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A Novel Proof for Kimberling’s Conjecture
on Doubly Fractal Sequences

Matin Amini and Majid Jahangiri

Abstract. A sequence is a fractal sequence if it contains itself as a proper subsequence. (The
self-containment property resembles that of visual fractals) A doubly fractal sequence of inte-
gers is defined by operations called upper trimming and lowertrimming. C. Kimberling proved
that signature sequences are doubly fractal and conjectured the converse. This article gives a
procedure for constructing doubly fractal sequences and proves Kimberling’s conjecture.

1. INTRODUCTION Geometric fractals are characterized by visual self-similarity.
That is, zooming on a visual fractal shows that the original structure is repeated inside
itself infinitely many times. Clark Kimberling noticed thata sequence of integers can
also contain infinitely many copies of itelf in two differentways [4], and he studied
properties of such sequences [1, 2, 3, 5, 6]. Briefly, operations called upper trimming
and lower trimming, applied to suitable sequencesS, leave behind the sequenceS
itself. An integer sequence of this sort is called a doubly fractal sequence. Signature
sequences as defined in Section 2, are known to be doubly fractal. In this article we
introduce a procedure for constructing doubly fractal sequences, and then we apply the
procedure to prove Kimberling’s conjecture that the signature sequences are theonly
doubly fractal sequences.
The structure of this article is as follows: definitions and required preliminaries are
given in Section 2. The constructive procedure is given in Section 3, and the relation-
ship between the doubly fractal sequences and the signaturesequences is discussed in
Section 4.

2. DEFINITIONS AND PRELIMINARIES SupposeS = (s1, s2, s3, . . .) is a fi-
nite or infinite sequence of numbers in the setN of positive integers. Thekth term of
a sequenceS is denoted byS(k) or sk.

Definition 1. Suppose every positive integer occurs inS. The upper trimmed (sub)sequence
of S, denoted by∧S, is the sequence that remains after every first occurrence ofevery
positive integer is removed fromS.

Definition 2. Suppose every positive integer occurs inS. The lower trimmed (sub)sequence
of S, denoted by∨S, is the sequence that remains after1 is subtracted from every term
of S and then all0s are removed.

Definition 3. A sequenceS is a doubly fractal sequence ifs1 = 1 and∧S = ∨S = S.

Definition 4. A sequence(1, 2, . . . , n,m, . . .) in Nwherem 6= n is aninitial segment
of type 1. A sequence(1, 1, . . . , 1,m, . . .) in N, wherem > 1, is aninitial segment of
type 2.

Now suppose every positive integer occurs at least once inS. The index of thekth
occurrence ofn is denoted byIk(n).

Lemma 5. SupposeS is a doubly fractal sequence. ThenS has an initial segment of
type 1 or 2, and, a fortiori, that segment is one of these two forms: (1, 2, 3, . . . n, 1)
or (1, 1, . . . , 1

︸ ︷︷ ︸

n

, 2).
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Proof. First s1 = 1 by Definition 3. We continue with two cases. Case 1:s2 6= 1.
If s2 > 2, then∨S(1) = s2 − 1 > 1 6= 1, so that necessarilys2 = 2. Let n be the
greatest integerk for which sk = k. If sn+1 ≥ n + 1, then∧S(n) ≥ n+ 1 6= n =
sn, contrary to∧S = S. Therefore,sn+1 = 1 as desired.
Case 2:s2 = 1. Supposesk = 1 for k = 1, 2, . . . , n andsn+1 6= n. If sn+1 > 2, then
∨S(1) = sn+1 − 1 > 1 = s1, contrary to∨S = S. Thereforesn+1 = 2.

The sequence below is an example of a doubly fractal sequencewhich the second term
is not 2.

S = (1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, . . .).

Definition 6. Let θ be a real number and letMθ = {i + jθ : i, j ∈ N}, a multiset
depending onθ. We arrange the numbers inMθ in nondecreasing order(with duplicates
if and only if θ is rational) so that the ordered set can be represented as

Mθ = (sh + ahθ)
∞
h=1 .

The sequenceSθ = (s1, s2, s3, . . .) is thesignature (sequence) ofθ. For example,

S√
13 = (1, 2, 3, 4, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8 . . .),

and the signature of1/7 is

S1/7 = (1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1 . . .).

