=2 n-2$ and T^{\prime} be the table obtained by adding a new row in the middle of T. It is sufficient to obtain $\mathcal{I}_{m+1}(n)-\mathcal{I}_{m}(n)$. Clearly, the number of perfect lattice paths reaching to any (i, n)-blank of T or T^{\prime} is the same for all $i=1, \ldots, n-1$. On the other hand, the number of all perfect lattice paths of T^{\prime} reaching at (n, n)-blank is 3^{n-1} since we may begin the paths form the last (n, n) blank and apply reverse steps with no limitation until to reach the first column. Thus

$$
3^{n-1}=\mathcal{I}_{m+1}(n)-\mathcal{I}_{m}(n)=\sum_{i=0}^{n-1} \mathcal{D}(i, 1) \mathcal{D}(n-i, 1)
$$

(ii) Put $\mathcal{D}(0,1)=1$. Then

$$
\mathcal{D}(n, 1)=3^{n-1}-\sum_{i=1}^{n-1} \mathcal{D}(i, 1) \mathcal{D}(n-i, 1)
$$

On the other hand, by Lemma 2.6, we have

$$
\mathcal{D}(n, 1)=3^{n-1}-\sum_{i=0}^{n-2} 3^{n-i-2} \mathcal{M}_{i}
$$

from which the result follows.
(iii) It follows from (i) and Corollary 2.10.

Lemma 2.12. Inside the $n \times n$ table we have

$$
\mathcal{D}(n, k+2)-\mathcal{D}(n, k)=\sum_{i=1}^{n-1}(\mathcal{D}(i, k+3)-\mathcal{D}(i, k-1))
$$

for all $1 \leqslant k \leqslant n$.
Proof. For $n=2$, the result is trivially true. For any $\ell<n$ we have

$$
\begin{aligned}
\mathcal{D}(\ell+1, k+2) & =\mathcal{D}(\ell, k+3)+\mathcal{D}(\ell, k+2)+\mathcal{D}(\ell, k+1) \\
\mathcal{D}(\ell+1, k) & =\mathcal{D}(\ell, k+1)+\mathcal{D}(\ell, k)+\mathcal{D}(\ell, k-1),
\end{aligned}
$$

which imply that

$$
\begin{aligned}
\mathcal{D}(\ell+1, k+2) & -\mathcal{D}(\ell+1, k) \\
& =\mathcal{D}(\ell, k+3)-\mathcal{D}(\ell, k-1)+(\mathcal{D}(\ell, k+2)-\mathcal{D}(\ell, k))
\end{aligned}
$$

Thus

$$
\mathcal{D}(n, k+2)-\mathcal{D}(n, k)=\sum_{i=1}^{n-1}(\mathcal{D}(i, k+3)-\mathcal{D}(i, k-1))
$$

as $\mathcal{D}(1, k+2)-\mathcal{D}(1, k)=0$. This completed the proof.

3. Concluding some remarks and one conjecture

In this section, we shall compute $\mathcal{I}_{m}(n)$ for $m=1,2,3,4$ and arbitrary positive integers n. Some values of the $\mathcal{I}_{3}(n)$ and $\mathcal{I}_{4}(n)$ are given in [3] and [7], respectively.

Lemma 3.1. $\mathcal{I}_{1}(n)=1$ and $\mathcal{I}_{2}(n)=2^{n}$ for all $n \geqslant 1$.
Let x and y be arbitrary real numbers. By the binomial theorem, we have the following identity,

$$
\begin{aligned}
x^{n}+y^{n}= & (x+y)^{n} \\
& +\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\left[\binom{n-k}{k}+\binom{n-k-1}{k-1}\right](x y)^{k}(x+y)^{n-2 k},
\end{aligned}
$$

where $n \geqslant 1$. This identity also can rewritten as

$$
\begin{align*}
x^{n}+ & y^{n} \\
& =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\left[\binom{n-k}{k}+\binom{n-k-1}{k-1}\right](x y)^{k}(x+y)^{n-2 k}, \tag{3.1}
\end{align*}
$$

