
ar
X

iv
:1

70
1.

01
18

2v
2 

 [
m

at
h.

C
O

] 
 1

0 
Fe

b 
20

17

Parabolic Catalan numbers count efficient inputs

for Gessel-Viennot flagged Schur function determinant

Robert A. Proctor

University of North Carolina

Chapel Hill, NC 27599 U.S.A.

rap@email.unc.edu

Matthew J. Willis

Wesleyan University

Middletown, CT 06457 U.S.A.

mjwillis@wesleyan.edu

February 13, 2017

Abstract

Let λ be a partition with no more than n parts. Let β be a weakly increasing n-tuple

with entries from {1, ..., n}. The flagged Schur function in the variables x1, ..., xn
that is indexed by λ and β has been defined to be the sum of the content weight

monomials for the semistandard Young tableaux of shape λ whose values are row-

wise bounded by the entries of β. Gessel and Viennot gave a determinant expression

for the flagged Schur function indexed by λ and β; this could be done since the pair

(λ, β) satisfied their “nonpermutable” condition for the sequence of terminals of an

n-tuple of certain lattice paths that they used to model the tableaux. We generalize

the notion of flagged Schur function by dropping the requirement that β be weakly

increasing. Then we give a condition on the entries of λ and β for the pair (λ, β)

to be nonpermutable that is both necessary and sufficient. When the parts of λ

are not distinct there will be multiple row bound n-tuples that will produce the

same polynomial via the sum of tableau weights construction on λ. We accordingly

group the bounding n-tuples into equivalence classes and identify the most efficient

n-tuple in each class for the determinant computation. We have recently shown

that many other sets of objects that are indexed by n and λ are enumerated by the

number of these efficient n-tuples. It is noted that the GL(n) Demazure characters

(key polynomials) indexed by 312-avoiding permutations can also be expressed with

these determinants.

Keywords. flagged Schur function, Gessel-Viennot method, sign reversing involution, noninter-
secting lattice paths, Jacobi-Trudi identity
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1 Introduction

No particular background is needed to read this largely self-contained paper. Several prior results

that are needed in Sections 2 and 8 and for Corollaries 5.3 and 5.4 were obtained in the predecessor

paper [PW].

Fix n ≥ 1 throughout the paper. Also fix a partition λ that has n nonnegative parts; this

is a list of n weakly decreasing nonnegative integers. Flagged Schur functions are polynomials in

x1, x2, ..., xn that were introduced by Lascoux and Schützenberger in 1982 as they studied Schubert

polynomials. Given an n-tuple β such that 1 ≤ β1 ≤ β2 ≤ ... ≤ βn ≤ n, the flagged Schur

function indexed by λ and β is defined to be the sum of the content weight monomial xΘ(T ) over

the semistandard tableaux T on the shape of λ whose values are row-wise bounded by the respective

entries of β. Sometimes βi ≥ i for 1 ≤ i ≤ n is also required to ensure nonvanishing. However,

in this paper the notation sλ(β;x) will more generally denote this sum when β is only required to

satisfy βi ≥ i for 1 ≤ i ≤ n.

Ira Gessel and X.G. Viennot were able [GV] to express a flagged Schur function with a de-

terminant by modelling its tableaux with nonintersecting n-tuples of lattice paths: Their initial

set-up fixed a sequence of n lattice points to serve as sources for the respective paths, to which were

assigned sinks from a set of n fixed lattice points in any of the n! possible ways. These “terminal”

lattice points were specified in terms of the entries of λ and β. Initially βi ≤ βi+1 was not required.

Most of the resulting n-tuples of lattice paths contained intersections, and the desired tableaux

corresponded only to the nonintersecting n-tuples of lattice paths for which the sinks were assigned

from the set of terminals in their “native” order. The terms in the signed sum expansion of the

proposed determinant gave the weights that they assigned to the n-tuples of paths. Then they

introduced a sign reversing involution that paired up the intersecting n-tuples of paths so that the

weights for these cancelled each other out from the expansion, leaving only the signed sum of the

weights for the nonintersecting n-tuples of paths. For this method to give the tableau weight sum

sλ(β;x), they needed to require that the set of terminals specified by the pair (λ, β) satisfied their

“nonpermutable” property: This required that any n-tuple of lattice paths that had a sequence

of sinks coming from a nontrivially permuted assignment of the terminals had to contain an in-

tersection. As Stanley parenthetically noted in his presentation of their work in Theorem 2.7.1

of [St1], for any λ it can be seen that requiring β1 ≤ β2 ≤ ... ≤ βn will guarantee that (λ, β)

is nonpermutable. Directly in terms of the entries of λ and β, our main result gives a condition

for a pair (λ, β) to be nonpermutable that is necessary as well as being sufficient. Although the

references [GV], [St1], and [PS] each provide determinants for skew flagged Schur functions, we

limit our considerations to the general sums sλ(β;x) on nonskew shapes.

Demazure characters were introduced by Demazure in 1974 when he studied singularities of
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Schubert varieties. Coincidences between the Demazure characters for GL(n) (key polynomials)

and flagged Schur functions were studied by Reiner and Shimozono [RS] and then by Postnikov

and Stanley [PS]. When the parts of λ are not distinct, there are multiple row bound n-tuples

β, β′, ... that will produce the same polynomial sλ(β;x) via the sum of tableau weights construction

on the shape of λ. The predecessor paper to this paper sharpened, deepened, and extended the

results of [RS] and [PS]. Much machinery was introduced and several special kinds of n-tuples were

defined. The foremost kinds were the “λ-312-avoiding permutations” and the “gapless λ-tuples”.

The crucial information for an n-tuple β was distilled into its “critical list”, as its “λ-core” ∆λ(β)

was being computed.

It turns out that the machinery and notions that were introduced in [PW] for the purposes of

that paper are surprisingly well-suited to solving the problem of characterizing the nonpermutable

pairs (λ, β) that was implicitly raised by Stanley’s Theorem 2.7.1 parenthetical remark. In addition

to re-using the notion of gapless λ-tuple and the closely related notion of “gapless core λ-tuple”,

here we also need to extend the λ-ceiling flag map Ξλ of [PW] so that we can introduce a new

condition that requires β ≤ Ξλ(β). Our main result, Theorem 5.1, presents our characterization of

the nonpermutable pairs (λ, β). Its two halves are proved with Proposition 6.3 and 7.2. Corollary

5.2 gives the determinant expression for sλ(β;x) when β satisfies the characterization with respect

to λ. Corollary 5.3 indicates how results of [PW] can be used to extend the realm of Corollary 5.2.

