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Abstract

Aim of this paper is to count 0-dimensional stable and stipatable ideals in
2 and 3 variables, given their (constanfijree Hilbert polynomial.

To do so, we define thBar Code a bidimensional structure representing any
finite set of terms$vl and allowing to desume many properties of the corresponding
monomial ideall, if M is an order ideal. Then, we use it to give a connection
between (strongly) stable monomial ideals and integeitjmans, thus allowing to
count them via known determinantal formulas.

1 Introduction

Strongly stable ideals play a special role in the study dbéfil scheme, introduced first
by Grothendiecki[22], since their escalier allows to stualy Hilbert function of any
homogeneous ideal, exploiting the theory of Groebner hasegointed out by Bayer
[5] and Eisenbud [18].

The notion of generic initial ideal was introduced by Gallii21] with the name
of Grauert invariant Galligo proved that the generic initial ideal of any homiogeus
ideal is closed w.r.t the action of the Borel group and gaveralinatorial character-
ization of such ideals, provided that they are defined on d @iécharacteristic zero.
Also Eisenbud and Peeva [18,42], focused on that monon@alsdlabelling them-0
Borel-fixed idealsLater, Aramova-Herzog [2] 3] renamed thetrongly stable ideals

A combinatorial description of the ideals closed w.r.t tbéan of the Borel group
over a polynomial ring on a field of characterigtic- 0 has been provided by Pardue in
his Thesis[[41] and Galligo’s result has been extended tos#tting by Bayer-Stillman
[6l.

The notion ofstable ideahas been introduced by Eliahou-Kervalrel[19] as a gen-
eralization of 0-Borel-fixed ideals. They were able to givmimimal resolution for
stable ideals.

Such minimal resolution was used by Bigaitti[10] and Hul2€][to extend Macaulay’s
result [37]; they proved that the lex-segment ideal has makBetti numbers, among
all ideals sharing the same Hilbert function.
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In connection with the study of Hilbert schemes[[8, 9,14, 3R/45] it has been
considered relevant to list all the stable ideals [7] andrsgly stable ideals [1%5, 34]
with a fixed Hilbert polynomial.

Aim of this paper is to count zerodimensional stable andhgfisostable ideals in 2
and 3 variables, given their (constanfijitae Hilbert polynomial.

To do so, we first introduce a bidimensional structure, delar Codewhich al-
lows, a priori, to represent any (firﬁ)eset of termaM and, if M is an order ideal, to
authomatically desume many properties of the correspgnaionomial ideal. For
example, a Pommaret ba<is[48] 12] afan be easily desumed.

The Bar Code is strictly connected to Felzeghy-Rath-RoRylagx Trie [20,[35],
even if our goal and methods are completel§iatent from theirs.

Using the Bar Code, we provide a connection between stalolestaongly stable
monomial ideals and integer partitions.

For the case of two variables, we see that there is a biunivvamreespondence
between (strongly) stable ideals witffine Hilbert polynomialp and partitions ofp
with distinct parts.

The case of three variables is more complicated and some texitaology is re-
quired. Thanks to the Bar Code, we provide a bijection betwstongly) stable ideals
and some special plane partitions of their constéirie@ Hilbert polynomiab.

These plane partitions have been studied by Krattenthalizr32], who proved
determinantal formulas to find their norm generating fumrtgiand - finally - to count
them.

As an example, we consider the stable monomial ideal

Iy = (03, XX, X5, XaXa, X2Xa, X5) < K[ X1, X2, X3,

whose Groebner escalierhgl;) = {1, xq, xf, X2, X3, X1X3).
It can be represented by the Bar Code below

1 X1 X2 X2 X3 X1%3
2
—_— —_— —_— )@1 —_—X1 Xy —— —_— X1X’i

2 X
X5 2X3

3

and it corresponds to the plane partition

3 1

The correspondence can be seen observing the rows of thed8arabove: since the
bottom row is composed by two segments, the plane partitaanexactly two rows.
The number of entries in thieth row of the partitionj = 1,2 (i.e. 2 and 1 resp.), is
given by the number of segments in the middle-row, lying dkieii-th segment of the
bottom row. Finally, the entries are represented by the mimabsegments in the top
row, lying over the segments representing the correspgretitry.

1There is also the possibility to hawefinite Bar Codes for infinite sets of terms, but it is out of the
purpose of this paper, so we will only see an example for cetapess’ sake.



Exploiting this bijection and the determinantal formulasKrattenthaler, we are
finally able to count stable and strongly stable ideals ipghvariables.

Even if the Bar Code can easily represent finite sets of tenrany number of
variables, the generalization of our results to the case af whore variables would
require the introduction ofi-dimensional partitions, for which, in my knowledge, it
does not exist a complete study from the point of view of c'mgwmerﬁ, S0, in this
paper, we do not extensively deal with them.

2 Some algebraic notation

Throughout this paper, in connection with monomial ideais,mainly follow the no-
tation of [39].

We denote byP := k[x, ..., X,] the graded ring of polynomials invariables with co-
efficients in the fielk, assuming, once for all, thahar(k) = 0.

Thesemigroup of termgenerated by the sgty, ..., X,} is:

T =X =x "y = (y1, ., vn) €N}

If 7= x"--- X, then degf) = YL, v is thedegreeof r and, for eacth € {1,...,n}
deg,(7) := yn is theh-degreeof 7.

For eachd € N, 7y is thed-degree part of ", i.e. 74 := {X’ € 7| degiK”) = d} and it

is well known that 74| = ”*g‘l). For each subsé¥l € 7 we setMyg = M N 74. The
symbol7(d) denotes the degreed part of 7, namely7 (d) = {xX’ € 7| deg{”) < d}.
Analogously#(d) denotes the degreed part of # and given an idedl of £, I1(d) is

its degree< d part, i.e.l(d) = | nP(d).

We notice thafP(d) is the vector space generatedbyd) and we observe thatd) is

a vector subspace 6f(d).

A semigroup ordering: on7 is atotal ordering suchthat < 7o = 71y < 112, V1,71, 72 €

7. For each semigroup orderirgon 7, we can represent a polynomiile ¥ as a
linear combination of terms arranged w.kt.with codficients in the base fielk:

S

f=> dfn)r=> cfn)m: cf,n) ek, el 11> >1
€T i=1

with T(f) := 71 theleading ternmof f, Lc(f) := ¢(f, r1) theleading cogficientof f and

tail(f) := f — c(f, T(f))T(f) thetail of f.

A term orderingis a semigroup ordering such that 1 is lower than every viriah

equivalently, it is avell ordering

Unless otherwise specified, we considerltécographical orderingnduced by

X1 < ... < Xp, I.€:

X <tex XX @ Ajlyy <65, v =6, Vi >,

2|n ], Chapter 11, the author observes:

Surprisingly, there is much of interest when the dimenssdnar 2, and very little when the
dimension exceeds



which is a term ordering.
Since in all the paper we will consider the lexicographiaalesing, no confusion

may arise and so we drop the subscript and denote4t imgtead of<| e

For each termr € 7~ andx;|r, the onlyv € 7 such thatr = x;v is calledj-th prede-

cessorof .
Given a termr € 7, we denote by min{) the smallest variable;, i € {1,...,n}, s.t.

X | 7.
ForM c 7, we denote byM the list obtained by ordering the elements\fincreas-
ingly w.r.t. Lex. For example, iM = {xo, X5} C k[X1, X2], X1 < X2, M = {33, Xa}.

A subset] C 7 is asemigroup idealf € J = o1 € J Yo € 7; asubseN C T
is anorder idealif r € N = o € NVYol|r. We have thaN € 7 is an order ideal if and
only if 7\ N = Jis a semigroup ideal.

Given a semigroup ideal c 7 we defineN(J) := 7 \ J. The minimal set of
generator$(J) of J, called themonomial basisf J, satisfies the conditions below

G(J) := {r e J]| each predecessor afe N(J)}
= {r €T |N(J) U {r}is an order ideal ¢ N(J)}.

For all subset$s c P, T{G} := {T(g), g € G} andT(G) is the semigroup ideal of
leading terms defined 84G) := {tT(g), T € 7,9 € G}.

Fixed a term ordek, for any ideall <# the monomial basis of the semigroup ideal
T(l) = T{l} is calledmonomial basief | and denoted again by(1), whereas the ideal
In(l) := (T(1)) is calledinitial ideal and the order ideal(l) := 7 \ T(l) is called
Groebner escalieof |. Theborder setof | is defined as:

B(I) = {xn7, 1<h<n, zeN()}\N()
= TNV U X7 1<h<n reN()).

If | <®is an ideal, we define its associatetietyas
V()={Pek', f(P)=0, Vf eI}
wherek is the algebraic closure &f
Definition 1. Let | <® be an ideal. Theffine Hilbert functionof | is the function
HF N> N
d - dim(®(d)/1(d)).
Ford suficiently large, the fiine Hilbert function ofl can be written as:

@ =3 o(, %)

i=0

4



wherel is the Krull dimension oi/(l), b; are integers calleBetti numberandby is
positive.

Definition 2. The polynomial which is equal to HE), for d syficiently large, is
called theaffine Hilbert polynomiabf | and denoted Hd).

3 On the Integer Partitions

In this section, we give some definitions and theorems frantikory of integer parti-
tions that we will use as a tool for our study, mainly followifi,[31,/32| 49].
Let us start giving the definition afteger partition

Definition 3 ([49]). Aninteger partitiorof p € N is a k-tuple(dy, ..., A) € N¥ such that
Z:il Ai = pandig > ... > A.

We regard two partitions as identical if they onlyffdr in the number of terminal
zeros. For example (2,1) = (3,2,1,0,0).
The nonzero terms are callpdrtsof 1 and we say that hask parts ifk = [{i, 4; > 0}].
We will mainly deal with the special casg > ... > A¢ > 0 i.e. with integer partitions
of pinto k non-zeradistinct parts denoting byl the set containing them, i.e.

k
Ik = {(11,..., ) € Nk, A1 > ... > >0 andz/lj = p}.
=

The numberQ(p, i) of integer partitions ofp into i distinct parts is well known in
literature. For example, we can find [n [16] the formulaswlig to compute it:

VpieN, i# 1 Q(p.i)= P(p— ('Z)u) Q(p.1)=1
whereP(n, k) denotes the number of integer partitionswfith largest part equal tk:
¥n,ke N, P(n,k) = P(n— 1, k- 1)+ P(n-k k),
with

P(n,n)=1
P(n,0)=0

We define now the notion gflane partition

{ P(n,k) =0 for k> n

Definition 4 ([31]]). A plane partitionr of a positive integer [ N, is a partition of

p in which the parts have been arranged i2-@limensional array, weakly decreasing
across rows and down columns. If the inequality is stricbasrrows (resp. columns),
we say that the partition isow-strict(respcolumn-stric}.

Different configurations are regarded agfdrent plane partitions.

Thenormof z is the sum () := 3}, =i j of all its parts.



We point out that an integer partition (see Definitidn 3) isSrape and particular
case of plane partition.

Examples. An example of plane partition gi = 6 is

2 11
11

which is diferent from the plane partition
2 1

R R

¢

In sectiong B 17, we will be interested in some particulanplpartitions, that we
define in what follows.

Definition 6 ([31]). Let D; denote the set of all r-tuples= (13, ..., 4;) of integers with
A1 > ... > A

For A,u € Dy, we writed > u if 4 > y; foralli = 1,2,...,r. Let ¢ d arbitrary integers
andA, u € Dy, with 2 > u. We call an array of integers of the form

,01,;11+1 pl,/.l1+2 e oo e pl,/h
P2ur+1l - e e P22,

pr’llr+l pr,/lr
a (c, d)-plane partitiorof shapet/u if

pij=pij+r+cforl<i<r uy<j<a,

pij=pisj+dforl<i<r—1 pu<j< A
In the caseu = 0, we shortly say that is of shapel.

We denote byP,(c, d) the set of €, d)-plane partitions of shape
A (1,1)-plane partition containing only positive parts is a romdaolumn-strict
plane partition; these partitions will be useful while deglwith stable ideals (see

sectior 6).

Definition 7 ([32]). Let ¢ d be arbitrary integers and be a partition witha, > r. We
call “ shifted ¢, d)-plane partitiorof shapel” an array = of integers of the form

1 T2 ... 10,
22 ... 2,05

L T



and for which
T, j zm,j+1+cfor1s i<rig<j<a,

m,,—2ni+1,,-+dforlsisr—1,i<js/li+1.

We point out that, according to definitibh 7, there are- i + 1 integers in thé-th
row.

We denote byS,(c, d) the set of shiftedq, d)-plane partitions of shap& These
partitions will be useful in sectidd 7, where we will cournastgly stable ideals.

Example8. The plane partition

5 4 3

4 1
is a (1, 1)-plane partition with shape = (3,2) and norm 17.
On the other hand, the plane partition

5 4 3
4 1
is a shifted (10)-plane partition of shapé = (3,3) and norm 17. It containg = 3
elements in the first row anth — 1 = 2 elements in the second row. &

We introduce now the notion aform generating functigrfor counting plane par-
titions.

Definition 9 ([31]). Thenorm generating functiofor a class C of(c, d)-plane parti-

tionsis
Z X
neC

If xis an indeterminate, we introduce tReotations (see [31]):
[N=1-X"
[n]' =[1][2] ---[n], [O]! = 1

n I

If k=0, [2] = 1;if k # 0 andn < k, then we sem =0.

Theorem§&7T0 arid 12 give a way to compute the norm generatigdn for plane
partitions of the forms introduced in Definitiodls 6 did 7, ensbme hypotheses on the
size of their parts.

Let us start with the plane partitions of Definitiioh 6.



