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Abstract. An abelian square is the concatenation of two words that are anagrams of one
another. A word of length n can contain at most Θ(n2) distinct factors, and there exist words
of length n containing Θ(n2) distinct abelian-square factors, that is, distinct factors that are
abelian squares. This motivates us to study infinite words such that the number of distinct
abelian-square factors of length n grows quadratically with n. More precisely, we say that an
infinite word w is abelian-square-rich if, for every n, every factor of w of length n contains,
on average, a number of distinct abelian-square factors that is quadratic in n; and uniformly
abelian-square-rich if every factor of w contains a number of distinct abelian-square factors
that is proportional to the square of its length. Of course, if a word is uniformly abelian-
square-rich, then it is abelian-square-rich, but we show that the converse is not true in general.
We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function
counting the number of distinct abelian-square factors of length 2n of the Thue-Morse word is
2-regular. As for Sturmian words, we prove that a Sturmian word sα of angle α is uniformly
abelian-square-rich if and only if the irrational α has bounded partial quotients, that is, if
and only if sα has bounded exponent.

1. Introduction

A fundamental topic in combinatorics on words is the study of repetitions. A repetition in
a word is a factor that is formed by the concatenation of two or more identical blocks. The
simplest kind of repetition is a square, that is, the concatenation of two copies of the same
block, such as the English word hotshots. A famous conjecture of Fraenkel and Simpson [20]
states that a word of length n contains fewer than n distinct square factors. Experiments
strongly suggest that the conjecture is true, but a theoretical proof of the conjecture seems
difficult. In [20], the authors proved a bound of 2n. In [25], Ilie improved this bound to
2n − Θ(log n), and recently Deza et al. showed the current best bound of 11

6 n [12], but the
conjectured bound is still out of reach.

Other variations on counting squares include counting squares in partial words (e.g., [5])
and pseudo-repetitions (e.g., [22]).

Among the different generalizations of the notion of repetition, a prominent one is that
of an abelian repetition. An abelian repetition in a word is a factor that is formed by the
concatenation of two or more blocks that have the same number of occurrences of each letter
in the alphabet. Of course, the simplest kind of abelian repetition is an abelian square, that is,
the concatenation of a word with an anagram of itself, such as the English word intestines.
Abelian squares were considered in 1961 by Erdős [16], who conjectured that there exist infinite
words avoiding abelian squares. This conjecture was later confirmed, and the smallest possible
size of an alphabet for which it holds is known to be 4 [26].

Some of the results contained in this paper were presented (without the third author) at the 10th International
Conference on Words, WORDS 2015 [19].
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We focus on the maximum number of distinct abelian squares that a word can contain. In
contrast to the case of ordinary squares, a word of length n can contain Θ(n2) distinct abelian-
square factors (see [27]). Since the total number of factors in a word of length n is quadratic
in n, this means that there exist words in which a constant fraction of all factors are abelian
squares. So we turn our attention to infinite words, and we ask whether there exist infinite
words such that for every n the factors of length n contain, on average, a number of distinct
abelian-square factors that is quadratic in n. We call such an infinite word abelian-square-rich.
Since a random binary word of length n contains Θ(n

√
n) distinct abelian-square factors [10],

the existence of abelian-square-rich words is not immediate. We also introduce uniformly
abelian-square-rich words; these are infinite words such that for every n, every factor of length
n contains a quadratic number of distinct abelian squares. Of course, if a word is uniformly
abelian-square-rich, then it is abelian-square-rich, but the converse is not true in general —
we provide in this paper an example of a word that is abelian-square-rich but not uniformly
abelian-square-rich. However, we show that for linearly recurrent words the two definitions
are equivalent. Moreover, we prove that if an infinite word w is uniformly abelian-square-rich,
then w has bounded exponent (that is, there exists an integer k ≥ 2 such that w does not
contain any repetition of order k as a factor).

We then prove that the famous Thue-Morse word is uniformly abelian-square-rich. Further-
more, we look at the function that counts the number of distinct abelian squares of length 2n
in the Thue-Morse word and prove that this function is 2-regular.

Then we look at the class of Sturmian words; these are aperiodic infinite words with the
lowest possible factor complexity. In this case, we prove that a Sturmian word has bounded
exponent if and only if it is uniformly abelian-square-rich, and leave open the question of
determining whether a Sturmian word is not abelian-square-rich in the case when it does not
have bounded exponent.

2. Notation and Background

Let Σ = {a1, a2, . . . , aσ} be an ordered σ-letter alphabet. Let Σ∗ stand for the free monoid
generated by Σ, whose elements are called words over Σ. The length of a word w is denoted
by |w|. The empty word, denoted by ε, is the unique word of length zero and is the neutral
element of Σ∗. We also define Σ+ = Σ∗ \ {ε}.

A prefix (respectively, a suffix ) of a word w is a word u such that w = uz (respectively,
w = zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a suffix of a
prefix) of w. The set of prefixes, suffixes and factors of the word w are denoted, respectively,
by Pref(w), Suff(w) and Fact(w). From the definitions, we have that ε is a prefix, a suffix and
a factor of every word.

A word w is a k-power (also called a repetition of order k), for an integer k ≥ 2, if there
exists a nonempty word u such that w = uk. A 2-power is called a square. The period of a word
w = w1w2 · · ·w|w| is the minimal integer p such that wi+p = wi for every 1 ≤ i ≤ |w| − p. The
exponent e(w) of a word w is the ratio between its length |w| and its period p. For example,
the period of w = abaab is p = 3, hence e(w) = 5/3. Of course, if a word w avoids k-powers
(that is, no factor of w is a k-power), then the supremum of the exponents of factors of w is
smaller than k.

For a word w and a letter ai ∈ Σ, we let |w|ai denote the number of occurrences of
ai in w. The Parikh vector (sometimes called the composition vector) of a word w over
Σ = {a1, a2, . . . , aσ} is the vector P (w) = (|w|a1 , |w|a2 , . . . , |w|aσ). An abelian k-power is a
nonempty word of the form v1v2 · · · vk where all the vi have the same Parikh vector (and
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therefore in particular the same length). An abelian 2-power is called an abelian square; an
example in English is the word reappear.

