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Abstract. Recently, Chen and Koenig in [CheKoe] and Iyama and Solberg in [IyaSol] independently in-
troduced and characterised algebras with dominant dimension coinciding with the Gorenstein dimension

and both dimensions being larger than or equal to two. In [IyaSol], such algebras are named Auslander-

Gorenstein algebras. Those classes of algebras clearly generalise the well known class of higher Auslander
algebras, where the dominant dimension additionally coincides with the global dimension. In this short

article we generalise Auslander-Gorenstein algebras further to algebras having the property that the

dominant dimension coincides with the finitistic dimension and both dimension are at least two. We call
such algebras finitistic Auslander algebras. As an application we can specialise to reobtain known re-

sults about Auslander-Gorenstein algebras and higher Auslander algebras such as the higher Auslander

correspondence, which now has a very short proof. We furthermore state the new homological conjec-
ture that in fact all nonselfinjective algebras with high enough dominant dimension have automatically

their finitistic dimension equal to the dominant dimension. The last section motivates this conjecture

by examples. In particular, we show how to associate finitistic Auslander algbras to arbitrary local
selfinjective algebras in different ways, which also indicates that the class of finitistic Auslander algebras

is much larger than the class of Auslander-Gorenstein algebras. We give several related conjectures for
Nakayama algebras with high dominant dimension. We verify those conjectures for n ≤ 13 using the

computer algebra system QPA, which is a package of GAP.

Introduction

Let A always be a finite dimensional connected algebra over a field K, which is not semi-simple. All
modules are finite dimensional right modules if nothing is stated otherwise. In this article we generalise
Auslander-Gorenstein algebras introduced in [IyaSol] as algebras having dominant dimension equal to
the Gorenstein dimension and both dimensions being larger than or equal to two. Those algebras contain
the important class of higher Auslander algebras, introduced in [Iya]. Note that in case an algebra
is Gorenstein, the Gorenstein dimension equals the finitistic dimension (see for example [Che]). Thus
algebras with finitistic dimension equal to the dominant dimension, which is larger than or equal to two,
generalise Auslander-Gorenstein algebras. We call such algebras finitistic Auslander algebras and deduce
some of their properties, including a generalisation of the celebrated higher Auslander correspondence
for finite dimensional algebras first proven in [Iya]. We characterise finitistic Auslander algebras in terms
of Gorenstein homological algebra and the category of modules having a certain dominant dimension.
Let Domd denote the full subcategory of modules having dominant dimension at least d, Gp(A) the
subcategory of Gorenstein projective modules and Gp∞(A) the full subcategory of modules having infinite
Gorenstein projective dimension. We refer to the preliminaries for more information and definitions.

Theorem. (see 2.4) Let A ∼= EndB(M) be an algebra of dominant dimension d ≥ 2, where M is a
generator-cogenerator of mod−B. The following are equivalent:

(1) A is a finitistic Auslander algebra.
(2) Domd ⊆ proj ∪ proj∞.
(3) Domd ⊆ Gp(A) ∪Gp∞(A).
(4) add(M)− resdim(X) =∞ for all X ∈M⊥d−2 \ add(M).

Thus generator-cogenerators M with add(M)−resdim(X) =∞ for all X ∈M⊥d−2\add(M) generalise
the classical cluster tilting objects introduced in [Iya] and the precluster tilting objects introduced in
[IyaSol].
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2 RENÉ MARCZINZIK

In particular, specialising our results to finite Gorenstein or finite global dimension, we obtain quick
proofs of some known facts such as the higher Auslander correspondence relating higher Auslander alge-
bras and cluster tilting objects.

The final section gives examples and conjectures. We state the following new homological conjecture:

Conjecture. There exists a polynomial function f(n) depending only on n such that the following holds:
Let A be a nonselfinjective algebra with n simple modules and dominant dimension at least f(n). Then
the finitistic dimension of A is equal to the dominant dimension.

Our results suggest that something between f(n) = n and f(n) = 2n might do the job. At the moment
no counterexample to the conjecture with f(n) = n seems to be known. We verify this conjecture for the
following classes of algebras and refer to the last section for details.

(1) Algebras B isomorphic to EndA(A⊕M), where A is a local selfinjective algebra with indecom-
posable module M such that Ext1(M,M) 6= 0. Here B has two simples and f(2) = 2 suffices.

(2) Standardly stratified algebras. Here f(n) = 2n− 2 works (we do not know whether f(n) = n is
enough).

(3) Representation-finite gendo-symmetric biserial algebras. Here f(n) = n is enough.
(4) Nakayama algebras with n simples for n ≤ 13. Also f(n) = n is enough here.
(5) Acyclic quiver algebras. This is in fact trivial since the global dimension is bounded by n− 1 for

the class of such algebras with n simples. Thus f(n) = n− 1 is ok for this class of algebras.

We show the following, which illustrates that the class of of finitistic Auslander algebras is much larger
than the class of Auslander-Gorenstein algebras in general:

Theorem. (see 3.10 )

(1) Let A be a commutative selfinjective algebra with enveloping algebra Ae = A ⊗K A. Then
B := EndAe(Ae⊕A) is a finitistic Auslander algebra of finitistic dimension equal to two. It is an
Auslander-Gorenstein algebra iff A is a 2-periodic algebra iff A ∼= K[x]/(xn) for some n >= 2. It
is never a higher Auslander algebra.

(2) Let A be a selfinjective local algebra with simple module S. Then EndA(A ⊕ S) is a finitistic
Auslander algebra with finitistic dimension equal to two. It is a higher Auslander-Gorenstein
algebra iff A ∼= K[x]/(xn) for some n ≥ 2 and it is a higher Auslander algebra iff A ∼= K[x]/(x2).

We end with conjectures related to finitistic Auslander algebras inside the class of Nakayama algebras.
The conjectures are proven for algebras with n ≤ 13 simples modules using the computer algebra system
QPA.

The author thanks Jeremy Rickard for allowing him to use the theorem 3.3 in this article. This answered
a question of the author raised in mathoverflow, see http://mathoverflow.net/questions/257744/finite-
addn-resolution . The author thanks the QPA-team, especially Øyvind Solberg, for programming QPA
and constant improvements.

