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ON xD-GENERALIZATIONS OF STIRLING NUMBERS AND

LAH NUMBERS VIA GRAPHS AND ROOKS

SEN-PENG EU, TUNG-SHAN FU, YU-CHANG LIANG, AND TSAI-LIEN WONG

Abstract. This paper studies the generalizations of the Stirling numbers of both kinds
and the Lah numbers in association with the normal order problem in the Weyl algebra
W = 〈x,D|Dx − xD = 1〉. Any word ω ∈ W with m x’s and n D’s can be expressed in
the normally ordered form ω = xm−n

∑

k≥0

{

ω

k

}

xkDk, where
{

ω

k

}

is known as the Stirling

number of the second kind for the word ω. This study considers the expansions of re-
stricted words ω in W over the sequences {(xD)k}k≥0 and {xDkxk−1}k≥0. Interestingly,
the coefficients in individual expansions turn out to be generalizations of the Stirling num-
bers of the first kind and the Lah numbers. The coefficients will be determined through
enumerations of some combinatorial structures linked to the words ω, involving decreas-
ing forest decompositions of quasi-threshold graphs and non-attacking rook placements
on Ferrers boards. Extended to q-analogues, weighted refinements of the combinatorial
interpretations are also investigated for words in the q-deformed Weyl algebra.

1. Introduction

The Stirling numbers of both kinds and the Lah numbers are ubiquitous in combinatorics.
In this paper, we study the generalizations of these numbers in association with the normal
order problem in the Weyl algebra W generated by two operators x and D with the relation
Dx−xD = 1. A well known example of W is the algebra of differential operators applied to
polynomials f(x), where the operator x acts as multiplication by x, and D as differentiation
with respect to x, i.e., (Df)(x) = d

dx
f(x). Clearly, (Dx−xD)f(x) = f(x). Any word ω ∈ W

can be expressed in the normally ordered form

ω =
∑

i,j≥0

cijx
iDj

for some non-negative integers cij . The problem of finding explicit formula for the normal
order coefficients cij appears in the theory of quantum mechanics, where the symbols x

and D act as the boson annihilation operator and creation operator, denoted as a and a†,
satisfying the commutation relation aa† − a†a = 1.

1.1. Stirling numbers of the second kind. For the word ω = (xD)n, it has long been
obtained by Scherk [13] in 1823 that the normal order coefficients of (xD)n are the Stirling

numbers of the second kind, denoted as
{

n
k

}

, i.e.,

(xD)n =
n
∑

k=0

{

n

k

}

xkDk. (1)

These numbers
{

n
k

}

count the number of ways to partition the set [n] := {1, 2, . . . , n} into
k non-empty subsets. Generally speaking, any word ω in the Weyl algebra W with m x’s

1
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and n D’s can be uniquely expanded over the sequence {xkDk}k≥0 as

ω = xm−n
∑

k≥0

{

ω

k

}

xkDk. (2)

The integer sequence (
{

ω
k

}

)k≥0 are called the Stirling numbers of the second kind for the

words ω. There are a lot of studies on the normal order coefficients
{

ω
k

}

for various words ω in

W . Specifically, we focus on the combinatorial interpretations of
{

ω
k

}

involving independent
set decompositions of quasi-threshold graphs in [6] and rook placements on Ferrers boards
in [12, 18].

Navon [12] associated ω with a Ferrers board within the rectangle in the plane Z × Z

with the lower-left corner (0, 0) and the upper-right corner (m,n) and gave a combinatorial
interpretation of

{

ω
k

}

in terms of (non-attacking) rook placements on the board. Varvak
demonstrated this interpretation and obtained a q-analogous result [18, Theorems 3.2 and
6.3]. Recently, Engbers, Galvin and Hilyard [6] studied the numbers

{

ω
k

}

on a collection of
restricted words ω ∈ W . A word ω ∈ W with n x’s and n D’s is called a Dyck word of
semi-length n if every prefix of ω has at least as many x’s as D’s. The word ω is associated
with a quasi-threshold graph Gω (defined in next section) and the number

{

ω
k

}

is realized
as the number of ways to partition the graph Gω into k non-empty independent sets [6,
Theorem 2.3].

1.2. Stirling numbers of the first kind and Lah numbers for words. The motivation
of this study comes from the following Stirling inversion, mentioned in [16, Exercise 1.46].

xnDn =

n
∑

k=0

(−1)n−k

[

n

k

]

(xD)k, (3)

where
[

n
k

]

is the Stirling number of the first kind. Among other combinatorial interpreta-

tions,
[

n
k

]

counts the number of ways to partition the complete graph on vertices [n] into
k-component decreasing forests [15, A008275]. By a decreasing tree we mean an unordered
rooted tree in which every path from the root is decreasing.

It turns out that the Dyck words in W can also be expanded uniquely over the sequence
{(xD)k}k≥0. For a Dyck word ω with n x’s and n D’s, we propose the Stirling numbers of

the first kind for the word ω, denoted as
[

ω
k

]

, defined by the following expansion

ω =

n
∑

k=0

(−1)n−k

[

ω

k

]

(xD)k. (4)

Note that the normal order coefficients of ω can be obtained by applying the transform in
Eq. (1) to the expansion in Eq. (4).

Closed to the Stirling numbers of both kinds, the (unsigned) Lah numbers, denoted as
〈

n
k

〉

, are the connecting constants of the polynomial identity

x(x+ 1) · · · (x+ n− 1) =
n
∑

k=0

〈

n

k

〉

x(x− 1) · · · (x− k + 1),

which yields
〈

n

k

〉

=

n
∑

j=k

[

n

j

]{

j

k

}

.
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One of the combinatorial interpretations of
〈

n
k

〉

is the number of ways to partition the
complete graph on vertices [n] into a disjoint union of k decreasing forests. For combinatorial
interest, we derive an identity

xnDn =

n
∑

k=0

(−1)n−k

〈

n

k

〉

xDkxk−1, (5)

linking the word xnDn to the sequence {xDkxk−1}k≥0 by the Lah numbers.
For any word ω ∈ W with n x’s and n D’s, starting with an x, we propose the Lah

numbers for the word ω, denoted as
〈

ω
k

〉

, defined by the following expansion

ω =

n
∑

k=0

(−1)n−k

〈

ω

k

〉

xDkxk−1. (6)

Note that the normal order coefficients of ω can be obtained by applying the following
transform to Eq. (6)

xDnxn−1 =

n
∑

k=0

〈

n

k

〉

xkDk. (7)

For convenience, sometimes we call
{

ω
k

}

,
[

ω
k

]

the xD-Stirling numbers and call
〈

ω
k

〉

the xD-

Lah numbers. One of our main purposes is to give combinatorial interpretations of
[

ω
k

]

and
〈

ω
k

〉

for Dyck words ω in terms of decreasing forest decompositions of the quasi-threshold
graphs Gω (Theorem 2.2 and Theorem 2.6) and in terms of rook placements on Ferrers
boards (Corollary 4.3 and Corollary 4.6).

1.3. q-analogues of Stirling numbers and Lah numbers. We shall extend the combi-
natorial interpretations of

[

ω
k

]

and
〈

ω
k

〉

in the context of the q-deformed Weyl algebra W of
operators x and D with the relation Dx− qxD = 1 (q denotes an indeterminate).

The problem of normal ordering in the q-deformed Weyl algebra W has been studied by
Katriel [9, 10] and Schork [14]. For any word ω in W with m x’s and n D’s, a q-analogue
of the xD-Stirling number of the second kind, denoted as

{

ω
k

}

q
, is defined by the following

expansion

ω = xm−n
∑

k≥0

{

ω

k

}

q

xkDk. (8)

Varvak [18] gave a combinatorial interpretation for
{

ω
k

}

q
by defining an inversion statistic

for the rook placements on the Ferrers board associated with ω. For Dyck words ω, Engbers
et al. gave a combinatorial interpretation for

{

ω
k

}

q
, which is quite involved, by defining a

weight function for the partitions of the associated graph Gω into k non-empty independent
sets [6, Theorem 2.12].