An infinite word w over Σ is an infinite sequence of letters from Σ, that is, a function
w : N 7→ Σ. An infinite word is recurrent if each of its factors occurs infinitely often. Given an
infinite word w, the recurrence index Rw(n) of w is defined to be the least integer m such that
every factor of w of length m contains all factors of w of length n, or +∞ if such an integer does
not exist. If the recurrence index is finite for every n, the infinite word w is called uniformly
recurrent and the function Rw(n) the recurrence function of w. A uniformly recurrent word is
of course recurrent, but the converse is not always true. For example, the Champernowne word
w = 011011100101 · · · , obtained by concatenating the base-2 representations of the natural
numbers, is recurrent but not uniformly recurrent (to see this, it is sufficient to observe that it
contains arbitrarily large consecutive blocks of the same letter). A uniformly recurrent word
w is called linearly recurrent if the ratio Rw(n)/n is bounded by a constant. Given a linearly
recurrent word w, the real number rw = lim supn→∞Rw(n)/n is called the recurrence quotient
of w. The factor complexity function (sometimes called subword complexity) of an infinite
word w is the integer function pw(n) defined by pw(n) = |Fact(w) ∩ Σn|. An infinite word w
has linear complexity if pw(n) = O(n). In particular, if a word is linearly recurrent, then it
has linear complexity (see, for example, [15]).

A substitution over the alphabet Σ is a map τ : Σ 7→ Σ+. A substitution τ over Σ can
be naturally extended to a (non-erasing) morphism from Σ∗ to Σ∗. A substitution can be
iterated: for every substitution τ and every n > 0, using the extension to a morphism, one
can define the substitution τn. A substitution τ is r-uniform if there exists an integer r ≥ 1
such that for all a ∈ Σ, |τ(a)| = r. A substitution is called uniform if it is r-uniform for some
r ≥ 1. A substitution τ is primitive if there exists an integer n ≥ 1 such that for every a ∈ Σ,
the word τn(a) contains every letter of Σ at least once. In this paper, we will only consider
primitive substitutions such that τ(a1) = a1v for a letter a1 and some nonempty word v.
These substitutions always have a fixed point, which is the infinite word w = limn→∞ τ

n(a1).
Moreover, this fixed point is linearly recurrent (see, for example, [11]) and therefore has linear
complexity.

For an integer k ≥ 2, we say that an infinite word w is k-power-free if no factor of w
is a k-power. If an infinite word w is k-power-free for some k, we say that w has bounded
exponent. For example, if a word is linearly recurrent, then it has bounded exponent (see, for
example, [15]).

3. Abelian-Square-Rich Words

Kociumaka et al. [27] showed that a word of length n can contain a number of distinct
abelian-square factors that is quadratic in n. For the sake of completeness, we give a proof of
this fact here.

Proposition 1. A word of length n can contain Θ(n2) distinct abelian-square factors.

Proof. Consider the word wn = anbanban, of length 3n + 2. For every 0 ≤ i, j ≤ n such that
i+ j + n is even, the factor aibanbaj of w is an abelian square. Since the number of possible
choices for the pair (i, j) is quadratic in n, we are done. �

Motivated by the previous result, we might ask whether there exist infinite words such that
all their factors contain a number of distinct abelian squares that is quadratic in their length.
But first we relax this condition and consider words in which, for every n, each factor of length
n contains, on average, a number of distinct abelian-square factors that is quadratic in n.
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Let us define some notation. Given a finite or infinite word w, we let ASn(w) denote the
number of distinct abelian-square factors of w of length n. Of course, ASn(w) = 0 if n is odd,
so this quantity is significant only for even values of n. Furthermore, for a finite word w of
length n, we let AS(w) =

∑
m≤n ASm(w) denote the total number of distinct abelian-square

factors, of all lengths, in w.

Definition 2. An infinite word w is abelian-square-rich if there exists a positive constant C
such that for every n one has

1

pw(n)

∑
v∈Fact(w)∩Σn

AS(v) ≥ Cn2.

Notice that Christodoulakis et al. [10] proved that a binary word of length n contains
Θ(n
√
n) distinct abelian-square factors on average; hence a random infinite binary word is

almost surely not abelian-square-rich.
In an abelian-square-rich word the number of distinct abelian squares contained in any

factor is, on average, quadratic in the length of the factor. A stronger condition is that every
factor contains a quadratic number of distinct abelian squares. We thus introduce the concept
of uniformly abelian-square-rich words.

Definition 3. An infinite word w is uniformly abelian-square-rich if there exists a positive
constant C such that AS(v) ≥ C|v|2 for all v ∈ Fact(w).

Clearly, if a word is uniformly abelian-square-rich, then it is also abelian-square-rich, but
the converse is not always true (we will provide an example of a word that is abelian-square-
rich but not uniformly abelian-square-rich at the end of this section). However, in the case of
linearly recurrent words, the two definitions are equivalent, as shown in the next lemma.

Lemma 4. Let w be an infinite word. If w is abelian-square-rich and linearly recurrent, then
it is uniformly abelian-square-rich.

Proof. If w is linearly recurrent, then there exists a positive integer K such that, for every n,
every factor of w of length Kn contains all the factors of w of length n. Let v be a factor
of w of length n containing the largest number of distinct abelian squares among the factors
of w of length n. Hence the number of distinct abelian squares in v is at least the average
number of distinct abelian squares in a factor of w of length n. Since w is abelian-square-rich,
the number of distinct abelian squares in v is greater than or equal to C ′n2, for a positive
constant C ′. Since v is contained in every factor of w of length Kn, the number of distinct
abelian squares in every factor of w of length Kn is greater than or equal to C ′n2, whence w
is uniformly abelian-square-rich. �

The following lemma will be useful in the next sections.

Lemma 5. Let w be a linearly recurrent infinite word. If there exists a positive constant C such
that for every n one has

∑
m≤n ASm(w) ≥ Cn2, then w is (uniformly) abelian-square-rich.

