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A Novel Proof for Kimberling’s Conjecture
on Doubly Fractal Sequences

Matin Amini and Majid Jahangiri

Abstract. A sequence is a fractal sequence if it contains itself as pgorsubsequence. (The
self-containment property resembles that of visual flag# doubly fractal sequence of inte-
gers is defined by operations called upper trimming and lésreming. C. Kimberling proved
that signature sequences are doubly fractal and conjekctheeconverse. This article gives a
procedure for constructing doubly fractal sequences amegrKimberling’s conjecture.

1. INTRODUCTION Geometric fractals are characterized by visual self-sirityl.
That is, zooming on a visual fractal shows that the origitralcture is repeated inside
itself infinitely many times. Clark Kimberling noticed thatsequence of integers can
also contain infinitely many copies of itelf in two differewtlys B], and he studied
properties of such sequenc85®,[3,/5/§. Briefly, operations called upper trimming
and lower trimming, applied to suitable sequen®gdeave behind the sequente
itself. An integer sequence of this sort is called a doubdgtal sequence. Signature
sequences as defined in Secfidn 2, are known to be doublwlfrécthis article we
introduce a procedure for constructing doubly fractal eges, and then we apply the
procedure to prove Kimberling’s conjecture that the sigrasequences are tbaly
doubly fractal sequences.

The structure of this article is as follows: definitions aeduired preliminaries are
given in SectiomR2. The constructive procedure is given icti8e[3, and the relation-
ship between the doubly fractal sequences and the sigregigreences is discussed in
Sectiorl 4.

2. DEFINITIONS AND PRELIMINARIES  SupposeS = (s, sa, S3,...) is a fi-
nite or infinite sequence of numbers in the Nedf positive integers. Thé&th term of
a sequenc§ is denoted by5 (k) or sy.

Definition 1. Suppose every positive integer occur$inrhe upper trimmed (sub)sequence
of S, denoted by\g, is the sequence that remains after every first occurreneesoy
positive integer is removed froti.

Definition 2. Suppose every positive integer occur$irrhe lower trimmed (sub)sequence
of S, denoted by 5, is the sequence that remains aftés subtracted from every term
of S and then alDs are removed.

Definition 3. A sequence is a doubly fractal sequencesf = 1 andAg = Vg = S.

Definition 4. Asequencél,2,...,n,m,...)in Nwherem # nis aninitial segment
of type 1A sequencél, 1,...,1,m,...)inN, wherem > 1, is aninitial segment of
type 2

Now suppose every positive integer occurs at least onée rhe index of thesth
occurrence of: is denoted byl (n).

Lemma 5. Supposés is a doubly fractal sequence. Théhhas an initial segment of
type 1 or 2, and, a fortiori, that segment is one of these twméo(1,2,3,...n,1)
or(1,1,...,1,2).

N——

n
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Proof. First s; = 1 by Definition[3. We continue with two cases. Casesl:# 1.
If sy > 2,thenVg(l) =s, —1>1# 1, so that necessarily, = 2. Letn be the
greatest integek for which s, = k. If s,,.1 > n+ 1,thenAg(n) >n+1#n =
Sn, cONtrary toAg = S. Therefores,, .; = 1 as desired.

Case 25, = 1. Suppose, = 1fork =1,2,...,nands,,; # n.If s,;1 > 2, then
Vs(1l) = 8,41 — 1 > 1= s, contrary tovg = S. Therefores,, ; = 2. [ |

The sequence below is an example of a doubly fractal sequerich the second term
is not 2.

S=(1,1,1,2,1,2,1,2,3,1,2,3,1,2,...).

Definition 6. Let ¢ be a real number and l8i/y = {i + j# : i,j € N}, a multiset
depending ofl. We arrange the numbersid, in nondecreasing order(with duplicates
if and only if § is rational) so that the ordered set can be represented as

My = (s, +anb),—, .
The sequencs, = (s, $2, 3, - . .) is thesignature (sequence) 6f For example,
S =(1,2,3,4,1,5,2,6,3,7,4,8,1,5,9,2,6,10,3,7,11,4,8....),
and the signature df/7 is
Sir=(1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,2,1...).
The next proposition is proved ifi]
Proposition 7. The signature of a positive numbgis a doubly fractal sequence.

Theorem 8. Distinct numbers have distinct signatures.

Proof. Prove this by contradiction. Without loose of generalilss@me thaty < .
Denote the decimal representation of these numbets-asu.a,aqas. . . a,, ... and
B = b.bibsbs ... by, ..., In whicha, = b, for all K <m anda,, 1 # b, y1. Now
for everye, f,g,h € Nwe havee + fa < g + haifand only ife + f3 < g + hp.
Equivalentlyg — e + (h — f)a. > Oifand onlyifg — e+ (h — f)5 > 0. Sowe can
write (—bb1bobs . .. byby 1) + B10™T > 0 but we have —bbybobs . . . bbby y1) +
al10™*! < 0, a contradiction. n

3. THE CONSTRUCTION PROCEDURE In this section we explain a procedure
which constructs doubly fractal sequences. The initiahsag of a doubly fractal se-

quences is either(1,2,3,...,n,1) or (1,1,...,1,2), by Lemmdb. We assume the
N——
former case, and the latter is translated to the formert ®itlr S = (1,2,3,...,n),

we extend this sequence in a way that in each step the resiitays a doubly fractal
(finite) sequence. The terms of this initial segment is refbythe main termsA
subsequence starts fromiderm until the next: term is called &lock In each step,
the least positive integer which has not appeared until itnéhis denoted bys.