Extended to q-analogues, for a Dyck word ω ∈ W with n x’s and n D’s, we define the
q-analogue of the xD-Stirling number of the first kind, denoted as

[

ω
k

]

q
, by the expansion

ω =

n
∑

k=0

(−1)n−k

[

ω

k

]

q

(xD)k. (9)
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For a Dyck word ω ∈ W with n x’s and n D’s, starting with an x, we define the q-analogue
of the xD-Lah number, denoted as

〈

ω
k

〉

q
, by the expansion

ω =

n
∑

k=0

(−1)n−k

〈

ω

k

〉

q

xDkxk−1. (10)

Our second set of main results are weighted realizations of
[

ω
k

]

q
(Theorems 3.1 and 4.1) and

〈

ω
k

〉

q
(Theorem 4.4).

Meanwhile, considering the expansion of the specific word ω = (xD)n in Eq. (10), we
present a new q-Stirling number of the second kind (Theorem 3.5), which is different from the
one introduced by Carlitz [4]. Moreover, considering the expansion of the word ω = xnDn

in Eq. (10), we present a new q-Lah number,
〈

n
k

〉

q
, realized by weighted decreasing forest

decompositions of a complete graph (Theorem 3.8). We remark that this is different from
the q-Lah numbers of Garsia and Remmel [7] and the q-Lah numbers defined by Lindsay,
Mansour and Shattuck in [11].

1.4. Rook factorization theorem and chromatic polynomials. Regarding rook re-
placements on Ferrers boards, a prominent result in rook theory is the Rook Factorization
Theorem, given by Goldman, Joichi and White [8], which states that a factorial rook poly-
nomial can be completely factorized into linear factors. There is also a q-counting rook
configuration result given by Garsia and Remmel [7].

Varvak [18] demonstrated that the xD-Stirling number of the second kind,
{

ω
k

}

, and its
q-analogue can be evaluated by the factorial rook polynomials. Making use of Varvak’s
method, we derive the following identities for evaluating of the numbers

[

ω
k

]

and
〈

ω
k

〉

n
∑

k=0

(−1)n−k

[

ω

k

]

zk =

n
∏

i=1

(z − ci + i) =

n
∑

k=0

(−1)n−k

〈

ω

k

〉

z(z + 1) · · · (z + k − 1), (11)

where c1, . . . , cn are the column-heights of the Ferrers board associated with the word ω.
Their q-analogous results are also obtained (Theorems 5.2-5.7).

In particular, for Dyck words ω, the generating function for the (signed) numbers
[

ω
k

]

in
Eq. (11) has an equivalent description in terms of the chromatic polynomials of the associ-
ated quasi-threshold graph Gω. By Whitney’s theorem [19], we have another interpretation
for
[

ω
k

]

, counting the number of subgraphs consisting of n− k edges of Gω without broken
circuits. We also present a bijection between the decreasing forest decompositions of Gω

and the broken-circuit free subgraphs of Gω (Theorem 6.3).
The rest of the paper is organized as follows. In Section 2 we shall give combinatorial

interpretations of the xD-Stirling number of the first kind
[

ω
k

]

and the xD-Lah number
〈

ω
k

〉

in terms of decreasing forest decompositions of quasi-threshold graphs. In Section 3 we
shall give a q-analogous result for the xD-Stirling number of the first kind, as well as a new
q-Stirling number of the second kind and a new q-Lah number. In Section 4 we turn to
rook placements on Ferrers boards and give combinatorial interpretations of the numbers
[

ω
k

]

q
and

〈

ω
k

〉

q
. Section 5 will be devoted to the rook factorization results for

[

ω
k

]

and
〈

ω
k

〉

.

In Section 6 we describe the chromatic polynomials of the quasi-threshold graph Gω and
the bijective result.
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2. Stirling numbers of the 1st kind and Lah numbers for Dyck words

In this section, we explore combinatorial interpretations of
[

ω
k

]

and
〈

ω
k

〉

for Dyck words
ω in terms of graph decompositions.

Let Cn denote the set of Dyck words of semi-length n. A Dyck word ω ∈ Cn is visualized
with a lattice path from (0, 0) to (n, n) in the plane Z×Z, taking x as the north step (0, 1)
and D as the east step (1, 0), that stays weakly above the line y = x, called a Dyck path of
length n. We shall use Dyck words and Dyck paths interchangeably. Respecting the first
east step returning to the line y = x, we factorize ω as ω = xω′Dω′′, called the standard

factorization of ω, where ω′ and ω′′ are Dyck paths (possibly empty). We call the prefix
µ = xω′D the first block of ω.

Engbers et al. [6] associated ω with a graph Gω. The construction is described below.
The east steps D’s of ω are labeled 1, 2, . . . , n from left to right. The north steps x’s of
ω are matched up with D’s that face each other, in the sense that the line segment (also
called a tunnel) from the midpoint of a north step to the midpoint of an east step has slope
1 and stays below the path. Each matched pair (x,D) will be converted into a vertex. On
the vertices [n], the graph Gω is constructed inductively as follows.

(i) If ω is empty then Gω is empty.
(ii) Otherwise, factorize ω in the standard form ω = xω′Dω′′. Then the graph Gω is

the disjoint union of Gω′ +K1 and Gω′′ , where Gω′ +K1 is the graph obtained from
Gω′ by adding a dominating vertex with the label of D.

The graph Gω is also known as a quasi-threshold graph. For example, the graph Gω shown
in Figure 1 is associated with the Dyck word ω = xxDxxDDD.

4

3

2

1

ω Gω

Figure 1. The quasi-threshold graph Gω associated with ω = xxDxxDDD.

2.1. The xD-Stirling numbers of the first kind. Recall that an unordered rooted tree
T on the vertex set [n] is decreasing if every path from the root is decreasing. The order
of the children of a vertex is irrelevant. A decreasing forest F on [n] is a forest such that
every component is a decreasing tree. For any Dyck word ω ∈ Cn, we shall prove that the
xD-Stirling number

[

ω
k

]

coincides with the number of ways to partition the graph Gω into
k-component decreasing forests.

The proof proceeds by induction on the semi-length n of ω, with the initial conditions
[

ω
0

]

= δn,0 for n ≥ 0 and
[

ω
k

]

= 0 for 0 ≤ n < k.

Lemma 2.1. Given a Dyck word ω ∈ Cn with the standard factorization ω = xω′Dω′′, let

m be the semi-length of the first block µ = xω′D. Then the following relations hold.

(i) For 1 ≤ k ≤ n, we have
[

ω

k

]

=
m
∑

k1=1

[

µ

k1

][

ω′′

k − k1

]

.
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(ii) For the first block µ = xω′D and 1 ≤ k1 ≤ m, we have

[

µ

k1

]

=

m−1
∑

ℓ=k1−1

[

ω′

ℓ

](

ℓ

k1 − 1

)

.

Proof. (i) By Eq. (4), we observe that

ω = µω′′ =





m
∑

j=0

(−1)m−j

[

µ

j

]

(xD)j





(

n−m
∑

i=0

(−1)n−m−i

[

ω′′

i

]

(xD)i

)

.

