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Abstract. A formal n-squareis the set of positions in ann by n matrix. A shuffleof a formal

n-square consists of independent rotations of each row and of each column.A key result

turns out to be valid at least forn ≤ 34 andn = 37: Each set ofn positions can be mapped with

one shuffle onto atransversalof the columns. We consider two applications toequi- n-

squares(i.e., n-matrices filled with digits 0,. . ,n − 1 in equal amounts).

First, a shuffled equi-n-square can be seen as a torus withn colors and two orthogonal lay-

ers ofn rings that can be rotated.Unlike Rubik’s cube,each permutation of colored cells can

be implemented with shuffles. A lower bound on the required amount of shuffling (approxi-

mately n/2 for modestn) obtains by a simple counting argument. Anupper bound of

3(−1)n−1 + 6n is shown with the aid of the key result.

Our second application invokes column transversals and a process ofindirection to pro-

ducetheoretically unpredictablesequences of integers in shuffled equi-n-squares.

The key result has been achieved with out-of-the-box thinking: optimizing position sets,

av eraging, computations based on number partitions, rotating subsets of a regularn-gon apart,

and the use of cyclotomic polynomials.A few intermediate results need computer assistence.

These efforts also generated a variety of (partially) unsolved problems.We selected eight of

these for a brief discussion based on the available theoretical and computer evidence.
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§1. Introduction and basic notions

An equi- n-square(Stein [21]) is ann times n matrix of digits 0 . .n − 1, each occurringn times.
The square islatin if each digit occurs in each row and each column. The numbersn of equi-n-
squares is a product of a multinomial coefficient "n2 choose (n timesn)" with n! (the latter counts for
renaming the digits).Table 1 below comparessn with the numberl n of latin squares1 for 8≤ n ≤ 20
andn = 32.

Equi-n-squares and their underlying formal squares are the major subjects of this paper. In this
section, we explain our motives for this research and we present some definitions and concepts needed
to formulate our methods and main results in a precise way.

n 8 9 10 11 12 13 14
2log(sn) 188. 900 253. 413 328. 645 414. 897 512. 442 621. 529 742. 386
2log(l n) 66. 560 92. 158 122. 909 159. 088 200. 947 248. 727 302. 634

n 15 16 17 18 19 20 32
2log(sn) 875. 225 1020. 244 1177. 626 1347. 546 1530. 166 1725. 642 5121. 444
2log(l n) 362. 864 392. 004+ 462. 202+ 539. 215+ 623. 205+ 714. 324+ 2410. 45+

Table 1: Equi-n-Squares versus Latin Squares

1.1. Motivation. This project once started with an intuitive idea to produce seemingly unpredictable
number sequences to serve in stream cyphers (Menezes et al [18]).To use equi-n-squares for this
should not be surprising. There is a growing body of results usinglatin squares(or, quasigroups) for
error correcting codes(Liu [15], Dénes and Keedwell [4, ch. 9]),cryptocodes(Denés and Keedwell
[5], Shcherbacov [20], Grosek and Sys [8]),message authentication(e.g., Meyer [19]), andnon-linear
pseudo-random(noise) sequences(e.g., Koscielny [12]). Suchapplications often require rather large
latin squares with additional demands like (pseudo) randomness (see Jacobson and Matthews [9] for
this), high non-associativity, or ease of representation.In contrast, there are no a priori requirements
on n or on equi-n-squares.

Our search for proofs has lead us to a variety of methods, results, and problems.Network flows are
used to obtain partitions into latinn-sets, common to two equi-n-squares, and to produce partitions
into latin column transversals (cf. § 2). Counting events and averaging are a recurring theme in § 3
where we handle optimal position sets, computations with number partitions, and rotating subsets of
an n-gon apart, making good use of cyclotomic polynomials. This allows us to derive akey resulton
shufflingn-sets into column transversals and two major applications, described below in detail.

The present paper deals only with the combinatorial (and some algebraic) features of the subject.
A discussion of cryptologic features is deferred to a separate paper [22].

1.2. Coordinates and indirection. The columns and rows of ann-matrix (n ≥ 2) are numbered
0, . . ,n − 1 in right-to-left and bottom-to-top order. A position (cell) is a pair of the form (column
number, row number) and the set of all positions is aformal n-square. The digit assignment of an
equi-n-square is seen as astateof its formal square: a partition ofn2 positions inton equal-sized parts
calledcolors. A set of positions islatin in a given state if its positions are all colored differently.
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_______________
1 . For values ofl n (n ≤ 10) consulthttp://oeis.org/A002860. For n = 11 . . 15estimates were

given by McKay and Rogoyski [16]. The exact value at 11 is due to McKay and Wanless [17].For

n> 15 we used the lower bound (n!)2n / n(n2), attributed to H.J. Ryser.
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The process ofindirection in an equi-n-square transforms a non-negative integerx < nn into a non-
negative integer y < nn as follows. If (xn−1 . . x0)n representsx in the basen then y = (yn−1 . . y0)n,
whereyk is the digit at position (k, xk) for k = 0, . . ,n − 1. Thesequence ofn positions (k, xk)n−1

k=0 rep-
resents atransversalof the columns. It is thegraph of the functionk xk (k < n). We call this anH-
graph (horizontal graph) and the indirection process is specified as H-indirection.Similarly, V-indi-
rection reads V-graphs, which are transversals of the rows, or, equivalently, function graphs oriented
along the vertical axis. In the theory of equi-n-squares, a set of positions which is transversal to both
the rows and the columns is better known as acomplete transversal(Dénes and Keedwell [3, p. 26];
Stein [21]).

