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TWO POSETS OF NONCROSSING PARTITIONS COMING FROM

UNDESIRED PARKING SPACES

HENRI MÜHLE

ABSTRACT. Consider the noncrossing set partitions of an n-element set which ei-
ther do not contain the block {n − 1, n}, or which do not contain the singleton
block {n} whenever 1 and n − 1 are in the same block. In this article we study the
subposet of the noncrossing partition lattice induced by these elements, and show
that it is a supersolvable lattice, and therefore lexicographically shellable. We give
a combinatorial model for the NBB bases of this lattice and derive an explicit for-
mula for the value of its Möbius function between least and greatest element.

This work is motivated by a recent article by M. Bruce, M. Dougherty, M. Hlava-
cek, R. Kudo, and I. Nicolas, in which they introduce a subposet of the noncrossing
partition lattice that is determined by parking functions with certain forbidden
entries. In particular, they conjecture that the resulting poset always has a con-
tractible order complex. We prove this conjecture by embedding their poset into
ours, and showing that it inherits the lexicographic shellability.

1. INTRODUCTION

A set partition of [n] = {1, 2, . . . , n} is noncrossing if there are no indices i <

j < k < l such that i, k and j, l belong to distinct blocks. Let us denote the set
of all noncrossing set partitions by NCn. We can partially order noncrossing set
partitions by dual refinement, meaning that x ∈ NCn is smaller than y ∈ NCn if
every block of x is contained in a block of y. Let us denote this partial order by
≤dref.

The lattice (NCn,≤dref) of noncrossing set partitions is a remarkable poset with
a rich combinatorial structure. It was introduced by G. Kreweras in the early
1970s [9], and has gained a lot of attention since then. It has, among other things,
surprising ties to group theory, algebraic topology, representation theory of the
symmetric group, and free probability. See [15] and [11] for surveys on these lat-
tices.

A parking function of length n is a function on an n-element set with the prop-
erty that the preimage of [k] has at least k elements for every k ≤ n. They were
introduced in [8], and play an important role in the study of the spaces of diagonal
harmonics, see [6] and [5, Chapter 5].

The maximal chains of (NCn,≤dref) are naturally in bijection with parking func-
tions of length n − 1, see [18]. This connection was used in [4] to define a subposet
of (NCn,≤dref) as follows. Fix some k ≤ n and take the set of all parking functions
which do not have k in their image, but every value larger than k. Let us consider
the poset (PEn,k,≤pchn), which is the subposet of (NCn,≤dref) determined by the
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2 HENRI MÜHLE

maximal chains corresponding to these parking functions. In the case where n = k
we simply write (PEn,≤pchn). For n ≤ 2, the poset (PEn,≤pchn) is the empty poset.

Let 0 denote the discrete partition into singleton blocks, and let 1 denote the full
partition into a single block. It is the statement of [4, Theorem C] that the Möbius
function of (PEn,k,≤pchn) always vanishes between 0 and 1. It was moreover con-

jectured there that the order complex of (PEn,k,≤pchn) with 0 and 1 removed is
contractible. The main purpose of this article is to prove this conjecture.

In fact we show that (PEn,≤pchn) is lexicographically shellable, which together
with the aforementioned result on the Möbius function establishes the following.

Theorem 1.1. For n ≥ 3 the poset (PEn,≤pchn) is lexicographically shellable.

The following is an immediate corollary of Theorem 1.1 and [4, Theorem C].

Corollary 1.2. For n ≥ 3 the order complex of (PEn,≤pchn) with 0 and 1 removed is
contractible.

Theorem 3.5 in [4] states that (PEn,k,≤pchn) is isomorphic to the direct product

of (PEk,≤pchn) and the Boolean lattice of rank n − k. Since the latter is known
to be lexicographically shellable [1, Theorem 3.7], and lexicographic shellability
is preserved under taking direct products [1, Theorem 4.3], Theorem 1.1 indeed
suffices to resolve the main conjecture of [4].

In order to prove Theorem 1.1, we take a detour through a slightly larger sub-
poset of (NCn,≤dref). In fact, we consider the induced subposet (PEn,≤dref), and
show that it is a supersolvable lattice.

Theorem 1.3. For n ≥ 3 the poset (PEn,≤dref) is a supersolvable lattice.

It is well known that supersolvable lattices possess an edge-labeling that im-
plies their lexicographic shellability [1, Theorem 3.7]. The last step in proving
Theorem 1.1 is to show that the restriction of this edge-labeling to (PEn,≤pchn) re-

tains its crucial properties. Observe that for n ≥ 5, the poset (PEn,≤pchn) is not a
lattice.

We remark that the edge-labeling coming from Theorem 1.3 differs from the
usual labeling of (NCn,≤dref), which is defined as follows. If x ⋖dref y, then there
are two blocks B, B′ in x that are joined in y. If the smallest element of B is smaller
than the smallest element of B′, then the label of this cover relation is n minus the
largest element of B that is smaller than every element in B′. The restriction of
this labeling to (PEn,≤pchn) does, however, not have the properties necessary to
guarantee lexicographic shellability.

The last main result of this article is the explicit computation of the value of the
Möbius function in (PEn,≤dref) between 0 and 1.

Theorem 1.4. For n ≥ 3 we have

µ(PEn,≤dref)
(0, 1) = (−1)n−1 4

n

(

2n − 5

n − 4

)

,

which is [16, A099376] up to sign.

We prove Theorem 1.4 by using A. Blass and B. Sagan’s NBB bases [3]. In fact
we give a combinatorial model in terms of trees for these NBB bases, from which
we derive their enumeration.
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The rest of the article is organized as follows. In Section 2 we recall the necessary
lattice- and poset-theoretic notions (Section 2.1), and formally define noncrossing
set partitions (Section 2.2). In Section 3 we define the poset (PEn,≤dref), and prove
Theorem 1.3 (Section 3.1), and Theorem 1.4 (Section 3.2). In Section 4 we turn our
attention to the poset (PEn,≤pchn) and conclude the proof of Theorem 1.1.