Theorem 10(Krattenthaler[311]) Let ¢ d be arbitrary integersd,u € D, and let ab
be r-tuples of integers satisfying

a —c(ui — piv1) +(1—d) > a4

bi + (i — Ajs1) + (1—d) > by

fori=1,2,..,r—1.
Then, denoting Ns, t) = bg(ds— s—ut +t) +(1—c—d) [(;11+25—t) _ (”2‘)] + C(/ls—Sz—#wt)’
the polynomial

is the norm generating function fdc, d)-plane partitions of shape/u in which the
first part in row i is at most gand the last part in row i is at least b

(1-0Us—m)—d(s-t) +a—bs+c

de XNl(Sst)
Tlsstsr( do— S— i +1

Examplell. Let us consider the (1)-plane partitions of shape= (2,1) (sou = 0),
such thata = (4,3) andb = (1,1), i.e. row and column strict plane partitions of the

form
( PL1 P12 )
p21 O
with p11 < 4, 1 < p21 < 3, p12 = 1, With the notation introduced above, we have
r=2.
Since
d=ay—clu—p) +(1-d)2a =3

2=bi+c(l1-)+(1-d)y>by=1,
we can apply the formula of Theorém] 10, which, substitutingdata, turns out to be

significantly simplified:
WhereNl(S, t) = bS(/ls — S+ t) + (_1) [(SET)] + (/ls—ZSH).
Now, we haveN(1,1) = 2-1+1)+(3) = 2 N@1,2) = 2-1+2)+(}) = 5;

—(s-t)+a—bs+1

de xNi(s)
tls&tsz( do— St

X3 4] x8[4
N(2,1)=0;N(2,2) = (1- 2+ 2) = 1, so we have to computhat( [%2 X[sz] ] =
0 1
XA+ XA+ x+x3) XL+ X1+ x5
det 5
1 X(1+ X+ x9)
For example, there are exactly 3 partitions with norm 8, Hgme

(s0)l20)(15)

We see now how to construct the norm generating functionHerpartitions of
Definition[4.

= X104 259+ 338+ 3+ 38+ x5+ x4

¢



Theorem 12 (Krattenthaler,[[3R]) Let ¢ d be arbitrary integersd a partition with
Ar > rand let g b be r-tuples of integers satisfying

a-c—d>au.

bi +c(Ai — Aiy1) + (1 -d) 2 biyg
fori =1,2,..,r— 1. Then, denoting N= ¥_, (bi(4 — i) + & +¢(*; ")), the polynomial

XNldetlﬁS,tsr ([(/Is - S)(l - C) + (1/1— Cc— d)(s_ t) +a — bs]) ’
s—S
is the norm generating function for shiftécd d)-plane partitions of shapg in which

the first part in row i is equal tojaand the last part in row i is at least b

Examplel3. Let us consider the shifted ,(Q)-plane partitions of shape= (3,3, 3),
such thata = (6,3, 1) andb = (1,1, 1). By definition, they are matrices

11 M2 M3
0 mp m3
0 0 33

with 711 = 6,22 = 3,133 = 1. Moreoversy 3, m23 > 1.

We compute the norm generating function for these parstigia Theorern 12.
Firstof allNy = 2, (bi(4 - i) + & + ¢ ') = 14

Then we have to compute eacly; = [“S’S)(l’c)“l’f;d)(ﬁ)*a"bs
the determinant of the matrid = (Ms¢)1<st<r- ’

We have:

_[5] = M7, (1-x) — (y2 3,32
ml,l_[z]_m—(x +1)(X4+X + X +X+1)

], 1< st <randthen

[

[ 5—:[(]-*Xi)
1= [} = fras mmas -

[2 TM2,(1-x)

M2 = 1] = qraomnes - X1
ms = 3] =0
Mgy =Mg2 =Mg3=1.
This way
R+DX+C+x%+x+1) 1 0
M = X+ + X2 +x+1 x+1 0],

1 1 1

sodef(M) = x” + 2x8 + 3x° + 3x* + 3x® + 2x% + x. The generating function is then
x4de(M) = x1° + 2x16 + 3x17 + 3x18 + 3x1° + 2x20 4 x2L,

If we consider, for exampley(r) = 17, the coéicient of x’ in the above polynomial
is 3, so it tells us that there are exactly three shifted)%plane partitions of shape



1=(3,3,3),suchthaa = (6,3,1) andb = (1,1, 1).
We can write them down for completeness’sake:

6 5 1 6 4 2 6 3 2
0 31,103 11,10 3 2
0 01 0 01 0 01

4 Bar Code associated to a finite set of terms

In this section, we provide a language in order to repressaidimensional monomial
ideals, which are characterized by having a constéiimteaHilbert polynomial.

In the case of two or three variables, this will allow us t@étish a connection between
(strongly) stable idealk < # with constant fiine Hilbert polynomiaH,(t) = p e N
and some particular plane partitions of the integer nungbeévore precisely, we will
give a combinatorial representation for the associateddfilexicographical Groebner
escalienN(l).

First of all, we point out that, sincg = N", atermx’ = x;* - -- x;" can be regarded as
the point 1, ..., yn) in then-dimensional space.

Using this convention, we can represhit) with an-dimensional picture, calletdwer
structureof | (for more details see [11][39, 11.33]).

Examplel4. Consider the radical ideil= (X5— Xy, X1 Xz, X5—2X2)<k[ X1, X], defined by

its lexicographical reduced Groebner basis. Since wet lwe haveT(xf —X1) = X,
T(X1X2) = X1X2, T(x% —2X9) = x% we can conclude that the lexicographical Groebner
escalier ofl isN(I) = {1, x4, X2}, so it can be represented by the following picture:

2

X2

X
1 1| X

¢

For a radical ideal, notice that if[N(l)| < oo also|V(l)| < o (and, more precisely, it
holds|N(1)] = [V(1)]), so the associated variety consists of a finite set of points

It has been proved by Cerlienco-Mureddu _([13]) that, in tase, any ordering on
the points inV(l) gives a precise one-to-one correspondence between the iteK (1)
and the points iV(l), so it is also possible to label the points in the tower strec
with the corresponding point of the orderéd).

3Since, in this paper, we are working with the lexicographicder, | precised here “w.r.t” Lex. Anyway,
it can be easily observed thep — x1) = X2, T(x1X2) = X1 X2, T(X3 — 2x2) = X2 trivially holds for each term
order.

10



Examplel5. Consider again the radical idelak (xi — X1, X1 X2, xg — 2Xp) < K[ X1, X2]
of exampld_IU. The corresponding variety can be easily coedpand, actually, it is
finite:

V() = {(0,0), (0, 2), (1, 0)}.
We can also note that, exactly as expectddl)| = |V(I)] = 3. The correspondence
given by Cerlienco-Mureddu (sele |13] for more details on tibg/correspondence is
constructed) is displayed below; the corresponding reords of V(1) are indicated in
square brackets:

@1 N(I) = V(1)

1+ (0,0) D, 1|\'|_()|)(1—>O;/(|)

X2 — (0,2) e (O, )

e %t 1 (0.0).
[(0,0),(0,2),(1,0)];

[(0,0),(1,0),(0,2)]. [(1,0),(0,0),(0,2)].
@3 N(1) — V(1) Dy il:j_()|)(;£/(|)
>:<L2H'—>((]6 %)) X2 = (0,0)

X - (0, 2). X1 > (1, 0).

[(0.2).(0,0). (1, 0)];
[(0,2).(1,0). (0, 0)].

Now, we can label the points in the tower structure with theesponding point of
V(l), as it can be seen in the pictures below.

[(1.0).(0.2).(0.0)].

For®;,: For®,:

X2 X2

0.2) 0.2)

00 | (10 X1 10) | (00 x
For @3: For®,:

X2 X2

(0.0) (0.0)

wo | ©2 | o 02 | @o | o

¢

The construction of Exampl€s]14 and 15 is a sort of “invergdilacaulay’s con-
struction (seel[37] p.548) in which from a finite order id&&la finite set of poinX
and a Groebner basis (X) are produced so that the lexicographical Groebner escalie
N(I1(X)) is exactlyN.

Examplel6. For the case of two variables, the tower structure of a zeredsional
radical ideall s.t. V() = {P4, ..., Ps} is represented bly towers, wherd is the number

11



of different values appearing as first coordinate of the poin&lijy so that each tower
corresponds to a “first coordinate”. For eack 1 < h, thei-th tower contains as many
elements as the number of occurrences of the associateddosdinate. Displaying
these towers in nonincreasing order by height, one obtaiower structure foi (see
the one obtained in examhle]15 via the nday).

This is not the case for three or more variables, since soiifts &hthe towers’
planes are needed. For example, given the zerodimensiadiabt ideall = (xf -
X1, X1 X2, X5 — X2, X1X3 — X3, X2Xa, X3 — X3) < K[X1, X2, X3], whose variety is

V(l) = {(0,0,0),(0,1,0),(1,0,0),(1,0,1)},

we haveN(l) = {1, x4, X2, X3}, which cannot be represented with a natural extension to
three variables of the procedure explained above. In su@xt@msion, the towers are

in the x(2) direction if the points have only the same first coordénand in thex(3)
direction if both the first and the second coordinate are ainees o

Examplel7. Letus consider the zerodimensional radical ideal(x3—3x3+2xq, X1 X2, X3—
2X2)<k[x1, %], defined by its lexicographical reduced Groebner basig&iw.r.t. Lex,
TOS - 3% + 2x1) = X3, T(XaX2) = Xa1Xe, T(X5 — 2%2) = X3, we can conclude that the
lexicographical Groebner escalierlois N(I) = {1, 1, xi, X2}, SO it can be represented
with the following picture:

X2

X; X2
1 1| 1| X1

Consider now the zerodimensional radical idéat (3¢ —Xq, X1 X2, X5—2X2, X3+ X5 —
x1) < K[ Xy, X2, X3], defined via its reduced lexicographical Groebner basisceSw.r.t.
Lex, we haveT (3¢ —x1) = x5, T(x1X2) = XaXz, TG —2%2) = X3, T(Xa+ X5 —X1) = X3, We
can conclude that the lexicographical Groebner escali¢risfN(I’) = {1, X1, x%, X2},
so it can be represented with the following picture:

2

X2

X 2
1 1|>(1| X0

We point out that the tower structure above is exactly theesasrforl, even ifl’ <P =
K[X1, X2, X3] and | < Kk[xq, X2].

The reason of this factis thag ¢ N(I’); indeed xz is the leading term %+x§—x1.
In general, the reason is that there is a polynomiaH > ey Git) € 17

In a slightly diferent situation (i.e. in solving equations) the ability efecting lin-
earrelations mod’ among the elements ¢f, x3, X2, X3} and, equivalently, producing

12



a basis of the vector space generatedhy, xo, X3}, Span(l, X1, X2, X3) mod|’, is
crucial (seell4, 36]).

This is the case, for instance 6f = (3¢ — X1, X1 X2, X5 — 2%, X3 — X1) <K[ X1, X2, Xa],
whereSpan(1, X1, Xz, X3) = Span(1, xg, X2) mod |”

o

Unfortunately, as one can easily understand, the towectsitel becomes rather
complicated when we have an high number of terms(i) andor of linearlyindepen-
dentvariables inP, i.e. when we deal with a large number of points, /andve have
really to draw the structure for high-dimensional spﬁces
Moreover, as shown in examdlel17, from the tower structuig iinpossible to un-
derstand the ring in which the Groebner escalier has beempui@u, since linearly
dependent variables are discarded (sek [36]).
For these reasons, we introduce nowBae Code diagramnamely a (rather compact)
bidimensional picturavhich keeps track of all the information contained in the éow
structure, making them simple to be extracted.
We define now, in general, what is a Bar Code. After that, wehs@eto associate to a
finite set of terms a Bar Code and, vice versa, how to assai@tée set of terms to a
given Bar Code.

Definition 18. A Bar CodeB is a picture composed by segments, cabads superim-
posed in horizontal rows, which satisfies conditiondabelow. Denote by

. B?) the j-th bar (from left to right) of the i-th row (from top to tiom), i.e. the
j-thi-bar,

e u(i) the number of bars of the i-th row
o 1(BM) := 1,¥] € (12, u(1)} the (1-)lengthof the1-bars;

o i(BY),2<k<n1<i<k-1,1<]<uK theidengthofBY, i.e. the number
of i-bars lying ovengk)

a. Vi, j,l<isn-1,1<j<upu(), ] e(l,...uli+1)st Bgﬂ) lies unders)

b. Vis, iz € {L,...n}, XA 11(BMY) = 5402 1,(B!?); we will then say thaall the

rows have the same length

We denote by, the set of all Bar Codes composedtgows. _
Note thatif 1< i1 <ip <N, 1< ja < p(ia), 1< jo < u(iz) andB{? lies belows!?,

thenly(B{?) > 11(B?).

Definition 19. We callbar listof a Bar CodeB, composed by n rows, the list
LB = (/J(l)’ ’l'l(n))

Example20. An example of Bar CodB is

4Actually, in this context, “high-dimensional” means “ofaiénsion greater than or equal to” 4.
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The 1-bars have length 1. As regards the other roMB”) = 2,1,(B%?) = 11(BY) =
11(8?) = 1,1,(8Y) = 111(BY)) = 2 andl,(BY) = 1,(BY) = 3, so

u(1) u) u@3)
PECREDICGVESWHCWOE
j1=1 j2=1 ja=1

The bar listisLg = (5, 4, 2).
S

Definition 21. Given a Bar CodeB, foreachl <l <n,I<i <n,1<j < u(), an
I-block associated to a bar ?3 of B is the set containing ?3 itself and all the bars of

the(l - 1) rows lying immediately above(B

Example22. Take again the Bar Cod&of examplé 2D

2 — —_— —_— —_—

3

Consider the baIB(ZS) (soi =n=3,j=2=pu(3)) and set = 2. The 2-block associated
to BY consists 0B itself and of the bar8?, BY, B, as shown by the thick blue
lines in the picture below:

¢

We outline now the construction of the Bar Code associatedittite set of terms.
In order to do it, we need to introduce the opera®ysi = 1,...,non the terms.

First of all, we associate to each tem: x{l <X e T c K[Xq, ..., Xn], Nterms
(one for each variable i®). More precisely, for eache {1, ..., n}, we let

Py(@) =X X" e T, i.e. Py(r) =

We can extend this procedure to a finite set of teivhs 7, defining, for each €
{1’ ARA] n}l .

MU= P (M) = {o e T, |3t € M, Py (1) =
The terms inM!7 will play a fundamental role for the construction of the Basd@
diagram.

Here we list some features of the operategs that will be useful in what follows.
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1. Foreachr € T, Py (1) = 7.
2. Ifr =" X, vi = deg(r) = 0 thenPy (1) = X\ - - - X" = Py, (7).