The term "indirection" is borrowed from an operator of the C programming language that turns a
memory pointer into memory content.The suggested process treats an equi-n-square as if it were an
array ofn-digit numbers indexed by all n-digit numbers.To maintain and exploit this illusion, a price
has to be paid as we shall see shortly.

1.3. Intrinsic bias. The ratiol n : sn in table 1 illustrates that an equi-n-square is unlikely to have latin
columns and rows. Indirectionoutput may therefore fail systematicallyto have certain digits at certain
positions. Thedefect can be analyzed as follows.

Let 1≤ r ≤ n and letC1, . . ,Cr be distinct colors. The number ofn-sets in∪r
i=1 Ci intersectingCi

for eachi = 1, . . ,r is obtained with the method of inclusion-exclusion (van Lint and Wilson [14]):

r−1

k=0
Σ (−1)k 


r

k





(r − k)⋅n

n



.

The number ofn-sets with exactly r colors is obtained by multiplying the previous amount with the
binomial coefficient "n chooser ". Theexpected number of colors in ann-set is

E : =
n

r=1
Σ

r ⋅ 

n

r

 ⋅

r−1

k=0
Σ (−1)k 


r

k





(r − k)⋅n

n





n2

n



.

The expected number of missing colors in ann-set isB : = n − E. Apparently, the state of a formaln-
square doesn’t matter. The numberB, with its various interpretations (missing rows, missing columns,
missing digits), may be dubbed theintrinsic biasof the formaln-square.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E 1.67 2.29 2.91 3.54 4.17 4.80 5.43 6.06 6.70 7.33 7.96 8.59 9.22 9.8510.49 11.12

B 0.33 0.71 1.09 1.46 1.83 2.20 2.57 2.94 3.30 3.67 4.04 4.41 4.78 5.15 5.51 5.88

BIN 0.50 0.89 1.27 1.64 2.01 2.38 2.75 3.12 3.49 3.86 4.22 4.59 4.96 5.33 5.70 6.07

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

E 11.75 12.38 13.01 13.66 14.28 14.91 15.54 16.17 16.80 17.44 18.07 18.70 19.33 19.97 20.60 21.23

B 6.25 6.62 6.99 7.35 7.72 8.09 8.46 8.83 9.19 9.56 9.9310.30 10.67 11.03 11.40 11.77

BIN 6.43 6.80 7.17 7.57 7.96 8.27 8.64 9.01 9.38 9.7510.11 10.48 10.85 11.22 11.59 11.95

Table 2: Expected numberE of rows and biasB of an equi-n-square versusn-digit biasBIN .

Table 2 displays some computed values ofE andB, together with the expected numberBIN of dig-
its absent in a nonnegative number <nn (with leading zeros if needed).Note thatB < BIN : values in the
basen, read in an equi-n-square from a random sequence ofn positions, tend to have slightly more
different digits. Yet implementations withn = 16 or 32 behave well in most of the demanding statisti-
cal tests of [6] on randomness provided the square is shuffled as prescribed below.

Stein [21, cor. 5.2] has shown that an equi-n-matrix must have a row or column with at least√ n
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distinct colors. This result is sharp, despite the much higher expectation of colors in ageneric n-set.

1.4. Shuffling. Each row (resp., column) of a formaln-square is a copy of n : = ZZ /nZZ by interpreting
numbers as column numbers (resp., row numbers) modulon. We often identify the setn with
{0, 1, . . ,n − 1}. A rotation by an integer amounta is a function of typen → n with x x + a (mod n)
--suggesting a geometric interpretation ofn as aregular n-gon. Our terminology extends to rows and
columns of a formaln-square.

We avoid a systematically biased indirection output by permuting positions.A V-move(H-move)
independently rotates each column (row) by some amount.A composition of suchelementary moves
amounts to a sequence alternating between V- and H-moves. A V-move followed by an H-move is
called aVH-shuffle;in the opposite order, we hav ean HV-shuffle. We also use "shuffle" as a unit of
measurement, referring to a composed move of type "HVHVH" as "2½ shuffles".

Key Result. For 2≤ n ≤ 34 and forn = 37, each set ofn positions in a formaln-square can be mapped
onto some H-graph (column transversal) with one VH-shuffle.

The physical model of a shuffled equi-n-square is atoruswith two orthogonal layers ofn rotating
rings and with (true) colors replacing digits.It may remind one ofRubik’s cube(Joyner [10]) and the
problem of recovering from a disturbed state. The first application handles a similar problem on the
torus. Notethat an adapted formulation of part (1) fails for Rubik’s cube.