1. Preliminaries

Throughout A is a finite dimensional and connected algebra over a field K. Furthermore, we assume
that A is not semisimple. We always work with finite dimensional right modules, if not stated other-
wise. By mod − A, we denote the category of finite dimensional right A-modules. For background on
representation theory of finite dimensional algebras and their homological algebra, we refer to [ASS]. For
a module M , add(M) denotes the full subcategory of mod − A consisting of direct summands of Mn

for some n ≥ 1. A module M is called basic in case M ∼= M1 ⊕ M2 ⊕ ... ⊕ Mn, where every Mi is
indecomposable and Mi is not isomorphic to Mj for i 6= j. The basic version of a module N is the unique
(up to isomorphim) module M such that add(M) = add(N) and such that M is basic. We denote by
Si = eiA/eiJ , Pi = eiA and Ii = D(Aei) the simple, indecomposable projective and indecomposable
injective module, respectively, corresponding to the primitive idempotent ei.
The dominant dimension domdim(M) of a module M with a minimal injective resolution
(Ii) : 0→M → I0 → I1 → ... is defined as:
domdim(M):=sup{n|Ii is projective for i = 0, 1, ..., n}+1, if I0 is projective, and
domdim(M):=0, if I0 is not projective.
The codominant dimension of a module M is defined as the dominant dimension of the Aop-module
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D(M). The dominant dimension of a finite dimensional algebra is defined as the dominant dimension of
the regular module. It can be shown that the dominant dimension of an algebra always equals the domi-
nant dimension of the opposite algebra, see for example [Ta]. So domdim(A)≥ 1 means that the injective
hull of the regular module A is projective or equivalently, that there exists an idempotent e such that eA
is a minimal faithful projective-injective module. Algebras with dominant dimension larger than or equal
to 1 are called QF-3 algebras. For more information on dominant dimensions and QF-3 algebras, we refer
to [Ta]. An algebra is called Gorenstein in case Gdim(A) := injdim(A) equals projdim(D(A)) <∞. In
this case Gdim(A) is called the Gorenstein dimension of A and we say that A has infinite Gorenstein
dimension if injdim(A) = ∞. Note that Gdim(A) = max{injdim(eiA)|ei a primitive idempotent} and
domdim(A) = min{domdim(eiA)|ei a primitive idempotent }. We denote by proj the full subcategory
of projective modules and by proj∞ the full subcategory of modules of infinite projective dimension. The
Morita-Tachikawa correspondence (see for example [Ta]) says that an algebra A has dominant dimension
at least two iff A ∼= EndB(M) for some generator-cogenerator M of mod − B. Mueller’s theorem says
that in this case the dominant dimension of A equals inf{i ≥ 1|Exti(M,M) 6= 0}+ 1, see [Mue]. We will
need the following results that can be viewed as refinements of results of Mueller, which can be found
in [Mar] as theorem 2.2. with detailed references and which can be viewed as a special case of results in
[APT].

Theorem 1.1. Let A be an algebra of dominant dimension at least two with minimal faithful projective-
injective left module P and minimal faithful projective-injective right module I. Let B = EndA(P ).

(1) F := HomA(P,−) : Dom2 → mod− B is an equivalence of categories. F restricts to an equiva-
lence between add(I) and the category of injective B-modules.

(2) The functor G := HomB(P,−) : mod−B → Dom2 is inverse to F .
(3) For i ≥ 3, F restricts to an equivalence F : Domi → (P )⊥i−2, where P is viewed as a B-module.

An algebra A is called higher Auslander algebra in case∞ > domdim(A) = gldim(A) ≥ 2, see [Iya] and
A is called Auslander-Gorenstein algebra in case ∞ > domdim(A) = Gdim(A), see [IyaSol]. A module
M is called Gorenstein projective in case Exti(D(A), τ(M)) ∼= Exti(M,A) ∼= 0 for all i ≥ 1. Every
non-projective Gorenstein projective modules has infinite projective dimension. As in the case of usual
minimal projective resolutions, every module M has a resolution by Gorenstein projective modules and a
corresponding Gorenstein projective dimension Gpd(M), see [Che] for more details. Ωi(A−mod) denotes
the full subcategory of all projective modules and modules which are i-th syzygies, Domd denotes the
full subcategory of modules having dominant dimension at least d, Gp(A) denotes the full subcategory
of Gorenstein projective modules and Gp∞(A) denotes the full subcategory of modules having infinite
Gorenstein projective dimension. We will need the following proposition:

Proposition 1.2. Let A be an algebra of dominant dimension d ≥ 1, then Ωi(A − mod) = Domi for
every i ≤ d.

Proof. See [MarVil], proposition 4. �

For a given subcategory C of mod − A, a minimal right C-approximation of a module X is a right
minimal map f : N → X with N ∈ C such that Hom(L, f) is surjective for every L ∈ C. Such minimal
right approximations always exist and are unique up to isomorphism in case C = add(M) for some module
M . In case C = add(M), one defines Ω0

M (X) := X, Ω1
M (X) as the kernel of such an f and inductively

Ωn
M (X) := Ωn−1

M (Ω1
M (X)). One then defines add(M) − resdim(X) := inf{n ≥ 0|Ωn

M (X) ∈ add(M)}.
Given an algebra A, which is isomorphic to EndB(M) for some algebra B with generator-cogenerator
M , one can show that minimal add(M)-resolutions in mod − B of a module X corresponds to minimal
projective resolutions of the module HomB(M,X) in mod − A. See [CheKoe] section 2.1. for more
information on this. A subcategory C of mod − A is called contravariantly finite in case every module
X ∈ mod − A has a minimal right C-approximation. A subcategory C is called resolving in case it
contains the projective modules, is closed under extensions and closed under kernels of surjections. We
will need the following result, that can be found in [AR], 3.9.:

Proposition 1.3. Let C be a resolving contravariantly finite subcategory of mod−A. Then every module
in C has finite projective dimension bounded by t in case all of the modules Xi have finite projective
dimension bounded by t, where fi : Xi → Si are minimal C-approximations of the simple modules Si.
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For a module M , we define M⊥n := {X ∈ mod−A|Exti(M,X) = 0 for all i = 1, ..., n}. The finitistic
dimension of an algebra is defined as findim(A) = sup{pd(N)|pd(N) < ∞}. The global Gorenstein
projective dimension of an algebra is defined as the supremum of all Gorenstein projective dimensions of
modules. It is known that the global Gorenstein projective dimension is finite iff the algbra is Gorenstein,
see [Che] corollary 3.2.6. The finitistic Gorenstein projective dimension is defined as Gfindim(A) =
sup{Gpd(N)|Gpd(N) <∞} and in [Che] one finds a quick proof that this always equals the usual finitistic
dimension in theorem 3.2.7. We call a module M d-rigid, in case Exti(M,M) = 0 for i = 1, 2, ..., d. The
finitistic dominant dimension, first introduced in [Mar2], is defined as the suprumum of all dominant
dimension of modules having finite dominant dimension. An algebra is called CM-free in case every
Gorenstein projective module is projective. We will also need the following theorem, which can be found
as theorem 3.2.5. in [Che].

Theorem 1.4. Let M be a module. M has finite Gorenstein projective dimension at most n iff in every
exact sequence of the form 0 → K → Gn−1 → ... → G1 → G0 → M → 0 with Gorenstein projective
modules Gi, also the module K is Gorenstein projective.

We remark that we omit to state obvious dual results, which would involve dual concepts such as
codominant dimenion or Gorenstein injective modules.

2. Finitistic Auslander algebras

This section introduces finitistic Auslander algebras and gives new relations between dominant dimen-
sion and the finitistic dimension.

Lemma 2.1. Let A be an algebra of dominant dimension d ≥ 1. findim(A) = d +
sup{pd(N)|domdim(N) ≥ d, pd(N) <∞}.