Corollary 5.4 describes how Corollary 5.2 can be used to give a determinant expression for certain

GL(n) Demazure characters; this improves upon Corollary 14.6 of [PS].

In the last section, as in [PW], we define two row bound n-tuples β, β′ to be equivalent if the

sets of tableaux on the shape λ that satisfy these bounds are the same. Proposition 8.2 describes

the equivalence classes of this relation within the set of row bound n-tuples that meet the criteria

required to use the determinant expression. Within an equivalence class, one can seek the n-tuple

for which the total number of monomials appearing in the corresponding determinant is as small

as possible. Proposition 8.3 identifies these “maximum efficiency” n-tuples as being the gapless λ-

tuples that appeared in Corollary 5.3. Corollary 8.4 then notes that the number of gapless λ-tuples

was shown in [PW] to be the number of λ-312-avoiding permutations; there this number was taken

to be the definition of the “parabolic Catalan number” indexed by n and λ.

When one sets all βi := n, no special row bounds are imposed upon the tableaux and the

resulting polynomial is the ordinary Schur function sλ(x). The Gessel-Viennot method made the

Jacobi-Trudi determinant expression of Theorem 7.16.1 of [St2] for sλ(x) more efficient by reducing

the number of variables that appeared in most of its entries. When the parts of λ are not distinct,

Proposition 8.3 says that Corollary 5.3 provides a determinant for sλ(x) that is even more efficient

in this regard.

One of the central themes of the predecessor paper [PW] is continued into this paper. Given a
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set R ⊆ {1, 2, ..., n − 1}, an “R-tuple” is an n-tuple with entries from {1, 2, ..., n} that is equipped

with “dividers” between some of its entries. In these two papers the study of any one of the

interrelated phenomena concerning sets of tableaux on the shape λ begins with the determination

of the set Rλ ⊆ {1, 2, ..., n− 1} of the lengths of the columns in λ that are less than n. Much of the

machinery needed to study these phenomena is formulated in terms of Rλ-tuples without reference

to any other aspects of λ: Five preliminary sections of [PW] take place in the world of R-tuples,

before shapes and tableaux are introduced. Continuing a notation convention of [PW], after λ has

been introduced we replace ‘Rλ’ in prefixes and subscripts with ‘λ’. This reduces clutter while

explicitly retaining the dependence upon λ, which setting R := Rλ would lose.

2 Definitions for n-tuples

Let i and k be nonnegative integers. Define (i, k] := {i+1, i+2, ..., k} and [k] := {1, 2, ..., k}. Except

for ζ, lower case Greek letters indicate n-tuples of non-negative integers; their entries are denoted

with the same letter. An nn-tuple ν consists of n entries νi ∈ [n] indexed by indices i ∈ [1, n],

which together form n pairs (i, νi). Let P (n) denote the poset of nn-tuples ordered by entrywise

comparison. Fix an nn-tuple ν. A subsequence of ν is a sequence of the form (νi, νi+1, ..., νj)

for some i, j ∈ [n]. A staircase of ν within a subinterval [i, j] for some i, j ∈ [n] is a maximal

subsequence of (νi, νi+1, ..., νj) whose entries increase by 1. A plateau in ν is a maximal constant

nonempty subsequence of ν. An nn-tuple ϕ is a flag if ϕ1 ≤ . . . ≤ ϕn. An upper tuple is an nn-tuple

β such that βi ≥ i for i ∈ [n].

Fix R ⊆ [n − 1]. Denote the elements of R by q1 < . . . < qr for some r ≥ 0. Set q0 := 0

and qr+1 := n. We use the qh for h ∈ [r + 1] to specify the locations of r + 1 “dividers” within

nn-tuples: Let ν be an nn-tuple. On the graph of ν in the first quadrant draw vertical lines at

x = qh+ ǫ for h ∈ [r+1] and some small ǫ > 0. These r+1 lines indicate the right ends of the r+1

carrels (qh−1, qh] of ν for h ∈ [r+1]. An R-tuple is an nn-tuple that has been equipped with these

r + 1 dividers. Fix an R-tuple ν; we portray it by (ν1, ..., νq1 ; νq1+1, ..., νq2 ; ...; νqr+1, ..., νn). Let

UR(n) denote the subposet of P (n) consisting of upper R-tuples. Let UFR(n) denote the subposet

of UR(n) consisting of upper flags. Fix h ∈ [r + 1]. The hth carrel has ph := qh − qh−1 indices. An

R-increasing tuple is an R-tuple α such that αqh−1+1 < ... < αqh for h ∈ [r+1]. Let UIR(n) denote

the subset of UR(n) consisting of R-increasing upper tuples.

We distill the crucial information from an upper R-tuple into a skeletal substructure called its

“critical list”, and at the same time define two functions from UR(n) to UR(n). Fix β ∈ UR(n).

To launch a running example, take n := 9, R := {3, 8}, and β := (2, 7, 5; 8, 6, 6, 9, 9; 9). We will be

constructing the images δ and ξ of β underR-core and R-platform maps ∆R and ΞR. Fix h ∈ [r+1].

Working within the hth carrel (qh−1, qh] from the right we recursively find for u = 1, 2, ... : At u = 1
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the rightmost critical pair of β in the hth carrel is (qh, βqh). Set x1 := qh. Recursively attempt to

increase u by 1: If it exists, the next critical pair to the left is (xu, βxu), where qh−1 < xu < xu−1

is maximal such that βxu−1
− βxu > xu−1 − xu. For xu < i ≤ xu−1, write xu−1 =: x and set

δi := βx − (x − i) and ξi := βx. Otherwise, let fh ≥ 1 be the last value of u attained. For

qh−1 < i ≤ xfh , write xfh =: x and again set δi := βx− (x− i) and ξi := βx. The set of critical pairs

of β for the hth carrel is {(xu, βxu) : u ∈ [fh]} =: Ch. Equivalently, here fh is maximal such that

there exists indices x1, x2, ..., xfh such that qh−1 < xfh < ... < x1 = qh and βxu−1
−βxu > xu−1−xu

for u ∈ (1, fh]. The R-critical list for β is the sequence (C1, ...,Cr+1) =: C of its r+1 sets of critical

pairs. In our example C = ({(1, 2), (3, 5)}; {(6, 6), (8, 9)}; {(9, 9)}) and δ = (2, 4, 5; 4, 5, 6, 8, 9; 9)

and ξ = (2, 5, 5; 6, 6, 6, 9, 9; 9). It can be seen that the R-core ∆R(β) = δ of β and the R-platform

ΞR(β) = ξ of β have the same critical list as β. It can also be seen that ∆R(β) ≤ β and that

∆R(α) = α for α ∈ UIR(n). If (x, yx) is a critical pair, we call x a critical index and yx a critical

entry. We say that an R-critical list is a flag R-critical list if whenever h ∈ [r] we have yqh ≤ yk,

where k := xfh+1
. The example critical list is a flag critical list. If β ∈ UFR(n), then its R-critical

list is a flag R-critical list.