Theorem A. Let n≥ 2.
(1) Every permutation of colored cells of an equi-n-square can be implemented with a composition

of shuffles.
(2) For each equi- n-square there exists a second one which is at least2 log(sn) / (2n ⋅ 2log(n)) shuf-

fles away.
(3) (n as in the Key Result.) Every two equi-n-squares are at most 6n ± 3 shuffles away ("-" forn

even, "+" otherwise).

For convenience, consider astandard operation moderepeating the following cycle of actions to
produce a sequence of outputs from an equally long sequence of inputs.
1. Perform two HV-shuffles (shuffle input deliberately left unspecified).
2. Perform an H-indirection with a non-negative input integer <nn.
3. Output the indirected integer.
Another major objective is to prove the following result.2

Theorem B. (n as in the Key Result.) Let l> 0 be an integer. Given an equi-n-square and two
sequences ofl non-negative integers of size < nn, the standard operation mode turns the first (input)
sequence into the second (output) sequence with some sequence of2 ⋅ l shuffles.

Theorem B is interpreted astheoretical unpredictabiltyof the output, given the input. A realistic
discussion of cryptologic features is presented in [22].

Section 2 largely prepares the way for Theorem A and proves parts 1 and 2. The Key Result is the
conclusion of the entire section 3. Theorems A (part 3) and B are derived and discussed in section4,
closing with a documented list of eight problems.

- 3 -

_______________
2 . A sophisticated version of Theorem B involves a pair oforthogonalequi-n-matrices. Aseach cell now

holds aunique digit pair, some "tempering" of the output is necessary (taking an additional digit of in-
formation). Thisresults into unpredictable 2n-digit output from (n + 1)-digit input. See [22].

Versie dd 09 01 17



§2. States, transitions and shuffles

A transition P→ Q of equi-n-squaresP,Q is a bijective function f of the underlying formaln-
square into itself such that theP-color at p equals theQ-color at f (p) for each positionp. This mim-
ics aphysical permutationof cells-with-content.Tw o transitions between the same pair of equi-n-
squares are consideredequivalent,suggesting agroupoid point of view where each pair of equi-n-
squares has only one transition (morphism),representableby different bijections.

In this section we derive some results on the structure of states and on representing transitions, e.g.,
as composed shuffles. Ourfirst result gives Theorem A (part 1) of the introduction.

2.1. Shuffle Theorem. For each n≥ 2, every transition between two equi-n-squares can be repre-
sented with a composition of shuffles (either HV or VH). In fact, forn even, every permutation of posi-
tions equals a composition of shuffles; for oddn, only even permutations are.

Proof. To each position (k, r ) with column numberk and row numberr we assign a ranking number
k + nr. A n2-cycle, moving each position to a position that ranks one higher modulon2, can be
achieved by an H-move, rotating each row one unit to the left, followed by a V-move, rotating the 0-th
(i.e., rightmost) column up one unit, leaving all other columns at rest.

We next describe how to implement a transposition of the positions ranked 0 and 1 as a composed
HV-shuffle. For n = 2, this can be done with an H-move, rotating the bottom row one unit to the left.
For n> 2  odd, there is a potential problem as each shuffle is an even permutation: no sequence of shuf-
fles can produceexactly a transposition. Thisis where equivalence comes into play. The next method
applies regardless of the parity ofn. If the positions 0 and 1 have the same color, the transposition is
equivalent with the identity. If the colors are different, we can find a position ranked x ≥ n with the
color of position 1.Thenx = k + nr with r > 0  and the 3-cycle (01 x) is equivalent with (01). It can be
produced with 2½ HV-shuffles as follows (whererow(i) and col( j ) denote thei-th row and j -th col-
umn and all operations are modulon):

row(0) + 1, row(r ) + (1− k); col(1) − r ; row(0) − 1; col(1) + r ; row(r ) + (k − 1).

As any symmetric groupSm is generated by them-cycle (01 . .m − 1) and the transposition (01),
the result for HV-shuffles follows. With due adaptations, the argument works for VH-shuffles too.

Elaborating an argument above, it can be shown thatany 3-cycle can be performedexactly by a
sequence of (at most 4½) shuffles. Henceshuffles of an equi-n-square generate at least the alternating
groupAn2. For n ev en, there are odd generators and we obtain the full symmetric groupSn2.

The Shuffle Theorem suggests the question as to the amount of shuffling needed for a transition.
We hav ethe following lower bound, cf. Theorem A (part 2).

2.2. Theorem. For each equi- n-square there exists a second one which is no less than

dn : = 
2 log(sn)

2n ⋅ 2log(n)


shuffles away (sn denotes the number of states andx denotes upper integer approximation ofx).

Refer to table 1 for values of2log(sn). Onecan verify thatdn equalsn/2 for all oddn ≤ 100 and
all even n< 30; it equals 1+ n/2 for 30≤ n ≤ 100 even.