3. Itholds
T <Lex 0 = Py (7) <Lex Px (0), Vi € {1,..,n}

4. For each termr and for any pair of indiceg j, say 1<i < j < n, we have that,
sincex; < X;,
Px; (Px (7)) = Px (Px (7)) = Py (7).

5. Foreaclr,r € 7,V¥1<i < n,itholds

Px(7) = Px(0) = Px,1(7) = Px1(0).

Example23. Consider the term = x1X3X3 € K[ X1, X2, X3].
Clearly Py, (1) = xX3x3, While Py, (1) = X33 andPy,(7) = X§. FOroy i= XoX3 >Lex 7,
Px(7) = ngg <Lex Px(01) = XZXg andPy,(7) = >é <Lex Px(01) = Xg; for o =
XX >lex T, Pu(r) = X3XG = Py,(02) and Py (1) = Px(02) = x§. Moreover,
Pi(Po(7)) = Py (00X5) = X5 = Py (Ps (7). 4
Now we takeM C 7, with [M| = m < co and we order its elements increasingly
w.rt. Lex, getting the lisM = [rq, ..., 7). Then, we construct the sekl!, and the
corresponding lexicographically ordered m;TQ'], fori = 1,..,n. We notice thaiv
cannot contain repeated terms, Whilemg, for1<i < n, can. In case some repeated
terms occur iriV['], 1 < i < n, they clearly have to be adjacent in the list, due to the
lexicographical ordering. '
We can now define the x m matrix of termsM as the matrix s.t. itsth row ismm,
i=1..,n,i.e.

Py (t1) ... Px(tm)
_ Py, (t1) ... Px,(tm)
Px, le) v Py, (Tm)

Definition 24. TheBar Code diagrar® associated to M (or, equivalently, ) is a
n x m diagram, made by segments s.t. the i-th roB,0f < i < nis constructed as
follows:

1. take the i-th row oM, e M

2. consider all the sublists of repeated terms, B (tj,), Px (7j,+1) ---. Px (Tjy+h)]
S.t. By(7j,) = Px(7j41) = ... = Px(7j,+n), noticing thal 0 <h <m

3. underline each sublist with a segment

4. delete the terms d)_ﬂm, leaving only the segments (i.e. thiedrs.

SClearly if a termPy, (r7) is not repeated i , the sublist containing it will be onlyHy (7;)], i.e. h=0.
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We usually label eaclr-bar B(l), j € {1, ..., u(1)} with the termr; € M.

By property 5. of the operatoBy, and, since for each X i < n, |Vi| =
"(') 1 (B(')) a Bar Code diagram is a Bar Code in the sense of Defiritibn 18.
ExampleZS. GivenM = {Xq, xl, XoX3, X1X2X3, )éxg } € K[X1, X2, X3], we have:
MY = [x4, 0, XoXa, X0 Xxs, XX
= [1, 1, XoXa, X5Xa, X3X3]

h o 1,1, % %8, %),
leading to the X 5 table on the left and then to the Bar Code on the right:

X1 X2 XoXs XiXoX3 XX

X1 X XoXs X1XoX3 XX P— =
1 1 XX XoX3 X3X3 g
1 1 X3 X3 X3 3

¢

Remark26. We can easily observe that Bar Codes associatedferelnt sets of terms,
need noto be diferent.
For example, iM := {1, x3}, M’ := {xq, xi} c K[xq, X2], both the Bar Cod& associated
to M and the Bar CodB’ associated tdl” are

1 X1 X1 Xi

1

_— 1

2 — 2
We will see soon that this cannot happen for order ideals.
Now we explain how to associate a finite set of teifisto a given Bar Cod®.
In order to do it, we have to follow the steps below:

BC1 consider the-th row, composed by the bags”, ..., (’Pn) Letll(B(j”)) = ZE”), for
j €{1,..,u(n)}anday, .., a,mn € N, s.t. ax < a, if k < h. Label each baB(j“)

with ZE”) copies ofxy .

BC2 Foreach=1,..,n-1,1< j < u(n-i+1)considerthe baBE“‘”l) and suppose
that it has been labelled tij%'“”l) copies of a termr. Construct the 2-block
associated t8{""** which, by definition, is composed "' and by all the
(n- i)—barsBﬁ_,”’i), B%:i), lying immediately abov&""**; note thah satisfies
O<h<u(n-i)-]j.

Denote the 1-lenghts (B(T”") B(n D by 1y (&” D) = é’(” L (&” ')) = t’(” )
and fixh + 1 natural numbers; < aJ+l <. < T For each < k <h, Iabel
B(n Y with é’(” ) copies ofrxn“"

Clearly, if, given a Bar Cod&, we apply BC1 and BC2 to get a st c 7, and then
we construct the Bar Code associatedvtp we get backB. Indeed, BC1 and BC2
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exactly construct the elements of the ordered EP& i=1..,n

Given a Bar CodeB, applying steps BC1 and BC2, we can generaténéinite
number of setd! c 7.
We modify the steps BC1 and BC2 getting BbC1 and BbC2 so thagdch Bar Code
B, the set of terms generated by applying them turns out e
BbC1 consider the-th row, composed by the baB{", ..., BL'EL). Letly(B{") = &7, for
j €{1,..,u(n)}. Label each baB{" with £ copies ofxt.

BbC2 Foreach = 1,..,n-1,1< j < u(n-i+ 1) consider the baBﬁ”‘”l) and
suppose that it has been labelled {Ié'ﬂ/‘”l) copies of a termr. Construct the
2-block associated t8{""* which, by definition, is composed """ and
by all the 1 — i)—barsB(T“‘i), Bﬁj';i) lying immediately abovB(j“‘”l); note that
h satisfies 0< h < u(n—i) - j. Denote the 1-lenghts (B%”’i),..., B%:i) by
Il(Bﬁ_,”’i)) = t’i_,”’i),..., |1(B£jj;”) = 4:”. For each (x k < h, IabeIBSj’:) with t’%':)
copies ofrxX ..

It is important to notice that not all Bar Codes can be assedito order ideals, as

easily shown by the example below.

Example27. Consider the Bar Code

We cannot associate any order ideal to it.
Indeed, using either BC1, BC2 or BbC1,BbC2, we obtain terhtkeform

thl 14,71 thz 14,71 X<13 1472 Xa“ 242 X&s 342
Ll R e Ges X
e e 3 2 28
X3 X3 X3 X3 X3
with y1 < v, 81 < 2 < d3, a1 < a2 and so the associated set of teriigurns out to

be
M = {le)élxgl’ X(Iz)élxglv X(f3><gl><§2, X‘I“ngxgz, X(ISX?X%/Z}.

To be an order ideaM must contain all the divisors of its elements:

Yre M, if | rtheno € M,

so we have to lay down some conditions on the exponents.

Let us start examining;5"x! andx;2x5x%!. Knowing thata < a2, we need to take
a1 = 0 anda, = 1. Indeed, otherwisdyl should contain at least another term of the
form )(l"’)élxgl, ap # a1, @z andag < max(ey, az). The exponens; must be equal to
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zero, otherwise at Ieax‘i’lxgl’lxg1 andx‘j%(;l’lxgl would belong taM. For analogous
reasons, we have to chooge= 0,y, = 1 andas = @4 = a5 = 0. We get

M = {1, X1, X' X3, X2 X3, X0° X3},

But let us examing; < 6, < §3. Similarly to what said for the other exponents,
we have only one possible choice for them, ig.= 0, 6, = 163 = 4, but then also
X2 andx% should belong tdM, and this is impossible: there is only one possible power
of x, for y1 = 0 and this contradiction proves thatcannot be associated to any order
ideal. o

Inspired by example27, we defiaemissible Bar Codess follows:

Definition 28. A Bar CodeB is admissibleif the set M obtained by applying BUC
and BbQ to B is an order ideal.

Remark29. By definition of order ideal, using BbC1 and BbC2 is the only\aa order

ideal can be associated to an admissible Bar Code. Indeed |#bel two consecutive
bars with two terme>®, »@™", h > 1, then also the terms with Py (0) = o

would belong taM and it would have to label a bar between those Iabelledxfi)and

@™, giving a contradiction.

We need now aadmissibility criterionfor Bar Codes. In order to be able to state
it, we start with the following trivial lemma.

Lemma 30. Given a set Mc 7, the following conditions are equivalent

1. M is an order ideal.

2.Yte M, ifo |1, thenoc € M.

3. ¥t € M each predecessor efbelongs to M.

We give then the definition ad-list, associated to each 1-bar of a given Bar Code.
Definition 31. Given a Bar Cod®, let us consider 4-bar Bﬁ), with j; € {1, ..., u(1)}.

Thee-listassociated to %) is the n-tuple éB%)) = (bj,1, ..., bj.n), defined as follows:

e consider the n-bar E), lying under ﬁ?. The number of n-bars on the left 0?‘:)8
|S bjl,n.

o foreachi=1,..,n- 1, let B""Y and E™" be the(n - i + 1)-bar and the
(n—i)-bar lying under 8. Consider thgn—i + 1)-block associated to &'+*.

Jn-is1

The number ofn — i)-bars of the block, which lie on the left oﬁ:ﬁ) is by, n_i.

Example32. For the Bar Cod®

6Notice that these assignments are those given by BbC1 and.BbC
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1 X2 X x1%3
2 2 *2x3

3 3

the e-lists are(B!") := (0,0,0); &(B") := (1,0,0); &(B{") := (0, 1,0) and
e(B{") := (0,0,1). o
Remark33. Given a Bar Cod8, fix a 1-barB(jl), with j € {1, ..., u(1)}.

Comparing definition 31 and the steps BbC1 and BbC2 descebeue, we can ob-
serve that the values of the e—IE(B(jl)) := (bj1, ..., bjn) are exactly the exponents of

the term labelling3{", obtained applying BbC1 and BbC280

Proposition 34 (Admissibility criterion) A Bar CodeB is admissible if and only if, for
eachl-barB{Y, j € {1, ..., u(1)}, the e-list ¢81") = (b1, ...., bj) satisfies the following

condition: Yk € {1,...,n} s.t. b > 0, 3] € {1, .., u(L)} \ {j} S.t.
e(B(Tl)) = (b1, - bjk-1, (DjK) = L, Bjks 1, -0, D).
Proof. Itis a trivial consequence of Lemrhal30 and Renfiark 33. O
Consider the following sets
An = {B € B, s.t. B admissiblé

Nn:={Nc T, |N| < ocos.t.N order idea).

We can define the map
n:An— Ny

B~ N,

whereN is the order ideal obtained applying BbC1 and BbCBto

By BbC1 and BbC2p is a function; it is trivially surjective. Moreover, it is jiec-
tive since, ifB,B’ € A, andB # B’ they have at least one pair of indiceg s.t.
Il(B(j')) # Il(B’(j')) and this changes the result of the application of BfBBC?2.

From the arguments above, we can then deduce that there ishiadsal correspon-
dence between admissibieBar Codes and finite order idealsBfc k[xg, ..., Xn].

In the Lemma below we state some properties of admissibleCBdes related to
lengths.
Lemma 35. If B is an admissible Bar Code, the following two conditions hold

a) lha(B) > ... > 11(BY))

b) ¥1<i<n-2v1<|<pu(i+2)take thefi + 2)-barB!*? and lets{", ..., BI")
(where h satisfies b {0, ..., u(i + 1) — j1}) be the(i + 1)-bars lying overB(j”z).

(i+1) (R(i+1)
Then BY*Y) > ... > (B!
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Proof. Let us start proving a). If for some ¥ | < u(n) — 1 it holdsln_l(Bl(”)) <
In_l(B,(f:)l) the Bar Code would be not admissible. IndeedBIE')t be the rightmost 1-
bar overB,‘?1 ande(B(kl)) = (bk1, ..., bk n) be its e-list. By construction (see Definition
[BT), bkn-1 = In,l(Bl(?l) — 1. Now, this proves that there cannot exist a 1-bar labelling
(b 1, -.r b1, bR — 1), sincel, 1(B(”)) < ln 1(B|(?1) and so the 1- barB(l) overB(”)
haveby, , < In- 1(B(”)) —1<l 1(B(”)1) 1 = by n_1, contradicting the assumptmn of

admissibility (see Pr0p05|t|-4)

An analogous argument proves that if for sowtle< i < n 2, V1< j<uli+2)

we take thei(+ 2)- barB (1+2) andB '+2) s.t. h satisfiesh € {0, ..., u(i + 1) - Jl } is the
(i + 1)-bars lying overB(”z) it happens that for a flxeble 1,..,ui+1)—1-j)
l; (B(”l)) < (B?j)u) B is not admissible and so also b) is true. o

In what follows, unless dierently specified, we always consider admissible Bar
Codes, so, in general, we will omit the word “admissible”.
Remark36. In principle, it is possible to represent with a Bar Code atdimite order
ideals, by means of a simple modification, i.e. the introiucof the symbol ="
immediately after d-bar for some 1< | < n, meaning that there should actually be
infinitely manyl-blocks equal to that containing that bar.

For example, the Bar Code bt (x2 )<k[x1, x2], whose lexicographical Groebner
escalier iN(l) = hlxgz h3x24 hy, hs € N, hy, hs € {0, 1}}, turns out to be

1 X2 X2 XX

—_— —_— _—

In particular, the arrow on the right of 1 represents the sofithe formx?l, h; e
N\ {0}, the one on the right of, represents the terms of the fov(??xz, h; e N\ {0};
finally the bottom arrow represents the terms of the ftxgmxpé‘ﬂ hs e N, hy > 2.

Since infinite Bar Codes are out of the topics of this papenmillenot treat them in
detail.

5 The star set

Up to this point, we have discussed the link between Bar Caddsorder ideals, i.e.

we focused on the link between Bar Codes and Groebner escafimonomial ideals.
In this section, we show that, given a Bar Cd&land the order idedll = n(B) it is

possible to deduce a very specific generating set for the mataeall s.t. N(I) = N

Definition 37. Thestar setof an order idealN and of its associated Bar Cod® =
7 X(N) is a setFy constructed as follows:

a) Y1 <i < n, letr; be aterm which labels &-bar lying overB")

)" then xPy (i) €
N,
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b) Vi<i<n-1,Vli<j<u(i)-1let B(ji) and B?J)rl be two consecutive bars not
lying over the samé + 1)-bar and Ietr?) be a term which labels &-bar lying
overB?), then xPy, (T(ji)) € Fu.