Extracting the coefficient of (xD)k on both sides, the assertion follows.
(ii) Making reduction with the relation xD = Dx− 1, we have

µ = xω′D = x

(

m−1
∑

ℓ=0

(−1)m−1−ℓ

[

ω′

ℓ

]

(xD)ℓ

)

D

= x

(

m−1
∑

ℓ=0

(−1)m−1−ℓ

[

ω′

ℓ

]

(Dx− 1)ℓ

)

D

= x

(

m−1
∑

ℓ=0

(−1)m−1−ℓ

[

ω′

ℓ

] ℓ
∑

i=0

(

ℓ

i

)

(−1)ℓ−i(Dx)i

)

D

=
m−1
∑

ℓ=0

(−1)m−1−ℓ

[

ω′

ℓ

] ℓ
∑

i=0

(

ℓ

i

)

(−1)ℓ−i(xD)i+1.

Extracting the coefficient of (xD)k1 on both sides, the assertion follows. �

Now, we give a combinatorial interpretation of
[

ω
k

]

for Dyck words ω ∈ Cn. Let F(ω, k)
be the collection of partitions of the graph Gω into k-component decreasing forests. We
assume |F(ω, 0)| = δn,0 for n ≥ 0 and |F(ω, k)| = 0 for 0 ≤ n < k.

Theorem 2.2. For any word ω ∈ Cn and 1 ≤ k ≤ n, we have

|F(ω, k)| =

[

ω

k

]

.

Proof. In the standard factorization ω = xω′Dω′′, let m be the semi-length of the first
block µ = xω′D. Note that the graph Gω is the disjoint union of Gµ of Gω′′ . Any forest
γ ∈ F(ω, k) is a disjoint union of a member α ∈ F(µ, k1) and β ∈ F(ω′′, k− k1) for some k1
(1 ≤ k1 ≤ m). Hence |F(ω, k)| satisfies the relation |F(ω, k)| =

∑m
k1=1 |F(µ, k1)| · |F(ω′′, k−

k1)|.
For the first block µ = xω′D, the graph Gω′ is obtained from Gµ by removing the

dominating vertex m. For any forest α ∈ F(µ, k1), removing the vertex m from α leads
to a forest α ∩ Gω′ ∈ F(ω′, ℓ) for some ℓ (k1 − 1 ≤ ℓ ≤ m − 1). Moreover, the forest α

can be constructed from a forest β ∈ F(ω′, ℓ) by joining ℓ− k1 + 1 components of β to the

vertex m. Since there are
(

ℓ
ℓ−k1+1

)

=
(

ℓ
k1−1

)

ways to choose ℓ− k1 + 1 components from β,

|F(µ, k1)| satisfies the relation |F(µ, k1)| =
∑m−1

ℓ=k1−1 |F(ω′, ℓ)|
(

ℓ
k1−1

)

.

By Lemma 2.1, the numbers |F (ω, k)| and
[

ω
k

]

share the same recurrence relations. The
assertion follows. �
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Example 2.3. For the word ω = xxDxxDDD, we have ω = −2xD + 5(xD)2 − 4(xD)3 +
(xD)4. The graph Gω is shown in Figure 1. For 1 ≤ k ≤ 4, the sets F(ω, k) of partitions of
Gω into k-component decreasing forests are shown in Figure 2.

4

321 4
1 2 3

4
21

4

3 3
4

12
2 3

1
4 4

31

2

3

2 413
4

21
4

3 1

2

1 3
2

4 43

2 1

1 2
3

Figure 2. The members in F(ω, k) of the graph associated with the word ω = xxDxxDDD.

Setting ω = xnDn in Theorem 2.2, the graph Gω is the complete graph on vertices [n]
and hence |F(ω, k)| =

[

n
k

]

. This proves the identity in Eq. (3).

2.2. The xD-Lah numbers. For any Duck word ω ∈ Cn, we shall prove that the xD-Lah
number

〈

ω
k

〉

coincides with the number of ways to partition the graph Gω into a disjoint
union of k decreasing forests. The proof is similar to the proof of Theorem 2.6, with the
initial conditions

〈

ω
0

〉

= δn,0 for n ≥ 0 and
〈

ω
k

〉

= 0 for 0 ≤ n < k.

The following derivative identity will be used to derive recurrence relation for
〈

ω
k

〉

.

Lemma 2.4. For all n ≥ 1 and m ≥ 1, we have

xmDn =
∑

j≥0

(−1)j
(

m

j

)(

n

j

)

j!Dn−jxm−j .

Proof. For m = 1, we prove xDn = Dnx − nDn−1 by induction on n. For n = 1, it is the
relation Dx = xD + 1 of the Weyl algebra. For n ≥ 2, we observe that

xDn = (xDn−1)D = (Dn−1x− (n− 1)Dn−2)D

= Dn−1(Dx− 1) − (n − 1)Dn−1

= Dnx− nDn−1,

as required. Suppose the assertion holds for all m < k and n ≥ 1. For m = k and n = 1,
the identity xkD = Dxk − kxk−1 can be proved in a similar manner as above. For n ≥ 2,
we observe that

xkDn = x(xk−1Dn) =
∑

j≥0

(−1)j
(

k − 1

j

)(

n

j

)

j!(xDn−j)xk−1−j

=
∑

j≥0

(−1)j
(

k − 1

j

)(

n

j

)

j!(Dn−jxk−j − (n− j)Dn−1−jxk−1−j).
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The coefficient of Dn−jxk−j is

(−1)j
(

k − 1

j

)(

n

j

)

j!− (−1)j−1

(

k − 1

j − 1

)(

n

j − 1

)

(j − 1)!(n − j + 1) = (−1)j
(

k

j

)(

n

j

)

j!,

as required. �

Lemma 2.5. Given a Dyck word ω ∈ Cn with a standard factorization ω = xω′Dω′′, let m

be the semi-length of the first block µ = xω′D. Then the following relations hold.

(i) For 1 ≤ k ≤ n, we have

〈

ω

k

〉

=
m
∑

k1=0

n−m
∑

k2=0

〈

µ

k1

〉〈

ω′′

k2

〉(

k1

k1 + k2 − k

)(

k2

k1 + k2 − k

)

(k1 + k2 − k)!.

(ii) For the first block µ = xω′D and 1 ≤ k1 ≤ m, we have
〈

µ

k1

〉

=

〈

ω′

k1 − 1

〉

+ 2k1

〈

ω′

k1

〉

+ (k1 + k21)

〈

ω′

k1 + 1

〉

.

Proof. (i) By Eq. (6), we observe that

µω′′ =





m
∑

k1=0

(−1)m−k1

〈

µ

k1

〉

xDk1xk1−1









n−m
∑

k2=0

(−1)n−m−k2

〈

ω′′

k2

〉

xDk2xk2−1



 (12)

=

m
∑

k1=0

n−m
∑

k2=0

(−1)n−k1−k2

〈

µ

k1

〉〈

ω′′

k2

〉

xDk1xk1Dk2xk2−1. (13)

By Lemma 2.4, we have

xk1Dk2 =
∑

j≥0

(−1)j
(

k1

j

)(

k2

j

)

j!Dk2−jxk1−j .

Substituting back to Eq. (13) and extracting the coefficient of xDkxk−1 on both sides, we
have

〈

ω

k

〉

=

m
∑

k1=0

n−m
∑

k2=0

〈

µ

k1

〉〈

ω′′

k2

〉(

k1

k1 + k2 − k

)(

k2

k1 + k2 − k

)

(k1 + k2 − k)!.

(ii) Making use of the identities in Lemma 2.4, we observe that

µ = xω′D = x

(

m−1
∑

ℓ=0

(−1)m−1−ℓ

〈

ω′

ℓ

〉

xDℓxℓ−1

)

D

= x

(

m−1
∑

ℓ=0

(−1)m−1−ℓ

〈

ω′

ℓ

〉

(Dℓx− ℓDℓ−1)
(

Dxℓ−1 − (ℓ− 1)xℓ−2
)

)

=
m−1
∑

ℓ=0

(−1)m−1−ℓ

〈

ω′

ℓ

〉

(

xDℓ+1xℓ − 2ℓxDℓxℓ−1 + ℓ(ℓ− 1)xDℓ−1xℓ−2
)

.

