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Abstract

It is shown that dimers is Yang-Baxter integrable as a six-vertex model at the free-fermion point with
crossing parameter λ = π

2 . A one-to-many mapping of vertex onto dimer configurations allows the free-
fermion solutions to be applied to the anisotropic dimer model on a square lattice where the dimers are
rotated by 45◦ compared to their usual orientation. This dimer model is exactly solvable in geometries
of arbitrary finite size. In this paper, we establish and solve inversion identities for dimers with periodic
boundary conditions on the cylinder. In the particle representation, the local face tile operators give
a representation of the fermion algebra and the fermion particle trajectories play the role of nonlocal
(logarithmic) degrees of freedom. In a suitable gauge, the dimer model is described by the Temperley-
Lieb algebra with loop fugacity β = 2cos λ = 0. At the isotropic point, the exact solution allows for
the explicit counting of 45◦ rotated dimer configurations on a periodic M ×N rectangular lattice. We
show that the modular invariant partition function on the torus is the same as symplectic fermions and
critical dense polymers. We also show that nontrivial Jordan cells appear for the dimer Hamiltonian on
the strip with vacuum boundary conditions. We therefore argue that, in the continuum scaling limit,
the dimer model gives rise to a logarithmic conformal field theory with central charge c = −2, minimal
conformal weight ∆min = −1/8 and effective central charge ceff = 1.
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1 Introduction

The six-vertex model [1–4] is a ferroelectric model on the square lattice that is Yang-Baxter
integrable [5]. If the six vertex weights satisfy an additional free-fermion condition (2.2), the model
reduces to a non-interacting free-fermion model [6, 7]. In contradistinction, the dimer (domino tiling)
model [8,9] captures the molecular freedom in densely arranging (adsorbing) non-overlapping diatomic
molecules (dimers) on a lattice substrate. In 1961, the dimer model on the square lattice was solved
exactly [10–12] by Pfaffians. While the original solutions were by Pfaffians, the idea of using a transfer
matrix and free fermions was initiated in [13]. After more than 50 years, the dimer model continues
to be the subject of extensive study [14–21] primarily to understand the finite-size effects of boundary
conditions and steric effects under the influence of infinitely repulsive hard-core local interactions.
These effects are manifest in the related problems of Aztec diamonds [22] and the six-vertex model
with domain wall boundary conditions [23, 24]. For these systems, even the thermodynamic limit can
fail to exist. Although such boundary conditions clearly break conformal invariance in the continuum
scaling limit there are other boundary conditions, such as periodic and free boundary conditions, which
are conformally invariant. For dimers with the latter boundary conditions it has been argued [15, 16]
that the system is best described as a logarithmic Conformal Field Theory (CFT) with central charge
c = −2 rather than the c = 1 Gaussian free field usually associated [25] with dimers and the six-vertex
model at the free fermion point.

Although it is not immediately apparent, it is known that the six-vertex free-fermion and dimer
models are related, at least at the level of configurations. In fact, a one-to-many mapping exists [26,24,
27] from six-vertex configurations to dimer configurations. Notably, this maps six-vertex configurations
onto dimer configurations where the dimers are rotated by 45◦ compared to their usual orientation
parallel to the bonds of the square lattice. As shown in Figure 3, in this orientation, each dimer covers
two sites of the medial lattice whose sites consist of midpoints of the bonds of the original square
lattice. For an M ×N rectangular lattice with periodic boundary conditions, there are thus 2MN sites
on the medial lattice covered by MN dimers.

In this paper, we solve exactly the anisotropic dimer model on the square lattice for dimers with the
45 degree rotated orientation. This is achieved, using Yang-Baxter integrability, by viewing the dimer
model as a free-fermion six-vertex model and solving the associated inversion identity [7,5,28] satisfied
by the transfer matrices. By considering periodic boundary conditions on the cylinder and closing to a
torus by taking a matrix trace, we obtain the modular invariant partition function (MIPF). Notably,
the MIPF of dimers precisely agrees with symplectic fermions [29] and critical dense polymers [30–34].
The latter is nontrivial because, as a special six-vertex model, the usual matrix trace is used to close
the cylinder to a torus for the dimer model whereas a modified trace [34] is needed for critical dense
polymers. Remarkably, we find that the spectra of dimers agrees sector-by-sector with the spectra of
critical dense polymers. However, an important difference with periodic boundary conditions is that
the transfer matrix of critical dense polymers exhibits Jordan cells [33,35] on the cylinder whereas the
transfer matrix of dimers (six-vertex free-fermion model) is normal and diagonalizable so it does not
exhibit Jordan cells. With vacuum boundary conditions on the strip, we show that the situation is
the other way around — the double row transfer matrices of critical dense polymers do not exhibit
Jordan cells whereas the Hamiltonian and double row transfer matrices of dimers (six-vertex free-
fermion model) do exhibit Jordan cells (see for example [36–38]). We therefore argue that dimers is a
logarithmic CFT with central charge c = −2 and effective central charge ceff = 1.

It is to be stressed that our dimer model is exactly solvable in arbitrary finite geometries on
the strip, cylinder and torus with a variety of different integrable boundary conditions. On the one
hand, for periodic boundary conditions, we obtain a finitized modular invariant partition function for
dimers. On the other hand, at the isotropic point, we obtain explicit formulas for the counting of dimer
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configurations on a finite M ×N periodic rectangular lattice.
The layout of the paper is as follows. In Section 2 we describe the dimer model, with dimers

rotated by 45◦, as a free-fermion six-vertex model and give the equivalence of the face tiles in the
vertex, particle and dimer representations. We also describe the relations between the free-fermion
algebra, the Temperley-Lieb algebra and the Yang-Baxter equation. We end this section by showing
that the residual entropy is not changed by rotating the orientation of the dimers and agrees with the
known result [12]. In Section 3, we introduce the periodic row transfer matrices and show that the
associated dimer Hamiltonian reduces to the usual free-fermion hopping Hamiltonian. In this section,
we also obtain the exact eigenvalues of the transfer matrices on finite cylinders. Following closely [33],
we calculate the finite-size spectra in the Z4, Ramond and Neveu-Schwarz sectors. The N even sectors
are combined to show that the MIPF is that of symplectic fermions [29]. This completes the CFT
description of dimers on the torus. Next, in Section 4, we consider the isotropic point and obtain
explicit formulas for the counting of rotated dimer configurations on a periodic M × N rectangular
lattice. Although it displays the same asymptotic growth, the precise counting of these configurations
differs from the counting in the usual orientation [10,14]. Finally, in Section 5, we give a brief summary
of the analysis of the double row transfer matrices of dimers on the strip with vacuum boundary
conditions. Most importantly, for small system sizes, we show that the Hamiltonian coincides with the
Hamiltonian of the Uq(sl(2))-invariant XX Hamiltonian and exhibits nontrivial rank-2 Jordan cells.

2 Dimers as a Free-Fermion Six-Vertex Model

2.1 Face tiles and equivalence of vertex, particle and dimer representations

The allowed six-vertex (arrow conserving) face configurations and the equivalent tiles in the particle
(even and odd rows) and dimer [24] representations are shown in Figure 1. For N columns, the vertex
(arrow) degrees of freedom σj = ±1 and the particle occupation numbers aj =

1
2(1− σj) = 0, 1 live on

the medial lattice with j = 1, 2, . . . , N . The Boltzmann weights of the six-vertex tiles are

a(u) = ρ
sin(λ− u)

sinλ
, b(u) = ρ

sinu

sinλ
, c1(u) = ρg, c2(u) =

ρ

g
, λ ∈ (0, π), ρ ∈ R (2.1)

The spectral parameter u plays the role of spatial anisotropy with u = λ
2 being the isotropic point.