A gapless core R-tuple is an upper R-tuple η whose critical list is a flag critical list. Let

UGCR(n) denote the set of gapless core R-tuples. The example β above is a gapless core R-tuple.

A gapless R-tuple is an R-increasing upper tuple γ whose critical list is a flag critical list. Let

UGR(n) ⊆ UIR(n) denote the set of gapless R-tuples. The example δ above is a gapless R-tuple.

Originally a gapless R-tuple was defined in Section 3 of [PW] to be an R-increasing upper tuple γ

such that whenever there exists h ∈ [r] with γqh > γqh+1, then γqh − γqh+1 + 1 =: s ≤ ph+1 and

the first s entries of the (h + 1)st carrel (qh, qh+1] are γqh − s + 1, γqh − s + 2, ..., γqh . Originally

a gapless core R-tuple was defined in Section 3 of [PW] to be an upper R-tuple η whose R-core

∆R(η) is a gapless R-tuple. Those original definitions were shown there to be equivalent to these

definitions in Proposition 4.2. An upper R-tuple β is bounded by its platform if β ≤ ΞR(β). Let

UBPR(n) denote the set of such upper R-tuples. The example β above is not bounded by its

platform. Clearly UGR(n) ⊆ UGCR(n) and UFR(n) ⊆ UGCR(n). From the definition of ΞR, it is

clear that UFR(n) ⊆ UBPR(n) and UIR(n) ⊆ UBPR(n). Since UGR(n) ⊆ UIR(n) by definition,

we have UGR(n) ⊆ UBPR(n).

We illustrate some recent definitions. First consider an R-increasing upper tuple α ∈ UIR(n):

Each carrel subsequence of α is a concatenation of the staircases within the carrel in which the

largest entries are the critical entries for the carrel. Now consider the definition of a gapless R-tuple,

which begins by considering a γ ∈ UIR(n): This definition is equivalent to requiring for all h ∈ [r]

that if γqh > γqh+1, then the leftmost staircase within the (h + 1)st carrel must contain an entry

γqh .

An R-ceiling flag ξ is an upper flag that is a concatenation of plateaus whose rightmost pairs
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are the R-critical pairs of ξ. Let UCeilR(n) denote the set of R-ceiling flags. It can be seen that

the restriction of the R-platform map from UR(n) to UGR(n) is the R-ceiling map ΞR : UGR(n) →

UCeilR(n) defined near the end of Section 5 of [PW]. So by that Proposition 5.4(ii) this restriction

of ΞR is a bijection from UGR(n) to UCeilR(n) with inverse ∆R, and for γ ∈ UGR(n) the upper

flag ξ := ΞR(γ) is the unique R-ceiling flag that has the same flag R-critical list as γ.

3 Definitions of shapes, tableaux, polynomials

A partition is an n-tuple λ ∈ Z
n such that λ1 ≥ . . . ≥ λn ≥ 0. The shape of λ, also denoted λ,

consists of n left justified rows with λ1, . . . , λn boxes. We denote its column lengths by ζ1 ≥ . . . ≥

ζλ1
. Since the columns were more important than the rows in [PW], the boxes of λ are transpose-

indexed by pairs (j, i) such that 1 ≤ j ≤ λ1 and 1 ≤ i ≤ ζj. Define Rλ ⊆ [n − 1] to be the set of

distinct column lengths of λ that are less than n. Using the language of Section 2 with R := Rλ,

note that for h ∈ [r + 1] one has λi = λi′ for i, i′ ∈ (qh−1, qh]. For h ∈ [r + 1] the coordinates of

the ph boxes in the hth cliff form the set {(λi, i) : i ∈ (qh−1, qh]}. We will replace ‘Rλ’ by ‘λ’ in

subscripts and in prefixes when using concepts from Section 2 via R := Rλ.

A (semistandard) tableau of shape λ is a filling of λ with values from [n] that strictly increase

from north to south and weakly increase from west to east. Let Tλ denote the set of tableaux of

shape λ. Fix T ∈ Tλ. For j ∈ [λ1], we denote the one column “subtableau” on the boxes in the

jth column by Tj . Here for i ∈ [ζj] the tableau value in the ith row is denoted Tj(i). To define the

content Θ(T ) := θ of T , for i ∈ [n] take θi to be the number of values in T equal to i. Let x1, . . . , xn

be indeterminants. The monomial xΘ(T ) of T is xθ11 . . . xθnn , where θ is the content Θ(T ).

Let β be a λ-tuple. We define the row bound set of tableaux to be Sλ(β) := {T ∈ Tλ : Tj(i) ≤

βi for j ∈ [0, λ1] and i ∈ [ζj ]}. As in Section 12 of [PW], it can be seen that Sλ(β) is nonempty if

and only if β ∈ Uλ(n). Fix β ∈ Uλ(n). As noted in Section 12 of [PW], it can be seen that Sλ(β)

has a unique maximal element. In [PW] we introduced the row bound sum sλ(β;x) :=
∑

xΘ(T ),

sum over T ∈ Sλ(β). To connect to the literature, for ϕ ∈ UFλ(n) we also give the names flag

bound set and flag Schur polynomial to Sλ(ϕ) and the flagged Schur function sλ(ϕ;x) respectively.

As in [PW], for η ∈ UGCλ(n) it is also useful to give the names gapless core bound set and gapless

core Schur polynomial to Sλ(η) and sλ(η;x) respectively.