Extend.S by rewriting the main terms after the initial block, term & and in
each step insefly after each main term excepti.e., we have

S=(1,23,...,n,1,n+1,2,n+2,3,n+3,...,n—1,2n — 1,n).
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We start withA = (1,2,3,4) and we haved = (1,2,3,4,1,5,2,6,3,7,4). The
next /s is 2n. Until now the sequenc# is extended two blocks. To construth
block, b > 3, we proceed as follows. Constitute the sequenfrem the terms be-
tweenn — 1 andn exclusive in the(b — 1)th block of S and addl to all of them,
and the sequendé from the terms between last+ 1 and its previous: term, ex-
clusive (e.g., in sequencé we havet = (8) andt’ = (1)). In other words, for each
E>2t=(S(Iy(n—=1)+1)+1,...,5S{Ix(n) — 1)+ 1)andt' = (S(Lx_1(n) +
1)y, S(Ix—1(n+1) —1)).

Proposition 9. The/s and 1 appear once int andt’, respectively, and all of other
terms oft andt’ are the same.

Proof. For the sequencg, from Properties (Il) and (Ill), for any > 1, terms be-
tweenS(Ix(n)) and.S(I,(n + 1)) should turn to terms betwee$\,(n — 1)) and
S(Ix(n)) by lower-trimming, and should turn to terms betweg(/,_(n)) and
S(I;—1(n + 1)) by upper-trimming. So the terms betweg(/>(n)) and S(Ix(n +
1)) are upper-trimmed to the terms betwe®(/;(n)) and S(I;(n + 1)), which is
only thel term. In the case of the sequeng®nly onels is inserted between each
main term, especially, — 1 andn, by the construction. So there's oeterm in
the subsequenc®’ = (S(I;_1(n)),...,S([x—1(n +1))) and onels term in the
subsequenc® = (S(I(n —1)),...,S(Ix(n))). The lower-trimming ofS turn the
terms of 7" to that terms ofS in which the terms ofl” will turn to them whenS
is upper-trimmed. Therefore all elementsBfandT” other thanls and 1 are the
same. [

We denote byndz;(¢s) andIndz (1) the position of’s and1 in the sequences
t andt’, respectively. We constitute a new sequefcigom ¢ andt’ by merging them
as follows. Write all terms of’ into the P except 1. Ifindz;({s) = Indxy (1) then
insert one of the subsequendéds/s) or (¢s,1) in the position/ndx,(¢s) into the
P sequence. For example, in the casedof= (1,2,3,4,1,5,2,6,3,7,4), the next
/s will be 8 and P would be(1,8) or (8,1). On the other hand, ifndx,(¢s) #
Indz (1) then insert thels and 1 simultaneously into theP in the positions
Indz,(¢s) and Indzy (1), respectively. For example, if = (a;,{s,as,as,ay)
andt’ = (ay,as,as,1,a4) then P = (ay,ls,as,a3,1,a,). Setd = Indxp(1l) —
Indzp(ls). In P, delete the terml and all the terms aftet (P may become a null
sequence). To extend the sequefSc@ppendP to the end ofS. After that we want
to rewrite the terms of last block, term by term such that & #ppended term is a
main termm, then insert the news into the positionfndxzs(¢s) = Indxs(m) — d
ifand only if I5(1) < Indxs(¢s) < Ig(n).In The case of our example sequente

P = () andd = —1, so itis extended as
A=(1,2,3,4
1,5,2,6,3,7,4

1,8,5,2,9,6,3,10,7,4).

For the next extension,= (11,8) andt’ = (1,8). Let P = (11, 1,8) and sod = 1.
Deletingl and the terms after from P and extending the sequenderesults that

A=(1,2,34,
17 57 27 67 37 77 47
1,8,5,2,9,6,3,10,7,4, 11,

January 2014] A NOVEL PROOF FOR KIMBERLING’'S CONJECTURE 3



Mathematical Assoc. of America American Mathematical Miynt21:1 October 6, 2018 12:22a.m. Proof-of-Kimberlingrecture 1" [tex page 4

1,8,5,12,2,9,6,13,3,10,7,14,4).

At this pointt = (11, 8,15) andt’ = (11, 1,8), soIndz,(¢s) # Indxy(1). There-
fore P = (11, 1,8, 15) and thend = —2. Deletingl and the terms aftelrfrom P and
appending it to the end of demonstrates

A=(1,2,3,4,
1,5,2,6,3,7, 4,
1,8,5,2,9,6,3,10,7,4, 11,
1,8,5,12,2,9,6,13,3,10,7,14,4, 11,
1,8,15,5,12,2,9,16,6,13,3,10,17,7, 14, 4).