Proof. Since w is linearly recurrent, there exists a constant K such that, for every n, every
factor of w of length Kn contains all the factors of w of length n. Take any factor u of w of
length Kn. Since u contains all the factors of w of length n, it contains a number of distinct
abelian-square factors that is larger than a constant times n2. Therefore, every factor of length
n (and hence in particular, on average) contains a number of distinct abelian-square factors
that is proportional to the square of its length. �
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In the next proposition we show that a necessary condition for a word to be uniformly
abelian-square-rich is that it does not contain factors with arbitrarily large exponent.

Proposition 6. Let w be an infinite word. If w is uniformly abelian-square-rich, then w has
bounded exponent.

Proof. Let uk be a nonempty factor of w of length n = km, m = |u|. Every abelian square in
uk has an occurrence starting at a position smaller than m. We separate the abelian squares of
uk in two disjoint sets: those whose first occurrence ends at, or before, position m (i.e., those
occurring in u), and those whose first occurrence ends after position m. Since there are no more
than m2 distinct abelian squares of the first kind and no more than m · (k− 1)m = (k− 1)m2

distinct abelian squares of the second kind, we have that uk contains no more than km2 = n2/k
distinct abelian-square factors.

If w does not have bounded exponent then, for every k ≥ 2, w contains a nonempty factor
v of the form v = uk, for some u. Hence, for every positive constant C, taking k such that
1/k < C, the word w contains a factor v such that AS(v) < C|v|2. �

To conclude this section, we exhibit an example of a word that is abelian-square-rich but
not uniformly abelian-square-rich.

Consider the sequence of words (wk)k≥1 defined by: w1 = aabaabaab, and for every k > 1

wk = wk−1a
2kba2kba2kb. (3.1)

Proposition 7. The infinite word w = limk→∞wk is abelian-square-rich but not uniformly
abelian-square-rich.

Proof. Let us first prove that w is abelian-square-rich. We first observe that w has linear
complexity. Indeed, this is an immediate consequence of the fact that for every n there is a
constant number of distinct factors of length n that can be extended to the right both by the
letter a or by the letter b to factors of w of length n+ 1 (these factors are usually called right
special factors). Actually, for every n the number of right special factors of w of length n is
bounded by 4, since these can only be of the following kinds:

(1) an;
(2) aibaj , for some i ≥ 0 and j > 0 such that j = 2r for some r and i+ j + 1 = n;
(3) aibajbaj , for some i ≥ 0 and j > 0 such that j = 2r for some r and i+ 2j + 2 = n;
(4) aibajbajbaj , for some i ≥ 0 and j > 0 such that j = 2r for some r and i+ 3j + 3 = n.

It is readily verified that if a factor of w contains more than 3 b’s or does not end in a2r for
some r > 0, then it cannot be a right special factor of w.

So, it is sufficient to prove that for every n there is a linear (in n) number of factors of w
of length n that contain a number of distinct abelian-square factors proportional to n2. This
follows from the fact that for every n there is a linear number of distinct factors that contain

a2kba2kba2k as factor, for some value of 2k proportional to n (for example, take the largest

k such that 2k ≤ n/100, and consider the factors of length n in which a2kba2kba2k appears
at different positions), and these factors contain a number of distinct abelian-square factors
proportional to the square of their length (see the proof of Proposition 1), hence proportional
to n2.

Finally, w is not uniformly abelian-square-rich by Proposition 6, since it contains arbitrarily
large powers of the letter a. �
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It remains to prove that a recurrent (or even a uniformly recurrent) word exists that is
abelian-square-rich but not uniformly abelian-square-rich, but such an example is probably
more technical and involved.

4. The Thue-Morse Word

Let

t = 011010011001011010010110 · · ·
be the Thue-Morse word, i.e., the fixed point starting with 0 of the uniform substitution
µ : 0 7→ 01, 1 7→ 10. It is well known that t is linearly recurrent and that t does not contain
any factor with exponent larger than 2. In particular, t does not contain overlaps, i.e., factors
of the form avava, with a ∈ {0, 1} and v ∈ {0, 1}∗.

For every n ≥ 4, the factors of length n of t belong to two disjoint sets: those that start only
at even positions in t, and those that start only at odd positions in t. This is a consequence
of two facts: first, that t is overlap-free (and so 0101 cannot be preceded by 1 nor followed
by 0) and second, that 00 and 11 are not images under µ of letters, so they cannot appear at
even positions.

Let p(n) be the factor complexity function of t. It is known [6, Proposition 4.3] that for
every n ≥ 1 one has

p(2n) = p(n) + p(n+ 1), p(2n+ 1) = 2p(n+ 1). (4.1)

We define faa(n) (respectively, fab(n)) to be the number of factors of t of length n that
begin and end with the same letter (respectively, with different letters). The next lemma
(proved in [8]) shows that the Thue-Morse word has the property that for every n, at least
one-third of the length-n factors begin and end with the same letter, and at least one-third of
the length-n factors begin and end with different letters.

Lemma 8 ([8]). For every n ≥ 2, one has faa(n) ≥ p(n)/3 and fab(n) ≥ p(n)/3.

Since from (4.1) we have p(n) ≥ 3(n− 1) for every n, we get the following result.

Corollary 9. For every n ≥ 2, one has faa(n) ≥ n− 1 and fab(n) ≥ n− 1.

We are now ready to prove that the Thue-Morse word is uniformly abelian-square-rich.

Proposition 10. The Thue-Morse word t is uniformly abelian-square-rich.

Proof. Let u be a factor of length n > 1 of t that begins and ends with the same letter. Since
the image of every even-length word under µ is an abelian square, we have that µ2(u) is an
abelian-square factor of t of length 4n that begins and ends with the same letter. Moreover,
the word obtained from µ2(u) by removing the first and the last letter is an abelian-square
factor of t of length 4n−2. So, by Corollary 9, t contains at least n−1 distinct abelian-square
factors of length 4n and at least n − 1 distinct abelian-square factors of length 4n − 2. This
implies that for every even n the number of distinct abelian-square factors of t of length n is
linear in n. Hence, for every n the number of distinct abelian-square factors of t of length at
most n is quadratic in n. The statement then follows from Lemmas 5 and 4. �

4.1. More detailed analysis for the Thue-Morse word. Let f(n) denote the number of
distinct abelian squares of length 2n (or, equivalently, of order n) in the Thue-Morse sequence
t. Table 1 gives the first few terms of this sequence.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
f(n) 2 4 4 10 8 24 10 22 12 36 20 52 24 54 20 46 24 72 32 76

Table 1. First few values of the number of distinct abelian-square factors of
order n in the Thue-Morse word.