Proposition 12.1 of [PW] stated that the collection of sets Sλ(ϕ) and of Sλ(η) are the same. Thus

the gapless core Schur polynomials are already available as flag Schur polynomials. However, the

additional indexing λ-tuples from UGCλ(n)\UFλ(n) are useful. The following theme from [PW]

will be continued: Here we will prove that the row bound sums sλ(β;x) for β ∈ Uλ(n)\UGCλ(n)

are not “good” for the consideration at hand.
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4 Lattice paths and Gessel-Viennot determinant

We introduce n-tuples of weighted lattice paths to model the tableaux in the row bound tableau

set Sλ(β). To obtain a close visual correspondence we first flip the x-y plane containing the paths

vertically so that its first quadrant is to the lower right (southeast) of the origin on the page. Re-use

our indexing of boxes in shapes with transposed matrix coordinates to coordinatize the points in

this first quadrant of Z × Z: Let l ≥ j ≥ 0 and k ≥ i ≥ 1. The lattice point (j, i) is j units to the

east of (0, 0) and i units to the south of (0, 0). For j ≥ 1, the directed line segment from (j−1, i) to

(j, i) is an easterly step of depth i. A (lattice) path with source (j, i) and sink (l, k) is a connected

set incident to (j, i) and (l, k) that is the union of l− j easterly steps and k− i southerly steps. The

notation ... → (j, i) ↓ (j, k) → (l, k) ↓ ... indicates that an eastbound path arrives at (j, i), turns

right and proceeds south to (j, k), turns left and proceeds east to (l, k), and then turns right and

proceeds south. An n-path is an n-tuple (Λ1, ...,Λn) =: Λ of paths such that the component path

Λm has source (n−m,m) for m ∈ [n].

Let β ∈ P (n). The n points (λ1+n−1, β1), (λ2+n−2, β2), ..., (λn, βn) are terminals and (λ, β) is

a terminal pair. This “strictification” of λ ensures that the longitudes of the terminals are distinct.

Initially our n-paths (Λ1, ...,Λn) will use the terminals (λ1 + n− 1, β1), (λ2 + n− 2, β2), ..., (λn, βn)

in this order as sinks for their respective components. Given such an n-path Λ, as in the proof of

Theorem 7.16.1 of [St2] we attempt to create a corresponding tableau T ∈ Sλ(β). For each m ∈ [n]

we record the weakly increasing depths of the successive easterly steps in the path Λm from left to

right in the boxes of the mth row of the shape λ: Here the easterly step in Λm from (n−m+j−1, p)

to (n −m+ j, p) is recorded as the value p in the box (j,m) for T . The last value in the mth row

cannot exceed βm. It can be seen that these values strictly increase down each column of λ if and

only if there are no intersections among the Λm for m ∈ [n]. Let LDλ(β) denote the set of such

disjoint n-paths. There is at least one such disjoint n-path if and only if β is upper: To confirm

this, with the correspondence above re-use the observations made near the beginning of Section

12 of [PW] that addressed the questions of when the set Sλ(β) is empty and nonempty. When β

is upper, it can be seen that the recording process is bijective to the set Sλ(β). Since it will be

seen that the cliffs of λ play a crucial role, we now determine Rλ and regard β as being a λ-tuple.

Summarizing:

Fact 4.1. We have LDλ(β) 6= ∅ if and only if β ∈ Uλ(n). For β ∈ Uλ(n), the recording process is

a bijection from the set of disjoint n-paths LDλ(β) to the row bound tableau set Sλ(β).

Fix β ∈ Uλ(n). To obtain the determinant expression for sλ(β;x) we will need to consider

more general n-paths and introduce weights. Let Λ be an n-path with any sinks. Assigning a

weight monomial xΘ(Λ) to Λ in the following fashion emulates our assignment of the weight xΘ(T )
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to a tableau T ∈ Tλ when Λ ∈ LDλ(β), and it also extends the weight rule to all n-paths. For

m ∈ [n] assign the weight xi to each easterly step of depth i in the path Λm, and then multiply

these weights over its easterly steps. Multiply the weights of the n component paths to produce a

monomial we denote xΘ(Λ). When the sinks of Λ are the terminals from (λ, β) in their usual order,

it can be seen that the multivariate generating function
∑

Λ∈LDλ(β)
xΘ(Λ) is our row bound sum

sλ(β;x). Let j ≥ 0, i ≥ 1, l ≥ 0, k ≥ 1, and set u := l−j. If we sum the weights that are assigned to

just one path as it varies over all paths from (j, i) to (l, k), we produce the complete homogeneous

symmetric function hu(i, k;x) in the variables xi, xi+1, ..., xk: Here hu(i, k;x) := 0 for u < 0, and

otherwise hu(i, k;x) :=
∑

xt1 · · · xtu , sum over i ≤ t1 ≤ ... ≤ tu ≤ k.

We next consider n-paths that use the same terminals, but in a permuted order, for their list of

sinks. Let π be a permutation of [n]. Let π.(λ, β) denote the list of terminals (λπ1
+ n− π1, βπ1

),

(λπ2
+n−π2, βπ2

), ..., (λπn+n−πn, βπn). Let LDλ(β;π) denote the set of disjoint n-paths (Λ1, ...,Λn)

with respective sinks π.(λ, β). The terminal pair (λ, β) is nonpermutable [GV] if LDλ(β;π) = ∅

when π 6= (1, 2, ..., n).

Here is our non-skew version of Theorem 2.7.1 of [St1]; as in Theorem 7.16.1 of [St2] we have

replaced the disjoint n-paths with the corresponding tableaux:

Proposition 4.2. Let β ∈ Uλ(n). If the terminal pair (λ, β) is nonpermutable, then the row bound

sum sλ(β;x) is given by the n× n determinant |hλj−j+i(i, βj ;x)|.

To produce this expression with Theorem 2.7.1 of [St1], use the remark above that expressed sλ(β;x)

as the LDλ(β) generating function and note that (λj +n− j)− (n− i) = λj − j+ i. Theorem 2.7.1

was proved with a signed involution pairing cancellation argument, as in [GV].

5 Main results

Our main result combines the forthcoming Propositions 6.3 and 7.2:

Theorem 5.1. Let λ be a partition and let β be an upper λ-tuple. The terminal pair (λ, β) is

nonpermutable if and only if β is a gapless core λ-tuple that is bounded by its platform.

So under these circumstances we can employ the Gessel-Viennot method, as noted in Proposition

4.2:

Corollary 5.2. Let β ∈ Uλ(n). If β ∈ UGCλ ∩ UBPλ(n) then sλ(β;x) = |hλj−j+i(i, βj ;x)|.