Proof. First note that the finitistic dimension is larger than or equal to the dominant dimension: The
exact sequence coming from a minimal injective coresolution of the regular module: 0 → A → I0 →
· · · → Id−1 → Ω−d(A) → 0 shows that the module Ω−d(A) has finite projective dimension d. Thus the
finitistic dimension is at least d. Assume the projective dimension s ≥ d is attained at the module X:
pd(X) = s. Looking at the minimal projective resolution of X: 0 → Ps → · · ·P0 → X → 0 and using
pd(X) = pd(Ωd(X)) + s− d one immediatly obtains the lemma, since Ωd(X) has dominant dimension at
least d and its projective dimension equals s− d. �

Proposition 2.2. Let A be an algebra of positive dominant dimension d, then A has finite finitistic
dimension in case the subcategory Domd ∩ proj<∞ is contravariantly finite.

Proof. Let C := Domd ∩ proj<∞. We want to use 1.3. First note that the intersection of two resolving
subcategories is resolving and that Domd is resolving (see for example [MarVil]), while the property that
proj<∞ is resolving is well known. Thus C is a contravariantly finite resolving subcategory and the Xi

(defined as the modules, such that fi : Xi → Si are minimal right C-approximations of the simples) have
finite projective dimension bounded by some number t, since they are contained in proj<∞. Thus all
modules in C have finite projective dimension bounded by t and the result follows from 2.1. �

Now we come to the generalisation of Auslander-Gorenstein algebras:

Definition 2.3. An algebra with finite dominant dimension d ≥ 2 is called a finitistic Auslander algebra
in case its finitistic dimension equals its dominant dimension.

Note that by the Morita-Tachikawa correspondence, every finitistic Auslander algebra A is isomorphic
to an algebra of the form EndB(M) for some algebra B with generator-cogenerator M , since by assump-
tion A has dominant dimension at least two. We remark that every Auslander-Gorenstein algebra and
thus every higher Auslander algebra is a finitistic Auslander algebra, since the finitistic dimension equals
the Gorenstein dimension in case the Gorenstein dimension is finite. We will later see an example of a
finitistic Auslander algebra of infinite Gorenstein dimension, showing that the class of finitistic Auslander
algebras is really bigger than the class of Auslander-Gorenstein algebras.

The next theorem gives another characterisation of finitistic Auslander algebras using the subcategory
of modules having dominant dimension at least d.
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Theorem 2.4. Let A ∼= EndB(M) be an algebra of finite dominant dimension d ≥ 2, where M is a
generator-cogenerator. The following are equivalent:

(1) A is a finitistic Auslander algebra.
(2) Domd ⊆ proj ∪ proj<∞.
(3) Domd ⊆ Gp(A) ∪Gp∞(A).
(4) add(M)− resdim(X) =∞ for all X ∈Md−2 \ add(M)

Proof. First we show that (1) and (2) are equivalent: Just note that by 2.1, A is a finitistic Auslander
algebra iff every module of dominant dimension at least d has infinite projective dimension or is projective.
Assume now (1), that is the finitistic dimension equals the dominant dimension. Assume X ∈ Domd and
X having finite and non-zero Gorenstein projective dimension s. Then there exists the following exact
sequence, where the left side comes from a minimal Gorenstein projective resolution and the right side
comes from a minimal injective coresolution: 0 → Gs → · · · → G0 → X → I0 → · · · → Ω−d(X) → 0.
This shows that the module Ω−d(X) has finite Gorenstein projective dimension s + d > s using that X
is not Gorenstein projective, by 1.4.

This contradicts the fact that the finitistic Gorenstein projective dimension equals the finitistic dimen-
sion which is equal to s. This shows that (1) implies (3).
Now assume (3), that is Domd ⊆ Gp(A)∪Gp∞(A). We use 2.1 and show that sup{pd(N)|domdim(N) ≥
d, pd(N) <∞} = 0. But this is obvious since every non-projective module in Domd ⊆ Gp(A) ∪Gp∞(A)
has infinite projective dimension (recall that Gorenstein projective modules are projective or have infinite
projective dimension). This shows that (3) implies (1).
Now we show that (4) is equivalent to (1):
Assume A has dominant dimension d ≥ 2. By 2.1, the finitistic dimension equals the dominant dimen-
sion iff every non-projective module of dominant dimension at least d has infinite projective dimension.
This translates into the condition add(M)− resdim(X) =∞ for all X ∈ Md−2 \ add(M) since add(M)
resolutions correspond to minimal projective resolutions in A and the subcategory Domd without the
projectives corresponds to Md−2 \ add(M) by (3) of 1.1. �

The next lemma was also noted in [Mar].

Lemma 2.5. Let A be an algebra of dominant dimension d ≥ 1, then every Gorenstein projective module
has dominant dimension at least d.

Proof. By definition every Gorenstein projective module is in Ωi(A−mod) for every i ≥ 1. Now Ωd(A−
mod) = Domd by 1.2 and thus Gp(A) ⊆ Ωd(A−mod) = Domd. �

Note that in the next proposition, (2) contains the higher Auslander correspondence from [Iya], where
generator-cogenerators with the condition add(M) = Md−2 are called cluster tilting objects. We give a
very quick proof of the higher Auslander correspondence in (2) but refer to [CheKoe] or [IyaSol] for the
second equivalence in (1).

Proposition 2.6. Let B an algebra with generator-cogenerator M and A = EndB(M). Assume A has
finite dominant dimension d ≥ 2, which by Mueller’s theorem is equivalent to M being d − 2 rigid and
not d− 1 rigid.

(1) A is an Auslander-Gorenstein algebra iff Domd = Gp(A) iff add(M) = add(τ(Ωd−2(M ⊕D(A))).
(2) A is a higher Auslander algebra iff Domd = proj iff add(M) = M⊥d−2.

Proof. (1) Being an Auslander-Gorenstein algebra is equivalent to being a finitistic Auslander algebra
and additionally having finite Gorenstein dimension. An algebra is Gorenstein iff it has finite
global Gorenstein dimension and thus iff Gp∞(A) is empty. But by 2.5 Gp(A) ⊆ Domd and
thus it is an Auslander-Gorenstein algebra iff Domd = Gp(A), using (4) of 2.4. For the second
equivalence, see [CheKoe] corollary 3.18.

(2) Recall that an algebra has finite global dimension iff it is Gorenstein and every Gorenstein pro-
jective module is projective, see for example [Che]. Thus the first equivalence follows by the first
equivalence in (1). Now let Af be the minimal faithful projective-injective left A-module. Then
the functor (−)f is an equivalence between proj and add(M) and between Domd and M⊥d−2 by
1.1 and this shows the second equivalence.

�
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We explicitly state the case d = 2 since here finitistic Auslander algebras generalise the well known
Auslander algebras.