We usually represerty within the associated Bar Codi inserting eachr € Fy
on the right of the bar from which it is deduced. Reading thmgfrom left to right
and from the top to the bottorffy is ordered w.r.t. Lex.

Example38. For N = {1, x1, X2, X3} C K[Xq, X2, X3], associated to the Bar Code of
exampld 3R, we havEy = {XF, X1 X2, X5, X1 X3, X2X3, X5}; looking at Definitior 37, we
can see that the termsxs, X2xs, X3 come from a), whereas the ternés x; 2, X3 come
from b).

X1 X; X1 X;
1 xq 1 173

2 2 X2%3

¢

In [12], given a monomial idedl, the authors define the following set, calling it
star set

T(I)={xye7'\N(|) '#ny) eN(I)}.

We can prove the following proposition, which connects thfirdtion above to our
construction.

Proposition 39. With the above notatioffy = F(I).

Proof. We start provingFy € F(I).

Considerr € Fy; by definition ofFy there are two possibilities
a) o = xPx(n), with 1 <i < nandr; a term which labels a 1-bar lying ovBEzi);
b) o = xPx(r), with 1 <i <n-1, 1< j < u(i) - 179 a term which labels a

1-bar lying overB?), under the condition tha3(ji) B?ll do not lie over the same
(i + 1)-bar.

Let us examine a) and b) separately.

a) By definition,o > 7j; indeed deg(o) = deg,(r;) fori+ 1 < h < nand dego) >
deg(r;). Clearly,o ¢ N, because if it was in the Groebner escalier, applying
the steps described in Definiti@nl2By (o) = o = xPx(r;) would be put in
a list that is subsequent to the one containidx;), but, in this case, there
would beu(i) + Li-bars instead qi(i), contradicting the definition qf(i). Since

min(o) = X, ey = Px (i) | 7i, SO ey €N ando € 7(1).
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b) Analogously to case ay; > T(ji). Let us prove that- ¢ N. If o € N theno
would I.abel a 1-bar Iying oveIB(.iJ)r1 but, s_in(.:er(a-) = PXM_(T(;)), B(ji) B?}rl.
would lie over the same £ 1)-bar, contradicting the hypothesis. As above, since
min(e) = X, =2~ = P, (+") | 79, so e Nando € 7(I)

' min(o) AN i )

min(o)
We prove now thafy 2 F(1).

Let us consides € (1) and let ming) = x;, 1 < i < n. By definition of 7 (1), o ¢ N
ando := % €N, so it labels a 1-bar lying over somda)ang'). Denote byB(Tl), iji)h
(whereh satisfies 0< h < u(i) - ]) the 1-bars lying oveB(ji). Two possibilities may
occur:

a) | +h = pu(i); in this case Py (o) = o € Fy by Definition[37.

b) otherwise consider the term,,, which IabeIsBSji)h, and the subsequent term

71,1 labelling B%)ml. Notice thatPy (r5,;) = Px(d). By Definition[23,
7o <tex Tiapu1- If Px(77.) = Py (t3,p,) this would contradict the maximality
of h, so, by property 3. of the operatd?g, it must bePy, (Tﬂh) <Lex Px (TMH).
But, if Py, (T5.0) = EM(TMH), theno | 73,p,,; and sar € N, that is impossible
sincec € F(1). This means then thdy,,(r5,) <tex Px.,(T7,n,1), SO We can
deduce thaBﬁji)h and ngi)ml lie over two consecutivé-bars not lying over the

same {(+ 1)-bar, sar = xPy (o) = X Py (TT+h) € Fn.
]

Remark40. By Propositioi 3B, beingy = F(1), it trivially holds G(1) € Fy < B(1).
In general, the inclusions may be strict7f, = G(1), we say thaBy := 7 %(N) is a
full Bar Code.

The star setF(l) of a monomial ideal is strongly connected to Janet's theory
[27,128[29] 3D] and to the notion of Pommaret bésis [[43] 41, at8explicitly pointed
outin [12]. For completeness sake, we recall it below.

Definition 41. [27, ppg.75-9] Let Mc 7 be a set of terms and = x]* - -- " be an
element of M. A variablejxs calledmultiplicativefor = with respect to M if there is
no term in M of the form’ = Xt .- X)X/ ... X" with 6; > ;. We will denote by
multy () the set of multiplicative variables farwith respect to M.

Definition 42. With the previous notation, theoneof r with respect to M is the set
Cu(r) = {TXil oo xihn |whereq; # 0 only if x; is multiplicative forr w.r.t. M}.

Definition 43. [27, ppg.75-9] A set of terms Mt 7 is called completeif for every
7 e Mand x ¢ multy(r), there exists’ € M such that xr € Cu (7).

Moreover, M isstably completd48| [12] if it is complete and for every € M it
holds muliy(7) = {x | Xi < min(r)}.
If a set M is stably complete and finite, then it is l@mmaret basisf | = (M).
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Theorem 44. For every monomial ideal 1, the star sgf(l) is the unique stably com-
plete system of generators of |. Hence, if M is stably corapMt= 7 ((M)).

By Propositiori 3P, the Bar Code gives a simple way to deduesttr set from the
Groebner escalier of a zerodimensional monomial ideal.

6 Counting stable ideals

In this section, we connect the Bar Code associated to thelBey escalier of a stable
monomial ideal to the theory of integer and plane partitiamsrder to find the number
of stable ideals in two or three variables with constdiiha Hilbert polynomiaH_(t) =
peN.

We start recalling some definitions and known facts abouistand strongly stable
ideals.

Definition 45. ([28][pg.41], [30]) ( c.f.[39][IV.pg.673,679] A monomial ideal 3P =
K[X1, ..., Xn] is calledstable [19]if it holds

Xt

min@ <

TeJ Xj>min(r) =

Definition 46 ([46,[47) 23 24, 21, 42])A monomial ideal kP = K[Xq, ..., Xn] is called
strongly stable([3, 12if, for every termr € | and pair of variables ¥ X; such that ¥
and x < xj, then also%j belongs to | or, equivalently, for evesy e N(I), and pair of

variables x, x; such that yo- and % > x;, then also‘%<j belongs taN(l).

It is well known that, in order to verify the (strong) stabjliof a monomial ideal,
we can verify the conditions above for the terms&fi).
Exampled7 ([12]). In K[X1, X2, X3] with X; < X2 < X3!

o theideally = (3¢, X1X2, X5, X2X3, X2X3, X3) is stable.
Indeed, we have:

E)x2 2

W = X(X2 € l1,
) _ 2
> X1X3 € Il,
(X)X _ 42

=X € I,
—(Xlii% = XoX3 € Iy,
(x2)%x3 _

o = XeXs €l
X2X3)X;
% = X1 XoX3 € 1,
(XXs)Xs _ 2
= - XXz € I1,

OeXa)Xs _ 2
andzx—2 = XoX5 € 11,
Anyway, it is not strongly stable, sincex; € I3, but% = X1X3 & I1;
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e the ideall; = (X3, X1Xo, X3, X3) is strongly stable, since
(x2)xp

X1
()X
> = X1X3 € |5,

(aXp)xz _ X1X§ € ly,

= X1 X2 € Iz,

X1
(X1%2)X3
X1
(x1%2)X3

XoX3 € |5,

X = X1X3 € |y,
2
% =XoX3 € |»
Proposition 48(]12]). Let J be a monomial ideal. Then TFAE:
i) Jis stable
i) 7(J3) =G(J)

A simple property, useful for what follows, and triviallylfowing from Remark4D
and Propositioh 48, is that Bar Codes of (strongly) stakdelislareull.

Exampled9. In K[xg, X2, X3] with X; < X2 < X3, consider again the ideals, I, of
exampleé4lr:

» the Bar CodeB; associated tdy = (35, X1 X2, X3, X2Xa, X2X3, X3) is

0 1 X1 X2 X X3 XiXg

1 _ — — ¢ —a—  — xixs
2 I L T — ]
; 2

and we haver (11) = G(11) = (53, X1 X2, X5, X2X3, XoX3, X5}

o the Bar CodeB; associated tb, = (X2, X1 X2, X3, X3) iS

1 X1 X2
2
1 —_— — X — XX
2
2 _— —_— X
3 _ X3

and we have (1) = G(I2) = {Xf, X1X2, X% X3}

We see that, as expected, both their Bar Codes are full.
o

Proposition 50. Let | <K[Xq, ..., X5] be a stable zerodimensional monomial ideal and
let B be its Bar Code. Then the following two conditions hold:
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a) In—l(Bg_n)) > > oo 1(Bﬂ(n))

b) V1 <i<n-2,¥1< j<u(i+2)take the(i +2)-barB{*? and let"*, ..., B0

jith?
s.t. h satisfies k {0, ..., u(i + 1) — j1} be the(i + 1)- bars lying overB('*z)
1 1
Then |B¢*Y) > .. > i(BI)).

Proof. By lemmd35 the case cannot occur.
Suppose now that for somesl! < u(n) - 1 it holdsl_1(B"™) = In-1(B",), let B be
the rightmost 1-bar oveB™ and callzy the term IabellmgB‘l) By definition of star
setxn-1Pyx, ,(tx) € F(I) c |I; moreover, clearly we know th:ftXn (1) € N(I). But
if In,l(Bl(”)) = In,l(Bl(?l), thenx,Px, , (k) = wxn ¢ | and this contradicts the
stability of I. _

If for some 1< i < n-2,¥1 < j < u(i + 2) we take thei(+ 2)-barB{*? and

BI*Y...,BI") (whereh satisfiesh € {0, ..., u(i + 1) - ja}) are the (+ 1)-bars lying over
B"*z) it happens that for a fixelde {1, .., u(i + 1) - 1 - ji} |; (B(J':_j)) I (Bﬁ'::rl,ll) an
analogous argument proves trhaiannot be stable. O

In the example below, we show that there are also non-stdé&étd satisfying con-
ditions a) and b).

Examples1. Fortheideal = (X2, X1 Xp, X5, X1 X3, X2Xa, X5, XoXa, XaXa, Xa)<K[ X1, X2, X3, Xa],
we haveN(l) = {1, X1, X2, X3, X4, X1 X4} @and the associated Bar CoHes

1 X1 X2 X3 X4 X1Xq
1 —_— — X X1 Xp——X1 X3 —xexy
2 _ — X X3 Xa
3 _  — X XX
4 %

The star set isF(l) = xl,xlxz,x2 X1X3, X2X3,X3 x1x4, X2 X4, X3Xa4, x4} and we have
F(1) 2 G(I), sol is not stabl@.
We can observe th& satisfies conditions a) b) of Propositiod 50. Indeed:
a) 2= 15(8%) > 1= I5(BL);
b)2=1,(8Y) > 1= 1,(8Y); 2= 1,8Y) > 1 = 1,(BY). o
In the following two examples, we show that the result of Psifion[50 is only
local, even if we consider strongly stable ideals, then stremgtigethe hypothesis of
Propositio 5D.
This means that in general, fixed a rowc2 < n of the Bar CodeB associated to a
(even strongly) stable monomial iddalit does not hold

|(i—l)(Bg)) > . > I(i*l)(B,(Jzi))’

in particular, thei(— 1)-length could even be completely unordered.

"We can also prove thatis not stable using the definition, indeed we ha%& I butxixa € I.
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Examples2. The Bar CodeB, associated to the (strongly) stable monomial ideal
I = (3, XaXo, X3, X1 Xa, XoXa, X3, X1 X4, XoXa, Xa3Xa, X2) < K[ X1, X, X3, Xa], I

1 X1 X X2 X3 X4
1 3 X1 X; X1 X3 X1X4
2 X X2 X3 X2 X4
3 X X3X4
4 a

and it holds
2=1,(89) > 1,8%) = 1,(8Y) = 1.
3
Examples3. The (strongly) stable monomialideat (X3, XXz, X1X5, X3, X3Xa, X1 X2Xa, X5X3, X3)<
k[x1, X2, X3] is associated to the Bar Code displayed below

1 X1 X2 X2 X1 % X2 X3 XXs XX

1 X 2 1% 2xg 1X2 X3

2 X3 2X3

3 x5
This monomial ideal is strongly stable, but
1(BY) = 3,11(8®) = 2,1,(BY) = 1,11(BY) = 2 andl(BY) = 1,
S0 in this case the 1-lengths are unordered. o

The proposition below gives a way to count zerodimensiotadlls ideals in two
variables, once known theiffime Hilbert polynomial.

Proposition 54. The number of Bar Code® c 8, with bar list (p, h) and such that
n(B) = N c K[xq, X2] is the Groebner escalier of a stable ideak B[ x;, xo] equals the
number of integer partitions of p into h distinct parts.

Proof. Consider the set
Bph :=1{B € Ay, s.t.Lg = (p, h) andn(B) = N(J), J stable

and the set of integer partitions pfinto h distinct parts, i.e.

h
I(p,h) = {(a'l, ...,ah) (S Nh, a1 > ... > Qnp and Zai = p}
j=1

We define
E:Bpn — NP

B > (11(B?), ..., 1:(BP))
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and we prove theE defines a biunivocal correspondence betwBg) andlpny < NN
Let B € Bph. We haven(B) = N(J), J <K[xq, xo] stable.

Foreach I< j < hsetaj = Il(B(jz)). By Propositiol 5D a), we havg > ... > a, and by
definition of Bar Code (see Definitiéili§)= ¥, 1(B{") = =1, 11(BY) = ¥, o,
so we can desume thag((B(lz)), Il(Bff))) = (@1, ..., an) € lpny, SOE(Bpn) C lpn)-
The map is injective by definition of 1-length of a bar.

Now, let us considerds, ..., an) € l(pr) and construct a Bar Codec 85 with h 2-bars
B(lz), Bff) and s.t. for each ¥ j < hthere arey; 1-bars lying oveB(jz).

BV B g®

@y ah

@ @
Bl Bh

Clearly:
e B is univocally determined by, ..., an) € l(pn)
e foreach 1< j < h, Il(B(].Z)) = aj.