Although this determinant is not guaranteed to “work” when β ∈ UGCλ(n)\UBPλ(n), given our

quotes in Section 8 of facts from [PW] the polynomial sλ(β;x) for such a β can be computed with

the determinant using δ := ∆λ(β) instead of β itself. An example of the failure of the determinant

for such a β is given before Lemma 6.1.
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Corollary 5.3. Let β ∈ Uλ(n). Set δ := ∆λ(β). If β ∈ UGCλ(n) then sλ(β;x) = |hλj−j+i(i, δj ;x)|.

At the end of Section 14 of [PW] we promised to give a determinant expression for certain

GL(n) Demazure characters (key polynomials) here. General Demazure characters dλ(π;x) for

GL(n) can be recursively defined with divided differences as noted in Section 1 of [PW] or defined

as a sum of xΘ(T ) over a certain set of semistandard tableaux as in Section 14 of [PW]. Given that

UGλ(n) ⊆ UBPλ(n), the next statement is implied by Corollary 5.2 and Theorem 14.2(ii) of [PW].

For this result that theorem gives dλ(π;x) = sλ(γ;x). Consult Section 3 of [PW] for the definitions

of the λ-permutations and the map Ψλ.

Corollary 5.4. Let λ be a partition and let π be a λ-permutation. If π is λ-312-avoiding, then

Ψλ(π) =: γ is a gapless λ-tuple and dλ(π;x) = |hλj−j+i(i, γj ;x)|.

A “less efficient” (in the sense of our Section 8) version of this expression appeared in the proof

of Corollary 14.6 of [PS] when Postnikov and Stanley applied their skew flagged Schur function

determinant identity Equation 13.1 to their chλ,w.

6 Necessary condition for nonpermutability

Let β ∈ Uλ(n). We prepare for two proofs by constructing an n-path Λ for each d ∈ [qr]. To see that

each Λ ∈ LDλ(β), we also describe its corresponding (clearly semistandard) tableau T . Launching

a running example, take n = 16 and λ = (73; 58; 32; 12; 01) and β = (5, 5, 8; 5, 12, 13, 9, 11, 11, 15, 15;

16, 16; 14, 16; 16). Set δ := ∆λ(β). Here δ = (4, 5, 8; 5, 7, 8, 9, 10, 11, 14, 15; 15, 16; 14, 16; 16). Let

d ∈ [qr]. For example, take d = 9. For i ∈ (0, d− 1] set Tj(i) := i for j ∈ (0, λi]. The corresponding

paths Λi are (n − i, i) → (λi + n− i, i) ↓ (λi + n − i, δi) ↓ (λi + n− i, βi). Six of these eight paths

are shown with dots in Figure 6.1. Let i ∈ (d − 1, qr]. Let h ∈ [r] be such that i ∈ (qh−1, qh]. For

j ∈ (0, λqh+1
] set Tj(i) := i. For j ∈ (λqh+1

, λqh ] set Tj(i) := δi. The corresponding paths Λi are

(n− i, i) → (λqh+1
+ n− i, i) ↓ (λqh+1

+ n− i, δi) → (λi + n− i, δi) ↓ (λi + n− i, βi). For i ∈ (qr, n]

set Tj(i) := δi (= i) for j ∈ (0, λi]. The corresponding paths Λi are (n − i, i) → (λi + n − i, δi) ↓

(λi + n− i, βi). The dots indicate the depths δi on the ending longitudes of the paths.

For a determinant example pertinent to the following lemma, take n := 3, λ := (1, 1, 0), and

β := (3, 2, 3). Note that β ∈ UGCλ(n)\UBPλ(n), and so this lemma will imply that (λ, β) is

not nonpermutable. Here sλ(β;x, y, z) = xy, but the determinant of Proposition 4.2 evaluates to

xy − z2.

Lemma 6.1. If β /∈ UBPλ(n), then (λ, β) fails to be nonpermutable.

Proof. Set ∆λ(β) =: δ ∈ UIλ(n) and ξ = Ξλ(β). In the example we have ξ = (5, 5, 8; 5, 11,

11, 11, 11, 11, 15, 15; 16, 16; 14, 16; 16). Since β is a λ-tuple and ξi = n for i ∈ (qr, n], the failure of

9



Figure 6.1. Rewiring four component paths produces a nonpermutability violation.

boundedness for β cannot occur in this last carrel. Let h ∈ [r] be such that there exists t ∈ (qh−1, qh]

such that βt > ξt, and then let c ∈ (qh−1, qh] be maximal such that βc > ξc. So c is not a critical

index, since βc 6= ξc. Let d be the leftmost critical index in (qh−1, qh] such that d > c. Here

we have h = 2, c = 6, and d = 9. Here βd = δd = ξd = ξc < βc implies δd + 1 ≤ βc. Since

d ≤ qr we have λd ≥ 1, which implies λd + n − d− 1 ≥ 0. Now refer to the n-path Λ constructed

above for this d ∈ [qr]. We rewire the last part of its Λd to produce a new path Λ′

d as follows:

Rather than finishing with ... → (λd+n−d, δd) = (λd+n−d, βd), the new path Λ′

d finishes with ...

(λd+n−d−1, δd) ↓ (λd+n−d−1, δd+1) → (λd+n−c, δd+1) ↓ (λc+n−c, βc). Four rewirings are

shown with solid paths. Here Λ′

d reaches (λd+n−d−1, δd), goes one unit to the south, then turns left

onto the latitude δd+1 and goes d−c+1 units to the east, and then turns right to go straight south

until it ends at (λc+n− c, βc). This new southerly edge (λd+n−d−1, δd) ↓ (λd+n−d−1, δd+1)

is not in use by Λd+1 (or a later path): If d = qh, then the longitude at (λd + n − d) − 1 is not

used by any component of Λ since λd > λd+1 here implies that this longitude is strictly to the

east of the longitude λd+1 + n − d − 1 on which Λd+1 finishes. If d < qh, note that δd + 1 < δd+1

because d is a critical index. So here the southernmost point reached by Λ′

d on its new briefly used

longitude at λd + n − d − 1 is strictly to the north of the northernmost point on this longitude

used by Λd+1, which descended to the depth δd+1 on the longitude λqh+1
+ n − d− 1 to the west.