Proof. Given an equi-n-squareS, assume we can reach every equi-n-square fromS with at most
dn − 1 shuffles. We reach at mostn2kn different equi-n-squares with 1-1 funtions composed ofk shuf-
fles. However, n2kn < sn if k = dn − 1, a contradiction.Hence either some square cannot be reached
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from S at all (contradicting thm. 2.1) or some square can be reached only withdn or more shuffles.

For a first guess of anupperbound we may use our proof of thm. 2.1. Count 2½ shuffles for each
transposition (01) and one (HV-)shuffle for each long cycle (note thatpowersof the long cycle can be
implemented with one shuffle, too).With these two cycles, generate all transpositions, then general
cycles. Thisleads to an estimate ofO(n3) shuffles for a generic transformation.

We can do a lot better with the results below, in combination with what is achieved in section 3.
The actual upper bound theorem and its proof are postponed to section 4.

2.3. LemmaLet 0≤ l < k and 0 <n be integers. Then any two partitions of a set of sizenk− l into n
parts of size≤ k have a common transversal avoiding k− l − 1 chosen positions.

Proof. Let U ,W be two partitions of a setV into n parts of size≤ k. We model the situation with a
network as follows. Thevertex set consists of a sources, a sink t, and the three collectionsU ,V,W
(formally assumed disjoint). Each part inU (W) has an outgoing (incoming) arrow to (from) each
member ofV which it contains. There is an arrow from s to each part ofU and from each part ofW to
t. All arrows have capacity 1.Given a set X of vertices, we letXU , XV , XW denote the intersection of
X with U ,V,W, respectively.

Obviously, there is a cut of capacityn betweens and the remaining vertices. Let(S,T) be any cut
of the network with s ∈S and t ∈T. Giv en S′ ⊆S andT′ ⊆ T, we denote byS′ → T′ the set of all
arrows from a vertex in S′ to a vertex in T′. Expressions of type {s} → X and X → { t } are short-
ened toX . A set name is taken to stand for its cardinality if the context requires a number. We wish
to show that the capacityS → T of the cut is at leastn:

(*) TU + (SU → TV) + (SV → TW) + SW ≥ n.

We may assume thatTU + SW < n. Members ofS { s}, resp., ofT { t }, will be referred to asused,
resp.,unused, positions or parts.Clearly,SU → TV is at least the number of unused positions minusk
times the number of unused parts ofU . Also, SV → TW is at least the number of used positions minus
k times the number of used parts ofW. Adding up the two inequalities, we find that the middle terms
at the left of (*) count for at leastk⋅n − l − k⋅(TU + SW). After addingTU + SW, we see that the left side
of (*) is at leastn + k − 1− l ≥ n.

By the theorem of Ford and Fulkerson [14] there is an integer flow of strengthn. The flow uses a
subset ofV of sizen which is a transversal of both partitions. Omitting any k − l − 1 chosen positions
voids no part, yielding a transversal avoiding the chosen positions.

This yields part (1) of the next result by natural induction.

2.4. Corollary (Structure of transitions).Let P,Q be equi- n-squares.
(1) Given an integer k  with 1≤ k ≤ n and a setV of kn positions containing each color k times in

either state, there is a partition of V into sets of sizen which are latin both inP and inQ.
(2) Given a setW of positions consuming the same amount of each P-color and a representation g

of the transition P→ Q with g(W) = W, there is a partition of the remaining positions into sets
of sizen, together with a representation fof P→ Q that agrees withg on W  and maps each
part onto itself.

As to (2), note thatW (hence also its complementV) consumes equal amounts ofP-colors and of
Q-colors. We apply (1) onV, yielding parts of sizen which are latin in both states.Clearly, we hav ea
representation ofP → Q wich equalsg on W and is defined on a partS by assigning to a position (as
colored in stateP) the position inS with the same color in stateQ.

- 5 -
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In latin n-squares, a collection ofkn positions with each row, column, and color occurringk times
is usually called ak-plex. Contrasting with the above result, there exist latinn-squares decomposable
into k-plexes with n = 2mk, such that none of thek-plexes contains al -plex for 1≤ l < k (see [2]).

For a different application of lemma 2.3, we combine one coloring with the column (or row) parti-
tion of a formaln-square.

2.5. Corollary (Structure of equi-n-squares).An equi-n-square can be partitioned inton latin H-
graphs (resp., V-graphs).

Although by lemma 2.3 one can avoid selected positions in producing latin graphs, one cannot
force two selected positions into one latin graph.For each n> 2  we found an example of an equi-n-
square with two positions in a different row, column, and color, which do not fit together in a latin (V
or H) graph.

Cor. 2.5 may suggest a strengthening of cor. 2.4(2) involving a partition intolatin graphs shared by
two states.However, with two rows colored RWB and RBW in the first state and RWR, WBB in the
second state, no commonly latin graph is found in these two rows. This already shows that the
strengthened prop. 2.4(1) fails for eachn ≥ 3. If the remaining row is colored RWB in both states, we
obtain two equi-3-squares with no common partition into latin graphs.