We can use the decision procedure discussed in [1, 9, 23, 24, 36] to analyze the function f
in more detail. Although in general abelian questions about arbitrary automatic sequences
are not decidable using this method, the Thue-Morse sequence has symmetries that make it
amenable. One nice feature of this approach is that it can be almost entirely automated, using
the freely-available Walnut package [34].

Define
d(n) := |t[0..n− 1]|0 −

n

2
to be the prefix defect function for the Thue-Morse sequence, that is, the function that counts
the number of 0’s in a prefix of length n over the amount “expected to occur”. (Since t ∈
(01 + 10)ω, we expect n

2 0’s in a prefix of length n.)
Recall that we say that an infinite word a = (an)n≥0 ∈ ∆ω is a k-automatic sequence if

there exists a deterministic finite automaton with output (DFAO) M = (Q,Σ, δ, q0,∆, τ) that
computes a in the following sense: if the input to M is (n)k, the base-k representation of
n, then the output τ(δ(q0, x)) is equal to an. Here τ : Q → ∆. Without loss of generality,
we assume all automata discussed in this section take, as input, the base-2 representations of
numbers starting with the most significant digit. See, for example, [3].

Now it is not hard to see that d = (dn)n≥0 is a 2-automatic sequence. In fact, the four-state
automaton in Figure 1 computes it. Here the notation a/b in a state indicates that the state
name is a and its output is b. Thus, for example, starting in state 0, and reading the base-2
expansion of 23 (namely, 10111), we reach the state 3 with output −1

2 . And indeed, t[0..22]

has 11 zeroes, so its defect is 11− 23
2 = −1

2 .

0/0

0
1/ ½

1

2/0

0

3/ -½
1

0

1

0

1

Figure 1. Automaton calculating prefix defect function for t.

Now that we have the sequence d, we define the function D(i, n) be the defect associated
with the factor t[i..i+ n− 1], that is,

D(i, n) := |t[i..i+ n− 1]|0 −
n

2
.
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Then we have D(i, n) = d(i+ n)− d(i) ∈ {−1,−1
2 , 0,

1
2 , 1}.

We can view D as a two-dimensional automatic sequence (see, e.g., [3, Chapter 14]). Here
the input alphabet is {0, 1}2, where the first components of the input spell out the base-2
representation of i and the second components spell out the base-2 representation of n. We
write this input as (i, n)2. (The shorter of the two representations is, if necessary, padded with
leading zeroes so that the two representations can be read in parallel.) From the DFAO for d
we can easily generate an automaton for the two-dimensional infinite array D = (D(i, n))i,n≥0.
More usefully, we can produce 5 different automata A1, A2, A3, A4, A5 accepting those inputs
(i, n)2 for which D(i, n) = −1 (respectively, −1

2 , 0,
1
2 , 1). We can think of each automaton Am,

1 ≤ m ≤ 5, as computing the function Am(i, n) that is true when (i, n)2 is accepted and
false otherwise. When we compute these using Walnut we discover that they have 10, 13, 7,
13, 10 states respectively.

Once we have the automata A1, A2, A3, A4, A5, we can create an automaton T accepting
those (i, n)2 such that t[i..i+2n−1] is an abelian square. This automaton is created by taking
the disjunction of the assertions Am(i, n) ∧ Am(i + n, n) for 1 ≤ m ≤ 5, and is implemented
by an automaton with 36 states.

Finally, using T we can create an automaton U accepting those (i, n)2 such that t[i..i+2n−1]
is a novel abelian square; that is, an abelian square of length 2n that has never appeared
previously in t:

U(i, n) := T (i, n) ∧ (∀j (j < i) =⇒ (∃k (k < 2n) ∧ (t[i+ k] 6= t[j + k]))).

The automaton U has 64 states, and can be computed using the techniques described in [24].
Again, we can view U as computing the function U(i, n) that is true when (i, n)2 is accepted
and false otherwise.

Now define f(n) = |{i : U(i, n)}|. As a moment’s reflection will reveal, this is the number
of distinct abelian squares in t of order n (and length 2n). As the techniques in [9] show,
from the transition diagram of the automaton U we can immediately deduce a so-called linear
representation for the function f , that is, square matrices M0,M1 and vectors v, w such that

f(n) = vMa1 · · ·Maiw

if (n)2 = a1 · · · ai. We can minimize the representation using the algorithm in [4, Section 2.3],
obtaining the following linear representation of rank 11:
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v := [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

M0 :=



1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 64
13 1 −171

26 −69
26 0 0 43

26
9
13

51
26

0 0 90
13 −1 −275

26
9
26 0 2 69

26 −17
13

51
26

0 0 −2 0 1 0 0 0 2 0 0

0 0 68
13 0 −88

13 −33
13 0 0 20

13
12
13

34
13

0 0 54
13 0 −89

13 −22
13 0 0 35

13
8
13

27
13



M1 :=



0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 − 8
13 0 − 8

13
10
13 0 0 16

13
7
13 − 4

13

0 0 −87
13 −1 203

26
3
26 2 0 − 3

26
16
13 −61

26

0 0 − 7
13 1 25

26 −93
26 0 0 15

26
37
13 − 7

26

0 0 20
13 0 −45

13 −12
13 0 0 25

13
28
13 − 3

13

0 0 −40
13 0 25

13 − 2
13 0 0 15

13
22
13 − 7

13

0 0 −36
13 0 29

13 −20
13 0 0 7

13
38
13 − 5

13


w := [1, 2, 4, 4, 10, 8, 24, 10, 22, 12, 36]T

We have therefore proved

Theorem 11. The function f counting the number of distinct abelian squares of order n of t
is given by f(n) = vMa1 · · ·Maiw if (n)2 = a1 · · · ai, for the vectors v, w and matrices M0,M1

given above.