Either way, for m = d − 1, d − 2, ..., c, next successively rewire the finishes of Λd−1,Λd−2, ...,Λc
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to respectively produce finishes for the paths Λ′

d−1,Λ
′

d−2, ...,Λ
′

c as follows: Rather than travelling

(n −m,m) → (λm + n−m,m) ↓ (λm + n −m, δm) ↓ (λm + n −m,βm), the new path Λ′

m travels

(n−m,m) → (λm+n−m− 1,m) ↓ (λm +n−m− 1, δm+1) ↓ (λm +n−m− 1, βm+1). Here Λ′

m is

finishing by turning right one step early, using one (or more) new southerly step(s), and then using

the final (possibly empty) “southerly stilt” that Λm+1 had been using to finish. It can be seen that

the “further” new southerly steps that could be used by Λ′

d−1 are not used by Λ′

d. No intersections

among these d− c paths occur since the right turns that are each being executed one easterly step

early are being coordinated along a staircase where λm = λqh . Given the choices of c and d, for

i ∈ (c, d] we have βi ≤ ξi = ξd = δd. So βi < δd + 1 for i ∈ (c, d]. Hence Λ′

m does not intersect

Λ′

d for m ∈ [c, d − 1]. When m /∈ [c, d] set Λ′

m := Λm. It can be seen that none of the rewired

paths intersect any of these original paths. We have constructed a disjoint n-path Λ′ := (Λ′

1, ...,Λ
′

n)

whose respective sinks form a nontrivial permutation π of the original ordered terminals. Therefore

LDλ(β;π) 6= ∅.

For an example pertinent to the following lemma, take n := 3, λ := (2, 1, 0), and β := (3, 2, 3).

Note that β ∈ UBPλ(n)\UGCλ(n), and so this lemma will imply that (λ, β) is not nonpermutable.

Here sλ(β;x, y, z) = x2y + xy2 + xyz, but the determinant of Proposition 4.2 evaluates to x2y +

xy2 + xyz − z3.

Lemma 6.2. If β /∈ UGCλ(n), then (λ, β) fails to be nonpermutable.

Proof. If β /∈ UBPλ(n) apply Lemma 6.1; otherwise β ∈ UBPλ(n). Set ∆λ(β) =: δ ∈ UIλ(n) and

ξ := Ξλ(β). Having β failing to be a gapless core λ-tuple is equivalent to having δ failing to be a

gapless λ-tuple. The only critical entry in the last carrel (qr, n] is n. So there cannot be a failure of

λ-gapless based upon having δqr > n. Let h ∈ (1, r] be such that δ fails to be λ-gapless based upon

having δqh−1
> δd, where d is the leftmost critical index in the hth carrel (qh−1, qh]. Set c := qh−1.

In each of the two cases below we refer to the n-path Λ for this d constructed above. Note that

δd+1 ≤ δc. Since d ≤ qr in each case we have λd ≥ 1, which implies λd+n−d−1 ≥ 0. These facts

will allow us to rewire the path Λd to produce the path Λ′

d in nearly the same fashion as in the

previous proof. The only difference is that the new path Λ′

d now has to make λqh−1
−λqh additional

easterly steps just before reaching its finishing longitude of λqh−1
+ n − qh−1. If d = qh, then the

reasoning used in the ‘d = qh’ case in the preceding proof to see that the southerly edge on the

longitude (λd +n− d)− 1 from depth δd to depth δd +1 is not in use by Λd+1 can be re-used here.

Here d is the only critical index for the carrel (qh−1, qh]. If d < qh, the reasoning used in the ‘d < qh’

case in the preceding proof to see that the early “jog” to the right is acceptable can be re-used here.

Here d is the smallest critical index greater than qh−1. Either way, for m = d − 1, d − 2, ..., c + 1,

next successively rewire Λd−1,Λd−2, ...,Λc+1 to respectively produce paths Λ′

d−1,Λ
′

d−2, ...,Λ
′

c+1 as
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in the previous proof. Then rewire the path Λc to produce the path Λ′

c in nearly the same fashion

as in the previous proof. The only difference is that the new path Λ′

c now makes λqh−1
− λqh fewer

easterly steps just before reaching its finishing longitude of λqh + n− qh−1 − 1. The observation in

the previous proof concerning the coordination of the right turns among the shifted d− c modified

paths needs a tiny modification to account for this. In each case the fact that d is the smallest

critical index larger than c implies ξi = ξd = δd for i ∈ (c, d]. Since β ∈ UBPλ(n), we have

βi ≤ ξi = ξd = δd < δd+1 for i ∈ (c, d]. The rest of this proof is the same as the end of the previous

proof.

Combine the contrapositives of these two lemmas:

Proposition 6.3. Let β ∈ Uλ(n). If (λ, β) is nonpermutable, then β ∈ UGCλ(n) ∩ UBPλ(n).

7 Sufficient condition for nonpermutability

To prove the converse of Proposition 6.3, we will need:

Lemma 7.1. Let β ∈ UBPλ(n). Set δ := ∆λ(β). Let π be a permutation of [n]. Let Λ ∈ LDλ(β;π).

For each m ∈ [n], the component Λm of Λ must end with (λπm +n−πm, δπm) ↓ (λπm+n−πm, βπm).

Proof. To avoid forming the inverse of π and using double subscripts, we sidestep π by refering to

the original indices for the terminals. Let x be a critical index for β. Let x′ be the largest critical

index that is less than x; if x is the leftmost critical index then take x′ := 0. Here λi = λx for

i ∈ (x′, x]. For such i, let Mi denote the component of Λ that sinks at (λx + n− i, βi). The claim

is true for Mx since δx = βx. Let i decrement from x to x′ + 1 and assume the claim is true for

i < i′ ≤ x. So each Mi′ ends with (λx + n − i′, δi′) ↓ (λx + n − i′, βi′). Set ξ := Ξλ(δ). Note that

ξi = ξx = δx = βx. If βi = δi there is nothing to show. Otherwise δi = δi+1 − 1 and δi ≤ βi ≤ ξi

imply that δi+1 ≤ βi ≤ ξi. By the induction we see that (λx + n − i′, δi′) is unavailable to Mi

for i < i′ ≤ x. So this path Mi must pass through (λx + n − i, δi). Then it must finish with

(λx + n− i, δi) ↓ (λx + n− i, βi).

Stanley remarked in Theorem 2.7.1 of [St1] that (λ, β) is nonpermutable when β is a flag. Since

UFλ(n) ⊆ UGCλ(n)∩UBPλ(n), the following proposition extends that remark. His remark can be

justified with either of the arguments that we describe within Case (i) of this proof, but referring

to β rather than to δ.

Proposition 7.2. Let β ∈ Uλ(n). If β ∈ UGCλ(n) ∩ UBPλ(n), then (λ, β) is nonpermutable.