Geometrically [39], varying u effectively distorts a square tile into a rhombus with an opening anisotropy
angle ϑ = πu

λ . The arbitrary parameter ρ is an overall normalization. Assuming boundary conditions
such that there are an equal number of sources and sinks of horizontal arrows (vertices c1 and c2) along
any row, the transfer matrix entries (3.1) are all independent of the gauge factor g.

At the free-fermion point (λ = π
2 ), the six-vertex face weights reduce to

a(u) = ρ cos u, b(u) = ρ sinu, c1(u) = ρg, c2(u) =
ρ

g
, ρ ∈ R (2.2)

These weights satisfy the free-fermion condition

a(u)2 + b(u)2 = c1(u)c2(u) (2.3)

As shown in Section 2.2, with the special choice of gauge g = z = eiu, the tiles give a representation
of the free-fermion algebra with generators {fj , f †

j } and, consequently, also a representation of the
Temperley-Lieb algebra with generators {ej} and loop fugacity β = 2cos λ = 0. Explicitly, the face
transfer operators are

Xj(u) = ρ(cos u I + sinu ej), j = 1, 2, . . . , N (2.4)
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This Temperley-Lieb model is directly equivalent to an anisotropic dimer model as shown in Figures 1,
3 and 4. A dimer weight is assigned to the unique square face which is half-covered by the dimer as
shown in Figure 4. The statistical weights assigned to “horizontal” and “vertical” dimers are

ζh(u) = a(u) = ρ cos u, ζv(u) = b(u) = ρ sinu (2.5)

Setting g = ρ, and allowing for the facts that (i) the c1 face has two allowed configurations and (ii) no
dimer covers the c2 face, it follows that

c1(u) = ζh(u)
2 + ζv(u)

2 = ρ2(cos2 u+ sin2 u) = ρ2, c2(u) = 1 (2.6)

Alternatively, fixing ρ = g =
√
2 at the isotropic point (u = λ

2 = π
4 ) gives

a(π4 ) = 1, b(π4 ) = 1, c1(
π
4 ) = 2, c2(

π
4 ) = 1 (2.7)

It follows that, with this normalization and any gauge g, the partition function at the isotropic point
gives the correct counting of distinct dimer configurations.

In addition to the vertex and dimer representations, the six-vertex free-fermion model admits a
particle representation as shown in Figure 3. A reference state on the cylinder and strip is fixed as in
Figure 2. An edge of a given vertex is a segment of a particle trajectory (and has particle occupation
number aj = 1) if its arrow points in the opposite direction to that of the reference state. Otherwise,
if the edge arrow points in the same direction as the reference state, the edge is not a segment of a
particle trajectory (and the particle occupation is aj = 0). The segments of particle trajectories live on
the medial lattice and are indicated with heavy lines in Figure 2. The number of particles is conserved
and their trajectories are non-intersecting. On the cylinder (which is glued at the top and bottom
to form the torus), the particle trajectories are constrained to move up and to the right through the
lattice. The particle representation is the simplest of the three representations and is convenient for
coding in Mathematica [40] and for manipulations in the diagrammatic planar algebra so we usually
work in the particle representation.

With suitable face weights, the mapping between the six-vertex model, particle representation and
dimers also holds for λ 6= π

2 and the model is still Yang-Baxter integrable. The difference is that, in the
free-fermion case λ = π

2 , the particles are non-interacting whereas, for λ 6= π
2 , the particles interact. In

terms of dimers, for λ 6= π
2 , there are anisotropic 3-dimer interactions for the faces of vertices 1 through

4. In general, for λ = (p′−p)π
p′ with p, p′ coprime, the (non-intersecting) fermion particle trajectories

play the role of nonlocal degrees of freedom in these logarithmic Conformal Field Theories (CFTs).
The Z2 arrow reversal symmetry of the vertex model implies a particle-hole duality in the particle
representation.

2.2 Free-fermion, Temperley-Lieb algebras and Yang-Baxter equation

In this section, we consider the free-fermion model (2.2) with λ = π
2 and set g = z = eiu and ρ = 1.

The overall normalization ρ =
√
2 is easily reinstated, as needed, to count dimer configurations at the

isotropic point (u = π
4 ).

2.2.1 Free-fermion algebra

As elements of a planar algebra [41], the face operators of the free-fermion six-vertex model
decompose [42] in the particle representation into a sum of contributions from six elementary tiles

Xj(u) = u
j j+1

= a(u)

(

+

)

+ b(u)

(

+

)

+ c1(u) + c2(u)

(2.8)
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or

︸ ︷︷ ︸

a(u)
︸ ︷︷ ︸

b(u)
︸ ︷︷ ︸

c1(u)
︸ ︷︷ ︸

c2(u)

Figure 1: Equivalent face tiles of the six-vertex model in the vertex, particle (even and odd rows)
and dimer representations. On the strip, the odd and even rows alternate. For periodic boundary
conditions, all rows are odd. The heavy particle lines are drawn whenever the arrows disagree with the
reference state as shown in Figure 2. The particles move up and to the right on odd rows and up and
to the left on even rows.

Figure 2: Reference states for the single and double row transfer matrices for mapping onto the particle
representation. The reference arrows point up and to the right for the single row transfer matrices.
For the double row transfer matrices, the reference arrows point up and right on odd rows and up and
left on even rows.
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Figure 3: Typical periodic arrow configuration on a 6× 4 rectangle corresponding to four applications
of the single row transfer matrix. The associated particle and (one of the 23 = 8) possible periodic
dimer configurations are also shown. The boundary conditions are periodic such that the left/right
edges and top/bottom edges are identified. The excess of up arrows over down arrows (2 in this case)
is conserved. Particles travel up and to the right. They can wind around the torus but do not cross.
An M ×N rectangular lattice is covered by MN dimers. Each dimer covers two adjacent sites of the
medial lattice. 6



or

Figure 4: Face configurations showing (in light yellow) the one or two dimers associated with each face.
No dimers are associated with the last face.

Figure 5: The 24 periodic configurations of rotated dimers on 2× 2 square lattice. Each of the apricot
shaded blocks of two dimers can occur in 2 local configurations related by a rotation through 90◦.
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Multiplication of the tiles in the planar algebra is given by local tensor contraction of indices
(a, b, c, . . . = 0, 1) specifying the particle occupation numbers on the centers of the tile edges. Regarding
the elementary tiles as operators acting on an upper (zigzag) row particle configuration to produce a
lower (zigzag) row particle configuration, we write them respectively as

Ej = n00
j , n11

j , f †
j fj+1, f †

j+1fj, n10
j , n01

j , n00
j + n11

j + n10
j + n01

j = I (2.9)

The four operators nab
j are (diagonal) orthogonal projection operators which factorize into single-site

orthogonal projectors corresponding to left and right half (triangular) tiles

nab
j = na

jn
b
j+1, na

jn
b
j = δab n

a
j , n0

j + n1
j = I, a, b = 0, 1 (2.10)

Here nj = n1
j is the number operator counting single-site occupancy at position j and n0

j is the dual

number operator counting the single-site vacancies at position j. The operators fj and f †
j are single-site

particle annihilation and creation operators respectively which satisfy the Canonical Anticommutation
Relations (CAR) for fermions

{fj, fk} = {f †
j , f

†
k} = 0, {fj , f †

k} = δjk, n1
j = f †

j fj, n0
j = fjf

†
j = 1− f †

j fj (2.11)

It follows that all of the elementary tile operators can be written as combinations of bilinears
in the fermion operators fj and f †

j . Diagrammatically, the particle hopping terms f †
j fj+1 and f †

j+1fj
factorize into left and right half (triangular) tiles

f †
j fj+1 =

j j+1
f †
j+1fj =

j j+1
(2.12)

so that the fermion generators are represented by half (triangular) tiles

f †
j =

j
=

j
, fj =

j
=

j
(2.13)

The action of the fermion operators (2.13) on states is given by

f †
j

∣
∣ · · · , nj−1, nj , nj+1, · · ·

〉
= (−1)