Corollary 2.7. Let B be an algebra with generator-cogenerator M and A = EndB(M). Then A is a
finitistic Auslander algebra with finitistic dimension two iff Ext1(M,M) 6= 0 and add(M)−resdim(X) =
∞ for all X ∈ mod−B \ add(M).

Proof. By Mueller’s theorem Ext1(M,M) implies that A has dominant dimension d = 2 and by 1. of
the previous proposition the result follows by noting that M⊥0 = mod−B. �

3. Finitistic Auslander algebras inside standardly stratified algebras and Nakayama
algebras

In this section we give several examples and conjectures related to finitistic Auslander algebras. The
main homological conjecture is as follows:

Conjecture. There exists a polynomial function f(n) depending only on n such that the following holds:
Let A be a nonselfinjective algebra with n simple modules and dominant dimension at least f(n). Then
the finitistic dimension of A is automatically equal to the dominant dimension.

The results of this section suggest that f(n) might be something between f(n) = n and f(n) = 2n.

Remark 3.1. In [ChMar] the class of representation-finite gendo-symmetric biserial algebras was clas-
sified (generalising the classical Brauer tree algebras). All those algebras were Gorenstein and thus their
finitistic dimension coincides with the Gorenstein dimension. Explicit values for the dominant and Goren-
stein dimension are obtained and one can easily show that the above conjecture is true for this class of
algebras with f(n) = n.

3.1. Finitistic Auslander algebras from selfinjective local algebras. The next lemma is due to
Jeremy Rickard.

Lemma 3.2. Let A be a local selfinjective algebra and M an indecomposable module and α : Mm →Mn

with n,m > 0 a map between direct sums of M all of whose components are radical maps. Let F be an
additive functor such that F (α) is injective, then F (M) = 0.

Proof. We can assume that n is a multiple of m by possibly adding extra summands to Mn. Write n = dm

for some integer d. We then have maps Mdsm → Mds+1m for s ≥ 0 by taking direct sums of the map

α. This gives a sequence of maps Mm → Mdm → Md2m → ... → Mdkm, all of which become injective
when applying F , since F is additive. But choosing k greater than the Loewy length of EndA(M), the
composition of this sequence of maps is zero and thus F (Mm) = 0, giving also F (M) = 0 using that F
is addtive. �

The next theorem is due to Jeremy Rickard.

Theorem 3.3. Let A be a local selfinjective algebra and let M be an indecomposable nonprojective module
with Ext1(M,M) 6= 0. Then B := EndA(A⊕M) is a finitistic Auslander algebra of finitistic dimension
2.

Proof. The condition Ext1(M,M) 6= 0 gives us that B has dominant dimension equal to two. We have
to show that every non-projective module of dominant dimension at least two has infinite projective
dimension. Let N := A⊕M . This translates into the condition that every A-module not in add(N) has
infinite add(N)-resolution dimension. Assume there is an indecomposable module with finite add(N)-
resolution. Then there is a short exact sequence as follows, where the maps are minimal right add(N)-
approximations:

0→ N1 → N0 → U → 0,

with N0, N1 ∈ add(N) and N1 being a direct sum of copies of M because of the minimality. Now
applying the functor Hom(M,−) to this short exact sequence the map Ext1(M,N1) → Ext1(M,N0)
has to be injective, since the right map in the short exact sequence is assumed to be a minimal add(N)-
approximation. Now after removing free summands of the left map in the short exact sequence, we obtain
a map α : N1 → N ′0 between direct sums of copies of M with the property that all components of this
map are radical maps. Now Ext1(M,−) is a functor sending α to an injection. By the previous lemma
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this is only possible if Ext1(M,M) = 0. This contradicts our assumptions and thus there is no module
with finite add(N)-resolution. �

Corollary 3.4. Let A be a local Hopf algebra (for example a groupalgebra of a p-group over a field of
characteristic p) with a nonprojective indecomposable module M . Then B := EndA(A⊕M) is a finitistic
Auslander algebra of finitistic dimension 2.

Proof. In [Mar4], theorem 3.8. it was shown that Ext1(M,M) 6= 0 for such M and thus the previous
theorem 3.3 applies to give the result.

�

Remark 3.5. No example of a nonprojective module M over a local selfinjective algebra A with
Ext1(M,M) = 0 seems to be known. See also [Mar4] for more on this.

3.2. Standardly stratified algebras. For the basics on standardly stratified algebras, we refer to [Rei].
Recall that a quasi-hereditary algebra is a standardly stratified algebra with finite global dimension.
Some of the results in this subsection can also be otained using 3.3, but we give an alternative proof
using theorems for standardly stratified algebras. Recall the following result:

Theorem 3.6. (see [AHLU]) Let A be a standardly stratified algebra with n simple modules. Then the
finitistic dimension of A is bounded by 2n− 2.

Remark 3.7. The previous theorem trivially implies that our conjecture in the beginning of this section
is true for standardly stratified algebras when choosing f(n) = 2n − 2. We do not know if f(n) = n is
also ok for the class of standardly stratified algebras.

Using this theorem, we can give several examples of finitistic Auslander algebras inside the class of
standardly stratified algebras. We need the following result, which is the main result of [CheDl]:

Theorem 3.8. Let A be a local, commutative selfinjective algebra over an algebraically closed field. Let
X = (A = X(1), X(2), ..., X(n)) be a sequence of local-colocal modules (meaning that all modules have
simple socle and top and therefore can be viewed as ideals of A) with X(i) ⊆ X(j) implying j ≤ i. Let

X =
n⊕

i=1

X(i) and B = EndA(X). Then B is properly stratified with a duality iff the following two

conditions are satisfied:
1. X(i) ∩X(j) is generated by suitable X(t) of X for any 1 ≤ i, j ≤ n
2. X(j) ∩

n∑
t=j+1

X(t) =
n∑

t=j+1

X(j) ∩X(t) for any 1 ≤ j ≤ n.

Lemma 3.9. Let A be a commutative selfinjective algebra with an ideal I with D(I) ∼= I. Then B :=
EndA(A⊕ I) is a finitistic Auslander algebra with finitistic dimension equal to 2.

Proof. First note that I being an ideal has simple socle. Now top(I) ∼= top(D(I)) ∼= D(soc(I)) is again
simple. Thus 3.8 applies to give that B is standardly stratified. Since B has two simple modules, the
finitistic dimension of B is bounded by 2. But since B is an endomorphism ring of a generator-cogenerator,
its dominant dimension is at least two. Since the dominant dimension is bounded by the finitsitic
dimension for non-selfinjective algebras, B is a finitistic Auslander algebra with finitistic dimension equal
to two. �

The next corollary illustrates that being an Auslander-Gorenstein algebra might be extremely rare
compared to the more general concept of being a finitistic Auslander algebra. Recall that the eveloping
algebra Ae for an arbitrary algebra A is defined as Ae := A⊗K Aop and an algebra is called m-periodic
in case the Ae−module A has Ω-period m.

Theorem 3.10. Let A be an K-algebra.