Proof. Let π be a permutation of [n] such that π 6= (1, 2, ..., n). For the sake of contradiction

suppose LDλ(β;π) 6= ∅. Find a descent in π−1 and let 1 ≤ i < k ≤ n be such that πi = πk + 1.
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Set m := πk. Take Λ ∈ LDλ(β;π). Set δ := ∆λ(β) ∈ UGλ(n). By the lemma, without loss of

generality we may revamp Λ by replacing (with respect to their original indexing) the sequence β

of depths of its terminals with the sequence of shallower depths δ. This truncates its original paths

by deleting their final stilts. We consider the components Λi and Λk of Λ. Here Λi arises at (n−i, i)

and sinks at (λm+1 +n−m− 1, δm+1). Later Λk arises at (n− k, k) and sinks at (λm+n−m, δm).

Comparing the starting and finishing longitudes for Λk to those for Λi, we have n− k < n− i and

λm + n −m > λm+1 + n −m − 1. So every longitude that is visited by Λi is later visited by the

longer Λk. Set v := λm+1 + n−m− 1; the earlier path Λi finishes on the longitude at v. Let’s say

that the later path Λk first reaches the longitude at v on the latitude at z, for some z ≥ 1.

(i) First suppose that z ≤ δm+1, which is the finishing depth of Λi on the longitude at v. It is

topologically evident that the path Λk must intersect the path Λi; this contradicts Λ ∈ LDλ(δ;π).

(For an explicit discrete proof, consider the minimum and maximum depths used on each of the

λm+1 − m + i longitudes visited by both Λi and Λk. Inequalities and equalities among these

4(λm+1 −m+ i) depths can be used to find a longitude on which Λi and Λk intersect.)

(ii) Otherwise we have z > δm+1. See Figure 7.1. Since z cannot exceed the finishing depth δm for

Λk, we have z ≤ δm. Hence δm > δm+1. But δ ∈ UGλ(n) is λ-increasing. This forces m = qh for

some h ∈ [r]. Set s := δm− δm+1+1. Since δ is λ-gapless we have s ≤ ph+1 and δm+1 = δm− s+1,

δm+2 = δm − s+ 2, ..., δm+s = δm. Starting at the sink (v, δm+1) of Λi and moving exactly to the

Figure 7.1. Paths Λi and Λk successively sink at terminals

(λm+1 + n−m− 1, δm+1) and (λm + n−m, δm).
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southwest, we note that the s points (v, δm+1), (v−1, δm+1+1), ..., (v−s+1, δm) forming a staircase

are terminals that are serving as sinks for some paths other than Λk. Since Λi and Λk are paths,

we have i ≤ δm+1 and k ≤ δm. The source of Λk is exactly to the southwest of the source of Λi

by k − i diagonal steps. Since the source of Λi is weakly to the west of the longitude at v, if the

source of Λk is on one of the latitudes appearing in the staircase it must be weakly to the west of

the point of the staircase on that latitude. This implies that the source of Λk is not on the same

side of this staircase as (v, z). This is also clear if the source of Λk is on a shallower latitude. Since

the path Λk originates on the longitude at n−k < v and reaches (v, z) with z ∈ (δm+1, δm], it must

intersect this staircase. This contradicts Λ ∈ LDλ(δ;π). Hence LDλ(δ;π) 6= ∅ is impossible when

π 6= (1, 2, ..., n).

8 Equivalence and efficiency

We group the valid λ-tuple inputs for computing row bound sums using the Gessel-Viennot method

into equivalence classes, and identify the most efficient λ-tuple within each class.

When λ has distinct parts, the row ending values for the unique maximal element of Sλ(β) are

the entries of β. Hence the sets Sλ(β) for β ∈ Uλ(n) are distinct in this case. For general λ, as

in Section 12 of [PW], for β, β′ ∈ Uλ(n) define β ≈λ β′ when Sλ(β) = Sλ(β
′). Proposition 12.3(i)

of [PW] stated that the sets Sλ(β) could be precisely labelled by requiring β ∈ UIλ(n), and that

these λ-increasing upper tuples are the minimal elements of the equivalence classes in Uλ(n) for

≈λ. Proposition 12.2 said that the results in Sections 4 and 5 of [PW] for ∼R could be used for

≈λ by taking R := Rλ. Lemma 5.1(i) there said that β, β′ ∈ Uλ(n) are equivalent exactly when

∆λ(β) = ∆λ(β
′) or when they have the same critical list. Since the β ∈ Uλ(n)\UGCλ(n) are not

valid n-tuple Gessel-Viennot inputs, the next statement considers only UGCλ(n) and UFλ(n). Its

two parts follow from Lemma 5.1(i), Proposition 4.2, and Proposition 5.2(ii)(iii) of [PW].

Fact 8.1. When ≈λ is restricted to UGCλ(n) and to UFλ(n), in each case the equivalence classes

are the subsets consisting of λ-tuples that share a flag critical list. More specifically:

(i) In UGCλ(n) these subsets are the nonempty intervals in Uλ(n) of the form [γ, κ], where

γ ∈ UGλ(n) and κ is a “λ-canopy tuple”.

(ii) In UFλ(n) these subsets are the nonempty intervals in UFλ(n) of the form [τ, ξ], where τ is a

“λ-floor flag” and ξ ∈ UCeilλ(n).

To describe the equivalence classes of valid λ-tuple inputs as intervals, we “borrow” the minimum

element of Part (i) above and the maximum element of Part (ii) above:

Proposition 8.2. The equivalence classes for the restriction of ≈λ to UGCλ(n)∩UBPλ(n) are the

subsets of UGCλ(n) ∩ UBPλ(n) consisting of λ-tuples that share a flag critical list. These subsets
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are the nonempty intervals in Uλ(n) of the form [γ, ξ], where γ ∈ UGλ(n) and ξ ∈ UCeilλ(n). The

equivalence class for a particular η ∈ UGCλ(n) ∩ UBPλ(n) has γ = ∆λ(η) and ξ = Ξλ(γ).

Since it was noted that UFλ(n) ⊆ UBPλ(n) in Section 2, there is no need here to consider how the

equivalence classes for ≈λ restrict to UFλ(n) ∩ UBPλ(n) = UFλ(n).