We prove thaB € Ay, i.e. thatB is admissible. LeBi(l) beal-bar,l<i<p
and lete(B") = (bi1, bi) be its e-list. Ifbi1 = bi, = 0 there is nothing to prove. If
b1 > O trivially there is a 1-bar with e-listt{1 — 1, b; »); if bj» > 0, the assumption
a1 > ... > an proves that there is a 1-bar with e-lig {, b » — 1).

Finally, we prove that the order idell = 1(B) is the Groebner escali® = N(J)
of a stable ideal.

Let us taker € ¥ (J); it can be constructed from a) or b) of Definition 37:

e If o comes from a)g = xPx(7i), i = 1, 2. Fori = 2, there is nothing to prove.
We prove then the case= 1, so we writeo = X1 Py, (71), wherery IabeIstll()l),
and we prove thaﬂ;il2 = XoPy, (71) belongs tad.

SincePy, (11) | Px,(71), X2Px,(71) | X2Py, (71). Now, 71 labels a 1-bar ov@f()z),
S0 X2Py,(71) € F(J) and so we are done.

e Suppose nows coming from b), sar = X]_le(Tgl)), Wherergl) is the term la-
belling a bangl), 1<j=<ul)-1, andB(jl) andBﬁ)l are two consecutive 1-bars
not lying over the same 2-bar; in particular, we say m%% lies overB(jf) and
B, lies over8) .

We have to prove thatszl(r(jl)) belongs tad.

Denoted" the term labelling the rightmost 1-bar owsf ., we have degr(]})) =

J1+1°

J
deg({")+1and deg(T(Tl)) < deg(«{"), so deg(lexl(T(Tl))) < deg (xPx, (=)
and deg(X]_le(T(Tl))) = degz(ngxl(T(jl))), WhenCGlexl(Tj__l)) | ngxl(r(jl)) and

SinCGXj_le(T(Tl)) e Jwe are done.
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With the Proposition below, we prove which is the maximalueathath can as-
sume.

Proposition 55. Denoting byB a Bar Code associated to a stable idead k[x1, X;]
with affine Hilbert polynomial H(d) = p € N and byLg = (p, h) its bar list, the
maximal value that h can assume is

_1+m}
2

h:=

Proof. By Propositiori 54, the Bar Codes associated to stable iddalthe associated
bar list is (p, i) are in bijection with the integer partitions pfwith i distinct parts.

An integer partition ofp with i distinct parts is a partitiorn, ..., ;) € N', a3 > ... >
a’i,zij=1a'j = p. Since the minimal value we can givedg,1 < j < i, so thate; >
w>apisej=i—j+landy (i - j+1) =42 we have thatl;2 is the minimal
sum ofi positive distinct integer numbers. 1?‘2“—1) > p, there cannot exist any partition
of p with i distinct parts; ifi(izl) = p, thei-tuple @i, ...,a;) € N' is such a partition
and if@ < p, itis possible to find a partition gb with i distinct parts starting from
(a1, ..., a;) € N', for example by increasing the valuedf, until Zij=1 aj = p.

Then, we have proved that the maximal numibef distinct parts in a partition op is

-1-4/1+8p . —1+4/1+8p
> <i< >—, then

h:= maxeN{@ < p}. Since@ < pfor

1+ (T¥8p
2

O

Example56. Applying propositiof 5b, we get that fqu = 1,2, we haveh = 1, so
the only (strongly) stable monomial ideals kijfx;, o], with constant ffine Hilbert
polynomialp = 1, 2 are the ideal$; = (xg, x2) andl, = (xi, x2) (see Remark§9).

For the dfine Hilbert polynomialp = 3 we haveh = 2, so we have two (strongly)
stable monomial ideals; = (¢, x2) andJ, = (X5, X1 X2, X3).

The Bar CodeB; associated td; is

2
1 X1 X3
1— — — 3

2 %

whose bar list idg, = (3,1).
The Bar Code associat®j to J, is

1 X1 X2

1— — 2 )

2 — —_—

NS
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and its bar list id g, = (3, 2). &

In order to deal with stable ideals< K[ X, ..., X,] for n > 2, the following corollary
will be rather useful.

Corollary 57. The number of Bar Codes associated to stable ideald #, ..., X,],
n > 2, whose bar list igp,h,1,....,1), p,h € N, p > h equals the number of integer
N——

.....

p=ai+..+an a1>..>an>0.

Moreover, the maximal value that h can assume in the ba¢pidt, 1, ..., 1) is

h__{—1+ JI+8p
. f

Proof. It is a straightforward consequence of Propositions 54[a#dnbticing that,
if u(3) = ... = u(n) = 1, xs,..., X, do not appear in any term dflz with nonzero
exponent. m]

The following proposition is a consequencé of 54 fand 55 anaadetely solves the
problem of counting stable monomial ideals in two variables

Proposition 58. The number of stable ideals<X[xy, xo] with H_(t,J) = pis
h
Qb
i=1

where h:= | Y | ang Qp, i) is the number of integer partitions of p intoi distinct

2

parts.

Remark59. Let | < K[xy, Xo] be a strongly stable monomial ideal witlfiae Hilbert
polynomialH, (t) = p, B be the corresponding Bar Code and supposelthat (p, 1).
In this case, we can easily deduce that (x, x,) sol is alex-segment ideal.e., for
each degreee N, | is k-spanned by the firdi, (i) terms w.r.t. Lex.

By Remarl{ 59, for eaclp € N, there exists a (strongly) stable monomial ideal
I < k[x1, X2] with affine Hilbert polynomiaH, (t) = p and s.t. the corresponding Bar
CodeB hasLg = (p, 1), so the minimal value thétcan assume is 1.

We summarize in the following table the possible bar listsstable ideals corre-
sponding to some small values pftogether with the corresponding ideals.

H@{®=p Bar lists Ideals
1 (1,1) (X1, X2)
2 2,1) (<, x2)
3 (3,1),(3,2) (3, %2), (X4, Xa Xo, X5)
4 (4’ 1)7 (4’ 2) (let, XZ): (Xi’ X1 X2, X%)
5 (5’ 1)’ (5’ 2)’ (5’ 2) (XS’ XZ)’ (X?.’ X1 X2, Xg), (X3, X§X2, Xg)
6 (6.1),(6,2),(6.2).(6,3) | (55, %2), (03, XaX2, X3), (X}, XeXa, X5), (5, X X2, X1 X5, X2)
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We notice that the above ideals are also strongly stable.

Examples0. For the polynomial rind[ Xy, Xz], considerH_(t) = p = 10.
In this case, we havie = 4, so we have to compute the sum

Q(10,1) + Q(10,2) + Q(10, 3) + Q(10, 4).

We have:

Q(10,1)=1;

Q(10,2) = P(9,2) = P(8,1)+P(7,2) = 1+P(7,2) = 1+ P(6,1)+P(5,2) = 2+P(5,2) =
2+P(4,1)+P(3,2)=3+P(2,1)=4

Q(10,3)=P(7,3) = P(6,2)+ P(4,3) =1+ P(4,2)+ P(3,2) = 1+ P(3,1) + P(2,2) +
P2,1)=1+1+1+1=4

Q(10,4) = P(4,4) = 1.

Then, we have exactly 10 strongly stable monomial ideals i{t) = 10.

More precisely, they are:

* J1 = (X0 %2);

* Jp = (X7, XXz, %3);

* J3 = (08, X%, %3);

* Jg = (XL, 3%, X);

* Js = (X[, X5, %2X5, X3);

* Jo = (06, X{%2, X3);

* J7 = (06, x5, 3%z, X3);

* Jg = (05, X8xq, %o X7, X3);

* Jo = (36,85, %255, X3);

* Jio = (X, 3%, X33, %235, X5).

¢

Example61. Employing the same formula (all the computation has beefopeed
using Singulari[1]7]), we can get that the strongly stable anoial ideals withH_(t) =
100 are exactly 444793. &

Now we start studying the case of three variables; in thie easneed to consider

the bar lists of the formy, h, k). By Corollary[5T, we can use the formulas for two
variables in order to count the stable monomial ideals inghvariables, associated to
bar lists of the form §, h, 1). This means that we only have to deal with the bar lists of

the form (p, h, k), such thak > 1.
In order to handle these new bar lists, we define the concepiramal sunof a list of
positive integers.
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Definition 62. Theminimal sumof a given list of positive integeis, ..., ag] is the
integer
9
L ai(ai + 1)
S, ..., ag)) = ; —.
Lemma 63. With the previous notation, it holds:
1. ke {1,...,1}, where l:== maxay(i® + 3i2 + 2i < 6p};

2. he{M, .., m}, where m= max{rlEI/le [, SNA) < p).

2
I'>

Proof. By Corollary[57 the minimal value fdtis 1.

Now, in order to construct a Bar Co@eassociated to a stable ideal, we should at least
meet the requirements of Propositlod 50, so, gikefor each 3—baB(13) there should

be at leastK — j + 1) 2-bars lying over it, so that > X&),

Now, select a 3-b£%3), 1<j<kand IetB(jz) Bﬁz)ﬁ pt>k= ] be the 2-bars over

Big) Now, with an analogous argument w.r.t. the one for 2-baescan say that for

B® 1< j < t, we must have at least- j + 1 1-bars, so that their total number
will be Sm([12,...K) = 3, ‘W, Since the number of elementsij(B) equals the
Hilbert polynomialp, we must have Sm([2, ..., K]) = 3K, ‘&Y < p.

Now 3, G0 = 3k | (1) = (44) < p, sok® + 3k2 + 2k < 6p and we are done.

As regards the maX|maI value tHatan assume, from anologous arguments, to meet

the requirements of Propositibn|50, it is enough to be abfatba partitiond € I
with SmQ) < p. O

Thanks to the previous Lemmal63, now we know which are theisiariwe have
to take into account in order to count the stable ideals wiilne Hilbert polynomial
H®=p
Next step then, is to find out how many stable ideals Wittt) = p and such that their
Bar CodeB has bar list p, h, k) are there.

Take then a bar listg h, k) and 1et8 € |k, S0B1 > ... > Bx and X, Bi = h.
We can construct plane partition®f the form

P11 P12 e e e pl,,8_1
P21 e e e e e po O
p=(pij) = 2he
k,1 pkﬁ—k 0

s.t.
1.pij>0,1<i<k 1<j<B;
2. pj>ppn l<i<k1<j<p-1;

3.0ij>pis11<i<k-1,1<j<Bia;
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4. n(p) =3 X o= p.

These plane partitions are exactly of the form defined in &) whapes, ¢ = 1 and

d = 1, so they are row-strict and column-strict plane partgiohshapes.

FixedS € Iy, we denote bYP . ni the set of all partitions defined as above and
Pohk = Uﬁel(h_k) P(p,h,k),ﬁ' In other words,

P onios = 10 € P5(1.1) s.tn(p) = p}

Piphk = o € P5(1, 1) for some € Iny and s.tn(p) = p}.
Each plane partitiop € Pk uniquely identifies a Bar Codg:

(a) each row represents a 3-b8f3), 1<i<k

(b) for each rowi, 1 < i < k, 12(B®) = Bi; the3 nonzero entries represent the
2-bars oveBi(g), i.e thej-th entry of rowi, 1 < j < 3, represents the 2-b81§2),
wheret = (X231 81) + |

(c) foreach 1<i <k, and _each K j <pBi, the numbep; j represents the number of
1-bars oveB?, t = (371 B) + j, the j-th 2-bar lying oveB?. In other words,
11B?) = pi.j.

In conclusion, for each % i < k, and each X j < g, the numbep; ; means that in
B there are 1-bars labelled by, (0- 1,i - 1),(1,j-1,i - 1),..,(0ij -1, j-1,i - 1),
but there is no 1-bar labelled by, j — 1,i — 1), that is also equivalent to say that
XXt xxd i, X d L belong to the set of terms associatedBtoia
Bbcl and Bbc2, bux’i” x;_lxigl does not belong to the aforementione@set

Example64. Taken the plane partition
4 3 2 1
p=13 2 1 0.
1 000

Let us examine the position in bold, i@ = 2.
The Bar CodeB associated tp is

We havet = B1 + 2 = 6, S0 2= p,, = 1:(BY) (we have marke&? in red in the
picture). Applying Bbcl and Bbc2 we can see, absolutely neagent, with the above
comments, thakoXs, X;XoX3 are in the set of terms associatedBpwhereas@xzxg
does not. &

8Actually, we will see thai;"’ xé’lxi,;l will belong to the star set associated to the Bar CBdafter
proving that it is admissible.
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Remark65. The Bar CodeB, uniquely identified byp, has bar list.g = (p, h, k).
The relationu(3) = k comes from (a)u(2) = h comes from (b), sincg € k), SO
Z _1Bi = h, whereagi(1) = pis an easy consequence of (c).

In the following Lemma, we prove that a Bar CoBedefined as above, is admissi-
ble.

Lemma 66. Fixed(p, h,K) andg € Iny), letp be a partition inPph ) s-
The Bar CodeB, uniquely identified by, is admissible.

Proof. By RemarK 65/ 5 = (p, h, k), so consider a 1-b3|(1), 1< < pandits e-list
that we denote(Bl(l)) = (b1, b2, by 3). From the construction @ from p, we desume
thatpp, ;416,41 = b1 + 1; moreoveri, by, b,3), 0 < M < pp 111,41 — 1 are e-lists for
some bars oB, so, ifb; > 1, (01 — 1, b2, by 3) is an e-list labelling a 1-bar @&.

For B being admissible, we also need two other conditions:

a. ifb > 0, then b1, b2 — 1, b 3) labels a 1-bar oB;
b. if b 3> 0, then b1, b2, b 3 — 1) labels a 1-bar oB.
Let us prove them:

a. supposéy, > 0; for (b1, b2 — 1,0 3) labelling a 1-bar o8, we would need
Pb+ih, = DI, + 1, but sinCepp, 41p, > pb,+16,+1 = b, + 1 we are done

b. supposdy ;3 > 0; for (b1, b2, b3 — 1) labelling a 1-bar 0B, we would need
Poy b, +1 = b, +1, but sincmbl3,b,2+1 > Pby+lb,+1 = b, + 1 we are done again
andB turns out to be admissible.