∑

1≤k<j nk(1− nj)
∣
∣ · · · , nj−1, (1− nj), nj+1, · · ·

〉
(2.14)

fj
∣
∣ · · · , nj−1, nj , nj+1, · · ·

〉
= (−1)

∑

1≤k<j nk nj

∣
∣ · · · , nj−1, (1− nj), nj+1, · · ·

〉
(2.15)

The presence of the “Jordan-Wigner string” (−1)
∑

1≤k<j nk ensures the complete antisymmetry of the
states and reflects the non-locality of the fermion operators. Notice that a particle can only hop into
a site that is vacant and that the action of the hopping terms on states is

f †
j fj+1

∣
∣ · · · , nj−1, 0, 1, nj+2, · · ·

〉
=
∣
∣ · · · , nj−1, 1, 0, nj+2, · · ·

〉
(2.16)

f †
j+1fj

∣
∣ · · · , nj−1, 1, 0, nj+2, · · ·

〉
=
∣
∣ · · · , nj−1, 0, 1, nj+2, · · ·

〉
(2.17)

since the contributions from the Jordan-Wigner strings cancel. This action applies for both open and
periodic boundary conditions with the cyclic boundary condition fj+N = fj on the fermions. Although
the Jordan-Wigner strings seem to break translation invariance for periodic boundary conditions, this
invariance is restored [7] for operators composed of an even number of fermion operators.
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2.2.2 Temperley-Lieb algebra

To realise a Temperley-Lieb algebra, let us introduce x = eiλ = i and the generators

ej = x + x−1 + + (2.18a)

= xf †
j fj(1− f †

j+1fj+1) + x−1(1− f †
j fj)f

†
j+1fj+1 + f †

j fj+1 + f †
j+1fj (2.18b)

= xf †
j fj + x−1f †

j+1fj+1 + f †
j fj+1 + f †

j+1fj (2.18c)

The quartic (interacting) terms vanish, since β = x+ x−1 = 0, leaving bilinears in fermion operators.
Using the planar algebra of tiles, it is easily shown that these operators yield a representation of the
Temperley-Lieb algebra [43]

e2j = βej = 0, ejej±1ej = ej , β = 2cos λ = x+ x−1 = 0 (2.19)

Equivalently this follows, purely from fermionic algebra, by writing the generators in terms of the
fermionic operators fj and f †

j as in (2.18c).

2.2.3 Yang-Baxter equation

Using the above algebra, it is straightforward to confirm that, in the gauge with g = z = eiu, the face
transfer operators (2.8) of the free-fermion six vertex model now take the form

Xj(u) = u = cos u I + sinu ej (2.20)

It immediately follows, from standard arguments [44], that they satisfy the Yang-Baxter Equation
(YBE)

Xj(u)Xj+1(u+ v)Xj(v) = Xj+1(v)Xj(u+ v)Xj+1(u) (2.21a)

a b

u

ef

v

c

d

u+v =

de

u

b c

v
a

f

u+v (2.21b)

The initial condition and inversion relation are

Xj(0) = I, Xj(u)Xj(−u) = cos2 u I (2.22)

In the usual vertex model terminology, Xj(u) is the Ř-matrix and not the R-matrix.

2.3 Free energy and residual entropy

Since the free-fermion six-vertex model is Yang-Baxter integrable, its partition function per site

ρ κ(u) = ρ exp(−fbulk(u)) (2.23)
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can be obtained by solving [44] the inversion relation κ(u)κ(−u) = cos2 u or by using Euler-Maclaurin
approach as in [31]. The two equivalent integrals for the bulk free energy are

fbulk(u) = −
∫ ∞

−∞

sinhut sinh(π2 − u)t

t sinhπt cosh πt
2

dt = 1
2 log 2−

1

π

∫ π/2

0
log(cosec t+ sin 2u)dt (2.24)

Setting ρ =
√
2 and u = π

4 gives the known [12] molecular freedom W and residual entropy S of dimers
on the square lattice as

W = eS =
√
2 exp(−fbulk(

π
4 )) = exp(2Gπ ) = 1.791 622 812 . . . , S = 2G

π = .583 121 808 . . . (2.25)

where the molecular freedom W and Catalan’s constant G are given by

W =
√
2κ(π4 ) = lim

M,N→∞
(ZM×N )

1
MN , G = 1

2

∫ π/2

0
log(1 + cosec t)dt = .915 965 594 . . . (2.26)

3 Solution on a Cylinder and Torus and Finite-Size Spectra

3.1 Commuting single row transfer matrices

The single row transfer matrix of the free-fermion model in the particle representation is defined by

T (u) = u u u u u u

a1 a2 · · · aN

b1 b2 · · · bN

(3.1)

where there are N columns and the left and right edges are identified. The occupation numbers on the
vertical edges (auxiliary space) are summed out. The quantum space consists of 2N row configurations
a = {a1, a2, . . . , aN} of particle occupation numbers. The Yang-Baxter equation (2.21) implies [5] that
the single row transfer matrices commute

[T (u),T (v)] = 0 (3.2)

From the crossing relation and commutation, it follows that the transfer matrices are normal

T (u)T = T (λ− u) ⇒ [T (u),T (u)T ] = 0 (3.3)

The transfer matrices are therefore simultaneously diagonalizable by a similarity transformation with
a matrix S whose columns are the common u-independent right eigenvectors of T (u).

In the six-vertex arrow (or spin) representation, the total magnetization

Sz =
N∑

j=1

σj = −N,−N + 2, . . . , N − 2, N (3.4)

is conserved under the action of the transfer matrix. The magnetization Sz is thus a good quantum
number separating the spectrum into sectors. For dimers, it therefore plays the role of the variation
index in [17,20,21]. By the Z2 up-down symmetry, the spectrum for the sectors Sz = m and Sz = −m
coincide for m > 0. So all these eigenvalues are exactly doubly degenerate. We will see that, for N
even, the lowest energy (ground) state is unique and occurs in the sector Sz = 0 so that there are
1
2N up arrows (spins) and 1

2N down arrows (spins). More generally, the number of down spins is

10



d = 1
2 (N − Sz), the number of up spins is thus N − d = 1

2(N + Sz) and the counting of states in the

Sz sector is given by the binomial
(N
d

)
with Sz = N mod 2. The number of particles d =

∑N
j=1 aj

coincides with the number of down arrows and is also conserved. The transfer matrix and vector space
of states thus decompose as

T (u) =
N⊕

d=0

T d(u), dimV(N) =
N∑

d=0

dimV(N)
d =

N∑

d=0

(
N

d

)

= 2N = dim (C2)⊗N (3.5)

Comparing the spectra sector-by-sector with critical dense polymers [33] gives a precise matching if
the number of defects ℓ is identified as

ℓ = |N − 2d| = |Sz| =
{

0, 2, 4, . . . , N, N even

1, 3, 5, . . . , N, N odd
(3.6)

Taking the logarithmic derivative of the single row transfer matrix (3.1) gives the Hermitian free-
fermion Hamilitonian

H = −
N∑

j=1

ej = −
N∑

j=1

(xf †
j fj + x−1f †

j+1fj+1 + f †
j fj+1 + f †

j+1fj) (3.7a)

= −
N∑

j=1

(f †
j fj+1 + f †

j+1fj) (3.7b)

Using β = x+ x−1 = 0 and cyclic symmetry, the first two fermionic terms cancel leaving the expected
free-fermion hopping Hamiltonian. Since the Hamiltonian is a quadratic form in fermi operators it can
be diagonalized by standard free-fermion techniques. Here we diagonalize the transfer matrices using
inversion identities to make clear the relation to critical dense polymers. The methods we use, based
on Yang-Baxter integrability, functional equations and physical combinatorics, are more general and
can also be applied to percolation [45] and to the six-vertex model at other roots of unity.