Note that sincel = —2, £s's are inserted two positions after each main term except

for n term.

Now assume that we start with the latter possibility of alisegment, i.e.5 =
(1,1,...,1,2). In this case first we construct the doubly fractal sequetarntesl by
N——

n

S"=(1,2,...,n) and then extend by computingkth term ofS, k£ > n + 1, by the
formula

S(k) = #{s; | s; = s}, 1 <i < k}.
For example, beginning froM’ = (1,1, 1, 1, 2) then the extended sequence will be
A =(1,1,1,1,

2,1,2,1,2,1,2,

3,1,2,3,1,2,3,1,2,3,1,

4,2,3,1,4,2,3,1,4,2,3,1,4,1,

5,3,1,4,2,5,3,1,4,2,5,3,1,4,2,5).
4. THE MAIN RESULT In this section we discuss the correspondence of the family
of doubly fractal sequences and the the family of signataceiences. Iri4] C. Kim-

berling conjectured that these two families should be timeesddere we try to give a
proof to this conjecture.

Lemma 10. Then + 2 first terms of a doubly fractal sequence can be the initial
segment of infinitely many signature sequences.

Proof. For any real numbetr — 1 < 6 < n, we have the relations
1+0<24+0<...<n+0<1+20<n+1+6

in the construction of its signature sequence. So the lirsigment of the signature

sequence of each — 1 < 6 < n will be (1,2,3,...,n,1,n+ 1). In the case of

#1 < 0 < 1, the inequalities are in the form:
I+40<1420<...<14n0<24+60<1+ (n+1)0.
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Theorem 11. Every doubly fractal sequencecan be made by the construction pro-
cedure explained if3. Also every sequence made by that procedure is doubhafract

Proof. The conclusion will be obtained by induction. L&tbe an arbitrary doubly
fractal sequence. By Lemnia 5, the initial block of every dgitactal sequence is
either(1,2,3,...,n,1) or (1,1,1,...,1,2). This coincides with the initial assump-
tion in our construction. Now suppose that until thia occurrence of the integer,
the sequencé coincides with the sequence obtained At extension steps of the
procedure off3. Define by, (n) = (S(Ix(n)),...,S(Irt1(n) — 1)) the k-th part
of S. SinceS is assumed to be doubly fractal, then Property (1) impliest:t

Ay 1) = Br(n). (4.1)

So the first term of th¢k + 1)st part isn. and all other of the main terms must appear
in (k + 1)st part. Since théth part contains a term + 1, so by Property (ll), the
(k + 1)st part should contain + 1. Let 7 denote the terms appeared betweesnd
n+ linthe(k + 1)st part ofS. From the construction rule of in §3, onel appears
betweenn andn + 1 in the kth part of S, so 1 should also appear in. Property
(1) implies that all the terms ofr must be lower-trimmed to terms betwe@n+ 1)st
termn — 1 and(k + 1)st termn (which was the sequence formed in the procedure
§3). There is oneCg in t in kth part, soLs + 1 should appear imr. So the merging
sequence of andt’ as described in the proceduj® will exactly be the same as the
m sequence and the distanceladdndLs + 1 in 7 is equal to thel defined in§3. The
rule of allocating the news’s in the construction procedure assures that the distance
of them from the main terms satisfy the Properties (1) ahigl. (I [ |

Theorem 12 (Main Theorem). Each sequencé = (s, s, S3, .. .) constructed by
the procedure explained i is a signature one. In other words, every doubly fractal
sequence is a signature sequence.

Proof. If there exists a positive real numb@rsuch thatS, = S, we are done. On
the contrary, suppose there is not any real nunfbguch that its signature sequence
coincides withS. Suppos€1,2,...,n} are the main terms of. By Lemmd0, first
n + 2 terms ofS is the initial segment of infinitely many signature sequantets,,,
m > n + 2, be the longest initial segment 8fwhich is the initial segment of some
signature sequenc¥. Sos,,1 # s, . By PropositioriJ7,S” is also doubly fractal,
therefore one could assignor /s in the construction step of,,,1, by Theorenf II1.
Without lose of generality assume thgt ,; = 1. The cases,,,1 = {5 is similar.
According to the doubly fractality of’, the term aftefs in S’ must bel. SoS), ., =
(S15---55m, s, 1) is the initial segment of”. Sinces/, ., is the initial segment of
the signature sequenég, they satisfy the inequalities

si+a0<sy,+af<...<s +a,0<ls+0<1+a, .0 (42

in which for1 < i < m+ 1, a! is the number of iterations of, in S.. By the as-
sumption, since,,, 1 is not the initial segment of any signature sequence, onleeof t

inequalities

31—|—a19§82—|—a29§...§Sm—|—am9§1—|—am+19 (43)
must be unsatisfied. Sineg = a',a; = a),...,a, = a,,, a1 = al,,, Unsatis-
fiability of (4.3) contradicts the satisfiability df (4.2). [
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