where $\binom{r}{-1}=0$. Pell-Lucas sequence [11] is defined as $\mathcal{Q}_{1}=1, \mathcal{Q}_{2}=3$, and $\mathcal{Q}_{n}=2 \mathcal{Q}_{n-1}+\mathcal{Q}_{n-2}$ for all $n \geqslant 3$. It can also be defined by the so called Binet formula as $\mathcal{Q}_{n}=\left(\alpha^{n}+\beta^{n}\right) / 2$, where $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$ are solutions of the quadratic equation $x^{2}=2 x+1$.

Lemma 3.2. For all $n \geqslant 1$ we have $\mathcal{I}_{3}(n)=\mathcal{Q}_{n+1}$.
Proof. The number of lattice paths to entries in columns $n-2, n-1$ and n of $T_{3, n}$ looks like

$n-2$	$n-1$	n
x	$x+y$	$3 x+2 y$
y	$2 x+y$	$4 x+3 y$
x	$x+y$	$3 x+2 y$

which imply that $\mathcal{I}_{3}(n-2)=2 x+y, \mathcal{I}_{3}(n-1)=4 x+3 y$ and $\mathcal{I}_{3}(n)=$ $10 x+7 y$. Thus the following linear recurrence exists for \mathcal{I}_{3}.

$$
\begin{equation*}
\mathcal{I}_{3}(n)=2 \mathcal{I}_{3}(n-1)+\mathcal{I}_{3}(n-2) . \tag{3.2}
\end{equation*}
$$

Since $\mathcal{I}_{3}(1)=\mathcal{Q}_{2}=3$ and $\mathcal{I}_{3}(2)=\mathcal{Q}_{3}=7$, it follows that $\mathcal{I}_{3}(n)=\mathcal{Q}_{n+1}$ for all $n \geqslant 1$, as required.

Corollary 3.3. Let n be a positive integer. Then

$$
\mathcal{I}_{3}(n)=\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\left[\binom{n-k+1}{k}+\binom{n-k}{k-1}\right] 2^{n-2 k}
$$

Proof. It is sufficient to put $x=\alpha$ and $y=\beta$ in 3.1.
The Fibonacci sequence [1] starts with the integers 0 and 1 , and every other term is the sum of the two preceding ones, that is, $\mathcal{F}_{0}=0$, $\mathcal{F}_{1}=1$, and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$ for all $n \geqslant 2$. This recursion gives the Binet's formula $\mathcal{F}_{n}=\frac{\varphi^{n}-\psi^{n}}{\varphi-\psi}$, where $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}$.

Lemma 3.4. For all $n \geqslant 1$ we have $\mathcal{I}_{4}(n)=2 \mathcal{F}_{2 n+1}$.
Proof. The number of lattice paths to entries in columns $n-2, n-1$ and n of $T_{4, n}$ looks like

$n-2$	$n-1$	n
x	$x+y$	$2 x+3 y$
y	$x+2 y$	$3 x+5 y$
y	$x+2 y$	$3 x+5 y$
x	$x+y$	$2 x+3 y$

which imply that $\mathcal{I}_{4}(n-2)=2 x+2 y, \mathcal{I}_{4}(n-1)=4 x+6 y$ and $\mathcal{I}_{4}(n)=10 x+16 y$. Hence we get the following linear recurrence for \mathcal{I}_{4}.

$$
\begin{equation*}
\mathcal{I}_{4}(n)=3 \mathcal{I}_{4}(n-1)-\mathcal{I}_{4}(n-2) . \tag{3.3}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\mathcal{F}_{2 n+1} & =\mathcal{F}_{2 n}+\mathcal{F}_{2 n-1} \\
& =2 \mathcal{F}_{2 n-1}+\mathcal{F}_{2 n-2} \\
& =3 \mathcal{F}_{2 n-1}-\mathcal{F}_{2 n-3} \\
& =3 \mathcal{F}_{2(n-1)+1}-\mathcal{F}_{2(n-2)+1} .
\end{aligned}
$$