3.2 Inversion identities on the cylinder

The inversion identities for the single row transfer matrix of the free-fermion six vertex model with
periodic boundary conditions are

T (u)T (u+ λ) =
(
cos2N u− sin2N u

)
I, N odd (3.8a)

T d(u)T d(u+ λ) =
(
cos2N u+ sin2N u+ 2(−1)d sinN u cosN u

)
I

= (cosN u+ (−1)(N−ℓ)/2 sinN u)2I, N even (3.8b)

These are specializations of the elliptic inversion identities [7] of the eight-vertex free-fermion model.
The derivation following [7] is given in Appendix A. For N even, the inversion identity is different in
the sectors with even and odd parity for d. Alternatively, these inversion identities can be written as

T (u)T (u+ λ) =
(
cos2N u+ (−1)N sin2N u

)
I + (sinu cos u)NJ (3.9)

where J = 0 for N odd and, for N even, J is a diagonal matrix with entries ±2 alternating in the
different d sectors. The commuting transfer matrices T (u) admit a common set of right eigenvectors
independent of u. They can therefore be simultaneously diagonalized by a similarity transformation.
It therefore follows that the inversion identities are satisfied by the individual eigenvalues.
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As in the case of critical dense polymers, J is related to the braid transfer matrices B
+ and its

inverse B
− by

B
± = lim

u→±i∞
T (u)

sinN (u+ λ/2)
, (B±)2 =

{

2I + (−1)N/2J, N even

2I, N odd
(3.10)

3.3 Exact eigenvalues

The inversion identities (3.8a) and (3.8b), for N odd and N even, precisely coincide with the N
odd and N even inversion identities of critical dense polymers [33]. In the rest of Section 3, we
summarize the solution of these inversion identities and the relevant results of [33]. From the Temperley-
Lieb equivalence, it is expected that the spectra of the free-fermion six-vertex model and critical
dense polymers agree up to the possibility of different degeneracies. The new content of the following
subsections is that we find empirically that the spectra of these two models precisely coincide sector-
by-sector as matched by the identification (3.6) of the number of defects ℓ of critical dense polymers
with |Sz|. In particular, the central charge c = −2 and conformal weights ∆ = −1

8 , 0,
3
8 of dimers are

given by the same calculations using the Euler-Maclaurin formula carried out previously for critical
dense polymers so we do not repeat these calculations.

For N and ℓ = |Sz| even, the transfer matrix eigenvalue spectra breaks up into Ramond and
Neveu-Schwarz sectors according to the even or odd parity of ℓ/2 = |Sz|/2. As in (5.24) and (5.25)
of [33], the eigenvalues T (u) factor into elementary contributions arising from zeros in the complex
u-plane in the form of single or double 1-strings on the line Reu = π

4 at ordinates

yj =







−1
2 log tan

1
2 (j−

1
2 )π

N , Z4: N, ℓ odd, j = 1, 2, . . . , N

−1
2 log tan

(j− 1
2)π

N
, R: N, ℓ/2 even, j = 1, 2, . . . , N/2

−1
2 log tan

jπ

N
, NS: N even, ℓ/2 odd, j = 1, 2, . . . , N/2 − 1

(3.11)

A typical pattern of zeros is shown in Figure 6. From [33], the elementary excitation energy of a single
1-string at position j in the upper or lower half plane is

Ej =







1
2(j − 1

2), Z4: N , ℓ odd

j − 1
2 , R: N, ℓ/2 even

j, NS: N even, ℓ/2 odd

(3.12)

For N odd, the contributions from 1-strings in each half-plane are encoded in one-column diagrams
as shown in Figures 7 and 8. For N even, the contributions from the single or double 1-strings in
each half-plane are encoded in double-column diagrams as shown in Figures 9–12. Each column of a
two-column diagram has a 0- or 1-string at a given position or height, labelled by j. These combine
to encode no 1-string, a single 1-string or a double 1-string at each height j or position (3.11) in the
pattern of zeros. By convention, zeros on the real u-axis are regarded as being in the upper half plane.

Explicitly, as shown in [33,34], the solution of the inversion identity (3.8b) by factorization of the
eigenvalues yields

T (u) = ǫ
(−i)N/2e−Niu

2N−1/2

N∏

j=1

(

e2iu + iǫj tan
(2j − 1)π

4N

)

, Z4: N, ℓ odd (3.13a)
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−π
4

π
4

π
2

3π
4

y5

y4

y3

y2

y1

−y5
−y4

−y3

−y2

−y1

Figure 6: A typical pattern of zeros in the complex u-plane for the ℓ even sectors. Here, N = 12 and
ℓ = |Sz| = 2. The ordinates of the locations of the zeros uj are yj = −1

2 log tan
jπ
N , j = 1, 2, . . . , N/2−1.

At each position j, there is either two 1-strings with Reuj = π/4, two 2-strings with real parts
Re uj = −π/4, 3π/4 or one 1-string and one 2-string. A double zero is indicated by a black circle, a
single zero by a grey circle and an unoccupied position by an open circle.

T (u) =
ǫ(−i)

N
2 e−Niu

2N−1

N∏

j=1

(

e2iu + iǫj tan
(2j−1)π

2N

)

, R: N, ℓ/2 even (3.13b)

T (u) =
ǫ(−i)

N
2Ne−Niu

2N−1

N∏

j=1

j 6=N/2

(

e2iu + iǫj tan
jπ

N

)

, NS: N even, ℓ/2 odd (3.13c)

where ǫj = ±1. The overall sign ǫ = ±1 of each eigenvalue is not fixed by the inversion relation. These
sign factors ǫ are fixed by [34]

ǫ = (−1)
N−s

4 , ǫR = ǫNS = (−1)⌊
|s|+2

4
⌋, s = Sz (3.14)

Separating the zeros in the upper and lower half planes leads to

T (u) =
µ (−i)N/2

2N−1/2eNiu

N+1
2∏

j=1

(

e2iu + iǫj tan
(2j − 1)π

4N

)
N−1

2∏

j=1

(

ǭje
2iu + i cot

(2j − 1)π

4N

)

, Z4: N, ℓ odd

(3.15a)

T (u) =
µ(−i)

N
2 e−Niu

2N−1

⌊(N+2)/4⌋
∏

j=1

(

e2iu + iǫj tan
(2j − 1)π

2N

)(

ǭje
2iu + i cot

(2j − 1)π

2N

)
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×
⌊N/4⌋
∏

j=1

(

e2iu + iµj tan
(2j − 1)π

2N

)(

µ̄je
2iu + i cot

(2j − 1)π

2N

)

, R: N, ℓ/2 even (3.15b)

T (u) =
µ(−i)

N−2
2 Ne(2−N)iu

2N−1

⌊N/4⌋
∏

j=1

(

e2iu + iǫj tan
jπ

N

)(

ǭje
2iu + i cot

jπ

N

)

×
⌊(N−2)/4⌋
∏

j=1

(

e2iu + iµj tan
jπ

N

)(

µ̄je
2iu + i cot

jπ

N

)

, NS: N even, ℓ/2 odd (3.15c)

where µ, ǫj , ǭj , µj , µ̄j = ±1. Up to the overall choice of sign µ, there are either 2N or 2N−2 possible
eigenvalues allowing for all excitations but they are not all physical and are subject to selection rules.
The number of 1-strings mj plus the number of 2-strings nj at any given position is

mj + nj =

{

1, Z4

2, R, NS
(3.16)

3.4 Patterns of zeros and selection rules

σ 3 2 1 0 −1 −2 −3 −4

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

Figure 7: Z4 sectors (N , ℓ odd): Minimal configurations of single-columns with energy E(σ) =
1
2σ(σ + 1

2). The quantum number σ = ⌊n/2⌋ − m is given by the excess of blue (even j) over red
(odd j) 1-strings. At each empty position j, there is a 2-string. This analyticity strip is in the upper-
half complex u-plane rotated by 180 degrees so that position j = 1 (furthest from the real axis) is at
the bottom.