2. PRELIMINARIES

2.1. Posets and Lattices. Let L = (L,≤) be a finite partially ordered set (poset for

short). If L has a least and a greatest element (denoted by 0̂ and 1̂, respectively),
then L is bounded. If any two elements x, y ∈ L have a least upper bound (their
join; denoted by x ∨ y) and a greatest lower bound (their meet; denoted by x ∧ y),
then L is a lattice.

An element y ∈ L covers another element x ∈ L if x < y and for all z ∈ L with
x ≤ z ≤ y we have x = z or z = y. We then write x ⋖ y, and we sometimes say

that (x, y) is a cover relation. If L has a least element 0̂, then any element covering

0̂ is an atom.
A chain is a subset X ⊆ L that can be written as C = {x1, x2, . . . , xk} such that

x1 ≤ x2 ≤ · · · ≤ xk. A chain is saturated if it can be written as x1 ⋖ x2 ⋖ · · ·⋖ xk.
A saturated chain is maximal if it contains a minimal and a maximal element of L.
Let C (L) denote the set of maximal chains of L.

The rank of L is one less than the maximum size of a maximal chain; denoted
by rk(L). We say that L is graded if all maximal chains have the same size. An
interval of L is a set [x, y] = {z | x ≤ z ≤ y}.

Two lattice elements x, z ∈ L form a modular pair if for all y ≤ z holds that
(y ∨ x) ∧ z = y ∨ (x ∧ z); we then usually write xMz. Moreover, x ∈ L is left-
modular if xMz for all z ∈ L. If x satisfies both xMz and zMx for all z ∈ L, then x
is modular. A maximal chain is (left-)modular if it consists entirely of (left-)modular
elements.

A lattice is modular if all its elements are modular, and it is left-modular if it
contains a left-modular chain. A lattice is supersolvable if it contains a maximal
chain M with the property that for every chain C the sublattice generated by M
and C is distributive. (In other words, the smallest sublattice containing M and C
is distributive.) Chains with this property are called M-chains. It follows from [17,
Proposition 2.1] that every element of an M-chain is modular, and supersolvable
lattices are therefore left-modular. For graded lattices, these two notions actually
coincide.

Theorem 2.1 ([13, Theorem 2]). A finite graded lattice is left-modular if and only if it is
supersolvable.

For any bounded poset L = (L,≤) let H (L) =
{

(x, y) | x ⋖ y
}

denote the

set of cover relations of L. An edge-labeling of L is a map λ : H (L) → Λ,
for some poset (Λ,≺). For a saturated chain C = {x1, x2, . . . , xk} we denote

by λ(C) =
(

λ(x1, x2), λ(x2, x3), . . . , λ(xk−1, xk)
)

the associated sequence of edge-
labels. We then say that C is rising if λ(C) is strictly increasing with respect to ≺.
An edge-labeling of L is an EL-labeling if the following two conditions hold for ev-
ery interval [x, y] of L: (i) there exists a unique rising maximal chain C in [x, y], and
(ii) for every other maximal chain C′ of [x, y] we have that λ(C) is lexicographically
smaller than λ(C′). A poset that admits an EL-labeling is EL-shellable.
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If rk(L) = n, and λ is an EL-labeling of L such that for every maximal chain C
the entries in λ(C) are all distinct members of [n], then λ is an Sn EL-labeling.

Theorem 2.2 ([10]). Let L = (L,≤) be a left-modular lattice of length n with left-
modular chain x0 ⋖ x1 ⋖ · · ·⋖ xn. The labeling

(1) λ(y, z) = min{i | y ∨ xi ∧ z = z}

is an Sn EL-labeling of L.

Theorem 2.3 ([12, Theorem 1]). A finite graded lattice of length n is supersolvable if
and only if it is Sn EL-shellable.

The existence of an EL-labeling of L has further implications on the homotopy
type of the order complex associated to L, i.e. the simplicial complex whose faces
are the chains of L.

Theorem 2.4 ([2, Theorem 5.9]). Let L be a bounded graded poset of rank n with

µ(0̂, 1̂) = k. If L is EL-shellable, then the order complex of L with 0̂ and 1̂ removed
has the homotopy type of a wedge of |k|-many (n − 2)-dimensional spheres. Moreover, k
is precisely the number of maximal chains of L with weakly decreasing label sequence.

2.2. Noncrossing Set Partitions. A set partition of n is a covering x =
{

B1, B2, . . . , Bs}
of [n] into non-empty, mutually disjoint sets; which we call blocks. Let Πn denote
the set of all set partitions of n. For i, j ∈ [n] and x ∈ Πn we write i ∼x j if there
is B ∈ x with i, j ∈ B. It is easily seen that ∼x is an equivalence relation; in fact set
partitions of [n] and equivalence relations on [n] are in bijection. Let 0 be the dis-
crete partition which consists of n singleton blocks, and let 1 be the full partition
which consists only of a single block.

A set partition x is noncrossing if for any four indices 1 ≤ i < j < k < l ≤ n the
relations i ∼x k and j ∼x l imply i ∼x j. Let NCn denote the set of noncrossing set
partitions of n.

Set partitions can be partially ordered as follows. Let x, x′ ∈ Πn, and say that
x = {B1, B2, . . . , Bs} and x′ = {B′

1, B′
2, . . . , B′

s′}. We have x ≤dref x′ if and only if for

each i ∈ [s] there exists i′ ∈ [s′] such that Bi ⊆ B′
i′ . We call ≤dref the dual refinement

order. Figure 1 shows for the poset (Π4,≤dref), in which the subposet (NC4,≤dref)
is highlighted. We have omitted braces in the labeling of the vertices, and have
separated blocks by vertical lines instead.

The posets (Πn,≤dref) and (NCn,≤dref) are in fact lattices, and we can explicitly
describe the meet and join operations. The meet of two set partitions x, x′ ∈ Πn is

(2) x ∧Π x′ = {B ∩ B′ | B ∈ x, B′ ∈ x′, and B ∩ B′ 6= ∅}.