Now since $\mathcal{I}_{4}(1)=2 \mathcal{F}_{3}$ and $\mathcal{I}_{4}(2)=2 \mathcal{F}_{5}$, it follows that $\mathcal{I}_{4}(n)=2 \mathcal{F}_{2 n+1}$ for all $n \geqslant 1$. The proof is complete.

Corollary 3.5. For all $n \geqslant 1$ we have

$$
\begin{equation*}
\mathcal{I}_{4}(n)=\sum_{k=0}^{n}(-1)^{k}\left[\frac{2 n+1}{k}\binom{2 n-k}{k-1}\right] 5^{n-k} . \tag{3.4}
\end{equation*}
$$

Proof. It is sufficient to put $x=\varphi$ and $y=\psi$ in 3.1.

Consider the $m \times n$ table T with $2 n \geqslant m$. For positive integers $\ell_{1}, \ell_{2}, \ldots, \ell_{\left\lceil\frac{m}{2}\right\rceil}$, we can write $\mathcal{I}_{m}(n)$ as

$$
\mathcal{I}_{m}(n)=\ell_{1} \mathcal{I}_{m}(n-1)+\ell_{2} \mathcal{I}_{m}(n-2)+\cdots+\ell_{\left\lceil\frac{m}{2}\right\rceil} \mathcal{I}_{m}\left(n-\left\lceil\frac{m}{2}\right\rceil\right)
$$

Also, for positive integers $0 \leqslant s \leqslant\left\lceil\frac{m}{2}\right\rceil$ and $k_{1, s}, k_{2, s}, \ldots, k_{\left\lceil\frac{m}{2}\right\rceil, s}$, we put

$$
\mathcal{I}_{m}(n-s)=k_{1, s} x_{1}+k_{2, s} x_{2}+\cdots+k_{\left\lceil\frac{m}{2}\right\rceil, s} x_{\left\lceil\frac{m}{2}\right\rceil},
$$

where $x_{t}=\mathcal{D}\left(n-\left\lceil\frac{m}{2}\right\rceil, t\right)=\sum_{i=1}^{m} \mathcal{D}^{i}\left(n-\left\lceil\frac{m}{2}\right\rceil, t\right)$ is the number of all perfect lattice paths from the first column to the ($n-\left\lceil\frac{m}{2}\right\rceil, t$)-blank of T, for each $1 \leqslant i \leqslant m$ and $1 \leqslant t \leqslant\left\lceil\frac{m}{2}\right\rceil$. Utilizing the above notations, we can can write

$$
\begin{align*}
\mathcal{I}_{m}(n)= & k_{1,0} x_{1}+k_{2,0} x_{2}+\cdots+k_{\left\lceil\frac{m}{2}\right\rceil, 0} x_{\left\lceil\frac{m}{2}\right\rceil} \\
= & \ell_{1} \mathcal{I}_{n-1}+\ell_{2} \mathcal{I}_{n-2}+\cdots+\ell_{\left\lceil\frac{m}{2}\right\rceil} \mathcal{I}_{n-\left\lceil\frac{m}{2}\right\rceil} \\
= & \ell_{1}\left(k_{1,1} x_{1}+k_{2,1} x_{2}+\cdots+k_{\left\lceil\frac{m}{2}\right\rceil, 1} x_{\left\lceil\frac{m}{2}\right\rceil}\right) \\
& +\ell_{2}\left(k_{1,2} x_{1}+k_{2,2} x_{2}+\cdots+k_{\left\lceil\frac{m}{2}\right\rceil, 2} x_{\left\lceil\frac{m}{2}\right\rceil}\right) \\
& \vdots \\
& +\ell_{\left\lceil\frac{m}{2}\right\rceil}\left(k_{1,\left\lceil\frac{m}{2}\right\rceil} x_{1}+k_{2,\left\lceil\frac{m}{2}\right\rfloor} x_{2}+\cdots+k_{\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{m}{2}\right\rceil} x_{\left\lceil\frac{m}{2}\right\rceil}\right) . \tag{3.5}
\end{align*}
$$