The combinatorial description of the spectra follows precisely as in [33]. The building blocks of
the spectra in the upper half-plane consist of the “symplectic” q-binomials

[
n

m

]

q

=

[
n

⌊n/2⌋ − σ

]

q

=







q−
1
2
σ(σ+ 1

2
)
∑

σ-single
columns

q
∑

j mjEj , Z4: N, ℓ odd

q−
1
2
σ2

∑

σ-double
columns

q
∑

j mjEj , R: N, ℓ/2 even

q−
1
2
σ(σ+1)

∑

σ-double
columns

q
∑

j mjEj , NS: N even, ℓ/2 odd

(3.17)

as shown in Figures 8, 10 and 12. For the one-column diagrams in the Z4 sectors, the excess σ of the

14



[7
5

]

q
= + + + + + + + + + +1 q 2q2 2q3 3q4 3q5 3q6 2q7 2q8 q9 q10

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

Figure 8: Z4 sectors (N , ℓ odd): Combinatorial enumeration by single-columns of the q-binomial
[
n
m

]

q
=
[
7
5

]

q
= q−3/2

∑
q
∑

j mjEj . The excess of blue (even j) over red (odd j) 1-strings is given by the

quantum number σ = ⌊n/2⌋−m = −2. The elementary excitation energy of a 1-string at position j is
Ej =

1
2(j − 1

2 ). The lowest energy configuration has energy E(σ) = 1/4 + 5/4 = 3/2 = 1
2σ(σ + 1

2). At
each empty position j, there is a 2-string. This analyticity strip is in the upper-half complex u-plane
rotated by 180 degrees so that position j = 1 (furthest from the real axis) is at the bottom. The
elementary excitations (of energy 1) are generated by either inserting two 1-strings at positions j = 1
and j = 2 or promoting a 1-string at position j to position j + 2. Notice that

[
n
m

]

q
=
[

n
n−m

]

q
as q-

polynomials but they have different combinatorial interpretations because they have different quantum
numbers σ. In the lower half-plane, q is replaced with q̄ and no rotation is required. In this example,
ℓ = 7 and the value σ̄ = −2 of the quantum number in the lower half-plane is related to σ = −2 in the
upper half-plane by the selection rules σ + σ̄ = −(ℓ+ 1)/2 and 1

2(σ − σ̄) ∈ Z.
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σ −3 −2 −1 0 1 2 3

j = 1

j = 2

j = 3

Figure 9: Ramond sectors (N even, ℓ/2 even): Minimal configurations of double-columns with energy
E(σ) = 1

2σ
2. The quantum number σ = ⌊n/2⌋−m is given by the excess of blue (right) over red (left)

1-strings. At each position j, the number of 1-strings mj plus the number of 2-strings nj is 2. This
analyticity strip is in the upper-half complex u-plane rotated by 180 degrees so that position j = 1
(furthest from the real axis) is at the bottom.

[6
2

]

q
= + + + + + + + +1 q 2q2 2q3 3q4 2q5 2q6 q7 q8

j = 1

j = 2

j = 3

Figure 10: Ramond sectors (N even, ℓ/2 even): Combinatorial enumeration by double-columns of the
q-binomial

[n
m

]

q
=
[6
2

]

q
= q−1/2

∑
q
∑

j mjEj . The excess of blue (right) over red (left) 1-strings is given

by the quantum number σ = ⌊n/2⌋−m = 1. The elementary excitation energy of a 1-string at position
j is Ej = (j − 1

2). The lowest energy configuration has energy E(σ) = 1
2σ

2 = 1
2 . At each position j,

there are mj 1-strings and nj = 2 −mj 2-strings. This analyticity strip is in the upper-half complex
u-plane rotated by 180 degrees so that position j = 1 (furthest from the real axis) is at the bottom.
The elementary excitations (of energy 1) are generated by either inserting a left-right pair of 1-strings
at position j = 1 or promoting a 1-string at position j to position j + 1. Notice that

[n
m

]

q
=
[ n
n−m

]

q

as q-polynomials but they admit different combinatorial interpretations because they have different
quantum numbers σ. In the lower half-plane, q is replaced with q̄ and no rotation is required. The
value σ̄ of the quantum number in the lower half-plane is related to σ in the upper half-plane by the
selection rules σ + σ̄ = ℓ/2 and 1

2(σ − σ̄) ∈ Z.
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[7
7

]

q

[7
6

]

q

[7
5

]

q

[7
4

]

q

[7
3

]

q

[7
2

]

q

[7
1

]

q

[7
0

]

q

σ −4 −3 −2 −1 0 1 2 3
σmin −3 −2 −1 0 0 1 2 3

j = 1

j = 2

j = 3

Figure 11: Neveu-Schwarz sectors (N even, ℓ/2 odd): Minimal configurations of double-columns within
the binomials

[
n
m

]

q
=
[
7
m

]

q
. The energy is E(σ) = 1

2σ(σ + 1) where the quantum number is σ =

⌊n/2⌋ −m. The excess of blue (right) over red (left) 1-strings in these minimal configurations is σmin

as given in (3.20). At each position j, the number of 1-strings mj plus the number of 2-strings nj is
2. This analyticity strip is in the upper-half complex u-plane rotated by 180 degrees so that position
j = 1 (furthest from the real axis) is at the bottom.

[7
2

]

q
= + + + + + + + + + +1 q 2q2 2q3 3q4 3q5 3q6 2q7 2q8 q9 q10

j = 1

j = 2

j = 3

Figure 12: Neveu-Schwarz sectors (N even, ℓ/2 odd): Combinatorial enumeration by double-columns of
the q-binomial

[
n
m

]

q
=
[
7
2

]

q
= q−1

∑
q
∑

j mjEj . The number of positions is (n− 1)/2 = 3. The quantum

number is σ = ⌊n/2⌋−m = 1. The excess of blue (right) over red (left) 1-strings is σ = 1 or σ+1 = 2.
The elementary excitation energy of a 1-string at position j is Ej = j. The lowest energy configuration
has energy E(σ) = 1

2σ(σ+1) = 1. At each position j, there are mj 1-strings and nj = 2−mj 2-strings.
This analyticity strip is in the upper-half complex u-plane rotated by 180 degrees so that position j = 1
(furthest from the real axis) is at the bottom. The elementary excitations (of energy 1) are generated
by either inserting a left or right 1-string at position j = 1 or promoting a 1-string at position j to
position j + 1. Notice that

[
n
m

]

q
=
[

n
n−m

]

q
as q-polynomials but they admit different combinatorial

interpretations because they have different quantum numbers σ and σ′ = −σ− 1. In calculating σ′, we
have used the fact that n in (3.27) is odd. In the lower half-plane, q is replaced with q̄ and no rotation
is required. The value σ̄ of the quantum number in the lower half-plane is related to σ in the upper
half-plane by the selection rules σ + σ̄ = (ℓ− 2)/2 and 1

2(σ − σ̄) ∈ Z.
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number meven of even 1-strings over the number modd of odd 1-strings is

σ = meven −modd =

⌊n/2⌋
∑

k=1

m2k −
⌊(n+1)/2⌋
∑

k=1

m2k−1, Z4: N, ℓ odd (3.18)

For R, NS sectors, the excess σ = ⌊n/2⌋ −m of the number of 1-strings in the right column minus the
number of 1-strings in the left column of the double-column diagram is given by

mright −mleft =

{

σ, R: ℓ/2 even

σ or σ + 1, NS: ℓ/2 odd
(3.19)

The minimal configurations in the upper half-plane with energy E(σ) are as shown in Figures 7, 9 and
11.