In order to describe the join of x and x′, consider the bipartite graph

Px,x′ =
(

[n] ⊎ (x ∪ x′), E
)

,

where (v1, v2) ∈ E if and only if v1 ∈ [n], v2 ∈ (x ∪ x′), and v1 ∈ v2. We have

(3) x ∨Π x′ =
{

C ∩ [n] | C is a connected component of Px,x′
}

.

Example 2.5. Let

x =
{

{1}, {2}, {4}, {3, 5, 7, 8}, {6}
}

and x′ =
{

{1, 3}, {2, 4}, {5, 6, 8}, {7}
}

.
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1|2|3|4

1|23|4 1|2|34 13|2|4 1|24|3 12|3|4 14|2|3

1|234 123|4 12|34 13|24 14|23 134|2 124|3

1234

FIGURE 1. The poset (Π4,≤dref). The non-highlighted edges in-
duce the subposet (NC4,≤dref).

We observe that x is non-crossing, while x′ is not, since 1 ∼x′ 3 and 2 ∼x′ 4, but 1 6∼x′ 2.
Their meet is

x ∧Π x′ =
{

{1}, {2}, {3}, {4}, {5, 8}, {6}, {7}
}

.

The graph Px,x′ is

2 4 1 3 5 87 6

{2} {2, 4} {4} {1} {1, 3} {3, 5, 7, 8} {5, 6, 8}{7} {6}

which implies x ∨Π x′ =
{

{1, 3, 5, 6, 7, 8}, {2, 4}
}

.

For x ∈ Πn denote by x the noncrossing closure of x, which is defined by succes-
sively joining crossing blocks. It is immediate that x ≤dref x, and [9, Théorème 1]
states that x is the smallest noncrossing partition (weakly) above x. The meet of
two noncrossing set partitions x, x′ ∈ NCn is then

(4) x ∧NC x′ = x ∧Π x′,

while their join is

(5) x ∨NC x′ = x ∨Π x′.

Example 2.6. Let x′ be the crossing set partition from Example 2.5. We obtain

x′ =
{

{1, 2, 3, 4}, {5, 6, 8}, {7}
}

,

and x ∧NC x′ = x ∧Π x′ and x ∨NC x′ = 1.

Let us summarize this in a theorem.

Theorem 2.7 (Folklore, [9, Théorèmes 2 and 3]). For n ≥ 1, the posets (Πn,≤dref)
and (NCn,≤dref) are graded lattices. The rank of a (noncrossing) set partition is given by
n minus the number of its blocks.
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For i ∈ [n] define xi to be the noncrossing partition with the unique non-
singleton block [i − 1]∪ {n}. We thereby understand x1 = 0 and xn = 1. It follows
that

(6) C = {x1, x2, . . . , xn}

is a maximal chain in (NCn,≤dref)

Proposition 2.8. For i ∈ [n] the element xi is left-modular in (NCn,≤dref).

Proof. Let X = [i − 1] ∪ {n} be the unique non-singleton block of xi, and let z ∈
NCn.

We show that xi Mz. Pick y ≤dref z, and let B be a block of y. There exists a
unique block B′ of z with B ⊆ B′. Let A = B′ ∩ X. We distinguish two cases.

(i) B ∩ X = ∅. It follows that B is a block of y ∨NC xi, and it is thus a block of
(y ∨NC xi) ∧NC z, too. In xi ∧NC z we see that A is a block, while B′ \ A is split into
singleton blocks. By assumption B ⊆ (B′ \ A), and we conclude that B is a block
of y ∨NC (xi ∧NC z).

(ii) B ∩ X 6= ∅. It follows that B ∪ X is a block of y ∨NC xi, and that therefore
A ∪ B is a block of (y ∨NC xi) ∧NC z. In xi ∧NC z we see that A is a block, while
B′ \ A is split into singleton blocks. By assumption B ∩ A 6= ∅, and we thus obtain
that A ∪ B is a block of y ∨NC (xi ∧NC z).

�

Corollary 2.9. The chain in (6) is a left-modular chain in (NCn,≤dref), which is thus a
supersolvable lattice.

Proof. Proposition 2.8 implies that every element in (6) is left-modular, and Theo-
rem 2.7 implies that (NCn,≤dref) is graded. In view of Theorem 2.1 we conclude
that (NCn,≤dref) is supersolvable. �

The fact that (NCn,≤dref) is supersolvable was established before in [7, Theo-
rem 4.3.2].

Corollary 2.10. For n ≥ 1, the lattice (NCn,≤dref) is EL-shellable.

Proof. This follows from Theorem 2.2 and Corollary 2.9. �

The fact that (NCn,≤dref) is EL-shellable was established before in [1, Exam-
ple 2.9].

3. A SUBPOSET OF (NCn,≤dref)

Let us define two subsets L1, L2 ⊆ NCn by

L1 =
{

x ∈ NCn | {n − 1, n} ∈ x
}

,

L2 =
{

x ∈ NCn | 1 ∼x n − 1 and {n} ∈ x
}

.

Finally, for n ≥ 3 define

(7) PEn = NCn \
(

L1 ∪ L2

)

.

Lemma 3.1 ([4]). We have
∣

∣PE3

∣

∣ = 3, and for n ≥ 4 we have
∣

∣

∣
PEn

∣

∣

∣
=

(

5

n + 1
+

9

n − 3

)(

2n − 4

n − 4

)

,

which is [16, A071718] with offset 2.
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Proof. Define the nth Catalan number to be Cat(n) = 1
n+1 (

2n
n ). It was observed in

[4] that
∣

∣

∣
PEn

∣

∣

∣
= Cat(n)− 2Cat(n − 2).

We can therefore immediately verify the claim for n = 3. For n ≥ 4, we obtain
∣

∣

∣
PEn

∣

∣

∣
= Cat(n)− 2Cat(n − 2)

=
1

n + 1

(

2n

n

)

−
2

n − 1

(

2n − 4

n − 2

)

=

(

4(2n − 1)(2n − 3)

(n + 1)(n − 2)(n − 3)
−

2n

(n − 2)(n − 3)

)(

2n − 4

n − 4

)

=

(

14n2 − 34n + 12

(n + 1)(n − 2)(n − 3)

)(

2n − 4

n − 4

)

=

(

14n − 6

(n + 1)(n − 3)

)(

2n − 4

n − 4

)

=

(

5

n + 1
+

9

n − 3

)(

2n − 4

n − 4

)

.