It is also tempting to conclude from cor. 2.5 the structural result that there be a "network" ofn latin
H-graphs andn latin V-graphs, each kind partitioning the underlying formal square and with each H-
graph meeting each V-graph in one position.Without the "latin" condition on one partition, such net-
works exist by lemma 2.3.However, if we start with a partition into latin H-graphs, the desired addi-
tional V-graphs must be latin complete transversals in a modified square, obtained from the original
one by interpreting the rows, columns, and colors as, respectively, the H-graphs, the original colors,
and the original rows. Thisrelates with theBrualdi-Ryser-Stein conjecture (Brualdi and Ryser [1]).
An example of Stein [21] shows that for any n ≥ 2 an equi-n-square (even one with latin rows) need
not possess a latin transversal of sizen. Refer to question Q3 in 4.7.

The next counting result is related with the subject of section 3. All shuffles are considered to be of
the same type --either HV or VH-- and all function graphs must have the same type (H or V).

2.6. Proposition. The average number sh(n) of shuffles mapping a given graph to a given array ofn
positions, preserving the indexation, satisfies1 <sh(n) < √e≈ 1. 64872(e is theEuler number).Hence,
the average number of shuffles mapping a givenn-set onto a given graph lies in between n! and n!√e.

Proof. The number of shuffles isn2n; the number ofn-arrays is (n2)n, and every shuffle maps the
given function graph onto a unique array in the proper way. Hence the required average is

sh(n) =
n2n

(n2)n
=

n2n

n2 ⋅ (n2 − 1) . . (n2 − n + 1)
> 1.

As to the second inequality, we show that the natural logarithm ofsh(n) is <  ½. Equivalently,

− ln((1−
1

n2
)(1−

2

n2
) . . (1−

n − 1

n2
)) = −

n−1

k=1
Σ ln(1−

k

n2
) <

1

2
.

Note that

− ln(1−
k

n2
) =

∞

i=1
Σ ki

i ⋅n2i
(1≤ k < n).

The i th termti (containingki ) of the sum fork = 1 . .n − 1 of these power series satisfies
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ti =
1

i ⋅n2i ⋅
n−1

k=1
Σ ki .

The rightmost sum equals a well-known polynomial expressionPi (n) in n (see Zwillinger [23,
Chap. 1]).We use the fact thatPi+1(n) < nPi (n):

ti+1

ti
<

nPi (n)

(i + 1)n2i+2 ⋅
i ⋅ n2i

Pi (n)
=

i

(i + 1)n
.

Therefore the sum of the series is at mostt1/(1− 1/n) < 1/2.
As to the last statement, different orders on ann-set produce disjoint sets of shuffles connecting the

given graph to the ordered set (array). This leads to the desired expectation.

We verified thatsh(n) increases monotonically from 4/3 at n = 2 to 1. 64871 atn = 50, 000. Hence
the upper bound of√e is probably sharp.

§3. Moving a set of positions into a function graph

In this section we consider the strategic problem of transforming any set of n positions of a formal
n-square into a (function) graph with one shuffle. Prop.2.6 suggests that this problem may be settled
in the affirmative. With some efforts, this will be confirmed in moderate dimensionsn and with the
appropriate combinations of shuffle type (VH, resp., HV) and graph type (H, resp., V).

Let S be a set of positions in a formaln-square. AnS-row (or, a row of S) is a matrix row R such
that S∩ R≠ ∅. We also use the term with reference toS∩ R, especially when referring to thesize of
an S-row. The collection of allS-rows is denotedrows(S). An S-free row is a matrix row disjoint
with S. A row-unique position ofS is a positionp ∈S whose matrix row R satisfiesS∩ R= { p}.
The S-rows of size >1 are referred to asbody rowsof S; taken together, the involved positions ofS
constitute the (horizontal)body ofS. All terminology can be adapted to columns as well; we use
cols(S) for the collection ofS-columns.

3.1. Optimal and weakly optimal sets.A set S of positions isV-optimal (H-optimal) if no V-move
(H-move) increases the number ofS-rows (S-columns). We shall concentrate on V-optimality, the
results being similar for H-optimality. A setS is weakly V-optimal if the number ofS-rows cannot be
raised by rotatingonecolumn ofS. The property is strictly weaker than optimality ifn ≥ 7. To V-opti-
mize a set of sizen with c ≤ n/2 body columns (numbered 0. .c − 1, say), we basically have to rotate
all body columns except (say) the zero-th one.We consider each integer from 1 up tonc − 1 (not
included), rotate thei-th column with thei-th digit (i = 1, . . ,c − 1), and check for improving the rows
score. Thecolumn-unique positions ofS are rotated afterwards into different free rows. For n ≥ 7, our
optimization has a worst case complexity ofO(nc) with c up ton/2. Refer to problem Q4 in § 4.7.

In the formulation and proof of the next proposition, a rotationv of a columnK is identified with
theV-move that just rotatesK by v. The number of elements in a setA is denoted by #A.

Proposition 3.2. Let Sbe a weaklyV-optimal set of positions in a formaln-square and letK be an S-
column. ConsiderS0 = S∩ K with its subsetU0 of row-unique positions ofS in K, the setF of posi-
tions in K on S-free rows, and the setF0 of all remaining positions inK.  Then, with s0 = #S0,
u0 = #U0, f0 = #F0, and f = #F, we have

s0 ⋅ f ≤ (n − s0) ⋅ u0; s0 ⋅ f0 ≥ (n − s0) ⋅ (s0 − u0).