(1) Let A be a commutative selfinjective algebra with enveloping algebra Ae = A ⊗K A. Then B :=
EndAe(Ae ⊕ A) is a finitistic Auslander algebra of finitistic dimension equal to two. It is an
Auslander-Gorenstein algebra iff A is a 2-periodic algebra iff A ∼= K[x]/(xn) for some n ≥ 2. It
is never a higher Auslander algebra.
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(2) Let A be a selfinjective local algebra with simple module S. Then EndA(A ⊕ S) is a finitistic
Auslander algebra with finitistic dimension equal to two. It is an Auslander-Gorenstein algebra
iff A ∼= K[x]/(xn) for some n ≥ 2 and it is a higher Auslander algebra iff A ∼= K[x]/(x2).

Proof. (1) Note that being commutative selfinjective implies that A is even symmetric and thus
D(A) ∼= A has Ae-bimodules. Then 3.9 applies to show that B is a finitistic Auslander algebra
with finitistic dimension equal to two. Now by (1) of 2.6, B is an Auslander-Gorenstein algebra
iff τ(A) ∼= A as Ae-bimodules. Now since Ae is symmetric: τ ∼= Ω2. And thus B is an Auslander-
Gorenstein algebra iff A is 2-periodic iff A ∼= K[x]/(xn) for some n ≥ 2 by corollary 2.10. of
[Sko]. What is left to do is calculate when the algebra B has finite global dimension in case
A ∼= K[x]/(xn). But B can have only global dimension equal to the dominant dimension equal
to two iff it is a Auslander algebra iff Ae has Ae and A as its only indecomposable modules.
This is certainly never the case, since Ae has at least two loops in its quiver and thus is never
representation-finite.

(2) In [We] theorem 1.1., it was proven that EndA(A ⊕ S) is always standardly stratified in that
situation. One has Ext1(S, S) 6= 0 since the algebra is local. Thus the dominant and finitistic
dimension are equal to two. Again by [Sko] corollary 2.10. the module S is 2-periodic iff A ∼=
K[x]/(xn) and the global dimension is equal to two iff it is finite iff EndA(A⊕S) is an Auslander
algebra iff A ∼= K[x]/(x2).

�

We give another example, where high dominant dimension automatically leads to being a finitistic
Auslander algebra and the bound 2n − 2 for the finitistic dimension of standardly stratified algebras is
attained for an arbitrary n ≥ 2.

Example 3.11. Let A be a representation-finite block of a Schur algebra with n simple modules. Then
A has dominant dimension equal to 2n− 2. This was noted and proven in [ChMar] and [Mar]. By 3.6 it
is a finitistic Auslander algebra and even a higher Auslander algebra since it has finite global dimension,
being a block of a Schur algebra.

3.3. Finitistic Auslander algebras in the class of Nakayama algebras. In this section we present
computer experiments with the GAP-package QPA to motivate several conjectures on homological di-
mensions of Nakayama algebras. For this section we call an algebra an n-Nakayama algebra in case it
is a Nakayama algebra with n simple modules and we always assume furthermore that our Nakayama
algebras are not selfinjective in this section. Recall that an n-Nakayama algebra is uniquely determined
by its Kupisch series [c0, c1, ..., cn−1], where ci is the length of the indecomposable projective module
eiA. We assume here that all Nakayama algebras are given by quiver and relations, since the calculations
of homological dimension for those algebras is independent of Morita equivalence and field extensions.
We are mainly interested in n-Nakayama algebras having dominant dimension at least n and thus their
quiver is a circle, since n-Nakayama algebras with a line as a quiver have their global, and thus dominant,
dimension bounded above by n − 1. Thus in the following we assume that Nakayama algebras have a
cyclic quiver, where the indices are number from 0 to n − 1, when the algebra has n simples. In this
case the ordering of the simples can be shifted such that cn−1 = c0 + 1 and we assume this condition
in the following without loss of generality. There are infinitely many Nakayama algebras with n simple
modules up to isomorphism and thus we restrict to difference classes of Nakayama algebras. Here we
say that two Nakayama algebras with Kupisch series [c0, c1, ..., cn−1] and [e0, e1, ..., em−1] are in the same
difference class in case n = m and ci = ei mod n for all i = 0, 1, .., n − 1. Then there are only finitely
many difference classes and we always choose a representative in this difference class of smallest possible
Loewy length. We then just write the Kupisch series of this representative to show with which difference
class we deal. Two Nakayama algebras with Kupisch series in the same difference class have the same
dominant and finitistic dimension, see [Mar4] theorem 1.1.4. for the case of dominant dimension, while
a proof for the finitistic dimension case works with the same arguments as there. Motivated by this, we
just count representatives of the difference classes with the smallest Loewy length inside the difference
class. This is also motivated by the fact that Nakayama algebras with n simples and Loewy length larger
than or equal to 2n have infinite global dimension by a result of Gustafson, see [Gus]. We remark that
the global or Gorenstein dimension may differ for two Nakayama algebras in the same difference class.
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The following conjectures are verified for n ≤ 13 with QPA and the relevant sequences have been found
via the sequence database http://oeis.org/.

Conjecture. (1) An n-Nakayama algebra with dominant dimension at least n has Kupisch series of
the form [a, a, a, ..., a, a+ 1, a+ 1, ..., a+ 1] for some a ≥ 2.

(2) An n-Nakayama algebra with dominant dimension at least n has also finitistic dimension equal
to n.

(3) The number of representatives of n-Nakayama algebras, which are finitistic Auslander algebras

with dominant dimension at least n is equal to 2n2−1+(−1)n

8 for n ≥ 2 (the sequence starts as
follows: 1,2,4,6,9,12,16,20,25,30,36,42,49,.... and also counts other algebraic configurations such
as the order dimension of the (strong) Bruhat order on the Coxeter group An−1 according to the
OEIS database).

(4) The number of representatives of n-Nakayama algebras, which are Auslander-Gorenstein algebras
with dominant dimension at least n is equal to an−2, when an := ( 1

16 )(2n2 + 18n + 15 + (2n +
1)(−1)n) for n ≥ 4 (the sequence starts as follows: 1, 2, 4, 5, 8, 9, 13, 14, 19, 20, 26, 27, 34, ...
and the description is ”Write two numbers, skip one, write two, skip two, write two, skip three...
and so on.”).

(5) For every m with 1 ≤ m ≤ n − 1, there is exactly one n-Nakayama algebra which is a higher
Auslander algebra with dominant dimension n+m− 1.

(6) A n-Nakayama algebra with dominant dimension at least n is an Auslander-Gorenstein algebra
of infinite global dimension iff its finitistic dominant dimension is not equal to the dominant
dimension.

We list all n-Nakayama algebras with dominant dimension at least n and their homological dimensions
for n ≤ 13. The first entry is the Kupisch series, the second entry the dominant dimension, the third entry
the global dimension, the fourth entry the Gorenstein dimension, the fifth entry the finitistic dimension
and the last entry is the finitistic dominant dimension. ”false” here means that the relevant dimension
is infinite. This verifies the conjectures for n ≤ 13. The program just filtered the Kupisch series of every
difference class with n simples for those with dominant dimension at least n and then calculated the
relevant homological dimensions using QPA.