The next proposition is proved in [1].

Proposition 7. The signature of a positive numberθ is a doubly fractal sequence.

Theorem 8. Distinct numbers have distinct signatures.

Proof. Prove this by contradiction. Without loose of generality, assume thatα < β.
Denote the decimal representation of these numbers asα = a.a1a2a3 . . . am . . . and
β = b.b1b2b3 . . . bm . . ., in which ak = bk, for all k ≤ m andam+1 6= bm+1. Now
for everye, f, g, h ∈ N we havee+ fα < g + hα if and only if e+ fβ < g + hβ.
Equivalentlyg − e+ (h− f)α > 0 if and only if g − e+ (h− f)β > 0. So we can
write (−bb1b2b3 . . . bmbm+1) + β10m+1 ≥ 0 but we have(−bb1b2b3 . . . bmbm+1) +
α10m+1 < 0, a contradiction.

3. THE CONSTRUCTION PROCEDURE In this section we explain a procedure
which constructs doubly fractal sequences. The initial segment of a doubly fractal se-
quenceS is either(1, 2, 3, . . . , n, 1) or (1, 1, . . . , 1

︸ ︷︷ ︸

n

, 2), by Lemma 5. We assume the

former case, and the latter is translated to the former. Start with S = (1, 2, 3, . . . , n),
we extend this sequence in a way that in each step the result isalways a doubly fractal
(finite) sequence. The terms of this initial segment is referred by the main terms. A
subsequence starts from a1 term until the nextn term is called ablock. In each step,
the least positive integer which has not appeared until thenin S is denoted byℓS.

ExtendS by rewriting the main terms after the initial block, term by term and in
each step insertℓS after each main term exceptn, i.e., we have

S = (1, 2, 3, . . . , n, 1, n + 1, 2, n + 2, 3, n + 3, . . . , n− 1, 2n − 1, n).
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We start withA = (1, 2, 3, 4) and we haveA = (1, 2, 3, 4, 1, 5, 2, 6, 3, 7, 4). The
next ℓS is 2n. Until now the sequenceS is extended two blocks. To constructbth
block, b ≥ 3, we proceed as follows. Constitute the sequencet from the terms be-
tweenn − 1 andn exclusive in the(b − 1)th block ofS and add1 to all of them,
and the sequencet′ from the terms between lastn + 1 and its previousn term, ex-
clusive (e.g., in sequenceA we havet = (8) andt′ = (1)). In other words, for each
k > 2, t = (S(Ik(n− 1) + 1) + 1, . . . , S(Ik(n)− 1) + 1) andt′ = (S(Ik−1(n) +
1), . . . , S(Ik−1(n+ 1)− 1)).

Proposition 9. TheℓS and1 appear once int and t′, respectively, and all of other
terms oft andt′ are the same.

Proof. For the sequencet′, from Properties (II) and (III), for anyk > 1, terms be-
tweenS(Ik(n)) andS(Ik(n + 1)) should turn to terms betweenS(Ik(n − 1)) and
S(Ik(n)) by lower-trimming, and should turn to terms betweenS(Ik−1(n)) and
S(Ik−1(n + 1)) by upper-trimming. So the terms betweenS(I2(n)) andS(I2(n +
1)) are upper-trimmed to the terms betweenS(I1(n)) andS(I1(n + 1)), which is
only the1 term. In the case of the sequencet, only oneℓS is inserted between each
main term, especiallyn − 1 andn, by the construction. So there’s one1 term in
the subsequenceT ′ = (S(Ik−1(n)), . . . , S(Ik−1(n + 1))) and oneℓS term in the
subsequenceT = (S(Ik(n − 1)), . . . , S(Ik(n))). The lower-trimming ofS turn the
terms ofT ′ to that terms ofS in which the terms ofT will turn to them whenS
is upper-trimmed. Therefore all elements ofT andT ′ other thanℓS and1 are the
same.