O

Lemma 67. Letp € Ppni be a strict plane partition an@& be the Bar Code uniquely
determined by. Denoted by J the monomial ideal $;{B) = N(J) and by A the set

Xg,)ézf 1’X0u '1,1gigk,1$j3,3i},

thenF(J) = A

Proof. Let us first prover (J) 2 A.

Neitherxs, norx x; 1 nor%’"x‘ X1 belong toN(J) by the definition of and by the
constructmn oB fromp

Considen; clearly, beingk > 0, min(x§) = xs, So we prove thax§™ € N(J). Since
k = u(3), there are exactly 3-bars. By BbC1, th-th 3-bar ofB is labelled byl1(B{*)
copies oka 1 so the 1-bars ova(s) are labelled by terms which are multlplengl
The Bar CodeB is admissible, then alsd e N(J)S.

As regardsé X1, 1 < i < k, B > 0, whence ming ;1) = x,, so we have to prove
thatd ™ e N(J).

%Actually, by BbC1,x5 labels the first 1-bar OVEBS').
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We take the-th 3-barB'®); it is labelled byl1(B®) copies ofx; L. Now, overB® there
are exactlys; 2-bars and, by BbC2, thé-th 2-bar oveB® (i.e. B, t = YI_, 8)
is labelled byl1(B(®) copies of %1, so the 1-bars oveB® are labelled by terms
which are multiple 06§ % ; by the admissibility oB, we getd x; 1 e N(JIIH.
Take thenx)"’ xé‘lxigl, 1<i<k 1<j<pisincepij >0, min("” x%‘lxigl) = x; and
so we have to prove thaﬁ"‘flxé’lx‘gl e N(J), but this is trivial by the construction of
B from p.

We prove now tha¥ (J) € A.
Lettr € ¥(J); we have to show that it belongs £o
If min(7) = X3, thent = x23 for someh; € N; we show that necessarihg = k and so
T= Xg €A

By the construction oB from p we haveu(3) = k, i.e. B has exactlyk 3-bars; by
Definition[37 a), withi = n = 3, X3Px,(13) € F(J), wherers is a term labelling a 1-bar
overB®. Now, by BbC1, eachs € 7~ labelling a 1-bar oveB(” is s.t. Py, (r3) = X7,
S0X3Py,(13) = X§ € F(J).
No other pure powers of; can occur inF (J) by Definition[37, indeedx'g is the only
term with minimal variablexs derived by a) and there cannot be terms derived by b),
since each terrr coming from b) has minf) < x,.
We can conclude that the only pure powengfin #(J) is t = xg which is also an
element ofA.

Let now be minf) = x,, s07 = XX, for somehy, hs € N. This term may be derived

either from a) or from b) of Definition 37; we have to prove thatany case, it belongs
to A.

a) In this caser = X3Py, (72), wherer, is a term labelling a 1-bar ov@flz()z). But

u(2) = h; sinceB?, = B? is the rightmost 2-bar, it lies ov&®), wherek = u(3)
) h Kk
and, in particular it is th@,-th bar overB(kS). Now, by BbC1 and BbC2, we can

desume thaltz = k—1 andh, = gx—1, sor, = xgk’lxg‘l and sor = xgkxg‘l €A

b) In this case, for 1< | < h - 1, we consider two consecutive 2-béBf§), Bl(f)l
not lying over the same 3-bar, i.e. lying over two conse(mﬁ\,barSBff), Bl(i)rl,
1<l <k |etT|(2) aterm labelling a 1-bar overZ).

Sincerfz) labels a 2-bar lying ovel(lg), 1 <13 <k itholds x'31’l | Tl(z) and
SRR

Now, overBl(lg) there are3,, 2-bars and sincaff)l lies overBl(f’il, theanz) lies
over thes, -th 2-bar overB,‘lg), ) ><§'17l | 7? and ><§'1 t 7@, This implies that

T= %Pt =i e A 1<l <k

Finally, let min@) = xy; as for the above case, we have to examine a) and b) separately

10Actually, by BbCl,)éz"lxigl labels the first 1-bar oves{®.
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a) In this caser = x;Py,(r1), wherer; IabeIstll()l) = B{". Now, By is the right-

most 1-bar, so it lies oveBﬁz), which, in turn, lies over’). By BbC1 and BbC2,

X 7, Xt 7, 8T | 1y, Xt 1 From 13(BP) = pp, we desume that

T = %Py (11) = X ngflxg_l €A

b) In this case, for & 1; < u(1)- 1 = p - 1 we consider two consecutive 1-bars
B|(11) and Bl(llll, lying over two consecutive 2-baB$22), Bl(zzil, 1<, <handwe
denoteBl(f), 1 < I3 < k, the 3-bar underlyirg B|(22)-

Let 7" be the term labellings{"; by BbC1 and BbC2™ | 7, x5 1 7,
b 110, x4 7D U= 1o - SR A < g, andx T | 7, 1 1Y, so we
haver = x;Py, (7)) = X{**x4 1% € A,

Theorem 68. There is a biunivocal correspondence betw#gg ) and the set
B{hiy = (B € Az s.t.Lg = (p, h,K), 7(B) = N(J), J stable.

Proof. LetB € Bﬁﬁ,)h,k)? we construct a plane partition

PL1 P12 o e e e PLpy

P21 P2, 0
p=l=|"0 T

Lk,1 G e e PKB 0...

with k rows andz(B(lS)) = 31 columns.

Chosen ki < kasrowindexand ¥ j < 81 as columnindex and sgt = Iz(Bi(S)),
we define

[ 11B®) witht=(Z2p) +j fori<i<k 1<j<gi,
Pz o if1<i<k B <j<pu

sop is the shape gb.

We notice that the partitiop is uniquely determined b and tha{s € Iny); indeed
YK, Bi = h=pu(2) and, by Proposition 50 g3; > ... > B

Now, we prove thap € Ppni)-

The nonzero parts gf are positive by definition of length of a bar.

Clearlypij > pij+1, 1 <i <k, 1 < j < g, indeed, this can be stated IaéBﬁz)) >
Il(Bg)l), t = (Z:jﬁ.) + j, with B§2> and Bg)l lying over the same 3-beBi(3). This
statement follows from Propositioni50 b).

Moreoverpij > pis1j1<i<k-1,1<j <.

Indeed, for 1< i < k-1,1< j < Biy1, 0 = ﬁi'jx%_lxgl € J; beingpij > 0,
min(o) = X1 < X3, SO%E = x‘l”"”*lx'z’lxi3 should belong to the stable idehl

1we remark thaBl(?rl may lie ovelBl(:) or - if it exists - to its consecutive 2-bar, but we do not cdreus
it, since it has no influence an Remember also that, by constructibn= Z'f:’llﬂ, +jwith1<] <Bi;-
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But this impliesp; ; > pis1j Sincepij < pi+1,j impliesa = >(i‘*”_1x{1x‘3 e N(J)
and% | o, contradicting the stability o.

Finally, n(0) = p by definition of 1-length.

Then, we can define a map

—_. S
E: Bép,)h,k) = Ppnk)

B p,

wherep is constructed fronB as described above. We prove tEas a bijection.

It is clearly an injection by definition of lenght of a bar: twifferent Bar Codes
have at least one bar withftgrent length.

Now, we have to prove the surjectivity &, so let us take € Ppnx. We know
that it uniquely identifies a Bar Codzand by Lemm&_86 tha is admissible, so we
only have to prove thdtg = (p, h, k) and that(B) = N(J), J stable.

The statemeritg = (p, h, k) is trivial, since

1. there aré 3-bars,

2. foreach < i < k 1(B®) = g andy, g = h,

3. foreach i<k 1< j<p, 11(B®?) =pij, t = (X2 B) + j andn(p) = p.

A monomial ideald is stable if and only ifF (J) = G(J); by Lemmd 6V (J) =
A= XX 1 <0 < k 1< j < Bi), so we only have to prove that
A c G(J), i.e. that, for each element in the star set, all the pressars belong to the

Groebner escalier.
We have already proved thef™ € N(J), since ming) = x; andx§ € #(J).

Let us take' x5, 1 < i < k; since it belongs to the star sef. "Xt € N(J), so
we only have to prove tha€ X2 € N(J), 2 < i < k.
The baB®) is labelled byx; 2 and, oveB), , there args;_1 > 8 2-bars. Thef; + 1)-
th 2-bar overB®,, i.e. B?, t = 21728 + (8 + 1), is labelled byx'x; 2, so all the
terms labelling the 1-bars ovetfz) are multiples 01'><§i xis‘2 and since the Bar Code is
admissible, we can desume thétxis‘2 € N(J).
Letus finally take¢! x) 'xi1, 1 <i <k, 1< j < B; we need to prove tha" x} 21
andx;" x{lx‘gz, when they are defined, belonghigJ).

o X1x)2x1 e N(J): we takeB®, t = Y21 +(j-1), i.e. the {—1)-th 2-bar over
B®; sincepi j_1 > pi j the i + 1)-th 1-bar oveB? is labelled byx;" xJ 3,
so belonging taN(J);

o X" xé‘lxigz € N(J): analogously as above, it comes from the inequality; >
Pi,j-

This proves the stability o, concluding our proof. O
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Now, by Theorerii 88, counting stable ideals in three var@abézomes an applica-
tion of Theoreni I (see [31]).

Fix a constant Hilbert polynomigl. Lemmd&638 allows to enumerate all bar lists.
Fix then a bar list §, h,k) and construct the plane partitiopsas explained above,
denoting by 81, ..., Bk) their shape. Finally, denote liy= (1, ...,1) anda = (a, ..., &)
such that

{ a=p- Blwzl__l) - ‘M (1)
a=ag.1-1 2<i<k
the vectors of Theorem 110. We can compute the number of sStiddés by exploiting
the formula in the aforementioned Theorem (see appéndix A.1

We remark that our choice farandb meets the required inequalities of Theorem
[I0, remembering that = 0 anda; > 2,1 foreachi = 1,...,k—1. Indeedg = aj,1+1
S0g > a1 andby + (i — Aiv1) = 1+ (A — Aisa) > 1 = bjyg.

7 Counting strongly stable ideals

In this section, we extensively deal with strongly stabkeaid (see Definitioh 46).
An asymptotical estimation of the number of strongly statkals with a fixed
constant Hilbert polynomial has been given by Onn-Sturmiel[50]; in the afore-

mentioned pape(,“f)stair denotes the siza-subsets oN? that are also staircases.

Proposition 69. The number of Borel-fixed staircases(ﬁﬁ) . is 220V,

stai

The following Lemma is enough to deal with the case of twoalalgs.
Lemma 70. An ideal 1< Kk[xq, X7] is stable if and only if it is strongly stable.

Proof. A strongly stable ideal is trivially stable, so we only neegtove the converse,
namely, given a stable ideblwe have to show that for each for every terma | and
pair of variabless, x; such that|r andx < x;, then also™ belongs td. The only
pair of variables of the above type g < x; andx; is the smallest variable in the
polynomial ringk[xy, o] S0, if X1 | 7 € |, thenx; = min(r) andTX—Xl2 € | by definition

of stable ideal, whereas i; t 7 there is nothing to do. This proves the claimed
equivalence. O

By the above Lemma and by Proposition 58, we can concludettieabhumber
of strongly stable ideald < k[xz, Xo] with H_(t,J) = p is Zih=1 Q(p,i), whereh :=

{—1+\/r8p

> andQ(p, i) is the number of integer partitions pfinto i distinct parts.

Let us examine now the case of strongly idealk[iry, X, X3].
Strongly stable ideals are also stable, so all the propositproved for stable ideals
also hold here; then the computation of the bar lists is theesas done for stable ide-
als. Fixed a bar listf, h, k), we first compute the integer partitionstofn k distinct
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parts. Each partitiona(, ..., ax) € N¥, aq > ... > a, Z!‘Zl ai = hrepresents a precise
StI’UCtL(JI’)e for the 2-bars and the 3-bars: for each il< k there are exactly; 2-bars
overB®.

I

Now, fix a partition@ € lpy, @ = (@1, ..., ax) € NK, a1 > ... > @, XK, @ = h. We
can construct the plane partition®f the form

11 12 ... a7
_ N 0... 22 ... T2 2+a5-1 0...
T = (71'1,1) =lo
0... coo TTRK eee e Tk Ktag—1 0...

s.t.
Laj>01<i<ki<j<i+a-1;
2. ﬂ'i,j>7ri,j+1,1SiSk,iSj<i+Ei—1;

3. 71'i,j271'i+1,j1$i3k—1,i+13jSi+m—1;

4.n(r) = T 25w = p

These plane partitions are exactly of the form of Definilipmwith 4j =i + & — 1 > i,
l<i<kc=1landd=0.

In RemarK71L, we will highlight the relation between thesgipans and the ones de-
fined in the previous sectign 6.

We denote byS(pn k= the set of all partitions defined above a®@hx = Usgeiy,, Stphk.a-
In other words,

Sphia = (r € Sa(L,0), n(r) = p, i =i+a -1, 1<i<Kk

Spnl ={mreSy(1,0), n(m) =p, 4 =i+a -1, 1<i<k forsomea € |y}

Remark71. We remark that the set of the shifted plane partitions defimee for
strongly stable ideals can be easily viewed as a subset dttioe plane partitions
defined in the previous section for counting stable ideals.

With the notation above, let us take a shifted plane pantitia= (7;;), 1 <i < k,

i < j<i+a —1. There are exactly; elements in thé-th row and the values in row

i is shifted to the right by — 1 positions. We define then a non-shifted plane partition
0 = (pi.m) Of shaper = (a4, ..., &), by pim = mimii-1 L < i <k, 1 < m< a5. We prove
thatp € Pphk)e:

® pim>0,1<i <k 1<mc< ¢ holdstruesincer; >0,1<i<ki<j<
i+ai—1.

® Oim> pimel, L< 1 <k 1<m< @ — 1is trivially true sincer; myi-1 > imei-
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® Pim>pirtm 1 <i <K=1,1<j < @1 comes frommmei—1 > mimei = i1 mei-

k i k i+i—1
e N(p) =Xty TP = L 255 7= p.

On the other hand, we have to point out that there are sonue gl#ine partitions
that cannot be brought back to any shifted plane partition.ekample, if we shift

(4 2 1

P=13 0 o
we get

(4 2 1

™lo 3 0o

which is not of the type defined here and cannot be associatadyt strongly stable
monomial ideal.