Proof. Two upper λ-tuples are equivalent exactly when they share a critical list. And by Proposition

4.2(iii) of [PW] every gapless core λ-tuple has a flag critical list. Let η ∈ UGCλ(n)∩UBPλ(n), and

denote its equivalence class in this set by 〈η〉. By Proposition 5.2(ii)(i) of [PW] and Fact 8.1(i),

the minimum element of its equivalence class in UGCλ(n) is the gapless λ-tuple γ := ∆λ(η). In

Section 2 it was noted that UGλ(n) ⊆ UBPλ(n). So γ ∈ UGCλ(n) ∩ UBPλ(n), and it must be

the minimum element of 〈η〉. Set ξ := Ξλ(γ); in Section 2 it was noted that ξ has the same flag

critical list as is shared by η and γ. Let η′ ∈ 〈η〉. Since it has the same critical list as γ, by the

definition of Ξλ we have Ξλ(η
′) = ξ. By the definition of UBPλ(n) we have η′ ≤ ξ. Hence ξ is the

maximum element of 〈η〉 and η′ ∈ [γ, ξ]. Suppose η′′ ∈ [γ, ξ]. By Lemma 5.1(i) and Proposition

5.2(i) of [PW], the critical list of η′′ is the flag critical list shared by γ and ξ. So η′′ ∈ UGCλ(n).

And η′′ ≤ ξ = Ξλ(η
′′) implies η′′ ∈ UBPλ(n). Hence η′′ ∈ 〈η〉.

So to compute sλ(η;x) for a given η ∈ UGCλ(n) we may apply the Gessel-Viennot method to

any η′ ∈ [γ, ξ], where γ and ξ are respectively the unique gapless λ-tuple and the unique λ-ceiling

flag that have the same flag critical list as η. If one does not care about efficiency and wishes to

use an upper flag, then at least the λ-ceiling flag ξ will be available. In his Theorem 2.7.1 [St1],

Stanley noted that flags were valid inputs for the Gessel-Viennot method. Via Proposition 8.2, our

Theorem 5.1 implies that the Gessel-Viennot method cannot be used to compute a row bound sum

sλ(β;x) for any upper λ-tuple β that is not equivalent to an upper flag. So Corollary 5.2 does not

provide determinant expressions for any new row bound sum polynomials.

We say η ∈ UGCλ(n) ∩ UBPλ(n) attains maximum efficiency if |hλj−j+i(i, ηj ;x)| has fewer

total monomials among its entries than does the Gessel-Viennot determinant for any other η′ ∈

UGCλ(n) ∩ UBPλ(n) that produces sλ(η;x). Fix one η ∈ UGCλ(n) ∩ UBPλ(n) and set ∆λ(η) =:

γ ∈ UGλ(n). By Proposition 5.2(ii) of [PW] this is the minimum element of Uλ(n) that is equivalent

to η. Knowing γ ≤ η leads to:

Proposition 8.3. Let η ∈ UGCλ(n). The gapless λ-tuple ∆λ(η) attains maximum efficiency.

Proof. To complete the proof, note that ∆λ(η) ∈ UGλ(n) ⊆ UBPλ(n). So Proposition 4.2 can be

applied. Corollary 14.4(i) of [PW] rules out an “accidental” polynomial equality between sλ(η;x)

and any sλ(β;x) for which β is not equivalent to η. The (i, j) entry of |hλj−j+i(i, ηj ;x)| has
(λj−j+ηj
λj−j+i

)

monomials. The sentences before the statement complete this proof.
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So the γ ∈ UGλ(n) are the λ-tuples in UGCλ(n) ∩ UBPλ(n) that attain maximum efficiency.

If β is replaced by γ, for each j ∈ [n] the number of terms in the (i, j) entry of the determinant

will be reduced by a factor of [(λj − j + γj)(λj−j+i)]/[(λj − j + βj)(λj−j+i)]; this is a ratio of

falling factorials. We have not been able to obtain this conversion with naive row and column

operations. In the β ∈ UGCλ(n)\UBPλ(n) example given before Lemma 6.1, the “attempted”

incorrect determinant expression for sλ(β;x) that uses β cannot be converted with row and column

operations to the correct determinant expression for sλ(β;x) that uses γ := ∆λ(β). So any row and

column conversion that is proposed here must refer to the assumption β ∈ UBPλ(n). If λn > 0,

one can also factor out (x1x2 · · · xn)
λn and work with λ′ := (λ1 − λn, λ2 − λn, ..., 0). Going further,

when there are only p := ζ1 < n nonempty rows in the shape λ, the determinant is equal to its

upper left p× p minor because the last n− p terminals coincide with the respective sources: There

are no paths from the first p sources to these terminals, and the only path from one of the last

n− p sources to one of these last n− p terminals is the null path at each source.

What does the equivalence class [γ, ξ] for ≈λ look like in the path model? Fix γ ∈ UGλ(n)

and h ∈ [r + 1]. Since UGλ(n) ⊆ UIλ(n), the graph of γ above the portion (qh−1, qh] of the x-axis

can be decomposed into “staircases” whose rightmost indices are the critical indices. When Ξλ is

applied to γ to produce ξ, these staircases are converted to “plateaus” at the heights of the critical

entries for γ in this carrel. Let η ∈ [γ, ξ]. The graph of η over this carrel lies between these graph

portions for γ and ξ. To view the portions of these three gapless core λ-tuples as subsequences of

the corresponding overall sequences of terminals, rotate this picture by 180◦. The partition λ is

constant on each of its carrels. Lemma 7.1 said that the the qh − qh−1 lattice paths that arrive at

these terminals for η within a non-intersecting n-tuple of paths must pass through “staircases” of

terminals specified by this portion of γ, and that the ending segments of these paths must then

drop down in “stilts” to arrive at their terminals. As the lengths of each of these stilts is varied

from γi to ξi for i ∈ (qh−1, qh], the weight of the n-tuple of paths is unaffected since no horizontal

steps are present.

In [PW] we defined the parabolic Catalan number Cλ
n to be the number of “λ-312-avoiding

permutations”. There in Theorem 18.1(ii) we noted that this is also the number of gapless λ-

tuples. Given this, the following result is a consequence of the two propositions in this section. It

was previewed as Part (xi) of Theorem 18.1 of that paper:

Corollary 8.4. The number of valid upper λ-tuple inputs to the Gessel-Viennot determinant ex-

pression for flagged Schur polynomials on the shape λ that attain maximum efficiency is Cλ
n .

For a sequence of examples, let m ≥ 1. Suppose λ is a partition whose shape’s set of column lengths

that are less than 2m is Rλ = {2, 4, ..., 2m − 2}. Then the number of maximum efficiency inputs

here is given by the member of the sequences A220097 of the OEIS [Slo] that is indexed by m.
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