From 3.5, we obtain the following system of linear equations

$$
\left\{\begin{array}{ccccccc}
k_{1,1} \ell_{1} & + & \cdots & + & k_{1,\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil} & = & k_{1,0} \tag{3.6}\\
k_{2,1} \ell_{1} & + & \cdots & + & k_{\left.2,\left\lceil\frac{m}{2}\right\rceil \frac{m}{2}\right\rceil} & = & k_{2,0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
k_{\left\lceil\frac{m}{2}\right\rceil, 1} \ell_{1} & + & \cdots & + & k_{\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{m}{2}\right\rceil} \ell_{\left\lceil\frac{m}{2}\right\rceil} & = & k_{\left\lceil\frac{m}{2}\right\rceil, 0} .
\end{array}\right.
$$

Now consider the following coefficient matrix A of the system 3.6

$$
A=\left[\begin{array}{cccc}
k_{1,1} & k_{1,2} & \cdots & k_{1,\left\lceil\frac{m}{2}\right\rceil} \\
k_{2,1} & k_{2,2} & \cdots & k_{2,\left\lceil\frac{m}{2}\right\rceil} \\
\vdots & \vdots & \ddots & \vdots \\
k_{\left\lceil\frac{m}{2}\right\rceil, 1} & k_{\left\lceil\frac{m}{2}\right\rceil, 2} & \cdots & k_{\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{m}{2}\right\rceil}
\end{array}\right],
$$

which we call the coefficient matrix of the table T and denote it by $\mathcal{C}(T)$. We concluded this section by the following conjecture.

Conjecture 3.6. For a given $m \times n$ table $T(2 n \geqslant m)$, we have $\operatorname{det}(\mathcal{C}(T))=-2^{\left\lfloor\frac{m}{2}\right\rfloor}$.

Example 3.7. Let T be a $5 \times n$ table. The columns $n-3, n-2, n-1$, and n of T are given by

$n-3$	$n-2$	$n-1$	n
x_{1}	$x_{1}+x_{2}$	$2 x_{1}+2 x_{2}+x_{3}$	$4 x_{1}+6 x_{2}+3 x_{3}$
x_{2}	$x_{1}+x_{2}+x_{3}$	$2 x_{1}+4 x_{2}+2 x_{3}$	$6 x_{1}+10 x_{2}+6 x_{3}$
x_{3}	$2 x_{2}+x_{3}$	$2 x_{1}+4 x_{2}+3 x_{3}$	$6 x_{1}+12 x_{2}+7 x_{3}$
x_{2}	$x_{1}+x_{2}+x_{3}$	$2 x_{1}+4 x_{2}+2 x_{3}$	$6 x_{1}+10 x_{2}+6 x_{3}$
x_{1}	$x_{1}+x_{2}$	$2 x_{1}+2 x_{2}+x_{3}$	$4 x_{1}+6 x_{2}+3 x_{3}$

from which it follows that

$$
\begin{aligned}
\mathcal{I}_{5}(n-3) & =2 x_{1}+2 x_{2}+x_{3}, \\
\mathcal{I}_{5}(n-2) & =4 x_{1}+6 x_{2}+3 x_{3}, \\
\mathcal{I}_{5}(n-1) & =10 x_{1}+16 x_{2}+9 x_{3}, \\
\mathcal{I}_{5}(n) & =28 x_{1}+44 x_{2}+25 x_{3}
\end{aligned}
$$