There are similar building blocks in the lower half-plane with σ replaced by σ̄. In each half-plane,
the minimum energy configurations satisfy

mright −mleft = σmin =

{

σ, σ ≥ 0

σ + 1, σ < 0
(3.20)

By convention, any zeros on the real u axis are pushed into the upper half plane. Empirically determined
selection rules dictate that, in a sector with ℓ defects, the quantum numbers of the groundstate satisfy

σ = σ̄ =







(ℓ− 1)/4, ℓ = 1 mod 4, Z4: N odd

−(ℓ+ 1)/4, ℓ = 3 mod 4, Z4: N odd

ℓ/4, R: ℓ/2 even

(ℓ− 2)/4, NS: ℓ/2 odd

(3.21)

with ℓ = |4σ + 1| = 1, 3, 5, 7, . . . in the Z4 sectors. Similarly, it is found that all excitations satisfy the
selection rules

σ + σ̄ =

{
1
2(ℓ− 1), ℓ = 1 mod 4

−1
2(ℓ+ 1), ℓ = 3 mod 4

Z4: N odd 1
2(σ − σ̄) ∈ Z (3.22)

σ + σ̄ =

{

ℓ/2, R: ℓ/2 even

(ℓ− 2)/2, NS: ℓ/2 odd
1
2(σ − σ̄) ∈ Z (3.23)

These selection rules hold [34] equally for critical dense polymers and the free-fermion six-vertex model.

3.5 Modular invariant partition function

Using the q-binomial building blocks and empirical selection rules for N odd or even, gives the finitized
partition functions as in [33]. In the Z4 sectors with N, ℓ odd

Z
(N)
ℓ (q) =







(qq̄)−c/24
∑

k∈Z
q∆2k+ℓ/2

[
N+1

2

N−ℓ
4

− k

]

q

q̄∆2k−ℓ/2

[
N−1

2

N−ℓ
4

+ k

]

q̄

(qq̄)−c/24
∑

k∈Z
q∆2k+ℓ/2

[
N+1

2

N+ℓ+2
4

+k

]

q

q̄∆2k−ℓ/2

[
N−1

2

N+ℓ−2
4

−k

]

q̄

N−ℓ = 0 mod 4 (3.24)
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Z
(N)
ℓ (q) =







(qq̄)−c/24
∑

k∈Z
q∆2k+ℓ/2

[
N+1

2

N−ℓ+2
4

−k

]

q

q̄∆2k−ℓ/2

[
N−1

2

N−ℓ−2
4

+k

]

q̄

(qq̄)−c/24
∑

k∈Z
q∆2k+ℓ/2

[
N+1

2

N+ℓ
4

+ k

]

q

q̄∆2k−ℓ/2

[
N−1

2

N+ℓ
4

− k

]

q̄

N−ℓ = 2 mod 4 (3.25)

For given mod 4 parities of N − ℓ, these expressions are equivalent as partition functions but, in each
case, the first form is used for the combinatorial interpretation when ℓ = 1 mod 4 and the second form
when ℓ = 3 mod 4. As in [33], this leads to

ℓ≤N∑

ℓ∈2N−1

Z
(N)
ℓ (q) = 1

2(qq̄)
− c

24
− 3

32

[
N+1

2∏

n=1

(1+q
2n−1

4 )

N−1
2∏

n=1

(1+q̄
2n−1

4 ) +

N+1
2∏

n=1

(1−q
2n−1

4 )

N−1
2∏

n=1

(1−q̄
2n−1

4 )

]

(3.26)

In the R and NS sectors with N even

Z
(N)
ℓ (q) =







(qq̄)−c/24
∑

k∈Z
q∆2k+ℓ/2

[
2⌊N+2

4
⌋

⌊N+2−ℓ
4

⌋−k

]

q

q̄∆2k−ℓ/2

[
2⌊N

4
⌋

⌊N−ℓ
4

⌋+k

]

q̄

, R: ℓ/2 even

(qq̄)−c/24
∑

k∈Z
q∆2k+ℓ/2

[
2⌊N

4
⌋ + 1

⌊N+2−ℓ
4

⌋−k

]

q

q̄∆2k−ℓ/2

[
2⌊N+2

4
⌋− 1

⌊N−ℓ
4

⌋+k

]

q̄

, NS: ℓ/2 odd

(3.27)

In these formulas the central charge and conformal weights, given by the Euler-Maclaurin formula, are

c = −2, ∆ = ∆̄ = ∆j = −1

8
, 0,

3

8
, j = 0, 1, 2, ∆j =

j2 − 1

8
(3.28)

The modular invariant partition function Z(q) of the free-fermion six-vertex model is given by
taking the trace over all Sz sectors with N even. Using the explicit expressions in terms of products,
as in [33], and summing over the ℓ sectors with multiplicities 2 arising from Sz = ±ℓ yields the finitized
partition function of the free-fermion six-vertex model

ZN (q) = Z
(N)
0 + 2

ℓ≤N
∑

ℓ∈4N
Z

(N)
ℓ (q) + 2

ℓ≤N
∑

ℓ∈4N−2

Z
(N)
ℓ (q) (3.29a)

= 1
2 (qq̄)

− c
24

− 1
8

[ ⌊N+2
4

⌋
∏

n=1

(1 + qn−
1
2 )2

⌊N
4
⌋

∏

n=1

(1 + q̄n−
1
2 )2 +

⌊N+2
4

⌋
∏

n=1

(1− qn−
1
2 )2

⌊N
4
⌋

∏

n=1

(1− q̄n−
1
2 )2
]

+ 2(qq̄)−
c
24

⌊N
4
⌋

∏

n=1

(1 + qn)2
⌊N−2

4
⌋

∏

n=1

(1 + q̄n)2 (3.29b)

It is easily checked that the counting of states ZN (1) = 2N is correct at q = q̄ = 1.
Taking the thermodynamic limit N → ∞ gives the conformal modular invariant partition function

Z0(q)+2
∑

ℓ∈4N
Zℓ(q) =

|ϑ0,2(q)|2 + |ϑ2,2(q)|2
|η(q)|2 = |χ̂−1/8(q)|2 + |χ̂3/8(q)|2

2
∑

ℓ∈4N−2

Zℓ(q) =
|ϑ1,2(q)|2 + |ϑ3,2(q)|2

|η(q)|2 =
2|ϑ1,2(q)|2
|η(q)|2 = 2|χ̂0(q) + χ̂1(q)|2

Z(q) = Z0(q)+2
∑

ℓ∈2N
Zℓ(q) =

1

|η(q)|2
3∑

j=0

|ϑj,2(q)|2 = |χ̂−1/8(q)|2 + 2|χ̂0(q)+χ̂1(q)|2 + |χ̂3/8(q)|2

= |κ2
0(q)|2 + 2|κ2

1(q)|2 + |κ2
2(q)|2

(3.30)
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where the u(1) and W-irreducible characters are

κ
n
j (q) =

1

η(q)
ϑj,n(q),

χ̂−1/8(q) =
1

η(q)
ϑ0,2(q), χ̂0(q) =

1

2η(q)
[ϑ1,2(q) + η(q)3]

χ̂3/8(q) =
1

η(q)
ϑ2,2(q), χ̂1(q) =

1

2η(q)
[ϑ1,2(q)− η(q)3]

(3.31)

and the Dedekind eta and theta functions are

η(q) = q1/24
∞∏

n=1

(1− qn), ϑj,n(q) =
∑

k∈Z
q

(j+2kn)2

4n (3.32)

The MIPF Z(q) of the free-fermion six-vertex model thus precisely agrees with the MIPF of dimers
in the usual orientation [15] and critical dense polymers [34]. The latter coincidence is nontrivial as a
modified trace is needed to close the cylinder to a torus for this lattice loop model. Although the MIPF
agrees with symplectic fermions [29], which is a logarithmic theory, there are no Jordan cells and no
indication of logarithmic behaviour for dimers on the cylinder. Indeed, viewing the free-fermion model
as the critical eight-vertex model at the decoupling point [46], the MIPF reduces to the square of the
Ising model MIPF with central charge c = 1

2

Z(q) = ZIsing(q)
2 (3.33)

Comparing (3.29b) with [28] shows that this relation also holds at the level of the finitized MIPFs. To
see Jordan cells for dimers, we consider the vacuum boundary condition on the strip in Section 5.