In either inequality, the non-negative difference between both sides equals the sum, taken over all rota-
tions vof K, of the deficits#rows(S) − #rows(v(S)).

- 7 -
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Proof. As to the first inequality, the columnK is divided amongF ,U0, S0 U0, F0. Note that the last
two sets involve exactly the rows occupied byS K . Hence, ifv is a rotation ofK , then the rows of
v(S) hit K exactly in a union of two disjoint sets

v(S0) ∩ (F ∪U0) and F0 ∪ S0 U0,

where the second is independent ofv. We reg ard K as a copy of n by row number. The pair
(p, q) ∈S0 × (F ∪U0) is seen as anevent caused bya rotation v of K providedv(p) = q. Grouping
ev ents by their (unique) cause divides the setS0 × (F ∪U0) into n classes. Thenumber of events
caused by a rotationv is #(v(S0) ∩ (F ∪U0)). Theidentity producesu0 ev ents. Norotation ofK can
produce more, as this would raise the number ofS-rows. Hence

s0 ⋅ ( f + u0) = #(S0 × (F ∪U0)) =
v
Σ #(v(S0) ∩ (F ∪U0)) ≤ n ⋅ u0.

The difference between the two sides of the inequality is the sum of the (non-negative) quantities

u0 − #(v(S0) ∩ (F ∪U0)) = #rows(S) − #rows(v(S)),

taken over all rotationsv of K .
The first conclusion follows at once.The second inequality follows from the first upon noticing

that the sum of the left-hand sides equals the sum of the right-hand sides.

Corollary 3.3. Let Sbe a weakly V-optimal set of positions with f> 0 free rows in a formaln-square.
(a) The numberu of row-unique positions in anS-column of sizes satisfies s− f ≤ u and

0 <
s ⋅ f

n − s
≤ u.

(b) If #S= n then Shas at least n/2+ 1 rows.

Proof. Part (a) is obvious from prop. 3.2; just note thats< n as f > 0. Part (b) follows from (a) after
replacing the denominator byn − 1 and summing the inequality over all S-columns. Thisgives f < ut

with ut the total number of row-unique positions ofS. The numberr of rows satisfiesf = n − r and
ut < r as f ≠ 0. Theresult follows.

Part (b) is obviously the best possible forn ≤ 3. Thenext estimate of the number of rows is based
on a different method and, in general, matches the real situation much closer.

Proposition 3.4. Let Sbe a set withc S-columns of sizes0, s1, . . , sc−1, respectively, in a formal n-
square. Then there is a vertical move V such that the number ofV(S)-rows is at least the outcomer c

of the following recursive computation.

r0 = 0 ; r i+1 = r i +  (n − r i ) ⋅ si

n
 (i = 0, . . ,c − 1).

Proof. Let cols(S) : = { Ki : 0≤ i < c} w ith Si : = Ki ∩ S and #Si = si for each i . We will show by
induction on 0≤ i < c that there are rotationsv j of K j , 0≤ j ≤ i such that the set

Ti+1 : = (S0 + v0) ∪ . .∪ (Si + vi )

occupies at leastr i+1 ≤ n rows. We take v0 as the identity andT1 : = S0 with r1 = s0 ≤ n. Assume
1≤ i < c with rotationsv0, . . , vi−1 such that the corresponding setTi occupies at leastr i ≤ n rows. We
mark exactly r i of them. A pair (p, R), consisting of a positionp ∈Si and an unmarked row R, is con-
sidered anevent caused bythe unique rotation ofKi mappingp into R. The quantity

(*) 
(n − r i ) ⋅ si

n


equals the (up-rounded) average number of events caused by one rotation. Hence there is a rotationvi
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with Si + vi occupying at least (*) many unmarked rows. Notethatr i+1 ≤ n.
The V-moveV, rotatingKi by vi for 0≤ i < c, mapsS to the setV(S) = Tc with at leastr c rows.

It appears that the recursive computation in prop. 3.4 is sensitive to the order in which the sizes are
involved (e.g., (4,3, 2, 2)gives 8 and (4,2, 3, 2)gives 9). We therefore define therows value, rval(P),
of a partitionP of n as the maximal output of the process, taken over all permutations ofP.

3.5. The algorithmMinrows. We want to determine a lower boundr = r (n) for the number of rows,
applying to all V-optimal n-sets. Ourmethod is much faster than computing the minimum ofrval(P)
among all partitionsP of n. Giv en that r = n/2 + 1 is such a lower bound (cor. 3.3(b)), we consider
partitionsP of n with the following assumption:P consists of the column sizes of a V-optimal n-set S
with exactly r< n rows. This requiresn ≥ 4 with c > 1  columns.