3.3.1. n=2: [ [ [ 2, 3 ], 2, 2, 2, 2, 2 ] ]

3.3.2. n=3: [ [ [ 2, 2, 3 ], 3, 3, 3, 3, 3 ],
[ [ 3, 4, 4 ], 4, 4, 4, 4, 4 ] ]

3.3.3. n=4: [ [ [ 2, 2, 2, 3 ], 4, 4, 4, 4, 4 ],
[ [ 3, 3, 3, 4 ], 5, 5, 5, 5, 5 ],
[ [ 4, 4, 5, 5 ], 4, false, 4, 4, 5 ],
[ [ 4, 5, 5, 5 ], 6, 6, 6, 6, 6 ] ]

3.3.4. n=5: [ [ [ 2, 2, 2, 2, 3 ], 5, 5, 5, 5, 5 ],
[ [ 2, 3, 3, 3, 3 ], 6, 6, 6, 6, 6 ],
[ [ 4, 4, 4, 4, 5 ], 7, 7, 7, 7, 7 ],
[ [ 4, 4, 4, 5, 5 ], 5, false, false, 5, 5 ],
[ [ 5, 5, 6, 6, 6 ], 6, false, 6, 6, 7 ],
[ [ 5, 6, 6, 6, 6 ], 8, 8, 8, 8, 8 ] ]

3.3.5. n=6: [ [ [ 2, 2, 2, 2, 2, 3 ], 6, 6, 6, 6, 6 ],
[ [ 2, 2, 3, 3, 3, 3 ], 7, 7, 7, 7, 7 ],
[ [ 3, 3, 3, 3, 4, 4 ], 8, 8, 8, 8, 8 ],
[ [ 4, 4, 4, 4, 4, 5 ], 6, false, 6, 6, 8 ],
[ [ 5, 5, 5, 5, 5, 6 ], 9, 9, 9, 9, 9 ],
[ [ 5, 5, 5, 5, 6, 6 ], 7, false, false, 7, 7 ],
[ [ 6, 6, 6, 7, 7, 7 ], 6, false, 6, 6, 7 ],
[ [ 6, 6, 7, 7, 7, 7 ], 8, false, 8, 8, 9 ],
[ [ 6, 7, 7, 7, 7, 7 ], 10, 10, 10, 10, 10 ] ]
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3.3.6. n=7: [ [ [ 2, 2, 2, 2, 2, 2, 3 ], 7, 7, 7, 7, 7 ],
[ [ 2, 2, 2, 3, 3, 3, 3 ], 8, 8, 8, 8, 8 ],
[ [ 3, 3, 3, 3, 3, 3, 4 ], 9, 9, 9, 9, 9 ],
[ [ 3, 4, 4, 4, 4, 4, 4 ], 10, 10, 10, 10, 10 ],
[ [ 4, 4, 4, 4, 5, 5, 5 ], 7, false, false, 7, 7 ],
[ [ 4, 5, 5, 5, 5, 5, 5 ], 8, false, 8, 8, 10 ],
[ [ 6, 6, 6, 6, 6, 6, 7 ], 11, 11, 11, 11, 11 ],
[ [ 6, 6, 6, 6, 6, 7, 7 ], 9, false, false, 9, 9 ],
[ [ 6, 6, 6, 6, 7, 7, 7 ], 7, false, false, 7, 7 ],
[ [ 7, 7, 7, 8, 8, 8, 8 ], 8, false, 8, 8, 9 ],
[ [ 7, 7, 8, 8, 8, 8, 8 ], 10, false, 10, 10, 11 ],
[ [ 7, 8, 8, 8, 8, 8, 8 ], 12, 12, 12, 12, 12 ] ]

3.3.7. n=8: [ [ [ 2, 2, 2, 2, 2, 2, 2, 3 ], 8, 8, 8, 8, 8 ],
[ [ 2, 2, 2, 2, 3, 3, 3, 3 ], 9, 9, 9, 9, 9 ],
[ [ 2, 3, 3, 3, 3, 3, 3, 3 ], 10, 10, 10, 10, 10 ],
[ [ 3, 3, 3, 4, 4, 4, 4, 4 ], 11, 11, 11, 11, 11 ],
[ [ 4, 4, 4, 4, 4, 4, 5, 5 ], 8, false, 8, 8, 11 ],
[ [ 4, 4, 4, 4, 4, 5, 5, 5 ], 12, 12, 12, 12, 12 ],
[ [ 5, 5, 5, 5, 5, 5, 5, 6 ], 9, false, false, 9, 9 ],
[ [ 5, 5, 5, 5, 6, 6, 6, 6 ], 10, false, 10, 10, 12 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 7 ], 8, false, 8, 8, 12 ],
[ [ 7, 7, 7, 7, 7, 7, 7, 8 ], 13, 13, 13, 13, 13 ],
[ [ 7, 7, 7, 7, 7, 7, 8, 8 ], 11, false, false, 11, 11 ],
[ [ 7, 7, 7, 7, 7, 8, 8, 8 ], 9, false, false, 9, 9 ],
[ [ 8, 8, 8, 8, 9, 9, 9, 9 ], 8, false, 8, 8, 9 ],
[ [ 8, 8, 8, 9, 9, 9, 9, 9 ], 10, false, 10, 10, 11 ],
[ [ 8, 8, 9, 9, 9, 9, 9, 9 ], 12, false, 12, 12, 13 ],
[ [ 8, 9, 9, 9, 9, 9, 9, 9 ], 14, 14, 14, 14, 14 ] ]

3.3.8. n=9: [ [ [ 2, 2, 2, 2, 2, 2, 2, 2, 3 ], 9, 9, 9, 9, 9 ],
[ [ 2, 2, 2, 2, 2, 3, 3, 3, 3 ], 10, 10, 10, 10, 10 ],
[ [ 2, 2, 3, 3, 3, 3, 3, 3, 3 ], 11, 11, 11, 11, 11 ],
[ [ 3, 3, 3, 3, 3, 3, 3, 4, 4 ], 12, 12, 12, 12, 12 ],
[ [ 4, 4, 4, 4, 4, 4, 4, 4, 5 ], 13, 13, 13, 13, 13 ],
[ [ 4, 4, 4, 4, 4, 4, 4, 5, 5 ], 9, false, false, 9, 9 ],
[ [ 4, 4, 5, 5, 5, 5, 5, 5, 5 ], 10, false, 10, 10, 13 ],
[ [ 4, 5, 5, 5, 5, 5, 5, 5, 5 ], 14, 14, 14, 14, 14 ],
[ [ 5, 5, 6, 6, 6, 6, 6, 6, 6 ], 11, false, false, 11, 11 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 7, 7 ], 12, false, 12, 12, 14 ],
[ [ 6, 6, 6, 6, 7, 7, 7, 7, 7 ], 9, false, false, 9, 9 ],
[ [ 6, 7, 7, 7, 7, 7, 7, 7, 7 ], 10, false, 10, 10, 14 ],
[ [ 8, 8, 8, 8, 8, 8, 8, 8, 9 ], 15, 15, 15, 15, 15 ],
[ [ 8, 8, 8, 8, 8, 8, 8, 9, 9 ], 13, false, false, 13, 13 ],
[ [ 8, 8, 8, 8, 8, 8, 9, 9, 9 ], 11, false, false, 11, 11 ],
[ [ 8, 8, 8, 8, 8, 9, 9, 9, 9 ], 9, false, false, 9, 9 ],
[ [ 9, 9, 9, 9, 10, 10, 10, 10, 10 ], 10, false, 10, 10, 11 ],
[ [ 9, 9, 9, 10, 10, 10, 10, 10, 10 ], 12, false, 12, 12, 13 ],
[ [ 9, 9, 10, 10, 10, 10, 10, 10, 10 ], 14, false, 14, 14, 15 ],
[ [ 9, 10, 10, 10, 10, 10, 10, 10, 10 ], 16, 16, 16, 16, 16 ] ]