Clearly,

$$
\mathcal{I}_{5}(n)=\ell_{1} \mathcal{I}_{5}(n-1)+\ell_{2} \mathcal{I}_{5}(n-2)+\ell_{3} \mathcal{I}_{5}(n-3)
$$

for some $\ell_{1}, \ell_{2}, \ell_{3}$, and that the coefficient matrix of the table T is $\mathcal{C}(T)=\left[\begin{array}{ccc}10 & 4 & 2 \\ 16 & 6 & 2 \\ 9 & 3 & 1\end{array}\right]$. It is obvious that $\operatorname{det}(\mathcal{C}(T))=-2^{\left\lfloor\frac{5}{2}\right\rfloor}=-4$.
4. Some result about perfect lattice paths by using of

Fibonacci and Pell-Lucas numbers

In this section, we obtain some results about perfect lattice paths in the $5 \times n$ table. Also, we get some relations and properties about Fibonacci and Pell-Lucas sequences by the aid of perfect lattice paths.

Proposition 4.1. Inside the $5 \times n$ table we have

$$
\mathcal{D}(s+2,1)=\mathcal{I}_{5}(s) \quad \text { and } \quad \mathcal{D}(s+2,3)=2 \mathcal{I}_{5}(s)-1
$$

for all $1 \leqslant s \leqslant n$.
Proof. From the table in Example 3.7, it follows simply that $\mathcal{I}_{5}(s)=$ $\mathcal{D}(s+2,1)$ for all $s \geqslant 1$. Also, from the table, it follows that

$$
2 \mathcal{D}(s+1,1)-\mathcal{D}(s+1,3)=2 \mathcal{D}(s, 1)-\mathcal{D}(s, 3)
$$

for all $s \geqslant 1$, that is, $2 \mathcal{D}(s, 1)-\mathcal{D}(s, 3)$ is constant. Since $2 \mathcal{D}(1,1)-$ $\mathcal{D}(1,3)=1$, we get $2 \mathcal{D}(s+2,1)-\mathcal{D}(s+2,3)=1$, from which the result follows.

Proposition 4.2. Inside the $5 \times n$ table we have

$$
\mathcal{D}(s, 1) \times \mathcal{D}(s+t, 3)-\mathcal{D}(s, 3) \times \mathcal{D}(s+t, 1)=\sum_{i=s}^{s+t-1} \mathcal{D}(i, 2)
$$

for all $1 \leqslant s, t \leqslant n$.
Proof. From Proposition 4.1, we know that $\mathcal{D}(s, 3)=2 \mathcal{D}(s, 1)-1$ for all $1 \leqslant s \leqslant n$. Then

$$
\begin{aligned}
& \mathcal{D}(s, 1) \mathcal{D}(s+t, 3)-\mathcal{D}(s, 3) \mathcal{D}(s+t, 1) \\
= & \mathcal{D}(s, 1)(2 \mathcal{D}(s+t, 1)-1)-(2 \mathcal{D}(s, 1)-1) \mathcal{D}(s+t, 1) \\
= & 2 \mathcal{D}(s, 1) \mathcal{D}(s+t, 1)-\mathcal{D}(s, 1)-2 \mathcal{D}(s, 1) \mathcal{D}(s+t, 1)+\mathcal{D}(s+t, 1) \\
= & \mathcal{D}(s+t, 1)-\mathcal{D}(s, 1)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \mathcal{D}(s+t, 1)-\mathcal{D}(s, 1) \\
&= \mathcal{D}(s+t-1,1)+\mathcal{D}(s+t-1,2)-\mathcal{D}(s, 1) \\
&= \mathcal{D}(s+t-2,1)+\mathcal{D}(s+t-2,2)+\mathcal{D}(s+t-1,2)-\mathcal{D}(s, 1) \\
& \vdots \\
&= \sum_{i=s}^{s+t-1} \mathcal{D}(i, 2)+\mathcal{D}(s, 1)-\mathcal{D}(s, 1) \\
&= \sum_{i=s}^{s+t-1} \mathcal{D}(i, 2),
\end{aligned}
$$