Extracting the coefficient of (xD)k1 on both sides, the assertion follows. �

Now, we give a combinatorial interpretation of
〈

ω
k

〉

for Dyck words ω. Let H(ω, k) be
the collection of partitions of Gω into a disjoint union of k decreasing forests. We assume
|H(ω, 0)| = δn,0 for n ≥ 0 and |H(ω, k)| = 0 for 0 ≤ n < k.
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Theorem 2.6. For any word ω ∈ Cn and 1 ≤ k ≤ n, we have

|H(ω, k)| =

〈

ω

k

〉

.

Proof. In the standard factorization ω = xω′Dω′′, let m be the semi-length of the first block
µ = xω′D. We shall prove that the cardinality of H(ω, k) satisfies the following relations.

(i) For 1 ≤ k ≤ n, we have

|H(ω, k)| =
m
∑

k1=0

n−m
∑

k2=0

|H(µ, k1)| · |H(ω′′, k − k1)|

(

k1

k1 + k2 − k

)(

k2

k1 + k2 − k

)

(k1 + k2 − k)!.

(ii) For the first block µ = xω′D and 1 ≤ k1 ≤ m, we have

|H(µ, k1)| = |H(ω′, k1 − 1)| + 2k1|H(ω′, k1)|+ (k1 + k21)|H(ω′, k1 + 1)|.

Note that Gω is a disjoint union of Gµ and Gω′′ . Any forest γ ∈ H(ω, k) can be constructed
from a member α ∈ H(µ, k1) and a member β ∈ H(ω′′, k2) for some k1, k2 with k1 + k2 ≥ k

such that γ consists of the forests from the following categories.

• Choose k1 + k2 − k forests from α and choose k1 + k2 − k forests from β. Use
one-to-one correspondence to merge the two families of forests into k1 + k2 − k

forests.
• The remaining k − k2 forests of α.
• The remaining k − k1 forests of β.

The right-hand side of the equation in (i) is exactly the possibilities of γ ∈ H(ω, k).
For the first block µ = xω′D, the graph Gω′ is obtained from Gµ by removing the

dominating vertex m. For any forest α ∈ H(µ, k1), removing the vertex m from α leads to
a forest α ∩ Gω′ ∈ H(ω′, ℓ) for some ℓ ∈ {k1 − 1, k1, k1 + 1}. Moreover, the forest α can be
constructed from a forest β ∈ H(ω′, ℓ) according to the following cases.

• ℓ = k1 − 1. The forest α is obtained from β by adding the k1th forest, consisting
of the vertex m.

• ℓ = k1. The forest α is obtained from β by adding the vertex m as a trivial tree to
one of the k1 forests of β.

• ℓ = k1. Choose one of the k1 forests of β, say F . The forest α is obtained from β

by joining all of the components of F to the vertex m.
• ℓ = k1 + 1. Choose one of the k1 + 1 forests of β, say F , and turn F into a tree
T by joining all of the components of F to the vertex m. The forest α is obtained
from β by adding T to one of the remaining k1 forests of β.

The right-hand side of the equation in (ii) is exactly the possibilities of α ∈ H(µ, k1). �

Example 2.7. For the word ω = xxDxxDDD, we have ω = −12xD + 24(xD2x) −
10(xD3x2) + (xD4x3). The 24 ways to partition Gω into a disjoint union of 2 deceasing
forests are shown in Figure 3.

Setting ω = xnDn in Theorem 2.6, the graph Gω is the complete graph on vertices [n]
and hence |H(ω, k)| =

〈

n
k

〉

. This proves the identity in Eq. (5).
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Figure 3. The partitions of the graph Gω into 2 decreasing forests for ω = xxDxxDDD.

3. On q-analogues of Stirling numbers and Lah numbers

3.1. A q-analogue of the xD-Stirling number of the 1st kind. Recall that for a Dyck
word ω ∈ Cn in the q-deformed Weyl algebra W , the q-analogue of the xD-Stirling number
of the first kind,

[

ω
k

]

q
, is defined by the expansion in Eq. (9). With the standard factorization

ω = xω′Dω′′ of ω, let m be the semi-length of the first block µ = xω′D. Making use of
the relation xD = q−1(Dx− 1) and the same argument as in the proof of Lemma 2.1, it is
straightforward to derive the following relations, with the initial conditions

[

ω
0

]

q
= δn,0 for

n ≥ 0 and
[

ω
k

]

q
= 0 for 0 ≤ n < k.

(i) For 1 ≤ k ≤ n, we have

[

ω

k

]

q

=

m
∑

k1=1

[

µ

k1

]

q

[

ω′

k − k1

]

q

.

(ii) For the first block µ = xω′D and 1 ≤ k1 ≤ m, we have

[

µ

k1

]

q

=
m−1
∑

ℓ=k1−1

q−ℓ

[

ω′

ℓ

]

q

(

ℓ

k1 − 1

)

.

In the following, we present a combinatorial interpretation of
[

ω
ℓ

]

q
by defining a weight

function for the forests in F(ω, k).
We write a decreasing forest F in a canonical form such that the components are arranged

in increasing order of the roots from left to right. Moreover, if a vertex has more than one
child then the children are in increasing order from left to right. Given a Dyck word ω ∈ Cn
with the quasi-threshold graph G = Gω, let Gi be the induced subgraph of Gω on the
vertices {1, 2, . . . , i}. Let Qi be the component of Gi containing the vertex i and let Q∗

i be
the graph obtained from Qi by removing the vertex i. For a forest α ∈ F(ω, k), let ti(α) be
the number of components in the graph α ∩Q∗

i for 1 ≤ i ≤ n, and define the weight wt(α)
of α by

wt(α) := t1(α) + t2(α) + · · ·+ tn(α).
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Let fq(ω, k) denote the (negative) weight polynomial for F(ω, k) defined as

fq(ω, k) =
∑

α∈F(ω,k)

q−wt(α).

Theorem 3.1. For any word ω ∈ Cn and 1 ≤ k ≤ n, we have

fq(ω, k) =

[

ω

k

]

q

.

Proof. (i) Since Gω is a disjoint union of Gµ of Gω′′ , any decreasing forest γ ∈ F(ω, k) is
the union of γ ∩ Gµ ∈ F(µ, k1) and γ ∩ Gω′′ ∈ F(ω′′, k − k1) for some k1 (1 ≤ k1 ≤ m).
Hence

fq(ω, k) =

m
∑

k1=1

fq(µ, k) · fq(ω
′′, k).

(ii) Recall that the vertex m is the dominating vertex in Gµ. As shown in the proof
of Theorem 2.2, for any forest α ∈ F(µ, k1), removing the vertex m leads to a forest
α ∩Gω′ ∈ F(ω′, ℓ) for some ℓ (k1 − 1 ≤ ℓ ≤ m− 1), in which case the vertex m contributes
a weight of ℓ to the forest α. Moreover, the forest α can be constructed from a forest
β ∈ F(ω′, ℓ) by joining ℓ− k1 + 1 components of β to the vertex m. Hence the polynomial
fq(µ, k1) satisfies the relation

fq(µ, k1) =

m−1
∑

ℓ=k1−1

q−ℓfq(ω
′, ℓ)

(

ℓ

k1 − 1

)

.