As eachS-column holds a row-unique position ofS by cor. 3.3(a), the partition’s maximum,m, sat-
isfiesm< r . Putting aside one maximal partm, we are left with at least(n − m)/m parts and at most
r − m parts. Thealgorithm skips the partitions that do not support the predicted minimum of row-
unique points (cor. 3.3(a)) or the assumed number of occupied rows (prop. 3.4).A surviving critical
partition indicates a potentially sharp lower boundr , which is then returned. After an unsuccessful
round,r is incremented for a next round.

The resultsr (n) for 8≤ n ≤ 50 are displayed in table 3. There is no improvement of the start value,
n/2 + 1, for n ≤ 7.

r ← n/2+1
repeat
for m from r-1 down to 2 // maximum column size
for c from (n-m)/m up to r-m // (# of columns) - 1
for each partition P of n-m in c parts of size ≤ m
if ( # (row-unique points for P) > r-m ) start next partition
P ← P plus part m
if ( rval(P) > r ) start next partition
else return r // ending Minrows

r ← r+1

The algorithmMinrows

n 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
start 5 6 6 7 7 8 8 9 910 10 11 11 12 12 13 13 14 14 15 15 16
r (n) 6 7 8 9 9 10 11 11 12 13 13 14 14 15 16 17 17 18 19 19 20 21

n 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
start 1617 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26
r (n) 21 22 23 24 25 25 25 27 27 28 28 29 29 30 31 31 32 33 33 34 34

Table 3: Lower boundr (n) on the number of rows in a V-optimaln-set

A useful variant of this algorithm starts at the end value r (n) and returnsall critical partitions for
testing purposes.3 This output guided us to (computer-generated) optimaln-sets with exactly r (n) rows
for n ≤ 17 (refer to question Q5 in 4.7). Note, however, that the rows value of a partition is not always

- 9 -
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3 . The variantMinrows algorithm, written in well-readable Mathematica code, is given in the appendix.
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accurate. E.g.,for n = 16 andP = {25, 16 } ( multiset notation:five 2s, six 1s) we findrval(P) = 15, but
prop. 3.14 below implies that all 16-sets with a column partition of typeP optimize to 16 rows.

3.6. A worked example on the sharpness ofr (n). We hav er (20)= 14 and, according to the (variant)
Minrows algorithm, the only critical partition of 20 is {54 }. Considera V-optimal 20-setS with
fourteen rows and with a column partition of this critical type. By cor. 3.3, anS-column with five
points must have at least two row-unique points. Hence we have at most 14− 4 * 2 = 6 body rows and
a body of at most 20− 4 * 2 = 12 positions.Any two S-columns share someS-row. Otherwise, we
could regard them as a single column of size 10 and, asrval(10, 5, 5)= 15, prop. 3.4 would contradict
thatS is optimal. Assumeexactly six body rows (and hence exactly eight row-unique positions).This
gives a total body of exactly twelve positions and every two S-columns involve a  common (body) row.
Up to isotopism, there is only one way to achieve this, as shown in the diagram of fig. 1.

13
12
11
10
9
8
7
6
5
4
3
2
1
0

Fig. 1: The critical case in dimension 20

The inequality "s0 ⋅ f ≤ (n − s0) ⋅ u0" of prop. 3.2 becomes an equality withn = 20, f = 6, s0 = 5, and
u0 = 2. Henceby the cited proposition, every rotation of anS-column results in another V-optimal
configuration. Bylemma 3.8 below, the leftmostS-column (with five members) can be rotated to
avoid any three given rows, say, the ones numbered 4,5, 13 in the diagram. This neither raises nor
lowers the number ofS-rows, so the resulting configuration is optimal again. We find that the second
left S-column now contains three row-unique positions whereas by cor. 3.3 the otherS-columns must
have at least two. Hencewe obtain an optimal configuration withless than six body rows.

We consider two realizations of the diagram in the formal 20-square to beequivalentif they differ
only by permuting the order of the columns and by the location of the zero-th row. There are over
3. 5* 1012 non-equivalent realizations.We do not know whether some of these are V-optimal. Our
previous argument shows that the estimater (20)= 14 is sharp iff there is an optimal 20-set on fourteen
rows with a {54 } column partition andat most fivebody rows, a minor narrowing of the problem.

3.7. The Spaghetti Effect.The next step in achieving our key result on shuffles deals with the follow-
ing problem. Given an n-set S in a formaln-square with enoughS-rows, can these rows berotated
apart, that is: can we find an H-move H such that the rows ofH(S) correspond to disjoint subsets of
n? We are speculating here on acrumbling spaghetti effect: a vertically stretchedn-set has small (hor-
izontal) sections and hence it should crumble completely under suitable "pressure" with an H-move.
We need some preparatory results for a useful answer.

Lemma 3.8. Let S1 and S2 be subsets ofn with cardinality s1, resp., s2, and let c= #(S1 ∩ S2). If

(*) s1 ⋅ s2 < n + c − 1,

then S1 and S2 can be rotated apart inn, i.e., there is v∈n such that (S1 + v) ∩ S2 = ∅.