A sequence that can be computed in this manner is called 2-regular; see [2].
From the matrices above we can, using the method described in [23], obtain defining recur-

sive relations for f :



10 G. FICI, F. MIGNOSI, AND J. SHALLIT

f(8n) = −2f(2n) + 3f(4n)

f(8n+ 6) = 4f(2n+ 1)− f(4n+ 1) + 4f(4n+ 2) + f(4n+ 3) + f(8n+ 1)− f(8n+ 2) + f(8n+ 3)

− 2f(8n+ 4) + 2f(8n+ 5)

f(16n+ 3) = f(2n)− 3

2
f(2n+ 1)− f(4n)− 15

4
f(4n+ 1) + 5f(4n+ 2) +

5

2
f(8n+ 1)

+
13

4
f(8n+ 3)− 9

4
f(8n+ 4) +

1

2
f(16n+ 1)− 1

2
f(16n+ 2)

f(16n+ 4) = f(2n)− 3

2
f(2n+ 1)− f(4n)− 7

4
f(4n+ 1) + f(4n+ 2) +

3

2
f(8n+ 1)

+ 2f(8n+ 2) +
5

4
f(8n+ 3)− 1

4
f(8n+ 4)

1

2
f(16n+ 1)− 1

2
f(16n+ 2)

f(16n+ 5) = f(2n) +
1

2
f(2n+ 1)− f(4n)− 11

4
f(4n+ 1) + 3f(4n+ 2) +

5

2
f(8n+ 1)

+
9

4
f(8n+ 3)− 5

4
f(8n+ 4) +

1

2
f(16n+ 1)− 1

2
f(16n+ 2)

f(16n+ 7) = 2f(4n+ 1)− 2f(4n+ 2) + f(8n+ 3)

f(16n+ 9) = f(4n+ 1)− 2f(4n+ 2) + f(4n+ 3) + f(8n+ 3) + f(8n+ 4)

f(16n+ 11) = 4f(2n+ 1)− f(4n+ 1) + 2f(4n+ 2) + f(4n+ 3)− f(8n+ 3)− f(8n+ 4) + 2f(8n+ 5)

f(16n+ 12) = 8f(2n+ 1)− 3f(4n+ 1) + 10f(4n+ 2) + 3f(4n+ 3) + 2f(8n+ 1)− 2f(8n+ 2)

+ f(8n+ 3)− 5f(8n+ 4) + 5f(8n+ 5)

f(16n+ 13) = 2f(2n+ 1)− 2f(4n+ 1) + 4f(4n+ 2) + f(4n+ 3)− 2f(8n+ 3)

− 2f(8n+ 4) + 4f(8n+ 5)

f(16n+ 15) = −2f(2n+ 1) + f(4n+ 3) + 2f(8n+ 7)

f(32n+ 1) = −4f(2n) + 2f(2n+ 1) + 4f(4n) + 7f(4n+ 1)− 12f(4n+ 2)− f(8n+ 1)

− 5f(8n+ 3) + 5f(8n+ 4)− 2f(16n+ 1) + 2f(16n+ 2)

f(32n+ 2) = −4f(2n) + 4f(2n+ 1) + 4f(4n) + 8f(4n+ 1)− 14f(4n+ 2)− 4f(8n+ 1)

+ f(8n+ 2)− 5f(8n+ 3) + 5f(8n+ 4)− 3f(16n+ 1) + 4f(16n+ 2)

f(32n+ 10) = 3f(2n)− 5

2
f(2n+ 1)− 3f(4n)− 17

4
f(4n+ 1) + 13f(4n+ 2) +

17

2
f(8n+ 1)

− f(8n+ 2) +
35

4
f(8n+ 3)− 19

4
f(8n+ 4) +

3

2
f(16n+ 1)− 3

2
f(16n+ 2)

f(32n+ 17) = 2f(4n+ 1)− 4f(4n+ 2) + 2f(8n+ 3) + 2f(8n+ 4) + f(8n+ 5)

f(32n+ 18) = 14f(2n+ 1) + 4f(4n+ 1)− 4f(4n+ 2) + f(4n+ 3) + f(8n+ 1)− f(8n+ 2)

+ 6f(8n+ 3) + f(8n+ 4) + 2f(8n+ 5)

f(32n+ 26) = −10f(2n+ 1)− 6f(4n+ 1) + 8f(4n+ 2) + 3f(4n+ 3)− f(8n+ 1) + f(8n+ 2)

− 8f(8n+ 3)− 3f(8n+ 4) + 5f(8n+ 5) + 3f(8n+ 7) + 2f(16n+ 10)

Corollary 12. f(4n − 1) = (4n+1 − 4)/3 and f(3 · 2n) = 14 · 2n − 4 for n ≥ 1.

We suspect the values in Corollary 12 are, respectively, the local minima (maxima) of
f(n)/n, but we do not have a proof yet.
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5. Sturmian Words

In this section we fix the alphabet Σ = {a,b}.
Recall that a (finite or infinite) word w over Σ is balanced if and only if for every pair of

factors u, v of w of the same length, one has ||u|a − |v|a| ≤ 1.
We start with a simple lemma.

Lemma 13. Let w be a finite balanced word over Σ. Then for every k > 0, P (w) ≡ (0, 0)
(mod k) if and only if w is an abelian k-power.

Proof. Let w be balanced and P (w) = (ks, kt), for a positive integer k and some s, t ≥ 0.
Then we can write w = v1v2 · · · vk where each vi has length s + t. Now each vi must have
Parikh vector equal to (s, t), otherwise w would not be balanced, whence the ‘only if’ part of
the statement follows. The ‘if’ part is straightforward. �

A binary infinite word is Sturmian if and only if it is balanced and aperiodic. Sturmian
words are precisely the infinite words having n + 1 distinct factors of length n for every
n ≥ 0. There are many other equivalent definitions of Sturmian words. A classical reference
on Sturmian words is [31, Chapter 2]. Let us recall the definition of Sturmian words as codings
of a rotation.