The assertion follows from the observation that the polynomials fq(ω, k) and
[

ω
k

]

q
share the

same recurrence relation. �

Example 3.2. For the word ω = xxDxxDDD, the coefficients of the expansion ω =
∑4

k=1(−1)4−k
[

ω
k

]

q
(xD)k are listed in Table 1. For 1 ≤ k ≤ 4, the members in F(ω, k),

along with their contributions to the q-polynomial fq(ω, k), are shown in Figure 4.

Table 1. The q-analogue of the xD-Stirling numbers
[

ω
k

]

q
for ω = xxDxxDDD.

k 1 2 3 4

(−1)4−k
[

ω
k

]

q
−(q−4 + q−3) 3q−4 + 2q−3 −(3q−4 + q−3) 1

3.2. Two q-Stirling numbers of the 2nd kind. We consider the specific word ω = (xD)n

in the q-deformedWeyl algebra expanding over the sequences {xkDk}k≥0 and {xDkxk−1}k≥0.

We define two q-Stirling numbers of the second kind, denoted by
{

n
k

}

q
and

{

n
k

}

q
, as the

coefficients of the following expansions

(xD)n =

n
∑

k=0

{

n

k

}

q

xkDk (14)

(xD)n =

n
∑

k=0

(−1)n−k

{

n

k

}

q

xDkxk−1. (15)
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Figure 4. The members in F(ω, k) and their contributions to fq(ω, k) for ω = xxDxxDDD.

We remark that the former q-Stirling number of the second kind
{

n
k

}

q
coincides with Car-

litz’s q-Stirling number [4], which satisfies the recurrence

{

n

k

}

q

= qk−1

{

n− 1

k − 1

}

q

+ [k]q

{

n− 1

k

}

q

,

where [n]q := 1 + q + · · · + qn−1 and [0]q = 1, with the initial conditions
{

n
0

}

q
= δn,0 for

n ≥ 0 and
{

n
k

}

q
= 0 for 0 ≤ n < k. Engbers et al. [6] gave a combinatorial interpretation

of
{

n
k

}

q
, which is quite involved. As a new generalization, we shall give a combinatorial

interpretation for the latter q-Stirling number of the second kind
{

n
k

}

q
(Theorem 3.5).

Making use of the relation xD = q−1(Dx−1), it is straightforward to derive the following
identities by the same argument as in the proof of Lemma 2.4.

Lemma 3.3. For all n ≥ 0, we have

(i) xDn = q−n(Dnx− [n]qD
n−1),

(ii) xnD = q−n(Dxn − [n]qx
n−1).

With the initial conditions
{

n
0

}

q
= δn,0 for n ≥ 0 and

{

n
k

}

q
= 0 for 0 ≤ n < k, the

polynomial
{

n
k

}

q
satisfies the following recurrence relation.

Lemma 3.4. For 1 ≤ k ≤ n, we have

{

n

k

}

q

=
1

qk−1

{

n− 1

k − 1

}

q

+
[k]q
qk

{

n− 1

k

}

q

.
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Proof. Making use of the relations in Lemma 3.3, we observe that

(xD)n = (xD)(xD)n−1

=

n−1
∑

k=0

(−1)n−1−k

{

n− 1

k

}

q

(xD)(xDkxk−1)

=

n−1
∑

k=0

(−1)n−1−k

{

n− 1

k

}

q

q−k(xD)(Dkx− [k]qD
k−1)xk−1

=
n−1
∑

k=0

(−1)n−1−k

{

n− 1

k

}

q

q−k(xDk+1xk − [k]qxD
kxk−1)

Extracting the coefficient of xDkxk−1 on both sides, the assertion follows. �

Now, we present a realization of
{

n
k

}

q
. Let P(n, k) be the collection of partitions of [n]

into k non-empty subsets, called blocks. For a partition π ∈ P(n, k), we arrange the blocks
of π in a sequence B1, B2, . . . , Bk in increasing order of their least elements. We define the
weight wt(π) of the partition π by

wt(π) :=

k
∑

j=1

(

j · |Bj | − 1
)

.

For example, if π = 127|3|489|56 ∈ P(9, 4) then wt(π) = 18. Let pq(n, k) denote the
(negative) weight polynomial for P(n, k) defined as

pq(n, k) =
∑

π∈P(n,k)

q−wt(π).

Theorem 3.5. For 1 ≤ k ≤ n, we have

pq(n, k) =

{

n

k

}

q

.

Proof. We shall prove that the polynomial pq(n, k) satisfies the following relation

pq(n, k) =
1

qk−1
pq(n− 1, k − 1) +

[k]q
qk

pq(n− 1, k). (16)

On the right-hand side of Eq. (16), we observe that the first term is the distribution of all
members π ∈ P(n, k) in which the kth block consists of the element n, contributing a weight
of k− 1 to π. The second term is the distribution of the members π ∈ P(n, k) in which the
element n occurs in a block with at least one element in [n − 1]. Note that the element n

contributes a weight of j to π if n is in the jth block for some j (1 ≤ j ≤ k). This proves
the recurrence relation Eq. (16).

By Lemma 3.4, the polynomials pq(n, k) and
{

n
k

}

q
share the same recurrence relation.

The assertion follows. �

Example 3.6. The coefficients of the expansion (xD)4 =
∑4

k=1(−1)4−k
{

4
k

}

q
xDkxk−1 are

listed in Table 2. The members in P(4, 2), along with their weights are shown in Table 3.
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Table 2. The q-Stirling numbers
{4
k

}

q
for 1 ≤ k ≤ 4.

k 1 2 3 4

(−1)4−k
{4
k

}

q
−q−3 q−5 + 3q−4 + 3q−3 −(q−6 + 2q−5 + 3q−4) q−6

Table 3. The members in P(4, 2) and their weights.

π 1|234 134|2 124|3 123|4 12|34 13|24 14|23

wt(π) 5 3 3 3 4 4 4

3.3. q-Lah number. We shall present a new q-Lah number,
〈

n
k

〉

q
, by the expansion in

Eq. (10) of the word ω = xnDn in the q-deformed Weyl algebra, i.e.,

xnDn =

n
∑

k=0

(−1)n−k

〈

n

k

〉

q

xDkxk−1.

Making use of the relations in Lemma 3.3, it is straightforward to derive the following
recurrence in the same manner as the proof of Lemma 2.5(ii), with the initial conditions
〈

n
0

〉

q
= δn,0 for n ≥ 0 and

〈

n
k

〉

q
= 0 for 0 ≤ n < k.

Lemma 3.7. For 1 ≤ k ≤ n, we have

〈

n

k

〉

q

=
1

q2k−2

〈

n− 1

k − 1

〉

q

+
(1 + q)[k]q

q2k

〈

n− 1

k

〉

q

+
[k]q[k + 1]q

q2k+1

〈

n− 1

k + 1

〉

q

.

In the following, we present a realization of
〈

n
k

〉

q
. Note that the graph associated with

the word ω = xnDn is the complete graph on vertices [n], i.e., Gω = Kn. Let H(n, k) be the
set of partitions of Gω into a disjoint union of k decreasing forests. We write a forest in the
canonical form such that its components are arranged in increasing order of their roots. For
a member α ∈ H(n, k), we arrange the forests of α in increasing order of their first roots.
For 1 ≤ m ≤ n, let Km denote the complete subgraph of Gω on the vertices {1, 2, . . . ,m}.
For any member α ∈ H(n, k), let F1, F2, . . . , Fd be the d-tuple of forests of α∩Km for some
integer d. Note that the vertex m is the greatest vertex in α ∩Km. Let T (m) denote the
component of α∩Km rooted at m and let T ∗(m) denote the forest obtained from T (m) by
removing the root m. Suppose T (m) is in the forest Fj (1 ≤ j ≤ d). We define two numbers
rm(α) and sm(α) according to the following cases.