We denote byIndxt(ℓS) andIndxt′(1) the position ofℓS and1 in the sequences
t andt′, respectively. We constitute a new sequenceP from t andt′ by merging them
as follows. Write all terms oft′ into theP except 1. IfIndxt(ℓS) = Indxt′(1) then
insert one of the subsequences(1, ℓS) or (ℓS, 1) in the positionIndxt(ℓS) into the
P sequence. For example, in the case ofA = (1, 2, 3, 4, 1, 5, 2, 6, 3, 7, 4), the next
ℓS will be 8 andP would be(1, 8) or (8, 1). On the other hand, ifIndxt(ℓS) 6=
Indxt′(1) then insert theℓS and 1 simultaneously into theP in the positions
Indxt(ℓS) and Indxt′(1), respectively. For example, ift = (a1, ℓS, a2, a3, a4)
and t′ = (a1, a2, a3, 1, a4) thenP = (a1, ℓS, a2, a3, 1, a4). Setd = IndxP (1) −
IndxP (ℓS). In P , delete the term1 and all the terms after1 (P may become a null
sequence). To extend the sequenceS, appendP to the end ofS. After that we want
to rewrite the terms of last block, term by term such that if the appended term is a
main termm, then insert the newℓS into the positionIndxS(ℓS) = IndxS(m)− d
if and only if IB(1) ≤ IndxS(ℓS) ≤ IB(n). In The case of our example sequenceA,
P = () andd = −1, so it is extended as

A = (1, 2, 3, 4

1, 5, 2, 6, 3, 7, 4

1, 8, 5, 2, 9, 6, 3, 10, 7, 4).

For the next extension,t = (11, 8) andt′ = (1, 8). LetP = (11, 1, 8) and sod = 1.
Deleting1 and the terms after1 fromP and extending the sequenceA results that

A = (1, 2, 3, 4,

1, 5, 2, 6, 3, 7, 4,

1, 8, 5, 2, 9, 6, 3, 10, 7, 4, 11,

January 2014] A NOVEL PROOF FOR KIMBERLING’S CONJECTURE 3



Mathematical Assoc. of America American Mathematical Monthly 121:1 October 6, 2018 12:22 a.m. Proof-of-Kimberling-Conjecture˙1˙.tex page 4

1, 8, 5, 12, 2, 9, 6, 13, 3, 10, 7, 14, 4).

At this pointt = (11, 8, 15) andt′ = (11, 1, 8), soIndxt(ℓS) 6= Indxt′(1). There-
foreP = (11, 1, 8, 15) and thend = −2. Deleting1 and the terms after1 fromP and
appending it to the end ofA demonstrates

A = (1, 2, 3, 4,

1, 5, 2, 6, 3, 7, 4,

1, 8, 5, 2, 9, 6, 3, 10, 7, 4, 11,

1, 8, 5, 12, 2, 9, 6, 13, 3, 10, 7, 14, 4, 11,

1, 8, 15, 5, 12, 2, 9, 16, 6, 13, 3, 10, 17, 7, 14, 4).

Note that sinced = −2, ℓS ’s are inserted two positions after each main term except
for n term.

Now assume that we start with the latter possibility of initial segment, i.e.,S =
(1, 1, . . . , 1
︸ ︷︷ ︸

n

, 2). In this case first we construct the doubly fractal sequence started by

S′ = (1, 2, . . . , n) and then extendS by computingkth term ofS, k > n+ 1, by the
formula

S(k) = #{s′i | s
′
i = s′k, 1 ≤ i ≤ k}.

For example, beginning fromA′ = (1, 1, 1, 1, 2) then the extended sequence will be

A′ = (1, 1, 1, 1,

2, 1, 2, 1, 2, 1, 2,

3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,

4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 1,

5, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5).

4. THE MAIN RESULT In this section we discuss the correspondence of the family
of doubly fractal sequences and the the family of signature sequences. In [4] C. Kim-
berling conjectured that these two families should be the same. Here we try to give a
proof to this conjecture.

Lemma 10. Then + 2 first terms of a doubly fractal sequence can be the initial
segment of infinitely many signature sequences.