3.3.9. n=10: [ [ [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 3 ], 10, 10, 10, 10, 10 ],
[ [ 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 ], 11, 11, 11, 11, 11 ],
[ [ 2, 2, 2, 3, 3, 3, 3, 3, 3, 3 ], 12, 12, 12, 12, 12 ],
[ [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 4 ], 13, 13, 13, 13, 13 ],
[ [ 3, 3, 3, 3, 4, 4, 4, 4, 4, 4 ], 14, 14, 14, 14, 14 ],
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[ [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 5 ], 10, false, 10, 10, 14 ],
[ [ 4, 4, 4, 4, 5, 5, 5, 5, 5, 5 ], 15, 15, 15, 15, 15 ],
[ [ 4, 4, 4, 5, 5, 5, 5, 5, 5, 5 ], 11, false, false, 11, 11 ],
[ [ 5, 5, 5, 5, 5, 5, 5, 6, 6, 6 ], 12, false, 12, 12, 15 ],
[ [ 5, 5, 5, 5, 5, 5, 6, 6, 6, 6 ], 16, 16, 16, 16, 16 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 7 ], 10, false, 10, 10, 16 ],
[ [ 6, 6, 6, 6, 6, 6, 7, 7, 7, 7 ], 13, false, false, 13, 13 ],
[ [ 6, 7, 7, 7, 7, 7, 7, 7, 7, 7 ], 14, false, 14, 14, 16 ],
[ [ 7, 7, 7, 7, 7, 7, 7, 8, 8, 8 ], 11, false, false, 11, 11 ],
[ [ 7, 7, 7, 7, 8, 8, 8, 8, 8, 8 ], 12, false, 12, 12, 16 ],
[ [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 9 ], 10, false, 10, 10, 16 ],
[ [ 9, 9, 9, 9, 9, 9, 9, 9, 9, 10 ], 17, 17, 17, 17, 17 ],
[ [ 9, 9, 9, 9, 9, 9, 9, 9, 10, 10 ], 15, false, false, 15, 15 ],
[ [ 9, 9, 9, 9, 9, 9, 9, 10, 10, 10 ], 13, false, false, 13, 13 ],
[ [ 9, 9, 9, 9, 9, 9, 10, 10, 10, 10 ], 11, false, false, 11, 11 ],
[ [ 10, 10, 10, 10, 10, 11, 11, 11, 11, 11 ], 10, false, 10, 10, 11 ],
[ [ 10, 10, 10, 10, 11, 11, 11, 11, 11, 11 ], 12, false, 12, 12, 13 ],
[ [ 10, 10, 10, 11, 11, 11, 11, 11, 11, 11 ], 14, false, 14, 14, 15 ],
[ [ 10, 10, 11, 11, 11, 11, 11, 11, 11, 11 ], 16, false, 16, 16, 17 ],
[ [ 10, 11, 11, 11, 11, 11, 11, 11, 11, 11 ], 18, 18, 18, 18, 18 ] ]

3.3.10. n=11: [ [ [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3 ], 11, 11, 11, 11, 11 ],
[ [ 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 ], 12, 12, 12, 12, 12 ],
[ [ 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3 ], 13, 13, 13, 13, 13 ],
[ [ 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], 14, 14, 14, 14, 14 ],
[ [ 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4 ], 15, 15, 15, 15, 15 ],
[ [ 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], 16, 16, 16, 16, 16 ],
[ [ 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5 ], 11, false, false, 11, 11 ],
[ [ 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5 ], 12, false, 12, 12, 16 ],
[ [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6 ], 17, 17, 17, 17, 17 ],
[ [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6 ], 13, false, false, 13, 13 ],
[ [ 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6 ], 14, false, 14, 14, 17 ],
[ [ 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ], 18, 18, 18, 18, 18 ],
[ [ 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7 ], 11, false, false, 11, 11 ],
[ [ 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7 ], 12, false, 12, 12, 18 ],
[ [ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8 ], 15, false, false, 15, 15 ],
[ [ 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8 ], 16, false, 16, 16, 18 ],
[ [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9 ], 13, false, false, 13, 13 ],
[ [ 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9 ], 14, false, 14, 14, 18 ],
[ [ 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9 ], 11, false, false, 11, 11 ],
[ [ 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ], 12, false, 12, 12, 18 ],
[ [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11 ], 19, 19, 19, 19, 19 ],
[ [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11 ], 17, false, false, 17, 17 ],
[ [ 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11 ], 15, false, false, 15, 15 ],
[ [ 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11 ], 13, false, false, 13, 13 ],
[ [ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11 ], 11, false, false, 11, 11 ],
[ [ 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12 ], 12, false, 12, 12, 13 ],
[ [ 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12 ], 14, false, 14, 14, 15 ],
[ [ 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12 ], 16, false, 16, 16, 17 ],
[ [ 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12 ], 18, false, 18, 18, 19 ],
[ [ 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12 ], 20, 20, 20, 20, 20 ] ]