We fix the torus I = R/Z = [0, 1). Given δ, γ in I, if δ > γ, we use the notation [δ, γ) for
the interval [δ, 1)∪ [0, γ). Recall that given a real number α, bαc is the greatest integer smaller
than or equal to α, dαe is the least integer greater than or equal to α, and {α} = α − bαc is
the fractional part of α. Notice that {−α} = 1− {α} for non-integer α.

Let α ∈ I be irrational, and ρ ∈ I. The Sturmian word sα,ρ (respectively, s′α,ρ) of angle α
and initial point ρ is the infinite word a0a1a2 · · · defined by

an =

{
b, if {ρ+ nα} ∈ Ib;

a, if {ρ+ nα} ∈ Ia.

where Ib = [0, 1− α) and Ia = [1− α, 1) (respectively, Ib = (0, 1− α] and Ia = (1− α, 1]).
In other words, take the unit circle and consider a point initially in position ρ. Then start

rotating this point on the circle (clockwise) by an angle α, 2α, 3α, etc. For each rotation,
take the letter a or b associated with the interval within which the point falls. The infinite
sequence obtained in this way is the Sturmian word sα,ρ (or s′α,ρ, depending on the choice of
the two intervals). See Figure 2 for an illustration.

For example, if ϕ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio, the Sturmian word

F = sϕ−1,ϕ−1 = abaababaabaababaababaabaababaabaab · · ·
is called the Fibonacci word.

A Sturmian word for which ρ = α, such as the Fibonacci word, is called characteristic. Note
that for every α one has sα,0 = bsα,α and s′α,0 = asα,α.

An equivalent way to visualize the coding of a rotation consists of fixing the point and
rotating the intervals. In this representation, the interval Ib = I0

b is rotated at each step, so

that after i rotations it is transformed into the interval I−ib = [{−iα}, {−(i + 1)α}), while

I−ia = I \ I−ib .
This representation is convenient, since one can read within it not only a Sturmian word,

but also all of its factors. More precisely, for every positive integer n, the factor of length n of
sα,ρ starting at position j ≥ 0 is determined by the value of {ρ+ jα} only. Indeed, for every
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ρ

ρ + α

ρ + 2α

ρ + 3α

0
ρ + 4α

1 − α

Ia

Ib

Figure 2. The rotation of angle α = ϕ − 1 (where ϕ = (1 +
√

5)/2 ≈ 1.618
is the golden ratio) and initial point ρ = α generating the Fibonacci word
F = sϕ−1,ϕ−1 = abaababaabaabab · · · .

j and i, we have

aj+i =

{
b, if {ρ+ jα} ∈ I−ib ;

a, if {ρ+ jα} ∈ I−ia .

As a consequence, we have that given a Sturmian word sα,ρ and a positive integer n,
the n + 1 different factors of sα,ρ of length n are completely determined by the intervals

I0
b , I
−1
b , . . . , I

−(n−1)
b , that is, only by the points {−iα} for 0 ≤ i < n. In particular, they do

not depend on ρ, so that the set of factors of sα,ρ is the same as the set of factors of sα,ρ′ for
every ρ and ρ′. Hence, from now on, we let sα denote a Sturmian word of angle α.

If we arrange the n+2 points 0, 1, {−α}, {−2α}, . . . , {−nα} in increasing order, we determine
a partition of I in n+ 1 subintervals, L0(n), L1(n), . . . , Ln(n). Each of these subintervals is in
bijection with a different factor of length n of sα (see Figure 3).

Recall that a factor of length n of a Sturmian word sα has a Parikh vector equal either to
(bnαc, n − bnαc) (in which case it is called light) or to (dnαe, n − dnαe) (in which case it is
called heavy). The following proposition relates the intervals Li(n) to the Parikh vectors of
the factors of length n (see [17,18,35]).

Proposition 14. Let sα be a Sturmian word of angle α, and n a positive integer. Let ti be the
factor of length n associated with the interval Li(n). Then ti is heavy if Li(n) ⊂ [{−nα}, 1),
while it is light if Li(n) ⊂ [0, {−nα}).

Example 15. Let α = ϕ−1 ≈ 0.618 and n = 6. We have 6α ≈ 3.708, so that {−6α} ≈ 0.292.
The reader can see in Figure 3 that the factors of length 6 corresponding to intervals above
(respectively, below) {−6α} ≈ 0.292 all have Parikh vector (4, 2) (respectively, (3, 3)). That is,
the intervals L0 and L1 are associated with light factors (babaab, baabab), while the intervals
L2 to L6 are associated with heavy factors (baabaa, ababaa, abaaba, aababa, aabaab).

Observe that, by Lemma 13, every factor of a Sturmian word having even length and
containing an even number of a’s (or, equivalently, of b’s) is an abelian square. The following
proposition relates the abelian-square factors of a Sturmian word of angle α with the arithmetic
properties of α.
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54321

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

a

b

L0

L1

L2

L3

L4

L5

L6

{−α}

{−2α}

{−3α}

{−4α}

{−5α}

{−6α}

Figure 3. The points 0, 1 and {−α}, {−2α}, {−3α}, {−4α}, {−5α}, {−6α}
(α = ϕ−1), arranged in increasing order, define the intervals L0(6) ≈ [0, 0.146),
L1(6) ≈ [0.146, 0.292), L2(6) ≈ [0.292, 0.382), L3(6) ≈ [0.382, 0.528), L4(6) ≈
[0.528, 0.764), L5(6) ≈ [0.764, 0.910), L6(6) ≈ [0.910, 1). Each interval is asso-
ciated with one of the factors of length 6 of the Fibonacci word, respectively
babaab,baabab,baabaa, ababaa, abaaba, aababa, aabaab.

Proposition 16. Let sα be a Sturmian word of angle α, and n a positive even integer. Let
ti be the factor of length n associated with the interval Li(n). Then ti is an abelian square if
and only if Li(n) ⊂ [{−nα}, 1) if bnαc is even, or Li(n) ⊂ [0, {−nα}) if bnαc is odd.