4 Periodic Dimers on a Finite M ×N Rectangular Lattice

The problem of counting of periodic dimers on a finite M × N rectangular lattice, in the usual
orientation, has been solved exactly [10, 14]. The number of periodic dimer configurations is given
by

Z̃M×N = 1
2

(
Z̃

1/2,1/2
M×N + Z̃

0,1/2
M×N + Z̃

1/2,0
M×N

)
(4.1)

where

Z̃α,β
M×N =

N/2−1
∏

n=0

M/2−1
∏

m=0

4
(

sin2
2π(n + α)

N
+ sin2

2π(m+ β)

M

)

, M,N = 2, 4, 6, . . . (4.2)

Explicitly, arranging the entries in a symmetric matrix gives

(Z̃M×N ) =










8 36 200 1156 · · ·
36 272 3,108 39,952 · · ·
200 3,108 90,176 3,113,860 · · ·
1,156 39,952 3,113,860 311,853,312 · · ·

...
...

...
...

. . .










, M,N = 2, 4, 6, . . . (4.3)

The exact counting of periodic dimer configurations on a finite M ×N rectangular lattice, in the
45 degree rotated orientation, is given by taking the trace of the Mth power of the transfer matrix (3.1)
with eigenvalues (3.13). The expressions, however, are more involved than for the usual orientation.
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Explicitly, setting ρ =
√
2 at the isotropic point u = π/4 with ǫj = ±1, the number of periodic dimer

configurations with the rotated orientation is

ZM×N =







2MN+1
N∑

s=−N+2;4

∑

∑N
j=1 ǫj=s

(−1)
M(N−s)

4

N∏

j=1

cosM
(
ǫjtj − π

4

)
, N odd

2MN
N∑

s=−N
s = 0 mod 4

∑

∑N
j=1 ǫj=−|s|

(−1)
M(2N+s)

4

N∏

j=1

cosM
(
ǫjt

R
j − π

4

)

+ 2MN
N∑

s=−N
s = 2 mod 4

∑

∑N
j=1 ǫj=−|s|

(−1)
M(2N+|s|+2)

4

N∏

j=1

cosM
(
ǫjt

NS
j − π

4

)
, N even

(4.4)

where s = Sz in the sums increments in steps of 4 as indicated and

tj =
(2j − 1)π

4N
, tRj =

(2j − 1)π

2N
, tNS

j =

{
jπ
N , j 6= N/2

0, j = N/2
(4.5)

The restrictions on s are compatible with the selection rules and the signs ǫ in (3.14) ensure that the
eigenvalues contribute with the correct overall sign. The trigonometric identities [47]

N∏

j=1

cos tj = 21/2−N ,

N∏

j=1

cos tRj = (−1)N/2 21−N ,

N∏

j=1,j 6=N/2

cos tNS
j = (−1)N/2N 21−N (4.6)

are used to evaluate the products in the denominators arising from the simplification

1 + ǫj tan tj =
cos tj + ǫj sin tj

cos tj
=

√
2
cos(ǫjtj − π

4 )

cos tj
, ǫj = ±1 (4.7)

For N even, precisely half the eigenvalues in (4.4) come from the Ramond sectors and half from the
Neveu-Schwarz sectors in accord with the binomial identity

N∑

s=−N ;4

(
N

N−s
2

)

=

N−2∑

s=−N+2;4

(
N

N−s
2

)

= 2N−1, s = Sz (4.8)

Arranging the entries in a symmetric matrix, the number of periodic dimer configurations for the
rotated orientation is

(ZM×N ) =












4 8 16 32 64 . . .
8 24 80 288 1,088 . . .
16 80 448 2,624 15,616 . . .
32 288 2,624 26,752 280,832 . . .
64 1,088 15,616 280,832 5,080,064 . . .
...

...
...

...
...

. . .












, M,N = 1, 2, 3, . . . (4.9)

It is easy to recognize the integer sequences [48] in the first 3 rows. The formulas (4.4) look unwieldy
but are straightforward to code in Mathematica [40]. In particular, for comparison, the number of
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periodic dimer configurations Z̃8×8 on an 8× 8 square lattice in the usual orientation and the number
Z8×8 in the rotated orientation are

Z̃8×8 = 311,853,312, Z8×8 = 38,735,278,017,380,352 (4.10)

The difference in magnitude observed here is due to the difference in the unit cells by a linear factor√
2 on each edge of the rectangle. This is in accord with the fact that an M × N rectangle in the

original orientation has MN/2 dimers compared to MN dimers in the rotated orientation. While the
precise counting of dimer configurations differs in the two orientations, the asymptotic growth (2.26)
per dimer coincide

(Z̃2M,N )
1

MN ∼ (Z̃M,2N )
1

MN ∼ (ZM,N )
1

MN ∼ exp(2Gπ ) (4.11)

5 Vacuum Boundary Conditions on the Strip and Jordan Cells

The vacuum boundary condition for dimers is shown in Figure 13. This is the “vacuum” in the sense
that it is the Kac (r, s) = (1, 1) boundary condition with no boundary seams. The normalized double
row transfer matrix is

D(u) =
1

sin 2u u u

u u

. . . . . .

. . . . . .

(5.1)

where the left and right triangular boundary weights are

= x, = x−1, = 1, = 1 (5.2)

The commuting double row transfer matrices [49] satisfy the same inversion identity [31, 32] as
critical dense polymers with vacuum boundary conditions

D(u)D(u+ λ) =

(
cos2Nu− sin2Nu

cos2u− sin2u

)2

I (5.3)

Similarly, the ordinates yj of the 1-strings and their conformal excitation energies Ej are given by the
same expressions

yj = − i

2
ln tan

Ejπ

2N
, Ej =

{

j, N even

j − 1
2 , N odd

(5.4)

Moreover, the ground state patterns of zeros coincide for N even (ℓ = |Sz| = 0, (r, s) = (1, 1)) and
N odd (ℓ = |Sz| = 1, (r, s) = (1, 2)). It follows that the same calculation, based on Euler-Maclaurin,
applies with the expected results c = −2, ∆1,1 = 0 and ∆1,2 = −1

8 . The difference between dimers
and critical dense polymers on the strip with vacuum boundary conditions resides in the counting and
classification of states.

The Hamiltonian for dimers with the vacuum boundary condition on the strip is given by

H = −1
2

d

du
logD(u)

∣
∣
∣
u=0

(5.5)

22



xx−1

Figure 13: Typical dimer configuration on a 6×4 strip with vacuum boundary conditions in the vertex,
particle and dimer representations. For the vertex representation, the boundary arrows can be in either
one of the two possible directions (corresponding to a particle or vacancy in the particle representation).
Particles move up and right on odd rows and up and left on even rows. The number of particles/down
arrows inside the strip is conserved from double row to double row but not necessarily in intermediate
rows. For dimers, there are two different zigzag edges allowed independently on the left and right edges
of each double row. The left boundary zigzags have weights x, x−1 as shown. The right boundary
zigzags have weight 1. The mapping between arrow and dimer configurations at the upper and lower
edges is one-to-many since an apricot face can allow two dimer configurations locally both of which
should be summed over to get the correct face weights. This is automatically accounted for in taking
the trace in the vertex representation.
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It coincides with the Uq(sl(2))-invariant XX Hamiltonian [36] of the free-fermion six-vertex model

H = −
N−1∑

j=1

ej = −1
2

N−1∑

j=1

(σx
j σ

x
j+1 + σy

jσ
y
j+1)− 1

2 i(σ
z
1 − σz

N ) (5.6)

= −
N−1∑

j=1

(f †
j fj+1 + f †

j+1fj)− i(f †
1f1 − f †

NfN) (5.7)

where σx,y,z
j are Pauli matrices and fj =

1
2(σ

x
j − iσy

j ), f
†
j = 1

2 (σ
x
j + iσy

j ). This Hamiltonian is manifestly
not Hermitian. Nevertheless, the spectra of this Hamiltonian is real [38]. The Jordan canonical forms
for N = 2 and N = 4 respectively are

0⊕
(

0 1
0 0

)

⊕ 0 (5.8)

0⊕
(

0 1
0 0

)

⊕ 0⊕ 0⊕
(

0 1
0 0

)

⊕ 0⊕ (−
√
2)⊕

(

−
√
2 1

0 −
√
2

)

⊕ (−
√
2)⊕

√
2⊕

(√
2 1

0
√
2

)

⊕
√
2 (5.9)

In the continuum scaling limit, the Hamiltonian gives the Virasoro dilatation operator L0. Assuming
that the Jordan cells persist in this scaling limit, the representation is reducible yet indecomposable
and so, as a CFT, dimers is logarithmic.