�

3.1. (PEn,≤dref) is a Supersolvable Lattice. Let us now investigate a few proper-
ties of the poset (PEn,≤dref). Our first main result establishes that this poset is in
fact a lattice.

Theorem 3.2. For n ≥ 3, the poset (PEn,≤dref) is a lattice.

Proof. Let x, x′ ∈ PEn. Let w = x ∧NC x′, and write w = {B1, B2, . . . , Bs}. If w ∈
PEn, define x ∧PE x′ = w. If w /∈ PEn, then there are two options.

(i) {n − 1, n} ∈ w. Without loss of generality say that Bs = {n − 1, n}. Define

w′ =
{

B1, B2, . . . , Bs−1, {n − 1}, {n}
}

. Then, w′ ∈ PEn, and w′ ≤dref w, which

in particular implies that w′ ≤dref x and w′ ≤dref x′. Let z ∈ PEn with z ≤dref x
and z ≤dref x′. We must thus have z ≤dref w, and {n − 1, n} /∈ z, which implies
{n − 1}, {n} ∈ z and every block of z is contained in some Bi for i ∈ [s]. It follows
that z ≤dref w′. We thus put x ∧PE x′ = w′ for this case.

(ii) {n} ∈ w and 1 ∼w n − 1. Without loss of generality we can assume that
Bs = {n}. By definition we must have 1 ∼x n− 1 and 1 ∼x′ n− 1. Since x, x′ ∈ PEn

we conclude that there are indices i 6= j with i ∼x n and j ∼x′ n. Since {n} ∈ w we
conclude 1 < i, j < n − 1, which contradicts x, x′ ∈ NCn. It follows that this case
cannot occur.

Now let w = x ∨NC x′, and write w = {B1, B2, . . . , Bs}. If w ∈ PEn, define
x ∨PE x′ = w. If w /∈ PEn, then there are two options again.

(i) {n − 1, n} ∈ w. In view of (3) we conclude {n − 1, n} ∈ x, x′, which contra-
dicts x, x′ ∈ PEn. It follows that this case cannot occur.

(ii) {n} ∈ w and 1 ∼w n − 1. Without loss of generality let 1, n − 1 ∈ B1, and
let Bs = {n}. Define w′ = {B1 ∪ Bs, B2, . . . , Bs−1}. We then have w ≤dref w′, and
consequently x ≤dref w′ and x′ ≤dref w′. Let z ∈ PEn with x ≤dref z and x′ ≤dref z.
Again by (3) we conclude {n} ∈ x, x′, and since x, x′ ∈ PEn we see that 1 6∼x n − 1
and 1 6∼x′ n− 1. Since 1 ∼w n− 1 there must be i ∈ [n] with 1 ∼x i and i ∼x′ n− 1.
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We thus conclude 1 ∼z n − 1, and since z ∈ PEn we further conclude n − 1 ∼z n.
This implies w′ ≤dref z. We thus put x ∨PE x′ = w′ for this case. �

Lemma 3.3. For n ≥ 3, the lattice (PEn,≤dref) is graded.

Proof. Let x, y ∈ PEn with x ⋖dref y in (PEn,≤dref). Assume that there is z ∈ NCn

with x <dref z <dref y. It follows that z ∈ NCn \ PEn. There are two cases.
(i) {n − 1, n} is a block of z. Since {n − 1, n} is neither a block of x, nor of

y, it must be that n − 1 and n constitute singleton blocks in x and there is some
j ∈ [n − 2] and some block B of y containing {j, n− 1, n}. Consider the partition w
that has all blocks of y except that B is replaced by the two blocks B \ {n − 1} and
{n − 1}. Since y ∈ PEn ⊆ NCn we conclude that w ∈ NCn, and we have w ⋖dref y.
By construction, w ∈ PEn. It follows further from x ≤dref y that x <dref w (since
n − 1 and n constitute singleton blocks of x). This is a contradiction to x ⋖dref y in
(PEn,≤dref).

(ii) {n} is a block of z and 1 ∼z n − 1. It follows that 1 ∼y n − 1, which forces
n − 1 ∼y n. Moreover, it follows that {n} must be a block of x, which implies that
1 6∼x n − 1. Let B be the block of x containing 1. Consider the partition w that
consists of all the blocks of x except that B is replaced by B ∪ {n}. Then, x ∈ NCn

implies w ∈ PEn. Moreover, x ⋖dref w <dref y, which is a contradiction to x ⋖dref y
in (PEn,≤dref). �

It follows by definition that the chain (6) belongs to (PEn,≤dref). It is our next
goal to show that this chain is also left-modular in (PEn,≤dref). We first prove an
auxiliary result.

Proposition 3.4. For i ∈ [n] and y ∈ PEn we have xi ∧PE y = xi ∧NC y and xi ∨PE y =
xi ∨NC y.

Proof. Let y ∈ PEn. If xi ∧PE y <dref xi ∧NC y, then it follows from the proof of
Theorem 3.2 that there exists a block B of xi with {n − 1, n} ⊆ B. By definition this
forces i = n, so that xi is the full partition. In particular y ≤dref xi, which yields
the contradiction y = xi ∧PE y <dref xi ∧NC y = y.

If xi ∨NC y <dref xi ∨PE y, then it follows from the proof of Theorem 3.2 that {n}
is a block of xi. By definition, this forces i = 1, so that xi is the discrete partition. In
particular xi ≤dref y, which yields the contradiction y = xi ∨NC y <dref xi ∨PE y =
y. �

Proposition 3.5. For n ≥ 3, the chain in (6) is left-modular in (PEn,≤dref).

Proof. The elements x1 and xn are the least and the greatest element of (PEn,≤dref),
so they are trivially left-modular. Let us therefore assume that i ∈ {2, 3, . . . , n− 1}.
In particular, n − 1 6∼xi

n and {n} is not a block of xi. Let z ∈ PEn.