Proof. By Proposition 14, ti is heavy if Li(n) ⊂ [{−nα}, 1), while it is light if Li(n) ⊂
[0, {−nα}). If bnαc is even, then every light factor of length n contains an even number
of a’s and hence is an abelian square, while if bnαc is odd, then every heavy factor of length
n contains an even number of a’s and hence is an abelian square, whence the statement fol-
lows. �

Recall that given a finite or infinite word w, ASn(w) denotes the number of distinct abelian-
square factors of w of length n.

Corollary 17. Let sα be a Sturmian word of angle α. For every positive even n, let In =
{{−iα} | 1 ≤ i ≤ n}. Then

ASn(sα) =

{
#{x ∈ In | x ≤ {−nα}}, if bnαc is even;

#{x ∈ In | x ≥ {−nα}}, if bnαc is odd.

Example 18. The factors of length 6 of the Fibonacci word F are, lexicographically ordered:
aabaab, aababa, abaaba, ababaa, baabaa (heavy factors), baabab, babaab (light factors).
The light factors, whose number of a’s is b6αc = 3, are not abelian squares; the heavy factors,
whose number of a’s is d6αe = 4, are all abelian squares.

We have I6 = {0.382, 0.764, 0.146, 0.528, 0.910, 0.292} (values are approximated) and 6α '
3.708, so b6αc is odd. Thus, there are 5 elements in I6 that are ≥ {−6α}, so by Corollary 17
there are 5 distinct abelian-square factors of length 6.
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n 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

ASn(F ) 0 1 3 5 1 9 5 5 15 3 13 13 5 25 9 15 25 1 27

Table 2. The first few values of the sequence ASn(F ) of the number of
distinct abelian-square factors of length n in the Fibonacci word F = sϕ−1,ϕ−1.
See OEIS sequence A241674.

The factors of length 8 of the Fibonacci word are, lexicographically ordered: aabaabab,
aababaab, abaabaab, abaababa, ababaaba, baabaaba, baababaa, babaabaa (heavy factors),
babaabab (light factor). The light factor, whose number of a’s is b8αc = 4, is an abelian
square; the heavy factors, whose number of a’s is d8αe = 5, are not abelian squares. We
have I8 = {0.382, 0.764, 0.146, 0.528, 0.910, 0.292, 0.674, 0.056} (values are approximated) and
8α ' 4.944, so b8αc is even. Thus, there is only one element in I8 that is ≤ {8α}, so by
Corollary 17 there is only one abelian-square factor of length 8.

In Table 2 we report the first few values of the sequence ASn(F ) for the Fibonacci word
F . More detailed analysis of ASn(F ) can be found, using the decision method we used for
Thue-Morse, in [13,14].

Recall that every irrational number α can be uniquely written as a (simple) continued
fraction as follows:

α = a0 +
1

a1 +
1

a2 +
1

a3 + .. .

(5.1)

where a0 = bαc, and the infinite sequence (ai)i≥0 is called the sequence of partial quotients of
α. The continued fraction expansion of α is usually denoted by its sequence of partial quotients
as follows: α = [a0; a1, a2, . . .], and each of its finite truncations [a0; a1, a2, . . . , ak] is a rational
number nk/mk called the kth convergent to α. We say that an irrational α = [a0; a1, a2, . . .]
has bounded partial quotients if and only if the sequence (ai)i≥0 is bounded.

The continued fraction expansion of α is deeply related to the exponent of the factors of
the Sturmian word sα. The second author [32] proved that a Sturmian word of angle α has
bounded exponent if and only if α has bounded partial quotients.

Since the golden ratio ϕ is defined by the equation ϕ = 1 + 1/ϕ, we have from Equation 5.1
that ϕ = [1; 1, 1, 1, 1, . . .] and therefore ϕ − 1 = [0; 1, 1, 1, 1, . . .], so the Fibonacci word is an
example of a Sturmian word with bounded exponent (actually, one can prove that the superior
limit of the exponent of a factor of the Fibonacci word is (2 + ϕ) [33]).

Now we prove that if α has bounded partial quotients, then the Sturmian word sα is (uni-
formly) abelian-square-rich. For this, we will use a result on the discrepancy of uniformly
distributed modulo 1 sequences from [29]. To the best of our knowledge, this is the first appli-
cation of this result to the theory of Sturmian words, and we think that this correspondence
might be useful for deriving other results on Sturmian words.

Let ω = (xn)n≥0 be a sequence of real numbers. For a positive integer N and a subset E of
the torus I, we define A(E;N ;ω) as the number of terms xn, 0 ≤ n ≤ N , for which {xn} ∈ E.
If there is no risk of confusion, we will write A(E;N) instead of A(E;N ;ω).



ABELIAN-SQUARE-RICH WORDS 15

Definition 19. The sequence ω = (xn)n≥0 of real numbers is said to be uniformly distributed
modulo 1 if and only if for every pair γ, δ of real numbers with 0 ≤ γ < δ ≤ 1 we have

lim
N→∞

A([γ, δ);N ;ω)

N
= δ − γ.

Definition 20. Let x0, x1, . . . , xN be a finite sequence of real numbers. The number

DN = DN (x0, x1, . . . , xN ) = sup
0≤γ<δ≤1

∣∣∣∣A([γ, δ);N)

N
− (δ − γ)

∣∣∣∣
is called the discrepancy of the given sequence. For an infinite sequence ω of real numbers the
discrepancy DN (ω) is the discrepancy of the initial segment formed by the first N + 1 terms
of ω.

The two previous definitions are related by the following result.

Theorem 21 ( [29]). The sequence ω is uniformly distributed modulo 1 if and only if
limN→∞DN (ω) = 0.

An important class of uniformly distributed modulo 1 sequences is given by the sequence
(nα)n≥0 with α an irrational number. The discrepancy of the sequence (nα) will depend on
the finer arithmetical properties of α. In particular, we have the following theorem, stating
that if α has bounded partial quotients, then its discrepancy has the least order of magnitude
possible.

Theorem 22 ([29]). Suppose the irrational α = [a0; a1, . . .] has partial quotients bounded by
K. Then the discrepancy DN (ω) of ω = (nα) satisfies NDN (ω) = O(logN). More exactly,
we have

NDN (ω) ≤ 3 +

(
1

logϕ
+

K

log(K + 1)

)
logN (5.2)

where ϕ is the golden ratio.