(i) Fj has only one component. Then j = d. We assign rm(α) = d − 1. Moreover, if
T (m) is a single vertex then we assign sm(α) = d− 1 otherwise T ∗(m) is a forest,
say the ℓth forest, in the graph α ∩ Km−1 for some ℓ (1 ≤ ℓ ≤ d) and we assign
sm(α) = ℓ.

(ii) Fj has more than one component. Then we assign rm(α) = j. Moreover, if T (m)
is a single vertex then we assign sm(α) = d otherwise T ∗(m) is a forest, say the ℓth
forest, in the graph α∩Km−1 for some ℓ (1 ≤ ℓ ≤ d+ 1) and we assign sm(α) = ℓ.
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The weight wt(α) of α is defined by

wt(α) :=

n
∑

m=1

rm(α) + sm(α).

Let hq(n, k) denote the (negative) weight polynomial for H(n, k) defined as

hq(n, k) =
∑

α∈H(n,k)

q−wt(α).

Theorem 3.8. For 1 ≤ k ≤ n, we have

hq(n, k) =

〈

n

k

〉

q

.

Proof. We claim that the polynomial hq(n, k) satisfies the following relation

hq(n, k) =
1

q2k−2
hq(n− 1, k − 1) +

(1 + q)[k]q
q2k

hq(n− 1, k) +
[k]q[k + 1]q

q2k+1
hq(n− 1, k + 1).

As shown in the proof of Theorem 2.6, for any member α ∈ H(n, k), removing the vertex n

from α leads to α ∩Kn−1 ∈ H(n− 1, ℓ) for some ℓ (k − 1 ≤ ℓ ≤ k + 1). Then α is in one of
the following forms.

• ℓ = k − 1. Then tree T (n), containing a single vertex, forms the last forest of α.
Then the vertex n contributes the weight of 2k − 2 to α.

• ℓ = k. The tree T (n) forms the last forest of α and the forest T ∗(n) is one of the
k forests of α∩Kn−1, say the jth forest. Then the vertex n contributes the weight
of k − 1 + j to α.

• ℓ = k. The tree T (n), containing a single vertex, is in one of the k forests of α, say
the jth forest. Then the vertex n contributes the weight of k + j to α.

• ℓ = k + 1. The tree T (n) is in one of the k forests of α, say the jth forest. The
forest T ∗(n) is one of the k + 1 forests of α ∩Kn−1, say the ith forest. Then the
vertex n contributes the weight of j + i to α.

Hence the polynomial hq(n, k) satisfies the relation mentioned above. The assertion follows
from the fact that the polynomials hq(n, k) and

〈

n
k

〉

q
share the same recurrence relation.

�

Example 3.9. The coefficients of the expansion x4D4 =
∑4

k=1(−1)4−k
〈4
k

〉

q
xDkxk−1 are

listed in Table 4, where
〈4
3

〉

q
= q−7 + 2q−8 + 3q−9 + 3q−10 + 2q−11 + q−12. The 12 ways

to partition K4 into a disjoin union of 3 forests, along with their contributions to the
q-polynomial hq(4, 3), are shown in Figure 5.

Table 4. The q-Lah numbers
〈4
k

〉

q
for 1 ≤ k ≤ 4.

k 1 2 3 4

(−1)4−k
〈

4
k

〉

q
−
[2]q[3]q[4]q

q9
[3]q[3]q[4]q

q11
−
[3]q[4]q
q12

1

q12
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Figure 5. The 12 members in H(4, 3) along with their contributions to hq(4, 3).

4. Ferrers boards and rook placements

In this section, we present combinatorial interpretations for the numbers
[

ω
k

]

q
and

〈

ω
k

〉

q

in terms of rook placements on Ferrers boards.
For a positive integer n, consider the n× n square in the plane Z×Z with the lower-left

corner (0, 0) and the upper-right corner (n, n). A word ω in the q-deformed Weyl algebra
W with n x’s and n D’s forms a lattice path ω from (0, 0) to (n, n). The region below the
path ω within the n × n square is called the Ferrers board of ω, denoted by Bω. A board
consists of an array of cells arranged in rows and columns. The rows (resp. columns) of the
board Bω are indexed 1, 2, . . . , n from bottom to top (resp. from left to right) and the (i, j)
cell is the intersection of the ith row and the jth column. A consecutive xD steps in the
path ω is called a peak. A cell (along the path ω) with a peak on the upper-left corner is
called a peak-cell of Bω. A k-rook placement of Bω is a way to place k non-attacking rooks
on the board Bω (i.e., no two rooks in the same row or column).

4.1. q-Stirling number of the 1st kind for Dyck words. For any Dyck word ω ∈ Cn,
notice that the board Bω can always accommodate n non-attacking rooks. Given a n-rook
placement of Bω, a rook at the (i, j) cell is white if there is no rook placed in the (a, b) cells
with a < i and b > j, otherwise it is black. Namely, there is no rook placed south-east of a
white rook. Let R(ω, k) be the collection of n-rook placements of Bω with k white rooks.
For such a rook placement σ ∈ R(ω, k), we define the statistic inv(σ) to be the number of
cells in Bω that either do not have a rook above them on the same column or to the left
of them in the same row, or have a black rook on them. For example, the rook placement
shown in Figure 6 is a member σ ∈ R(ω, 3) with inv(σ) = 4, where the Ferrers board Bω is
associated with the word ω = xxDxxDDD.

Figure 6. A rook placement σ ∈ R(ω, 3) with inv(σ) = 4 for ω = xxDxxDDD.
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Let rq(ω, k) denote the q-polynomial of R(ω, k) defined as

rq(ω, k) =
∑

σ∈R(ω,k)

q−inv(σ).

Theorem 4.1. For any Dyck word ω ∈ Cn in the q-deformed Weyl algebra W , we have

rq(ω, k) =
[

ω
k

]

q
, i.e.,

ω =
n
∑

k=0

(−1)n−krq(ω, k)(xD)k.

Proof. Consider the expansion of ω over the sequence {(xD)k}k≥0 in Eq. (9), the coefficient
[

ω
k

]

q
is the number of ways to obtain the word (xD)k from ω, by successively substituting

q−1(Dx− 1) for xD. In terms of Ferrers boards, replacing a peak xD by Dx (resp. by −1)
is equivalent to deleting that peak-cell (resp. deleting that peak-cell along with its row and
column), both replacements carrying the weight of q−1. Hence the coefficient

[

ω
k

]

q
is the

number of weighted reductions of the board Bω to Bµ, where µ = (xD)k. Note that the
board Bµ has a unique way to place k non-attacking rooks, i.e., in the k peak-cells along
the path µ, which amount to the white rooks of Bω. Moreover, the n − k cells that are
deleted along with their rows and columns do not have a row or column in common, which
amount to the black rooks of Bω. The sign (−1)n−k is also justified. Hence in the board
Bω, all replacements take place at the cells that either have a black rook on them, or do
not have a rook above them on the same column or to the left of them in the same row.
Each of these cells is assigned the weight of q−1. The weight of a n-rook placement can
be considered as the product of the weights of all cells of the board. Then the coefficient
[

ω
k

]

q
is the weight distribution of the n-rook placements of Bω with k white rooks, which is

exactly the q-polynomial rq(ω, k) of R(ω, k). �

Example 4.2. As shown in Example 3.2, for ω = xxDxxDDD, the coefficients of the
expansion ω =

∑4
k=1(−1)4−kr(ω, k)q(xD)k are listed in Table 1, where rq(ω, 3) = 3q−4+q−3.

The 4 members in R(ω, 3) along with their contributions to rq(ω, 3) are shown in Figure 7.

q−3q−4q−4 q−4

Figure 7. The 4 members in R(ω, 3) along with their contributions to rq(ω, 3).