We show that xi Mz holds in (PEn,≤dref). Let y ∈ PEn with y ≤dref z. Propo-
sition 3.4 implies that q = y ∨PE xi = y ∨NC xi. Assume that q ∧PE z 6= q ∧NC z.
The proof of Theorem 3.2 implies that this can only happen if {n − 1, n} is a block
of q ∧NC z. For this to happen, we need n − 1 ∼q n, which forces the existence of
some j ∈ [i − 1] ∪ {n} with j ∼y n − 1. If j < i, then we obtain the contradiction
that q ∧NC z has a block containing {j, n − 1, n} since i ≤ n − 1. We thus have
j = n. Since i > 1 we see that q has a block containing {i − 1, n − 1, n}, which
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1|2|3|4

1|24|3 1|23|4 12|3|4 14|2|3

1|234 124|3 14|23 134|2

1234

2 3 2 1

3

1 2 1 1

2 3 3

1 3 2 2

FIGURE 2. The lattice (PE4,≤dref). The highlighted chain is (6),
and the labeling is the one defined in (1).

forces z to contain the block {n − 1, n}; a contradiction to z ∈ PEn. We therefore
have

(8) (y ∨PE xi) ∧PE z = (y ∨NC xi) ∧NC z.

On the other hand, Proposition 3.4 also implies that q′ = xi ∧PE z = xi ∧NC z.
Assume that y ∨PE q′ 6= y ∨NC q′. The proof of Theorem 3.2 implies that this can
only happen if {n} is a block of y ∨NC q′ and 1 ∼y∨NCq′ n − 1. By definition of

the join, {n} must be a block of both y and q′. Since i < n we see that {n − 1} is
a singleton block in q′, which forces 1 ∼y n − 1; a contradiction to y ∈ PEn. We
therefore have

(9) y ∨PE (xi ∧PE z) = y ∨NC (xi ∧NC z).

Proposition 2.8 implies the equality of the right-hand sides of (8) and (9), which
implies xi Mz in (PEn,≤dref). �

We now conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. It follows from Theorem 3.2, Lemma 3.3, and Proposition 3.5
that (PEn,≤dref) is a graded left-modular lattice. Theorem 2.1 implies then that it
is supersolvable. �

Corollary 3.6. For n ≥ 3, the lattice (PEn,≤dref) is EL-shellable.

Proof. This follows from Theorems 1.3 and 2.2. �

Figure 2 shows (PE4,≤dref) together with the EL-labeling coming from the left-
modular chain in (6). The unique rising maximal chain from 0 to 1 is highlighted.
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a1,5

a1,2 a2,5

a1,3 a2,3 a3,5

a1,4 a2,4 a3,4 a4,5

FIGURE 3. The poset (A5,E).

3.2. The Möbius Function of (PEn,≤dref). In this section we determine the value
of the Möbius function of (PEn,≤dref) between 0 and 1. Recall that the Möbius
function of a poset L = (L,≤) is defined recursively by

(10) µL(x, y) =











1, if x = y,

−∑x<z≤y µ(z, y), if x < y,

0, otherwise

for all x, y ∈ L. It was shown in [3] that in a lattice L, we can compute the value

µL(0̂, x) for any x ∈ L by summing over the NBB bases for x. Let us recall the
necessary concepts. Let A denote the set of atoms of L, and let E be an arbitrary
partial order on A. A set X ⊆ A is bounded below (or BB for short) if for every d ∈ X
there exists some a ∈ A such that a ⊳ d and a <

∨

X. A set X ⊆ A is NBB if none
of its nonempty subsets is BB. If X is NBB and

∨

X = x, then X is a NBB base for x.
We have the following result.

Theorem 3.7 ([3, Theorem 1.1]). Let L = (L,≤) be a finite lattice, and let E be any
partial order on the atoms of L. For x ∈ L we have

µL(0̂, x) = ∑
X

(−1)|X|,

where the sum is over all NBB bases for x with respect to E.

In the remainder of this section we give a combinatorial model for the NBB
bases of 1 in (PEn,≤dref) with respect to a suitable partial order on its atoms, and
conclude Theorem 1.4.

For i, j ∈ [n] with i < j, define ai,j to be the set partition whose unique non-

singleton block is {i, j}. The set An = {ai,j | 1 ≤ i < j ≤ n} is the set of all

atoms of {NCn,≤dref). The set Ān = An \ {a1,n−1, an−1,n} is then the set of atoms
of (PEn,≤dref). Consider the partition of An given by

Ai = {a ∈ An | a ≤dref xi and a 6≤dref xi−1}

for i ∈ [n − 1]. Let Āi be the restriction of Ai to Ān. Define a partial order on An

by setting a E a′ if and only if a ∈ Ai and a′ ∈ Aj for i < j. The poset (A5,E) is
depicted in Figure 3.

Lemma 3.8. For j ∈ [n − 1] we have Aj =
{

ai,j | 1 ≤ i < j
}

∪
{

aj,n

}

. Moreover, we

have Āj = Aj for j ∈ [n − 2], and Ān−1 = An−1 \ {a1,n−1, an−1,n}.
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Proof. Let ai,j ∈ An for 1 ≤ i < j ≤ n. If j < n, then ai,j ≤dref xj, but ai,j 6≤dref xj−1.
If j = n, then ai,n ≤dref xi, but ai,n 6≤dref xi−1. �

Since we want to consider NBB bases in the two related posets (NCn,≤dref)
and (PEn,≤dref), we use the prefixes “NC” and “PE” to indicate which lattice we
consider. Theorem 3.2 implies that for x, y ∈ PEn we always have x ∨NC y ≤dref

x ∨PE y. Therefore, if X ⊆ Ān is NC-BB, then it is automatically PE-BB.

Lemma 3.9. If a ∨Π a′ is crossing, then
{

a, a′} is NC-BB.

Proof. Let ai,j, ak,l ∈ An. If ai,j ∨Π ak,l is crossing, then i < k < j < l, and the

join ai,j ∨NC ak,l has the unique non-singleton block {i, j, k, l}. We distinguish two
cases.