As a consequence, we obtain the following corollary:

Corollary 23. Suppose the irrational α = [a0; a1, . . .] has bounded partial quotients. Then
there exists a positive constant C such that for every pair γ, δ of real numbers with 0 ≤ γ <
δ ≤ 1 and for every n, we have

A([γ, δ);n; (nα)) ≥ n(δ − γ)− C log n.

Now we use the results above to prove that Sturmian words with bounded exponent are
abelian-square-rich.

Theorem 24. Let sα be a Sturmian word of angle α such that α has bounded partial quotients.
Then there exists a positive constant C such that for every n one has

∑
m≤n ASm(sα) ≥ Cn2.

Proof. For every even n, let I ′n = {{iα} | 1 ≤ i ≤ n}. By Corollary 17 and basic arithmetical
properties of the fractional part, we have

ASn(sα) =

{
#{x ∈ I ′n | x ≥ {nα}}, if bnαc is even;

#{x ∈ I ′n | x ≤ {nα}}, if bnαc is odd.
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So, ∑
m≤n

ASm(sα) (5.3)

≥
∑

m≤n, bmαc odd

#{{iα} | {iα} ≤ {mα}, 1 ≤ i ≤ m} (5.4)

≥
∑

m≤n, bmαc odd, {mα}≥1/2

#{{iα} | {iα} ≤ 1/2, 1 ≤ i ≤ m} (5.5)

=
∑

m≤n, {mα/2}≥1/2, {mα}≥1/2

#{{iα} | {iα} ≤ 1/2, 1 ≤ i ≤ m} (5.6)

≥
∑

m≤n, {mα/2}≥3/4

#{{iα} | {iα} ≤ 1/2, 1 ≤ i ≤ m} (5.7)

≥
∑

m≤n, {mα/2}≥3/4

#{{iα/2} | {iα/2} ≤ 1/4, 1 ≤ i ≤ m} (5.8)

≥
∑

n/2≤m≤n, {mα/2}≥3/4

#{{iα/2} | {iα/2} ≤ 1/4, 1 ≤ i ≤ n/2} (5.9)

= #{{iα/2} | {iα/2} < 1/4, 1 ≤ i ≤ n/2} ·
∑

n/2≤m≤n

{m | {mα/2} ≥ 3/4}, (5.10)

where: (5.6) follows from (5.5) because for every integer m one has that bmαc is odd if and
only if {mα/2} ≥ 1/2; (5.7) follows from (5.6) because for every integer m, {mα/2} ≥ 3/4
implies {mα} ≥ 1/2; (5.8) follows from (5.7) because for every integer i, {iα/2} ≤ 1/4
implies {iα} ≤ 1/2; finally (5.10) follows from (5.9) because the cardinality of the first set is
independent from the sum. The other (in-)equalities are obvious.

Since α has bounded partial quotients, so does α/2 (see, e.g., [30]), and we can apply
Corollary 23 to evaluate the two factors of (5.10). Therefore, we have

#{{iα/2} | {iα/2} < 1/4, 1 ≤ i ≤ n/2}
= A([0, 1/4);n/2; (nα/2))

≥ (1/4)(n/2)− C1 log n

= n/8− C1 log n,

for a positive constant C1, and∑
n/2≤m≤n

{m | {mα/2} ≥ 3/4}

= A([3/4, 1);n; (nα/2))−A([3/4, 1);n/2; (nα/2))

≥ (1/4)n− C2 log n− (1/4)(n/2) + C3 log n

= n/8− C4 log n,

for constants C2, C3, C4. From this, we can conclude that the product of the two factors of
(5.10) is greater than a constant times n2, as required. �

Next, we recall a result of J. Cassaigne:



ABELIAN-SQUARE-RICH WORDS 17

Lemma 25. [7, Prop. 5] The recurrence quotient rα of a Sturmian word of angle α =
[0; a1, a2, . . .] is finite if and only if α has bounded partial quotients and, in this latter case,
one has 2 + lim sup ai < rα < 3 + lim sup ai.

Thus, we have the following:

Corollary 26. Let sα be a Sturmian word of angle α. Then sα has bounded exponent if and
only if sα is uniformly abelian-square-rich.

Proof. We know that sα has bounded exponent if and only if α has bounded partial quotients,
if and only if sα is linearly recurrent. The statement then follows from Theorem 24, Lemmas
5 and 4 and Proposition 6. �

6. Conclusions

We proved that the Thue-Morse word is uniformly abelian-square-rich. We suspect that
the technique we used for the proof can be generalized to some extent, and could be used,
for example, to prove that a subclass of fixed points of uniform substitutions are uniformly
abelian-square-rich.

We also proved that Sturmian words of bounded exponent are uniformly abelian-square-
rich (and the converse also holds). The proof we gave is based on a classical result on the
discrepancy of the uniformly distributed modulo 1 sequence (nα)n≥0, where α is the angle of
the Sturmian word. To the best of our knowledge, this is the first application of this result to
the theory of Sturmian words, and we believe that the correspondence we have shown might
be useful for deriving other results on Sturmian words.

We leave open the question of determining whether sα is not abelian-square-rich in the case
when α has unbounded partial quotients. Notice that, by Proposition 6, such sα cannot be
uniformly abelian-square-rich, since a Sturmian word has bounded partial quotients if and
only if it has bounded exponent.

We mostly investigated binary words in this paper. We conjecture that binary words have
the largest number of distinct abelian-square factors. More precisely, we propose the following
conjecture.

Conjecture 27. If a word of length n contains k distinct abelian-square factors, then there
exists a binary word of length n containing at least k distinct abelian-square factors.

A slightly different point of view from the one we considered in this paper consists in
identifying two abelian squares if they have the same Parikh vector. Two abelian squares
are therefore called inequivalent if they have different Parikh vectors [21]. Sturmian words
only have a linear number of inequivalent abelian squares. Nevertheless, a word of length n
can contain Ω(n

√
n) inequivalent abelian squares [28]. Computations support the following

conjecture:

Conjecture 28 (see [27,28]). Every word of length n contains at most Θ(n
√
n) inequivalent

abelian squares.
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