Each plane partition € S(pni) uniquely identifies a Bar Code:
(a) each rovi represents a 3-b&, 1< i < k;

(b) for eachrow, 1 <i <Kk, I2(Bf3)) = @;; the@; nonzero entries represent thg
2-bars oveBi(S), i.e B§2>, wheret = (Y| Ja) +j-i+li<j<i+@m-1;

(c) foreach 1< i < k, and each < j <i+a; — 1, the number; ; represents the
number of 1-bars oveBEZ), t= (Z:j )+ j—i+1, namely thg —i + 1-th 2-bar
lying overB(®. In other words}1(B{) = i ;.

In conclusion, for each ¥ i < k, and eachi < j <i+aj—1, the number; ; means that
in B there are 1-bars labelled by, (0-i,i — 1), (1, j—-i,i=1),..(m;—-1,j—-i,i=1),
but there is no 1-bar labelled by;(, j —i,i — 1), that is also equivalent to say that
XL, X X L x’l”"*lx{'xis‘1 belong to the set of terms associatedBtwia
Bbcl and Bbc2, but}" )X does not belong to the aforementionedet
Example72. Let us take the bar listgth,k) = (6,3,2),a1 =2 > a; = 1,01 + az =
3 = h. We have, for example

x _( 3 2 )

10 1

1. T,j > T j+1s 1<i<2)i< ] <i+a-1, i.e.ﬂ'l,l > T2,

and it holds

2. Tij 2 sl i = 1,j =2, i.e.7r1,2 > 722,

3.n(m) = X2, X i = 6.

With the notation of{[31]1; = 1, = 2.
The partitionr uniquely identifies the Bar Cod&below:

12pgain, as for stable ideals, we will see ttats admissible and thaq” x{ix‘gl belongs to the star set
associated t®.
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with k = 2 3-barsBY, BY, 1,(BY) = 2, 1,(BY) = 1. The bars® andBY lie over
B(f’), Whereangz) lie over B(ZS). As regards 1-lengths, we haiff(B(lz)) =ma1 =3,
11(BY)) = m12 = 2 andl1(BY) = 72, = 1. The associated set of terms, via BbC1 and
BbC2isN = {1, x3, X2, X2, X1 X2, X3} and it is an order ideal.

3

Remark73. The Bar CodeB, uniquely identified byr, has bar listLg = (p, h,K).
The relationu(3) = k comes from (a)u(2) = h comes from (b), since € lnk), SO
Z!‘Zl ai = h, whereas(1) = pis an easy consequence of (c).

Lemma 74. Fixed (p,h,k) and e € lpy, @ = (a1, ....ax) € NK a1 > .. > a,
¥, @i = h, letz be a partition inSpnk... The Bar CodeB, uniquely identified by,
is admissible.

Proof. By Remar7B,Lg = (p,h,k). Consider a 1-baB|(1), 1<1 < pandletits

e-list bee(Bl(l)) = (b1, b2, b 3). From the construction d from z, we desume that
Ty g1y p+by,+1 = by,1+1; moreover, we know thatg by 2, 0;3), 0 < M < 7y 1414541~

1 are e-lists for some bars Bf so, ifbj; > 1, (0.1 — 1, b2, b 3) is a bar list labelling a
1-bar ofB.

For B being admissible, we also need two other conditions:

o if b2>0, ([1,b2-1 Db 3)labels al-bar oB;
o if b3>0, (1,02 b3—1)labels a 1-bar oB.
Let us prove them:

e supposey o > 0; for (b1,b2 — 1, b 3) labelling a 1-bar oB, we would need
Ty, +1by,+by, = b, +1, but sincerb|3+1,b,2+b,3 > 7py+1b,+by,+1 = by, +1 we are done

e supposedy 3 > 0; for (b1, b2, b3 — 1) labelling a 1-bar oB, we would need
Moy, by, by, = DI+ 1, but sincery, b, +b, > Moy, by +b,+1 = Moy, 410, by +1 2 b, +1
we are done again arglturns out to be admissible.

(]

Examplers. The set of terms associated to the Bar Code constructed m@&a'2 is
an order ideal, so the Bar Code is admissible. o

Theorem 76. There is a biunivocal correspondence betwégs, k) and the set
Bphk = {B € Az s.t.Lg = (p,h,K), n(B) = N(J), J strongly stablg
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Proof. LetB € B(pn k. We construct a plane partition

11 12 ... 1,04
_ N 0... 22 ... T2, 2+a5-1 0...
T = (7T|,J) =lo
O0.. o i KK e e Tkktap-1 0...

with k rows andz(B(f)) columns. Fixed the indedfor the rows and the indeifor the
columns, we defing; ; = 0if j <iori+ai - 1< j < 1,(B%) andn;j = 1:(B) with
t= (Xt w)+ j - i + 1 otherwise, where; = 1,(B¥), 1<i < k.

We observe that the partitionis uniquely determined b and that, by Proposition
50, @ € l(hK); we have to prove that € Sph)-

The nonzero parts of are positive by definition of length of a bar.

Clearlynij > mij+1, 1 <i <K i <] <i+a -1, indeed, this can be stated as
Il(sz)) > Il(BS)l) with B§2> and Bg)l lying over the same 3-szi(3). This statement
follows from Propositio 50 b) with = 1.

Moreovermj > mip1j1<i<k-1,i+1<j<i+aia.

Indeed, ifr; j < 7i1q j then itwould happen thatff“v"_lx{"lxi3 e N(J), but>(1”“7"_1x§" Xt ¢
N(J), contradicting the strongly stable propertylfBy construction, the shape sfis
A=Ag,..,)withj =i+a —1,1<i <k sor € S,(1,0). Moreovern(r) = p by
definitions of bar list and 1-length.

Then, we can define a map

E:Bpnk = Sphk

B,

wherer is constructed fronB as described above. We prove t&as a bijection.

It is clearly an injection by definition of lenght of a bar: twifferent Bar Codes
have at least one bar withftiérent length.

Now, we have to prove the surjectivity & so let us taker € Spnk. We know
that it uniquely identifies a Bar Codzand by Lemm& 74 tha is admissible, so we
only have to prove tha € By nk)-

More precisely, we have to prove that = (p, h, k) and thaty(B) = N(J), J strongly
stable.

Since

1. there arék 3-bars,
2. for each row, 1<i <k, 1,(B®) = o and3 @i = h,

3. foreach ki <k, andeach < j < i+ai—1,I1(B§2)) =mijt= (Z:;ia|)+j—i+1
andn(rn) = p,
thenLg = (p, h, k).

Now, let B™ | € {1,..,p} be a 1-bar labelled bg(B™) = (b1, bi2 bi3), s0

Tha+Lba+bg+1 = b+ 1.
To prove thatl is strongly stable, we have to prove that
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e ifbs>0,b1+1b2bs—1)and @ 1,b 2+ 1, b3—1)are the e-lists of some
1-bars ofB

e D2>0, M1+ 1b>—1b3)is the e-list of a 1-bar oB.
Let us prove these statements .

e suppose thab 3 > 0 and considert{; + 1, b2, b3 — 1): we have to prove that
Ty, by, +by, = 01, + 2. SINCemy_ by +by, > 7oy, by, +b,+1 = Mo, +1b,+b+1 = D1 + 1 we
are done.

e suppose thab 3 > 0 and considert{ 1, b2 + 1,b 3 — 1): we have to prove that
Ty, by, +by,+1 = 01, + 1. Sincenp,_p, +b,+1 > 7o, +1b,+b,+1 = b1 + 1 we are done.

e suppose thab , > 0 and considert{; + 1, b > — 1, b 3): we have to prove that
by, +1by,+b, = b, + 2. Sincezrb|3+1,b|2+b|3 > Mo, +1,by,+b, +1 = b1 + 1 we are done.

This concludes our proof. O

Now, by Theoreri 716, counting strongly stable ideals in tharéables becomes an
application of Theorem 12[([32]).

Fix a constant Hilbert polynomigh. Lemmal638 allows to compute all bar lists.
Fix then a bar list p, h, k) and their shape. Finally, denote byb = (1,...,1) and
a=(ay,...,a) such that

a=A4-r+1,. . M-r+1 2
g=a41+1. . M-i+1 1<i<r-1
M:i=p-2_,%" ¢ = 4y -1andcj = 4j - j+1,j = 2,..,r, the vectors of

TheoreniIP. We can compute the number of strongly stabldsidgaexploiting the
formulain the aforementioned Theorem (see appdndik A.2).

There is a simple case of shifted Q)-plane partition for which a closed formula
can be easily computed.

Proposition 77. Let pe N\{0}. Then there is a biunivocal correspondence between the
setsS, (1, 0)with A = (2, 2)and B; ,_; := {1’ partition of p-1in 3 non necessarily distinct paris

Proof. Letr € S;(1,0), 4 = (2, 2), thenr is of the form

11 T2
O 22
with T11 > M2, M2 = 722, andﬂ']_,]_ +m2+ M2 =P.
Consider the 3-uple’ = (r11— 1, w12, 722), Whose sumigi; —1+m2+m00 = p—1.
Sincer11—1 > w1, > mpp thena’ is a partition ofp— 1 in three non necessarily distinct

parts.
Conversely, let us consider a partitioh= (r’, 75, 73) € P31 of p— 1 in three non
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necessarily distinct parts. Thef) > 7, > n;. Taken” = (7] + 1, 7%, n3): n) + 1 > 1),
n, > my andny + 1+ 7, + 5 = p so, putting it in the plane as

( m+1 7 )
0 YA
we get a shifted (10)-plane partition of shape (2) of p. O

The closed formula for the partitions of Proposition 77 idlkeown in literature.
Proposition 78(Hardy-Wright,[25[ 40]) The partitions of the set43_; are L%J.

In general, finding closed formulas for plane partitionsaither dificult and most
of them are still unknown.

8 Future work and generalizations

In this section, we present a conjecture on the relation éetwstrongly) stable ideals
in K[Xa, ..., Xn], N > 3 and integer partitions.

We start setting an ordering ertuples of natural numbers, that we will need to define
the required partitions.

Definition 79. Let (i1, ..., in), (j1 - jn) € N" we say that(is, ...,in) < (1. jn) if
i1 < s in < i DUEGL, oy in) 2 (1, oo -

We can now definatrict solid partitions(so partitions of dimension = 3) and
then, inductivelystrict n-partitions for n > 4; they are the natural generalization for
the partitions of Definitiofl6 and they will be necessary idesrto state our conjecture
for stable ideals.

Definition 80. Letp = (pij)iers,...r.jerr...51 b€ a(l,1)-plane partition of shap@ =
(B, ... Br), B1 > ... > Br (see Definitio6). Atrict solid partition(or strict 3-partitior)
of shapep is a3-dimensional arrayy = (yi,i,i,), 1 < i1 < Biy, 1 <li2 < pjyi,, 1 <z <
r,s.t.
e for eachl < | < r, the 2-dimensional arrayy; := (yi,i,)) is a (1, 1)-plane
partition of shapey = (1.1, ..., 01.4)-

® Yivizis > Vivjzjs 107 (i1, 12,13) < (j1, 2, j3)-

We denote by, (1, 1, 1) the set of strict 3-partitions of shape

IA

Definition 81. For n > 4, consider a stric{n — 1)-partition p = (o; ; ) with 1
in_1 < h, for some h> 0.

e foreachl < | < h,y = (yi,. .i,,1) IS @ strict (n — 1)-partition of shapep

5,50

® Yisin > Yisowjns 1O (i1, oy in) < (j1s o5 Jn)-
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We denote by, (1, 1, ..., 1) the set of strich-partitions of shapg.
N———
n
Example82. Let us consider the (1)-plane partition

4 2 1
p=12 1 0
of shape8 = (3,2, 1).

1 00
An example of strict solid partition of shapeis is the followingy, formed by three
(1, 1)-plane partitionsy, y2, y3:

Y111 Y121 Y131 Y141 4 3 2 1
y1=| v211 ¥221 O 0 =3 1 00
ya11 O 0 0 1 0 0O
(7112 122 0)\_(2 1 O
72= y212 0 0)7\1 0O

73=( 7113 O 0)=( 10 0)
where we mark in bold the elementsgfover which those of;,1 are posed, for

i=12. &
Example83. Let us consider the following very simple strict solid ptoth p:
1
p1=( 0) p2=(1 0)
An example of strict 4-partition of shapes
_ [ Y1111 Y1211 (4 2
Yl_('}’Z,l,l,l 0 ) (71’1’2’1 0)_(2 0) (1 0)
)’2=( y1112 O )=( 1 0)
o

It is possible to generalize Lemimal 63 to the casewdriables, with some cumber-
some computation, so that it is possible to compute the &tarihi order to count stable

ideals ink[xg, ..., X,]-

Fixed a bar list p, ..., pn) € N", py, ..., pn # 0 and a strictif — 2)-partitionp of shape
(p2, ---, pn), We define the following sets

Pp(pl’ eeey pn) = {7 € P,D(l’ ey 1)’ n(y) = pl}

and

n-1

P(P1, ..., Pn) = {y € Pp(L, ..., 1), for somep € P(py, ..., Pn), S.t.N(y) = p1},
——

n-1
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whereP,(1, 1, ..., 1) is the set of strictrf — 1)-partitions of shapg.
oo e’
n-1
We can then state our conjecture for stable ideals.

Conjecture 84. There is a biunivocal correspondence between thePsépy, ..., pn)
andthe seB,. . p,) = {B € Ans.t.Lg = (P1, ..., Pn), 7(B) = N(J), J stablg.

In an analogous (but a bit more cumbersome) way, we handlethewase of
strongly stable ideals, giving the necessary generabaatdf Definitior[ ¥ and stating
our conjecture.

Definition 85. Letnr = (i j)ie(s,...r).je(t....s) D€ @ shifted1, 0)-plane partition of shape
a = (a1, ...,r), @1 > ... > ar > 1 (see Definitio]7). Ahifted solid partitior{or shifted
3-partition) of shaper is a 3-dimensional arrayy = (¥i,i,.is), i3 < i1 < @iy, i1 < 2 <
T, +i1—1, 1<iz<r, st

e for eachl < | <r, the2-dimensional arrayy, := (yi,j,) is a shifted(1, 0)-plane
partition of shapér = (m) + | = L p1 + |, .o, Mg + @ — 1).