Proof. For any real numbern− 1 ≤ θ ≤ n, we have the relations

1 + θ < 2 + θ < . . . < n+ θ ≤ 1 + 2θ ≤ n+ 1 + θ

in the construction of its signature sequence. So the initial segment of the signature
sequence of eachn − 1 ≤ θ ≤ n will be (1, 2, 3, . . . , n, 1, n + 1). In the case of
1

n+1
≤ θ ≤ 1

n
, the inequalities are in the form:

1 + θ < 1 + 2θ < . . . < 1 + nθ ≤ 2 + θ ≤ 1 + (n+ 1)θ.
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Theorem 11. Every doubly fractal sequenceS can be made by the construction pro-
cedure explained in§3. Also every sequence made by that procedure is doubly fractal.

Proof. The conclusion will be obtained by induction. LetS be an arbitrary doubly
fractal sequence. By Lemma 5, the initial block of every doubly fractal sequence is
either(1, 2, 3, ..., n, 1) or (1, 1, 1, . . . , 1, 2). This coincides with the initial assump-
tion in our construction. Now suppose that until thekth occurrence of the integern,
the sequenceS coincides with the sequence obtained bykth extension steps of the
procedure of§3. Define byPk(n) = (S(Ik(n)), . . . , S(Ik+1(n)− 1)) thek-th part
of S. SinceS is assumed to be doubly fractal, then Property (II) implies that:

∧Pk+1(n) = Pk(n). (4.1)

So the first term of the(k + 1)st part isn and all other of the main terms must appear
in (k + 1)st part. Since thekth part contains a termn + 1, so by Property (II), the
(k + 1)st part should containn+ 1. Let π denote the terms appeared betweenn and
n+ 1 in the(k + 1)st part ofS. From the construction rule oft′ in §3, one1 appears
betweenn andn + 1 in the kth part ofS, so 1 should also appear inπ. Property
(III) implies that all the terms ofπ must be lower-trimmed to terms between(k + 1)st
termn− 1 and(k + 1)st termn (which was thet sequence formed in the procedure
§3). There is oneLS in t in kth part, soLS + 1 should appear inπ. So the merging
sequence oft andt′ as described in the procedure§3 will exactly be the same as the
π sequence and the distance of1 andLS + 1 in π is equal to thed defined in§3. The
rule of allocating the newℓS ’s in the construction procedure assures that the distance
of them from the main terms satisfy the Properties (II) and (III).

Theorem 12 (Main Theorem). Each sequenceS = (s1, s2, s3, . . .) constructed by
the procedure explained in§3 is a signature one. In other words, every doubly fractal
sequence is a signature sequence.

Proof. If there exists a positive real numberθ such thatSθ = S, we are done. On
the contrary, suppose there is not any real numberθ such that its signature sequence
coincides withS. Suppose{1, 2, . . . , n} are the main terms ofS. By Lemma 10, first
n+ 2 terms ofS is the initial segment of infinitely many signature sequences. LetSm,
m ≥ n+ 2, be the longest initial segment ofS which is the initial segment of some
signature sequenceS′. Sosm+1 6= s′m+1. By Proposition 7,S′ is also doubly fractal,
therefore one could assign1 or ℓS in the construction step ofsm+1, by Theorem 11.
Without lose of generality assume thatsm+1 = 1. The casesm+1 = ℓS is similar.
According to the doubly fractality ofS′, the term afterℓS in S′ must be1. SoS′

m+2 =
(s1, . . . , sm, ℓS, 1) is the initial segment ofS′. SinceS′

m+2 is the initial segment of
the signature sequenceS′, they satisfy the inequalities

s′1 + a′
1θ ≤ s′2 + a′

2θ ≤ . . . ≤ s′m + a′
mθ ≤ ℓS + θ ≤ 1 + a′

m+2θ (4.2)

in which for 1 ≤ i ≤ m+ 1, a′
i is the number of iterations ofs′i in S′

i. By the as-
sumption, sinceSm+1 is not the initial segment of any signature sequence, one of the
inequalities

s1 + a1θ ≤ s2 + a2θ ≤ . . . ≤ sm + amθ ≤ 1 + am+1θ (4.3)

must be unsatisfied. Sincea1 = a′
1, a2 = a′

2, . . . , am = a′
m, am+1 = a′

m+2, unsatis-
fiability of (4.3) contradicts the satisfiability of (4.2).
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