3.3.11. n=12: [ [ [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3 ], 12, 12, 12, 12, 12 ],
[ [ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 ], 13, 13, 13, 13, 13 ],
[ [ 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3 ], 14, 14, 14, 14, 14 ],
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[ [ 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], 15, 15, 15, 15, 15 ],
[ [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4 ], 16, 16, 16, 16, 16 ],
[ [ 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], 17, 17, 17, 17, 17 ],
[ [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5 ], 12, false, 12, 12, 17 ],
[ [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5 ], 18, 18, 18, 18, 18 ],
[ [ 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5 ], 13, false, false, 13, 13 ],
[ [ 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], 14, false, 14, 14, 18 ],
[ [ 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6 ], 19, 19, 19, 19, 19 ],
[ [ 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6 ], 15, false, false, 15, 15 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7 ], 12, false, 12, 12, 15 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7 ], 16, false, 16, 16, 19 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7 ], 20, 20, 20, 20, 20 ],
[ [ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8 ], 13, false, false, 13, 13 ],
[ [ 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8 ], 14, false, 14, 14, 20 ],
[ [ 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8 ], 17, false, false, 17, 17 ],
[ [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9 ], 12, false, 12, 12, 17 ],
[ [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9 ], 18, false, 18, 18, 20 ],
[ [ 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ], 15, false, false, 15, 15 ],
[ [ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10 ], 16, false, 16, 16, 20 ],
[ [ 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10 ], 13, false, false, 13, 13 ],
[ [ 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10 ], 14, false, 14, 14, 20 ],
[ [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11 ], 12, false, 12, 12, 20 ],
[ [ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12 ], 21, 21, 21, 21, 21 ],
[ [ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12 ], 19, false, false, 19, 19 ],
[ [ 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12 ], 17, false, false, 17, 17 ],
[ [ 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12 ], 15, false, false, 15, 15 ],
[ [ 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12 ], 13, false, false, 13, 13 ],
[ [ 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13 ], 12, false, 12, 12, 13 ],
[ [ 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13 ], 14, false, 14, 14, 15 ],
[ [ 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13 ], 16, false, 16, 16, 17 ],
[ [ 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13 ], 18, false, 18, 18, 19 ],
[ [ 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 ], 20, false, 20, 20, 21 ],
[ [ 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 ], 22, 22, 22, 22, 22 ] ]

3.3.12. n=13: [ [ [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3 ], 13, 13, 13, 13, 13 ],
[ [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 ], 14, 14, 14, 14, 14 ],
[ [ 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3 ], 15, 15, 15, 15, 15 ],
[ [ 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], 16, 16, 16, 16, 16 ],
[ [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4 ], 17, 17, 17, 17, 17 ],
[ [ 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4 ], 18, 18, 18, 18, 18 ],
[ [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5 ], 19, 19, 19, 19, 19 ],
[ [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5 ], 13, false, false, 13, 13 ],
[ [ 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5 ], 14, false, 14, 14, 19 ],
[ [ 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5 ], 20, 20, 20, 20, 20 ],
[ [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6 ], 15, false, false, 15, 15 ],
[ [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6 ], 16, false, 16, 16, 20 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7 ], 21, 21, 21, 21, 21 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7 ], 17, false, false, 17, 17 ],
[ [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7 ], 13, false, false, 13, 13 ],
[ [ 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 ], 14, false, 14, 14, 17 ],
[ [ 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 ], 18, false, 18, 18, 21 ],
[ [ 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 ], 22, 22, 22, 22, 22 ],
[ [ 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8 ], 15, false, false, 15, 15 ],
[ [ 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 ], 16, false, 16, 16, 22 ],
[ [ 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9 ], 19, false, false, 19, 19 ],
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[ [ 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9 ], 13, false, false, 13, 13 ],
[ [ 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ], 14, false, 14, 14, 19 ],
[ [ 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ], 20, false, 20, 20, 22 ],
[ [ 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10 ], 17, false, false, 17, 17 ],
[ [ 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 ], 18, false, 18, 18, 22 ],
[ [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11 ], 15, false, false, 15, 15 ],
[ [ 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11 ], 16, false, 16, 16, 22 ],
[ [ 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11 ], 13, false, false, 13, 13 ],
[ [ 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11 ], 14, false, 14, 14, 22 ],
[ [ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13 ], 23, 23, 23, 23, 23 ],
[ [ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13 ], 21, false, false, 21, 21 ],
[ [ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13 ], 19, false, false, 19, 19 ],
[ [ 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13 ], 17, false, false, 17, 17 ],
[ [ 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13 ], 15, false, false, 15, 15 ],
[ [ 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13 ], 13, false, false, 13, 13 ],
[ [ 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14 ], 14, false, 14, 14, 15 ],
[ [ 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14 ], 16, false, 16, 16, 17 ],
[ [ 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14 ], 18, false, 18, 18, 19 ],
[ [ 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14 ], 20, false, 20, 20, 21 ],
[ [ 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14 ], 22, false, 22, 22, 23 ],
[ [ 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14 ], 24, 24, 24, 24, 24 ] ]

Example 3.12. Many of the above n-Nakayama algebras with infinite Gorenstein dimension and dom-
inant dimension at least n are CM-free, but this is not in general true: The smallest counterexample
is the algebra A with Kupisch series [6, 6, 6, 6, 7, 7, 7], which has dominant dimension equal to d = 7.
Note that in a Nakayama algebra every indecomposable Gorenstein projective non-projective module is
periodic, since there are only finitely many indecomposable Gorenstein projective modules and with M
also Ω1(M) is Gorenstein projective. Here are the periodic modules of A with their period:

(1) S5 = e5A/e5J
1 with period 2.

(2) e4A/e4J
2 with period 2.

(3) S4 = e4A/e4J
1 with period 2.

(4) e6A/e6J
5 with period 2.

(5) e6A/e6J
6 with period 2.

(6) e5A/e5J
6 with period 2.

Since a module in a representation-finite algebra A is Gorenstein projective iff Exti(M,A) = 0 for all
i ≥ 1, the above modules are Gorenstein-projective iff Exti(M,A) = 0 for i = 1, 2 since they are 2-
periodic. Only the modules S4 and Ω1(S4) = e5A/e5J

6 have Exti(M,A) = 0 for i = 1, 2 and thus are
the only non-projective Gorenstein projective modules. Note also that S1 is in Gp(A)∞ but has only
dominant dimension 4. Thus there is in general no equality in Domd ⊆ Gp(A) ∪Gp(A)∞ in 2.4.

3.4. Questions. We end this article with several questions:

(1) Is there a bound for the global dimension of non-semisimple higher Auslander algebras with n
simple modules? To give a more concrete questions: Is the global dimension of higher Auslan-
der algebras with n simple modules bounded by 2n − 2? In fact we know no example where
the global dimension is higher than 2n − 2, where this number is attained for example for
representation-finite blocks of Schur algebras. Of course one can ask similar questions for the
class of Auslander-Gorenstein or finitistic Auslander algebras, by replacing global dimension by
Gorenstein or finitistic dimension.

(2) Can one classify the quasi-hereditary (or even standardly stratified) algebras with n simple mod-
ules and having dominant dimension equal to 2n− 2?

(3) Can one generalise other theorem of [IyaSol] from Auslander-Gorenstein algebras to the more
general finitistic Auslander algebras?

(4) Can one describe the category of Gorenstein projective modules for a general finitistic Auslander
algebra?
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(5) Is there an example of an algebra A with positive dominant dimension d such that Domd∩proj<∞
is contravariantly finite but proj<∞ is not?

(6) Is there an example of an algebra A with positive dominant dimension d such that Domd∩proj<∞
is not contravariantly finite?

(7) It was shown in [Hap], that the finitistic dimension of algebras with two simple modules can get
arbitrary large. Can this also happen if we restrict to algebras with two simples and dominant
dimension at least two?
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