Setting q = 1 in Theorem 4.1, we get a rook-interpretation of the numbers
[

ω
k

]

.

Corollary 4.3. For any Dyck word ω ∈ Cn in the Weyl algebra W , we have |R(ω, k)| =
[

ω
k

]

.

4.2. q-Lah number for words. Next, for any word ω with n x’s and n D’s, starting with
an x, notice that the bottom row of Bω has n cells since the path ω starts with a north
step. Let B∗

ω be the board obtained from Bω by removing the bottom row. Let U(ω, k)
be the collection of k-rook placements of B∗

ω. For such a rook placement σ ∈ U(ω, k), we
define the statistic inv

′(σ) to be the number of cells in B∗
ω that either have a rook on them,
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or do not have a rook above them on the same column or to the left of them in the same
row. For example, the rook placement shown in Figure 8 is a member σ ∈ U(ω, 2) with
inv

′(σ) = 6, where the board B∗
ω is associated with the word ω = xxDxxDDD.

Figure 8. A rook placement σ ∈ U(ω, 2) with inv
′(σ) = 6 for ω = xxDxxDDD.

Let uq(ω, k) denote the q-polynomial of U(ω, k) defined as

uq(ω, k) =
∑

σ∈U(ω,k)

q−inv
′(σ).

Theorem 4.4. For any word ω with n x’s and n D’s in the q-deformed Weyl algebra W ,

starting with an x, we have uq(ω, k) =
〈

ω
k

〉

q
, i.e.,

ω =

n
∑

k=0

(−1)n−kuq(ω, n − k)xDkxk−1.

Proof. The proof is similar to the proof of Theorem 4.1. Consider the expansion of ω over
the sequence {xDkxk−1}k≥0 in Eq. (10), the coefficient

〈

ω
k

〉

q
is the number of ways to obtain

the word xDkxk−1 from ω, by successively substituting q−1(Dx−1) for the xD’s other than
the prefix peak (i.e., in the beginning of a word). In terms of Ferrers boards, the coefficient
〈

ω
k

〉

q
is the number of weighted reductions of the board Bω to Bµ, where µ = xDkxk−1.

There are n − k xD’s replaced by −1. Note that the bottom row of Bµ contains k cells.
So the deleted n − k cells amount to n − k non-attacking rooks of the board B∗

ω, and all
replacements take place at the cells that either have a rook on them, or do not have a rook
above them on the same column or to the left of them in the same row. Each of these
cells is assigned the weight of q−1. Hence the coefficient

〈

ω
k

〉

q
is the weight distribution

of the (n − k)-rook placements of B∗
ω, which is exactly the q-polynomial uq(ω, n − k) of

U(ω, n− k). �

Example 4.5. For ω = xxDxxDDD, we have the expansion

ω =
4
∑

k=0

(−1)4−k

〈

ω

k

〉

q

xDkxk−1 = −(
1

q7
+

3

q6
+

4

q5
+

3

q4
+

1

q3
)xD

+ (
2

q4
+

5

q5
+

7

q6
+

6

q7
+

3

q8
+

1

q9
)xD2x

− (
1

q10
+

2

q9
+

3

q8
+

3

q7
+

1

q6
)xD3x2 −

1

q10
xD4x3.

Note that the polynomial −uq(ω, 1) coincides with the coefficient of xD3x2. The ten mem-
bers in U(ω, 1) and their weights in uq(ω, 1) are shown in Figure 9.

Setting q = 1 in Theorem 4.4, we get a rook-interpretation of the numbers
〈

ω
k

〉

.

Corollary 4.6. For any word ω with n x’s and n D’s in the Weyl algebra W , starting with

an x, we have |U(ω, k)| =
〈

ω
k

〉

.
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q−6

q−7

q−7q−7

q−8 q−8

q−8

q−9

q−9

q−10

Figure 9. The members in U(ω, 1) and their weights in uq(ω, 1) for ω = xxDxxDDD.

5. Enumeration by Rook Factorization Theorem

In this section, we evaluate the numbers
[

ω
k

]

and
〈

ω
k

〉

for words ω, making use of the
rook-placement enumerations obtained in the previous section.

For a word ω ∈ W with n x’s and n D’s, let ci be the number of cells in the ith column
of Bω for 1 ≤ i ≤ n. Goldman et al. [8] obtained a Rook Factorization Theorem for a rook
polynomial in falling factorials to be completely factorized into linear factors involving the
column-heights (see also [18]). The kth falling factorial of z is

zk = z(z − 1) · · · (z − k + 1).

Theorem 5.1. (Goldman-Joichi-White) For a Ferrers Board B with column-heights

c1, . . . , cn,
n
∑

k=0

rk(B
⊥)zn−k =

n
∏

i=1

(z − ci + i),

where B⊥ is the complement of B within the n × n square and rk(B
⊥) is the number of

k-rook placements on B⊥.

We obtain analogous results for the rook placements in R(ω, k) and in U(ω, k), respec-
tively.

5.1. Evaluating xD-Stirling number of the 1st kind by rook factorizations. We
study the evaluation of the numbers

[

ω
k

]

for Dyck words ω ∈ Cn. We find that their signed

generating function
∑n

k=0(−1)n−k
[

ω
k

]

zk can be linearly factorized, involving the column-
heights of the Ferrers board Bω. We prove the following rook-factorization result, making
use of Varvak’s method in [18, Theorem 4.1].

Theorem 5.2. For any Dyck word ω ∈ Cn in the Weyl algebra W with the associated

Ferrers board Bω, let ci be the number of cells in the ith column of Bω for 1 ≤ i ≤ n. Then

n
∑

k=0

(−1)n−k

[

ω

k

]

zk =
n
∏

i=1

(z − ci + i).

Proof. Consider the symbols x,D of the Weyl algebraW as the differential operators applied
to polynomials f(t) = tz, where x acts as multiplication by t, D = d

dt
and z is a real number.

Note that (xD)tz = (t d
dt
)tz = ztz and hence (xD)ktz = (xD)k−1ztz = · · · = zktz. By
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Eq. (4), we have

ω(tz) =
n
∑

k=0

(−1)n−k

[

ω

k

]

(xD)ktz

=
n
∑

k=0

(−1)n−k

[

ω

k

]

zktz.

On the left-hand side, ω(tz), the application of the jth D (from the left) of ω to tz gives
the linear factor (z + bx − bD), where bx (resp. bD) is the number of times x (resp. D) was
previously applied, i.e., on the right of the jth D. Since there are n− cj x’s and n− j D’s
to the right of the jth D, we have bx = n− cj and bD = n− j. Hence

ω(tz) =





n
∏

j=1

(z − cj + j)



 tz.

Setting t = 1, the assertion follows. �

With this rook-factorization, we remark that the xD-Stirling number
[

ω
k

]

can be evaluated
in terms of elementary symmetric function. The kth elementary symmetric polynomial over
variables {x1, x2, . . . , xn} is

ek(x1, x2, . . . , xn) =
∑

i1<···<ik

xi1xi2 · · · xik (k ≥ 1),

e0(x1, x2, . . . , xn) = 1.

It is an elementary fact that

(z − x1)(z − x2) · · · (x− xn) =

n
∑

k=0

(−1)kek(x1, x2, . . . , xn)z
n−k. (17)

By Theorem 5.2, we evaluate the number
[

ω
k

]

, making use of the column-heights of the
Ferrers board Bω, as follows.

Corollary 5.3. For any Dyck word ω ∈ Cn in the Weyl algebra W with the associated

Ferrers board Bω, let ci be the number of cells in the ith column of Bω for 1 ≤ i ≤ n. Then

we have
[

ω

k

]

= en−k(c1 − 1, c2 − 2, . . . , cn − n).