(i) If l < n, then Lemma 3.8 implies ai,j ∈ Aj and ak,l ∈ Al . Since j < l we
obtain ai,j ⊳ ak,l, and since k < j, Lemma 3.8 implies that ai,k ⊳ ai,j. We clearly have

ai,k <dref ai,j ∨NC ak,l, which implies that {ai,j, ak,l} is NC-BB.
(ii) If l = n, then Lemma 3.8 implies ai,j ∈ Aj and ak,n ∈ Ak. Since k < j we

obtain ak,n ⊳ ai,j, and since i < k, Lemma 3.8 implies that ai,n ⊳ ak,n. We clearly have

ai,n <dref ai,j ∨PE ak,n, which implies that {ai,j, ak,n} is NC-BB. �

Lemma 3.10. If a, a′ ∈ Aj for j ∈ [n − 1], then {a, a′} is NC-BB.

Proof. Let ai,j, ak,j ∈ Aj. Note that ai,j ∨NC ak,j has the unique non-singleton block

{i, k, j}. There are again two cases.
(i) If i < j and k < j, then Lemma 3.8 implies ai,k ∈ Ak, and thus ai,k ⊳ ai,j and

ai,k ⊳ ak,j. We clearly have ai,k <dref ai,j ∨NC ak,j, which implies that {ai,j, ak,j} is
NC-BB.

(ii) If i < j and k > j. Lemma 3.8 implies that k = n, and that ai,n ∈ Ai.
Therefore ai,n ⊳ ai,j and ai,n ⊳ aj,n. We clearly have ai,n <dref ai,j ∨NC aj,n, which

implies that {ai,j, aj,n} is NC-BB. �

Lemma 3.11. Let X ⊆ Ān satisfy
∨

PE X = 1. If |X| < n − 1, then X is PE-BB.

Proof. Suppose that |X| = k. Observe that if X is a set of pairwise non-crossing
atoms, then

∨

NC X =
∨

Π X. By (3)
∨

Π X has exactly n − k blocks. Moreover, by
Theorem 3.2 the number of blocks of

∨

PE X is either n − k or n − k − 1. Since we
assumed

∨

PE X = 1, we conclude that k ∈ {n − 2, n − 1}. Let z =
∨

NC X.
If k = n − 2, then we conclude that 1 ∼z n − 1, and {n} is a block of z. It

follows that a1,n /∈ X, which in view of Lemma 3.8 implies a1,n ⊳ a for all a ∈ X.
Since a1,n <dref 1, we conclude that X is PE-BB. �

Let us denote by Bn the set of all NC-NBB bases for 1, and let B̄n denote the set
of all PE-NBB bases for 1. By construction we have B̄n ⊆ Bn.

Corollary 3.12. Every element of Bn has cardinality n − 1. Consequently the same is
true for the elements of B̄n.

Proof. The claim for the cardinality of the elements in Bn follows directly from (5)
and Lemmas 3.9 and 3.10.

The claim for the cardinality of the elements in B̄n can be verified directly using
Lemmas 3.9–3.11. �
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For the moment, let us focus on the elements of Bn. In view of Corollary 3.12
these elements are certain maximal chains of (An,E). We can naturally associate a
graph with X ∈ Bn by connecting the vertices i and j if and only if ai,j ∈ X. Denote

the resulting graph by τ(X).

Lemma 3.13. If X ∈ Bn, then τ(X) is a tree.

Proof. Since
∨

NCX = 1 it follows from (3) that τ(X) is connected. Now suppose
that τ(X) contains a cycle C = (ai1,i2 , ai2,i3, . . . , ais,i1). We then have i1 < i2 < · · · <
is, and 3 ≤ s < n.

If is < n, then ais−1,is
, ai1,is

∈ Ais
, which contradicts Lemma 3.10. If is = n, then

ais−2,is−1
, ais−1,is ∈ Ais−1

, which contradicts Lemma 3.10. �

Since a1,n is the least element in (An,E) any of the trees in Lemma 3.13 contains
an edge between 1 and n.

Lemma 3.14. Let X ∈ Bn, and let τ(X) be the corresponding tree. If we remove the edge
between 1 and n, we obtain two trees τ1 and τ2, where τ1 has vertex set [k] and τ2 has
vertex set {k + 1, k + 2, . . . , n} for some k ∈ [n − 1].

Proof. Suppose that τ1 and τ2 are the two trees obtained by removing the edge
connecting 1 and n in τ(X). The claim is certainly true for n ≤ 3, so suppose that
n > 3. Assume that there is a vertex k in τ1 such that there exists i ∈ [k − 1] which
is a vertex of τ2, and choose k minimal with this property. Since τ1 is a tree, there
is a unique path from 1 to k, and let k′ be the predecessor of k along this path. It
follows that ak′,k ∈ X, and thus k′ < k. The minimality of k implies that there is l
in {k′ + 1, k′ + 2, . . . , k − 1} which is a vertex of τ2. Let l = l0 < l1 < · · · < ls = n
denote the elements (in order) on the unique path from l to n in τ2. Again by
construction we have ali−1,li

∈ X for i ∈ [s]. Moreover, there exists a unique index

i ∈ [s] such that li−1 < k and li > k. Then, however, Lemma 3.9 implies that
{ak′,k, ali−1,li

} is NC-BB, which contradicts the fact that X is an NC-NBB base for 1.
This completes the proof. �

We say that the trees occurring as τ(X) for some X ∈ Bn are noncrossing. Recall

that the Catalan numbers are defined by Cat(n) = 1
n+1 (

2n
n ), and they satisfy the

recurrence relation

(11) Cat(n + 1) =
n

∑
k=0

Cat(k)Cat(n − k),

with initial condition Cat(0) = 1 [14].

Corollary 3.15. For n ≥ 1 we have
∣

∣Bn

∣

∣ = Cat(n − 1).

Proof. Let Cn =
∣

∣Bn

∣

∣. Lemma 3.14 implies that Cn = ∑
n−1
k=1 CkCn−k, and it is quickly

verified that C1 = 1. Therefore the numbers Cn and Cat(n − 1) satisfy the same
recurrence relation and the same initial condition and must thus be equal. �

In view of Theorem 3.7 we obtain the following well-known corollary.