from which the result follows.
Proposition 4.3. Inside the $4 \times n$ table we have

$$
\mathcal{D}(s, 1)=\mathcal{F}_{2 s-1} \quad \text { and } \quad \mathcal{D}(s, 2)=\mathcal{F}_{2 s}
$$

for all $s \geqslant 1$. As a result,

$$
\mathcal{D}(s, 1) \times \mathcal{D}(s+t, 2)-\mathcal{D}(s, 2) \times \mathcal{D}(s+t, 1)=\mathcal{D}(s, 2)
$$

for all $s, t \geqslant 1$.
Proof. Clearly $\mathcal{D}(1,1)=\mathcal{D}(1,2)=\mathcal{F}_{1}=\mathcal{F}_{2}=1$. Now since

$$
\begin{aligned}
& \mathcal{D}(s, 1)=\mathcal{D}(s-1,1)+\mathcal{D}(s-1,2), \\
& \mathcal{D}(s, 2)=2 \mathcal{D}(s-1,2)+\mathcal{D}(s-1,1) .
\end{aligned}
$$

we may prove, by using induction that, $\mathcal{D}(s, 1)=\mathcal{F}_{2 s-1}$ and $\mathcal{D}(s, 2)=$ $\mathcal{F}_{2 s}$ for all $s \geqslant 1$. The second claim follows from the fact that

$$
\mathcal{F}_{2 s-1} \mathcal{F}_{2 s+2 t}-\mathcal{F}_{2 s} \mathcal{F}_{2 s+2 t-1}=\mathcal{F}_{2 s}
$$

The proof is complete.

Proposition 4.4. Inside the $4 \times n$ table we have

$$
\mathcal{I}_{4}(2 s+1)=\frac{1}{4} \mathcal{I}_{4}(s+1)^{2}+\mathcal{D}(s, 2)^{2}
$$

for all $1 \leqslant s \leqslant n$.
Proof. Following Lemma 3.4 and Proposition 4.3, it is enough to show that

$$
2 \mathcal{F}_{4 s+3}=\mathcal{F}_{2 s+3}^{2}+\mathcal{F}_{2 s}^{2} .
$$

First observe that the equation $\mathcal{F}_{2 n-1}=\mathcal{F}_{n}^{2}+\mathcal{F}_{n-1}^{2}$ yields $\mathcal{F}_{4 s+1}=$ $\mathcal{F}_{2 s+1}^{2}+\mathcal{F}_{2 s+2}^{2}$ and $\mathcal{F}_{4 s+5}=\mathcal{F}_{2 s+3}^{2}+\mathcal{F}_{2 s+2}^{2}$. Now, by combining these two formulas, we obtain

$$
\begin{aligned}
\mathcal{F}_{2 s+3}^{2}+\mathcal{F}_{2 s}^{2} & =\mathcal{F}_{4 s+5}+\mathcal{F}_{4 s+1}-\left(\mathcal{F}_{2 s+1}^{2}+\mathcal{F}_{2 s+2}^{2}\right) \\
& =\mathcal{F}_{4 s+4}+\mathcal{F}_{4 s+3}+\mathcal{F}_{4 s+1}-\mathcal{F}_{4 s+3} \\
& =\mathcal{F}_{4 s+3}+\mathcal{F}_{4 s+2}+\mathcal{F}_{4 s+1} \\
& =2 \mathcal{F}_{4 s+3},
\end{aligned}
$$

as required.
Pell numbers \mathcal{P}_{n} are defined recursively as $\mathcal{P}_{1}=1, \mathcal{P}_{2}=2$, and $\mathcal{P}_{n}=2 \mathcal{P}_{n-1}+\mathcal{P}_{n-2}$ for all $n \geqslant 3$. The Binet's formula corresponding to \mathcal{P}_{n} is $\mathcal{P}_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$, where $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$.