6 Conclusion

It is often stated that two-dimensional lattice models are exactly solvable if their Boltzmann weights
satisfy the local Yang-Baxter equation so that they admit a family of commuting transfer matrices with
an infinite number of conserved quantities. In a sense, Yang-Baxter integrability is the gold standard
for solvability on the lattice. Until now, dimers has been solved exactly by Pfaffian and other techniques
but not by Yang-Baxter methods. Now, dimers is brought firmly into the framework of Yang-Baxter
integrability. For periodic transfer matrices, through the special inversion identity, this has enabled the
detailed calculation of the dimer model spectra on the cylinder in the Z4, Ramond and Neveu-Schwarz
sectors for arbitrary finite sizes. Taking a trace to form a torus and combining these sectors at the
isotropic point u = λ

2 = π
4 yields explicit formulas for the counting of dimer configurations on arbitrary

periodic M × N rectangular lattices. Because the orientation of the dimers is rotated by 45◦, the
precise counting of these states differs from the counting of configurations for the usual orientation on
the square lattice even though the residual entropies coincide.

The inclusion of spatial anisotropy and the spectral parameter u enables the analytic calculation of
the complete finite-size spectra of dimers yielding the central charge c = −2 and conformal weights ∆ =
−1

8 , 0,
3
8 . Remarkably, the modular invariant partition function precisely coincides with that of critical

dense polymers sector-by-sector even though critical dense polymers requires the implementation of a
modified trace. Because dimers (six-vertex model at λ = π

2 ) exhibits Jordan cells on the strip with
the vacuum boundary conditions, we argue that dimers is best described as a logarithmic CFT with
central charge c = −2 and effective central charge ceff = 1.

Since the bulk CFTs appear to be the same, at least in terms of spectra, it is tempting to argue that
dimers and critical dense polymers lie in the same universality class. But, in considering universality,
it should be borne in mind that, since these two theories exhibit different Jordan cell structures, they
should be regarded as different logarithmic CFTs. Of course, critical dense polymers LM(1, 2) is just
the first member of the family of logarithmic minimal models LM(p, p′) [50]. It is therefore natural to

ask whether the coincidence, at λ = (p′−p)π
p′ = π

2 , between the LM(p, p′) and six-vertex model MIPFs

extends to other values of (p, p′).

24



Yang-Baxter integrability opens up further avenues for future research. Commuting double row
transfer matrices and inversion identities can now be used to elucidate the role of different dimer
boundary conditions on the strip. These are expected to include Kac and Robin (r, s) type boundary
conditions. Insight may also be gained into boundary conditions analogous to the “current” boundary
conditions (left and right boundary arrows both point to the right) and to domain wall boundary
conditions and Aztec diamonds (left and right boundary arrows both point out). We plan to study
these questions in a future paper [51]. Finally, it is known that the inversion identity methods extend
off-criticality to the elliptic eight-vertex free-fermion model [7]. It would be of interest to study the
off-critical dimer model given by the free-fermion eight-vertex model at λ = π

2 . An extension of
the mapping of [24] and Figure 1 suggests that this should involve horizontal and vertical dimers in
addition to their 45◦ rotated counterparts. Interestingly, through the mappings in Figure 1, the critical
six-vertex model (2.1) can also be viewed as a critical model of interacting dimers with anisotropic
3-dimer interactions associated with the face weights a(u) and b(u).
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A Proof of Inversion Identities on the Cylinder

For completeness, in this appendix, we present the derivation following Felderhof [7] of the inversion
identities (3.8) for periodic boundary conditions on the cylinder

T d(u)T d(u+ λ) =
(
cos2N u− sin2N u

)
I, N odd (A.1a)

T d(u)T d(u+ λ) =
(
cos2N u+ sin2N u+ 2(−1)d sinN u cosN u

)
I, N even (A.1b)

For simplicity, since the transfer matrix is independent of the gauge, we work in the gauge g = ρ = 1.
For a 2-column at position j with fixed aj , bj , let us define the following four 4× 4 matrices

R

(
bj
aj

)

=

u

u+λ

aj

bj

c

c′

d

d′

(A.2)

Ordering the four intermediate basis states as

(
c′

c

)

=

(
0
0

)

,

(
1
0

)

,

(
0
1

)

,

(
1
1

)

(A.3)

the explicit form of these R matrices is

R

(
0
0

)

=









− sinu cosu 0 0 0
0 cos2 u 0 0
0 1 − sin2 u 0
0 0 0 sinu cos u









, R

(
1
1

)

=









sinu cosu 0 0 0
0 − sin2 u 1 0
0 0 cos2 u 0
0 0 0 − sinu cosu
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R

(
1
0

)

=









0 0 0 0
cos u 0 0 0
cos u 0 0 0
0 − sinu sinu 0









, R

(
0
1

)

=









0 sinu − sinu 0
0 0 0 cos u
0 0 0 cos u
0 0 0 0









(A.4)

It follows that the matrix entries of the left-side of the inversion identity are given by the trace of an
ordered matrix product

[T d(u)T d(u+ λ)]a,b = Tr
N∏

j=1

R

(
bj
aj

)

, aj, bj = 0, 1 (A.5)

where the lower and upper row configurations are a = {a1, a2, . . . , aN}, b = {b1, b2, . . . , bN}.
Carrying out a similarity transformation with the matrices

S =









0 x1 x2 0
x3 0 0 x4

x5 0 0 x6

0 x7 x8 0









=









0 0 1 0
0 0 0 −1
1 0 0 0
0 1 −1 0









, x1 = x3 = x6 = 0, x2 = x5 = x7 = 1, x4 = x8 = −1

(A.6)

S−1 =









0 y1 y2 0
y3 0 0 y4
y5 0 0 y6
0 y7 y8 0









=









0 0 1 0
1 0 0 1
1 0 0 0
0 −1 0 0









, y1 = y6 = y8 = 0, y2 = y3 = y4 = y5 = 1, y7 = −1

(A.7)

brings the four “diagonal” R matrices simultaneously to upper triangular form

SR

(
0
0

)

S−1 =









cos2 u 0 0 1
0 sinu cosu 0 0
0 0 − sinu cosu 0
0 0 0 − sin2 u









(A.8a)

SR

(
1
1

)

S−1 =









cos2 u 0 0 0
0 − sinu cosu 0 0
0 0 sinu cosu 0
0 0 0 − sin2 u









(A.8b)

SR

(
1
0

)

S−1 =









0 0 cosu 0
0 0 0 sinu
0 0 0 0
0 0 0 0









(A.8c)

SR

(
0
1

)

S−1 =









0 − cos u 0 0
0 0 0 0
0 0 0 sinu
0 0 0 0









(A.8d)

The required inversion identities (A.1) then follow immediately

T d(u)T d(u+ λ) =
[
(cos2 u)N + (− sin2 u)N + (−1)N−d(sinu cos u)N + (−1)d(sinu cos u)N

]
I (A.9)
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