Corollary 3.16 ([9, Théorème 6]). For n ≥ 1 we have

µ(NCn,≤dref)
(0, 1) = (−1)n−1Cat(n − 1).

We are now ready to prove Theorem 1.4.
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Proof of Theorem 1.4. In view of Corollary 3.15 it remains to determine the size of
Bn \ B̄n. Essentially this set consists of three types of elements; those that contain
a1,n−1, those that contain an−1,n, and those that (after removal of a1,n) join to 1
in (PEn,≤dref). Since every element of Bn contains a1,n, Lemma 3.13 implies that
X ∈ Bn cannot contain both of a1,n−1 and an−1,n.

Let S
(1)
n = {X ∈ Bn | a1,n−1 ∈ X} and S

(2)
n = {X ∈ Bn | an−1,n ∈ X}, and let

Rn =
{

X ∈ Bn |
∨

PE

(

X \ {a1,n}
)

= 1
}

.

By construction we have B̄n = Bn \
(

S
(1)
n ∪ S

(2)
n ∪Rn

)

.

The proof of Theorem 3.2 implies that for X ∈ Rn the only vertex adjacent to n

in the corresponding tree τ(X) is 1. As a consequence S
(1)
n ⊆ Rn, and S

(2)
n ∩Rn =

∅. It therefore suffices to determine the cardinalities of S
(2)
n and Rn.

Let X ∈ S
(2)
n , and let τ(X) be the corresponding noncrossing tree. Lemma 3.14

implies that there is some k ∈ [n − 1] such that after removing the edge between
1 and n we are left with a noncrossing tree τ1 on vertex set [k] and a noncrossing
tree τ2 on vertex set {k + 1, k + 2, . . . , n} which has an edge between n − 1 and n.
As a consequence, k < n− 1 and we can view τ2 as a noncrossing tree on n− k − 1

vertices. We obtain
∣

∣

∣
S
(2)
1

∣

∣

∣
= 1, and

∣

∣

∣
S
(2)
n

∣

∣

∣
=

n−2

∑
k=1

∣

∣

∣
Bk

∣

∣

∣
·
∣

∣

∣
Bn−k−1

∣

∣

∣
,

which in view of (11) implies
∣

∣

∣
S
(2)
n

∣

∣

∣
= Cat(n − 2).

Let X ∈ Rn. We have seen already that in τ(X) the only edge adjacent to n is 1.
It follows that the elements of Rn correspond bijectively to noncrossing trees on

n − 1 vertices. Corollary 3.15 then implies that
∣

∣

∣
Rn

∣

∣

∣
= Cat(n − 2).

We thus obtain
∣

∣

∣
B̄n

∣

∣

∣
= Cat(n − 1)− 2Cat(n − 2)

=
1

n

(

2n − 2

n − 1

)

−
2

n − 1

(

2n − 4

n − 2

)

=

(

4(2n − 3)

n(n − 3)
−

4

n − 3

)(

2n − 5

n − 4

)

=
4

n

(

2n − 5

n − 4

)

,

and the claim follows from Theorem 3.7. �

Figure 4 illustrates the proof of Theorem 1.4 for n = 5. It displays the non-
crossing trees corresponding to the elements of B5. We have crossed out the trees

corresponding to elements of S
(2)
5 in red, to elements of S

(1)
5 in blue, and to ele-

ments of R5 in green.
We can use the combinatorial model from above to compute NC-NBB bases

for any element of NCn, by simply picking at most one element of each rank of
(An,E) keeping the restriction that their join in the partition lattice is again non-
crossing. This process works since every interval in (NCn,≤dref) is a direct product
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1

2 5

3

4

1

2 5

3 4

1

2 3 5

4

1

2 4 5

3

1 2

5 3

4

1 4

2 5

3

1 3

2 5 4

1 3 4

2 5

1 4

2 3 5

1

2 3 4 5

1 4 2

5 3

1 2

5 3 4

1 2 3

5 4

1 2 3 4

5

FIGURE 4. The noncrossing trees corresponding to the NC-NBB
bases for 1 in (NC5,≤dref). We have crossed out certain trees as
indicated in the proof of Theorem 1.4.

of smaller noncrossing partition lattices. The analogous procedure for (PEn,≤dref)
does not work, due to the extra condition for PE-NBB bases (Lemma 3.11). More-
over, the subintervals of (PEn,≤dref) do not factor nicely into direct products of
smaller lattices. Consider the interval [an−2,n−1, 1] in (PEn,≤dref). The cardinalities
of these intervals for n ∈ {4, 5, . . . , 9} are 4, 12, 37, 118, 387, 1298, and we observe
that large prime factors appear in this sequence. It seems, however, that every
proper interval of (PEn,≤dref) can be written as a direct product of an interval of
the previous form and some noncrossing partition lattice.

4. A SUBPOSET OF (PEn,≤dref)

Now we consider a subposet of (PEn,≤dref) that was introduced in [4]. To that
end recall that a function f : [n] → [n] is a parking function if for all k ∈ [n] the

cardinality of f−1
(

[k]
)

is at least k. It is a classical result that the number of parking

functions of length n is (n + 1)n−1 [6, Proposition 2.6.1].
For two noncrossing partitions x and y with x ⋖dref y, there are two unique

blocks B1 and B2 of x such that B1 ∪ B2 is a block of y. Suppose without loss of
generality that min B1 < min B2, and define

(12) π(x, y) = max{j ∈ B1 | j ≤ i for all i ∈ B2}.

Clearly π extends to an edge-labeling of (NCn,≤dref); the parking labeling. Let Cn

denote the set of maximal chains of (NCn,≤dref). For any X ∈ Cn the sequence
π(X) is a parking function of length n − 1, and every such parking function arises

in this way [18, Theorem 3.1]. As a consequence
∣

∣Cn

∣

∣ = nn−2.