5.2. Evaluating xD-Lah numbers by rook factorizations. We define the kth rising

factorial of z by

zk = z(z + 1) · · · (z + k − 1).

Theorem 5.4. For any word ω with n x’s and n D’s in the Weyl algebra W , starting with

an x, let ci be the number of cells in the ith column of Bω for 1 ≤ i ≤ n. Then

n
∑

k=0

(−1)n−k

〈

ω

k

〉

zk =

n
∏

i=1

(z − ci + i).
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Proof. The proof is similar to the proof of Theorem 5.2. Note that ( d
dt
)ktz = z(z−1) · · · (z−

k + 1)tz−k. By Eq. (6), we have

ω(tz) =

n
∑

k=0

(−1)n−k

〈

ω

k

〉

xDkxk−1tz

=

n
∑

k=0

(−1)n−k

〈

ω

k

〉

xDktz+k−1

=

n
∑

k=0

(−1)n−k

〈

ω

k

〉

zktz.

On the left-hand side, by the same argument as in the proof of Theorem 5.2, we have

ω(tz) =





n
∏

j=1

(z − cj + j)



 tz.

Setting t = 1, the assertion follows. �

For a polynomial in rising factorials P (z) =
∑n

k=0 pkz
k, one can check that pk =

1
k!∆

kP (−k), where ∆ is the difference operator defined by ∆P (z) = P (z + 1) − P (z).
In fact, it is known [16, Eq. (1.97)] that

pk =
k
∑

i=0

(−1)k−i

(

k

i

)

P (i− k).

By Theorem 5.4, we evaluate the number
〈

ω
k

〉

, making use of the column-heights of the
Ferrers board Bω, as follows.

Corollary 5.5. For any word ω with n x’s and n D’s in the Weyl algebra W , starting with

an x, let P (z) =
∏n

j=1(z − cj + j), where ci is the number of cells in the ith column of Bω

for 1 ≤ i ≤ n. Then
〈

ω

k

〉

=
1

k!

k
∑

i=0

(−1)n−i

(

k

i

)

P (i− k).

5.3. q-analogues of rook factorization results. Recall that the q-analogue of positive
integer n is [n]q = 1 + q + · · · + qn−1. The commutation relation Dx − qxD = 1 of the

q-deformed Weyl algebra is realized by the q-analogue of the derivative D = Dq =
d
dt

acting
on polynomials f(t) by

(Dqf)(t) :=
f(qt)− f(t)

(q − 1)t
,

and the operator x acting by multiplication by t. Note that Dq(t
n) = [n]qt

n−1. Analogous to
Theorem 5.2 and Theorem 5.4, we have the following variations of the q-rook Factorization
Theorem of Garsia and Remmel [7].

Theorem 5.6. Given a Dyck word ω ∈ Cn in the q-deformed Weyl algebra W with the

associated Ferrers board Bω, let ci be the number of cells in the ith column of Bω for

1 ≤ i ≤ n. Then
n
∑

k=0

(−1)n−k

[

ω

k

]

q

[z]kq =

n
∏

i=1

[z − ci + i]q.
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Theorem 5.7. For any word ω with n x’s and n D’s in the q-deformed Weyl algebra W ,

starting with an x, let ci be the number of cells in the ith column of Bω for 1 ≤ i ≤ n. Then

n
∑

k=0

(−1)n−k

〈

ω

k

〉

q

[z]q[z + 1]q · · · [z + k − 1]q =
n
∏

i=1

[z − ci + i]q.

Making use of the derivative Dq(t
z) = [z]qt

z−1, the above two theorems can be proved
by the same arguments as in the proofs of Theorem 5.2 and Theorem 5.4.

6. Evaluating xD-Stirling numbers by chromatic polynomials

For a Dyck path ω ∈ Cn, an east step of ω is said to be at height j if the east step goes
from the line y = x + j + 1 to the line y = x + j. Let hi be the height of the ith east
step of ω for 1 ≤ i ≤ n. Note that hi = ci − i, where ci is the height of the ith column of
the Ferrers board Bω. The chromatic polynomial of a simple graph G, denoted as χG(z),
is the number of proper vertex-coloring of G using z colors. By the construction of the
quasi-threshold graph Gω associated with ω, the jth east step is associated with the vertex
j, which is adjacent to hj vertices of {j +1, . . . , n} in Gω. So if we color the vertices of Gω

in reverse order, using z colors, by the first-fit algorithm then the chromatic polynomial of
Gω is

χGω
(z) =

n
∏

j=1

(z − hj). (18)

This proves a result of Engbers et al. [6, Claim 3.3].
As a consequence of Eq. (18), along with the rook factorization results in Theorems 5.2

and 5.4, we have the following result.

Corollary 6.1. Given a Dyck word ω ∈ Cn with the associated quasi-threshold graph Gω,

we have

χGω
(z) =

n
∑

k=0

(−1)n−k

[

ω

k

]

zk =

n
∑

k=0

(−1)n−k

〈

ω

k

〉

zk.

By Whitney’s theorem [19], the first identity in the above corollary provides another
combinatorial interpretation of

[

ω
k

]

in terms of the subgraphs of Gω without broken circuits.
Given a simple graph G with n vertices and a totally ordered edge set (E(G), <), a broken

circuit of G is a subgraph obtained from removing from some circuit in G the greatest edge.

Theorem 6.2. (Whitney) Let dj be the number of subgraphs consisting of j edges of G

without broken circuits. Then the chromatic polynomial χG(z) of G is

χG(z) =

n
∑

k=0

(−1)n−kdn−kz
k. (19)

By Eq. (18) and Corollary 6.1, for a Dyck word ω ∈ Cn, it follows from Whitney’s the-
orem that

[

ω
k

]

counts the number of subgraphs consisting of n − k edges of Gω without
broken circuits. In the following, we present an immediate bijection between two families
of subgraphs of Gω enumerated by the number

[

ω
k

]

.

Theorem 6.3. Given a Dyck word ω ∈ Cn with the associated quasi-threshold graph Gω,

there is a bijection between the set of partitions of Gω into k-component decreasing forests

and the set of subgraphs consisting of n− k edges of Gω without broken circuits.
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Proof. With the vertex set {1, . . . , n} of Gω, we denote the edge connecting two adjacent
vertices i, j (j > i) by the ordered pair (j, i). Then we assign a total order on the edge set
of Gω by the lexicographical order of the ordered pairs, i.e., two edges (x1, x2) < (y1, y2) if
xi < yi for the first i where xi and yi differ.

On the basis of the edge-ordering, we observe that every k-component decreasing forest
α of Gω is exactly a subgraph consisting of n − k edges without broken circuits. If not, α
contains a broken circuit β = x1, x2, . . . , xt with the missing edge (x1, xt), then x1, xt are
the greatest two vertices in β, which implies that there is a vertex vj (1 < j < t) such that
x1 > xj and xt > xj . This contradicts that β is a decreasing path from x1 to xt. The
assertion follows. �

7. Concluding Remarks

For a computational purpose, it is desirable for the words ω ∈ W to have the x’s com-
pletely to the right and the D’s completely to the left. See [3] for information. That makes
the normal order coefficients of ω have the characteristics of the Stirling numbers of second
kind. For combinatorial interest, we study the companion expansions with coefficients being
generalizations of the Stirling numbers of the first kind and the Lah numbers, as interme-
diate stages of the normally ordered forms. There are other models for the normal order
problem. For example, the gate diagrams introduced by Blasiak and Flajolet [1] and path

decompositions of digraphs used by Dzhumadil’daev and Yeliussizov [5]. A large portion of
existing results focused on the combinatorial interpretations of the normal order coefficients.
We are interested in the interpretations of the numbers

[

ω
k

]

and
〈

ω
k

〉

in the combinatorial
models.
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