Proposition 4.5. Inside the $3 \times n$ table we have

$$
\mathcal{D}(s, 1)=\mathcal{P}_{s} \quad \text { and } \quad \mathcal{D}(s, 2)=\mathcal{Q}_{s}
$$

for all $s \geqslant 1$. As a result,

$$
\mathcal{D}(s, 1) \times \mathcal{D}(s+t, 2)-\mathcal{D}(s, 2) \times \mathcal{D}(s+t, 1)=(-1)^{s+1} \mathcal{D}(t, 1)
$$

for all $s, t \geqslant 1$.
Proof. From the table in Lemma 3.2, we observe that

$$
\begin{aligned}
& \mathcal{D}(s, 1)=2 \mathcal{D}(s-1,1)+\mathcal{D}(s-2,1) \\
& \mathcal{D}(s, 2)=2 \mathcal{D}(s-1,2)+\mathcal{D}(s-2,2)
\end{aligned}
$$

for all $s \geqslant 3$. Now since $\mathcal{D}(1,1)=\mathcal{P}_{1}=1, \mathcal{D}(2,1)=\mathcal{P}_{2}=2, \mathcal{D}(1,2)=$ $\mathcal{Q}_{1}=1$, and $\mathcal{D}(2,2)=\mathcal{Q}_{2}=3$ one can show, by using induction, that $\mathcal{D}(s, 1)=\mathcal{P}_{s}$ and $\mathcal{D}(s, 2)=\mathcal{Q}_{s}$ for all s. To prove the second claim, we use the following formula

$$
\mathcal{P}_{s} \mathcal{Q}_{s+t}-\mathcal{Q}_{s} \mathcal{P}_{s+t}=(-1)^{s+1} \mathcal{P}_{t}
$$

that can be proves simply using Binet's formulas.

References

[1] Sequence A000045, On-Line Encyclopaedia of Integer Sequences, published electronically at http://oeis.org/.
[2] Sequence A001006, On-Line Encyclopaedia of Integer Sequences, published electronically at http://oeis.org/.
[3] Sequence A001333, On-Line Encyclopaedia of Integer Sequences, published electronically at http://oeis.org/.
[4] Sequence A005773, On-Line Encyclopaedia of Integer Sequences, published electronically at http://oeis.org/.
[5] Sequence A026300, On-Line Encyclopaedia of Integer Sequences, published electronically at http://oeis.org/.
[6] Sequence A002426, On-Line Encyclopaedia of Integer Sequences, published electronically at http://oeis.org/.
[7] Sequence A055819, On-Line Encyclopaedia of Integer Sequences, published electronically at http://oeis.org/.
[8] Sequence A081113, On-Line Encyclopaedia of Integer Sequences, published electronically at http://oeis.org/.
[9] C. Krattenthaler, Lattice path enumeration, Handbook of Enumerative Combinatorics, M. Bona, Discrete Math. and Its Appl. CRC Press, Boca Raton-London-New York, 2015, pp. 589-678.
[10] C. Krattenthaler and S. G. Mohanty, Lattice path combinatorics - applications to probability and statistics. In norman L. Johanson, Campell B. Read, N. Balakrishnan, and Brani Vidakovic, Editors, Encyclopaedia of Statistical Sciences. Wiley, New York, Second Edition, 2003.
[11] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, Berlin Springer New York, 2014.
[12] R. P. Stanley, Catalan Numbers, Cambridge Universty Press, 2015.
Department of Pure Mathematics, Ferdowsi University of Mashhad,
P. O. Box 1159, Mashhad 91775, Iran

E-mail address: daniel_yaqubi@yahoo.es

[^0]: 2000 Mathematics Subject Classification. 05A05, 05A15.
 Key words and phrases. Lattice path, Dyck path, perfect lattice paths, Fibonacci number, Pell-Lucas number, Motzkin number.