® Yiniziz 2 Yigiziztls

We denote byS,(1, 1, 1) the set of shifted 3-partitions of shajpe

Definition 86. For n > 4, consider a shiftedn - 1)-partiton = = (m; _; ) with
1<ip1 < h, for some h> 0.

e foreachl <| < h,y := (yi,..i, 1) is a shiftedn— 1)-partition with shape given
by the(n — 2)-partition = (r; _; .| +im— 1), where m is the maximal index
s.t. in > 1, and such that, w.r.t. the ordering defined in Definifiah (9, ..., 1) is
the minimal(iy, ..., in-1, ) for whichy;, ;. ,1 #0;

We denote byS,(1, 1, ..., 1) the set of shiftedh-partitions of shape.
S—

n

ExampleB87. Let us consider the shifted,(@)-plane partition

(3 21
=lo 2 o0
of shaper = (3, 2).

An example of strict solid partition of shapes the followingy, formed by two shifted
(1, 0)-plane partitionsy, y»:

Y111 Y121 Y131 3 21
Y11= 0  y221 231 =] 0 2 1

0 0 331 0 0 1

_(o o o _(o 00
2710 y220 y232 ) (0 2 1

where we mark in bold the elementsyafover which those of, are posed. ¢
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Example88. Let us consider the following very simple shifted solid tat 7:

7r1=(§ ]1_) m=(0 1)

An example of strict 4-partition of shapxei
gy = [ 7111 71211 0 o :( 3 2 0 0)
0 y2211 0 72221 0 2 0 1
({0 O 0 0 (0 O 00
72710 o 0 y2202) (0 O 0 1
o

Fixed a bar list py, ..., pn) € N", py, ..., pn # 0 and a shiftedr{— 2)-partitions of
shape o, ..., pn + N — 2), we define the following sets

Sn(pl, () pn) = {7 € Sﬂ(lv e 1)7 n(’)/) = pl}

N —
n-1

and

S(p1, ---» Pn) = {y € Sz(4, ..., 1), for somer € S(p2, ..., Pn)> S-t.n(y) = p1},
N——
n-1

whereS,(1, 1, ..., 1) is the set of shiftedn(— 1)-partitions of shape.
[
n-1
We can then state our conjecture for strongly stable ideals.

Conjecture 89. There is a biunivocal correspondence between theSs@ps, ..., pn)
and the seBB(p, _p,) = {B € An S.t.Lg = (P1, ..., Pn), 7(B) = N(J), J strongly stablg

A Some explicit computation
In exampleL 6D we have counted the (strongly) stable ideak§xn x;]; in the next

sections, we will count the stable (section]A.1) and strgstdble ideals (sectidn A.2)
in K[X1, X2, X3] with constant &ine Hilbert polynomiap = 10.

A.1 Stable ideals

Let us count the stable ideals ltixs, X2, X3] with constant &ine Hilbert polynomial
p =10

By Corollary(57 and Lemmla 63, the possible bar ligis=(10, h, k) are:
1. (101, 1);

B3according to the 3-partition shape definitign21 > ¥221.1.
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(102,1);
(103,1);
(104,1);
(103,2);
(104,2),
(105,2);
(10 6,3).

© N o 0 &M DN

Indeed, fork = 1, the maximal value foh is h = | =L+

Lemmd63, 2., we can deduce tles an integer betwee!ﬁ@ =3 and 5.

In order to deduce the maximal value 5, we may notice that thg partitions of 6

in k = 2 distinct parts are 6= 5+ 1 = 4+ 2 and Sm([51]) = 16 > p = 10,
Sm([42]) = 13 > p = 10. Fork = 3, using again Lemma_63, 2., we can deduce
that the minimal value foh is @ = 6 and that the maximal value fdris again

6. Indeed, the only partition of 7 ik = 3 distinct parts is 7= 4 + 2 + 1 for which
Sm([42,1]) = 14> p = 10.

Fork = 1 above, we have (see Corollard 33010, 1)+ Q(10, 2) + Q(10, 3)+ Q(10,4) =

10.

Consider now (18, 2); the only possible shd&sﬁ =(2,1), so we have

( PL1 P12 )
p21 O
We need to take = (8, 7) (see (1) of section 6) artw= (1, 1) so that the determinant

to compute is
3[8 5[8
det( gt x[l]] ]
1 X1

and it givesx®? + 2x?1 + 3x20 4+ 5x1° 4+ 7x18 4 Ox17 + 12x16 + 13x15 + 14x14 + 14x13 +
14x%2 4+ 12x11 + 11x%0 4 8x°% + 6x® + 4x” + 3x8 + X + x*, so we have 11 stable ideals
with this bar list.

As for (10 4, 2) we haved = (3,1), so

= 4; fork = 2, using

P11 P12 P13
pr2 O 0
We fix a = (6, 5) (see (1) of sectidn 6) and, by Theorem 10, we have
X204 2194 Ax184 6x1 7+ 9x164+ 10x1+ 1 2x144+ 1 1x 3+ 1 0x12+-8x L+ 6x10+ 3x%+ 2x8+ X,
so0 6 plane partitions of this shape.

14t is the only possible partition of 3 in two distinct parts.
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Then take (105, 2); we have the partition bel&

M = ( P11 P12 P13 )
p21 p22 O

with 8 = (3, 2). Fixinga = (4, 3) (see (1) of sectid 6), we get* + 2x3+ 2x2 + 2x'1 +
x19 + x°, so only one partition with norm 10.
We conclude with (106, 3), for which we have

P11 P12 P13
M=| p21 p22 O
ez 0 O

with 8 = (3,2, 1); fixing a = (3,2, 1) (see again (1) of sectién 6), we géf, so again
only one plane partition with this shape. Summing up, we @et11+6+1+1 =29
stable ideals ik[ Xy, X2, X3], with affine Hilbert polynomial equal to 10.

Remarl90. We notice that a tedious computation could allow us to li2@plane par-
titions and the corresponding stable ideals. To show thimieourselves to consider
the case (104, 2), for which there are exactly 6 plane partitions:

6 2 1
1 00

uniguely determines the Bar Code

1. The plane partition

2
1 X1 X2 x

22N
><<.n
&
x
fie
&
r\:xr\:
&

1 1 3 s

x% XpX3

which corresponds to the stable idéak (X8, X3xp, X1 X3, X3, X1X3, XoX3, X3);

5 21
2 00

uniquely determines the Bar Code

2. the plane partition

1 Xy X2 X x4 X2 X1 %2 X X3 X1 %3

5 2 2
&1 X 1%

15Notice that als@’ = (4, 1) is a potential shape; anyway there are n@)3shifted plane partitions of 10
with shapes’.
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which corresponds to the stable idéak (X5, X5z, X1X3, X3, X3 X3, X2X3, X3);

5 31
1 00

uniguely determines the Bar Code

3. the plane partition

1 X1 X% Xf X‘l1 X2 X1 X2 Xf Xo Xg X3
3 3 xS x1%3
xg XoX3
3
which corresponds to the stable idéak (X5, XXz, X1X3, X3, X1X3, X2X3, X3);
4. the plane partition
4 3 2
1 00
uniquely determines the Bar Code
1 X1 X2 X3 X e X% % x5 X
4 < 5 x93
3 xoX3
3
which corresponds to the stable idéak (X}, X3x2, X535, X3, X1X3, X2Xa, X3);
5. the plane partition
4 2 1
3 00
uniguely determines the Bar Code
1 X1 X2 X3 Xo X1 X2 X2 X3 X1X3 X2%q
q 4 g s
X2X3
3

which corresponds to the stable idéak (X}, X3z, X1X3, X3, X3X3, X2X3, X3);
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6. the plane partition

1 X1 X2 X3 X XX XX X3 X3 X1 X3

xi X3

52N
o
x
ts
Nl

S *2x3

<

which corresponds to the stable idégk (X}, XXXz, X1X5, X3, X3 X3, XoX3, X3);

A.2 Strongly stable ideals
Let us count the strongly stable idealsix;, X2, X3] with constant &ne Hilbert poly-
nomialp = 10.

By Corollary[57 and LemmBa 3, the possible bar lists, as ferdhase of stable
ideals, are:

(101,1);
(102,1);
(103,1);
(104,1);
(103,2);
(104,2),
(105,2);
(10 6,3).

© N o o M e NP

For k = 1 above, we proceed as for stable ideals, thanks to the dgundeof
Lemmd_ 70, getting(10, 1) + Q(10, 2) + Q(10, 3) + Q(10,4) = 10.
Consider now (1B, 2), for which we have the partition below

a1 A2
0 az o
sol=(2,2),r=2,M =8,a,=1,..,7anda; = ap+1, ..., 8 (see (2) in sectidn 7). We
report here only the computations giving nonzero result:

50



.a=(51):N,=7and

X+x¥+x+1 0
we( )

so thatx™defM) = x'(x® + x> + x + 1). Therefore there is one such plane
partition.

.a=(6,1):N; =8and

M = x*+x3+x2+x+1 0
- 1 1

so thatxrdefM) = x8(x* + x® + X2 + x + 1). Therefore there is one such plane
partition.

.a=(7,1):N; =9and

(x5+x4+x3+x2+x+1 0)
M= 1 1

so thatxMdei(M) = x°(x® + x* + x® + X% + x + 1). Therefore there is one such
plane partition.

.a=(81):N; =10and

(x6+x5+x4+x3+x2+x+1 0)
M= 1 1

so thatMdet(M) = x20(x + x® + x* + X® + x* + x + 1). Therefore there is one
such plane patrtition.

.a=(52):N;=8and
C+x+x+1 1
()
so thatxMdei(M) = x8(x® + X2 + x). Therefore there is one such plane partition.
.a=(6,2):N; =9and

M = X+ +x2+x+1 1
B 1 1

so thatxMde(M) = x3(x* + x® + x? + ). Therefore there is one such plane
partition.

.a=(4,3):N; =8and

M < XC+x2+x+1 x+1
B 1 1

so thatxMdetM) = x® - x2. Therefore there is one such plane partition.
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The total number we get of the partitions of type
a1 a2
0 azo
is7.

We will see below that the plane partitions of this shape @nadly be counted in a
simpler way.

Take then (104, 2)

Since 4= 3+ 1, we only have to deal with the partitions below

M = a1 A2 A3
0 azo 0 ’

sol1=(3,2),r=2,M =6,a,=1,..,5anda; = a,+1,...,6 (see (2) in sectidn 7). We
report here only the computations giving nonzero result:

1.a=(4,1),N; =8and
M = XX+x+1 0
- 1 1)
so thatEdet M) = x8(x>+x+1). Therefore there is only one such plane partition.
2.a=(51),N; =9and

[ (R+x+1)(+1) O
e S )

so that@det(M) = x°(x? + x+ 1)(x? + 1). Therefore there is only one such plane
partition.

3.a=(51),N; =10and

M—( X+ e+ X+ x+ 1D+ 1) O)
- 1 1)

so thab@det(M) = x0(x* + x3 + x? + x+ 1)(x% + 1)). Therefore there is only one
such plane partition.

4. a=(4,2),N; =9and

M—( X+ e+ X+ x+ 1D +1) O)
- 1 1)

so that@dei(M) = x2(x* + x° + X% + x+ 1)(x® + 1)). Therefore there is only one
such plane partition.

5.a=(52),N; =10 and

[ 2+ x+1)(%2+1) O
(e )

so thatx®def(M) = x0(x% + x + 1)(x* + 1)). Therefore there is only one such
plane partition.
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The total number of the partitions of type

a1 A2 a3
0 a2 0
is 5.
Consider now (1(b, 2). We have the partition below
M = a1 &2 a3
0 &2 a3
In this casel = (3,3),r = 2, M = 4 and there is only one patrtition of this shape,
coming froma = (4, 2) (see (2) in sectidnl 7). Indeed, in this cage= 10,

M = X¥+x+1 0
Tl X+x+1 1

and we gexMde(M) = x10(x® + x + 1).
We conclude with (106, 3), for which by 6= 3 + 2 + 1. We obtain the matrix

a1 12 a3
M = 0 dxo A3
0 0 as 3

for whicha = (3,3,3),r =3,b=(1,1,1) andM = 3. It holds therag = 1, a; = 2,
a; = 3, i.e. there is only one vectarto examine (see (2) in sectibh 7). Foe (3,2, 1)

we getN; = 10 and
1 00
M=| x+1 1 O

1 11

so thatx!%deM) = x'°. We get only one plane partition of norm 10 of this shape.
In conclusion we have exactly 24 strongly stable ideals irmBables with constant
affine Hilbert polynomiaH_(t) = 10.

Remark91. We notice that a tedious computation could allow us to lisRPdlplane
partitions and the corresponding strongly stable ideashbw this we limit ourselves
to consider the case (14 2), for which there are exactly 5 plane partitions:

1. The plane partition
6 2 1
010

uniguely determines the Bar Code

1 X1 X X X X2 X2 X1 X2 X2 X3
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which corresponds to the stable idéak (X6, X3z, X1X3, X3, X1X3, X2X3, X3);

5 2 1
0 20

uniguely determines the Bar Code

2. the plane partition

1 X1 X2 X3 X X X1 %o X2 X3 X1%a

2 X%X3

x2X3

3
which corresponds to the stable id&ak (X5, X5z, X1X3, X3, X5 X3, X2X3, X3);
3. the plane partition
5 31
010
uniguely determines the Bar Code
1 X1 X2 x x4 X2 X1 X2 XX X3 X3
< 3 x x5
3 xoX3
g
which corresponds to the stable idéak (55, X3X2, X135, X3, X1X3, X2X3, X3);
4. the plane partition
4 3 2
010
uniquely determines the Bar Code
1 X1 X2 X3 X2 X1X2 X2Xo X2 X1 %5 X3
4 3 3 x5
3 xoX3
g

which corresponds to the stable idéak (X}, X3z, X33, X3, X1X3, X2X3, X3);
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5. the plane partition

1 X1 x2 33 X XX XX X2 X3 X1 X3

52N
o
x
ts
Nl

xi X3

S *2x3

<

which corresponds to the stable idéak (X}, XXXz, X1X3, X3, X3X3, XoX3, X3);
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