Now let Dn =
{

X ∈ Cn | n − 1 /∈ π(X)
}

be the set of all maximal chains
of (NCn,≤dref) whose parking labeling does not contain the value n − 1. Let Ln

be the subposet of (NCn,≤dref) whose maximal chains are precisely Dn, see [4,
Definition 3.3].
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1|2|3|4

1|23|4 1|2|34 13|2|4 1|24|3 12|3|4 14|2|3

1|234 123|4 12|34 14|23 134|2 124|3

1234

2 3 1 2 1 1

3

1 1

2

1
1

1

3

2

1

2
3 22

1

1

1 3 2 1 1 2

FIGURE 5. The lattice (NC4,≤dref) with its parking labeling. The
highlighted chains form D4.

1|2|3|4

1|24|3 1|23|4 12|3|4 14|2|3

1|234 124|3 14|23 134|2

1234

2 3 2 1

3

1 1 1

2 3 3

1 3 2 2

FIGURE 6. The poset (PE4,≤pchn). The labeling is inherited from

(PE4,≤dref), see Figure 2.

Proposition 4.1 ([4, Proposition 3.4]). For n ≥ 3, the ground set of Ln is precisely PEn.

We can therefore write Ln = (PEn,≤pchn), where ≤pchn is a subset of ≤dref.

Figure 6 shows the poset (PE4,≤pchn). This poset was extensively studied in [4].
For our purposes the next statement is the most relevant.

Theorem 4.2 ([4, Theorem C]). For n ≥ 3 we have µ(PEn,≤pchn)
(0, 1) = 0.

The main goal of this section is to prove Theorem 1.1 and Corollary 1.2, which
essentially proves the conjecture in [4]. To that end we show that the restriction
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of the EL-labeling of (PEn,≤dref) coming from the left-modular chain (6) is an EL-
labeling of (PEn,≤pchn). First we need to show that the property of being an EL-
labeling is preserved under removing particular cover relations.

Proposition 4.3. Let L = (L,≤) be a bounded graded poset with an EL-labeling λ. Let

x, y ∈ L \ {0̂, 1̂} with x ⋖ y. Let L′ be the poset that arises from L by removing the
cover relation (x, y). If there is some y′ ∈ L with x ⋖ y′ and λ(x, y) ≻ λ(x, y′), then the
restriction of λ to L′ is again an EL-labeling.

Proof. Let λ′ denote the restriction of λ to L′, and let x, y be the elements from the
statement. We proceed by contraposition and suppose that λ′ is not an EL-labeling
of L′.

Note that C (L′) ⊆ C (L), and for X ∈ C (L′) we have λ′(X) = λ(X). Since λ′

is not an EL-labeling of L′, there must be some interval I′ in L′ in which the EL-
property of λ′ fails. We conclude that x, y ∈ I′ (since otherwise λ ≡ λ′ on I′, which
is a contradiction). We can moreover assume without loss of generality that x is the
least element of I′, i.e. I′ = [x, z] for some z. Let I be the corresponding interval in
L. There are three possibilities for λ′ to fail to be an EL-labeling of I′. The existence
of more than one rising maximal chain in I′ contradicts the assumption that λ is
an EL-labeling of I, and the same holds for the assumption that the unique rising
chain of I′ is not lexicographically first. It follows that there does not exist a rising
maximal chain in I′. Since there is a rising maximal chain X in I, we conclude that
x, y ∈ X; in particular x is the first and y is the second element of X. Since λ is an
EL-labeling of L, we conclude that λ(x, y) � λ(x, y′) for all y′ ∈ L with x ⋖ y′. �

By definition (PEn,≤pchn) is obtained from (PEn,≤dref) by removing certain
cover relations, and the next results states that these satisfy the condition from
Proposition 4.3.

Proposition 4.4. Let x, y ∈ PEn such that π(x, y) = n − 1, where π is the labeling
defined in (12). There exists y′ ∈ PEn with x ⋖dref y′ such that π(x, y′) < n − 1 and
λ(x, y) > λ(x, y′), where λ is the EL-labeling of (PEn,≤dref) coming from the left-
modular chain (6).

Proof. Let x and y be as desired. Since π(x, y) = n − 1, there must be a block B
of x containing n − 1, and {n} must be a singleton block of x. Moreover, y must
contain the block B ∪ {n}. Since x ∈ PEn we conclude that B 6= {n − 1} and 1 /∈ B;
in particular x 6= 0 and y 6= 1. Let A be the block of x containing 1. Let y′ be
the partition that contains all blocks of x except that A and {n} are replaced by
A ∪ {n}. Since x ∈ PEn, the blocks A and B cannot be crossing, which implies that
y′ ∈ PEn. Moreover, we have x ⋖dref y′. We claim that y′ is the desired element.

First of all π(x, y′) < n − 1, since n − 1 /∈ A, so that the cover relation x ⋖dref y′

is still present in (PEn,≤pchn).
Recall that the left-modular chain (6) of (PEn,≤dref) consists of the elements xi

given by the unique non-singleton block [i − 1] ∪ {n}. Since (PEn,≤dref) is super-
solvable (Theorem 1.3), it follows from the results in [10] (see also [19, Proposi-
tion 2]) that the labeling λ defined in (1) is equivalent to the labeling

λ(w, z) = min{i − 1 | xi 6≤dref w and xi ≤dref z}.

(The “−1” in this definition comes from the fact that we label the elements in (6)
by x1, x2, . . . , xn, and we want a labeling using the label set [n − 1].)
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Observe that x2 ≤dref y′, since {1, n} is the unique non-singleton block of x2,
and 1 ∼y′ n. Since 1 6∼x n, we conclude x2 6≤dref x, which implies λ(x, y′) = 1.

On the other hand, 1 6∼y n, which implies x2 6≤dref y. We thus have λ(x, y) > 1 =
λ(x, y′). (In fact we have λ(x, y) = k, where k = min B.) �

We conclude this article with the remaining proofs.

Proof of Theorem 1.1. This follows by construction from Propositions 4.3 and 4.4.
�

Proof of Corollary 1.2. This follows from Theorem 1.1 and Theorems 4.2 and 2.4. �
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