- 10 -



Proof. Each pair (p, q) with p ∈S1 and q ∈S2 is considered anevent that iscaused bythe unique
rotation moving p to q. Note that the identity causes precizelyc ev ents (p, p) with p ∈S1 ∩ S2.
Hence there ares1 ⋅ s2 − c ev ents caused byn − 1 non-identity rotations.By (*), one of these causes no
ev ent, and hence it mapsS1 outside ofS2.

We next consider situations where two sets cannot be rotated apart inn.

Lemma 3.9. Let n≥ 2 be integer and letS,T be subsets ofn such that n= (#S)⋅(#T). Then the follow-
ing assertions are equivalent.
(1) S and T cannot be rotated apart inn.
(2) S and T do not share a positive (internal, induced) distance as subsets of the regular n-gon.
(3) −S and T cannot be rotated apart inn.
(4) For each k ∈n there exists a unique pair(i , j ) ∈S× T such that k≡ i + j ( mod n).

Proof. For the equivalence (1) <--> (2) we refer to the event/cause terminology in the proof of lemma
3.8: there aren ev ents andn causes. Eachev ent (i , j ) (with i ∈S and j ∈T) is caused by exactly one
rotation. Hencesome rotation causes several events iff some rotation causes none. The first statement
is equivalent with the negation of (2) whereas the second is equivalent with the negation of (1).

The equivalence (2) <--> (3) follows from the previous equivalence and the fact that the mirror sets
S and−S are isometric.

As to (3) <--> (4), assume (3) and letk ∈n. Then (−S+ k) ∩ T ≠ ∅, which yieldsi ∈S and j ∈T
with −i + k ≡ j (modn). Hencethe transformationS× T → n with (i , j ) i + j (mod n) is onto and
therefore bijective. Rev erse arguing yields the opposite implication.

Let ω : = ω n : = e2π i/n be the first primitive n-th root of unity. Then {ω k : 0≤ k < n integer } gives
the roots ofxn − 1 and represents the regularn-gon as a subset of the complex unit circle. Thepolyno-
mial representationof a nonempty setS⊆ n is the integer polynomialS(x) : = Σi ∈Sxi . Giv en 1≤ d < n
integer,S is said to bed-balanced inn providedS(ω d) = 0. A setS⊆ n is aregular m-gon inn (a reg-
ular subpolygon) ifm dividesn andS is a coset of the subgroup ofm-multiples inn.

The n-th cyclotomic polynomialCn(x) (Fraleigh[7, pp. 464-470]) is the minimal polynomial ofω n

over the rationalsIQ (in fact, it is in ZZ[x]). In particular,Cn(x) is irreducible over IQ, its roots are the
primitive n-th roots of unity, and the product ofCd(x) for d ≥ 1 dividing n equalsxn − 1. Thedegree
of Cn(x) is theEuler totientφ (n) of n.

Zwillinger [23, §2.3.8] has a list ofCn(x) for n ≤ 30. Packages like Maple and Mathematica have a
built-in command producing cyclotomic polynomials.

Proposition 3.10. Throughout, n≥ 2 is integer and S,T are subsets ofn.
(1) Let n= p2 with pprime and#S= p. If S  is 1-balanced inn, then Sis a regular p-gon withinn.
(2) Let n= (#S)(#T) and1≤ d < n. If S  and T cannot be rotated apart, then at least one ofS,T is

d-balanced.
(3) Let n= p⋅q with p≠ q prime and#S= p, #T = q. If S  and T cannot be rotated apart, then one

of S,T is a regular subpolygon ofn whereas the other is a complete transversal of its cosets
partition. (Thisincludes the case where both S,T are regular subpolygons ofn.)

(4) Let n= s2 and#S= #T = s. If S  and T cannot be rotated apart, then for each prime pdividing
s, one ofS,T is not n/p2-balanced. Inparticular, for any three sets of sizes in n, some two can
be rotated apart.

Proof of (1). We may assume the setS to be positioned with 0∈S and the largest gap between suc-
cessive points ofS occurring at the step reaching 0. As the average gap between successive vertices of
S along the circle is exactly p, the degree ofS(x) is at most n − p. As Cn(x) is the minimal polyno-
mial of ω and S(ω ) = 0, it divides S(x). Both polynomials are monic and the degree ofCn(x) is

- 11 -
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φ (n) = n − p, so S(x) must have degreen − p and hence is a regular polygon. (In fact,S(x) = Cn(x) and
the conclusion also follows from the formula forCp2(x).)

Note: statement (1) does not extend to the case where #S has two different prime factors. E.g.,the
6-set {25, 24, 13, 12, 1, 0} is 1-balanced in the 36-gon (use thatC36(x) = C18(x

2) = x12 − x6 + 1).

Proof of (2). The statement in lemma 3.9(4) can be expressed as a polynomial congruence relation,

S(x)⋅T(x) ≡
k∈n
Σ xk (mod xn − 1).

Hence there is a rational polynomialP(x) such that

S(x)⋅T(x) −
k∈n
Σ xk = P(x)⋅(xn − 1).

This can be rearranged as

(I) S(x)⋅T(x) = ((x − 1)⋅P(x) + 1)⋅
k∈n
Σ xk.

For eachd as announced,ω d is a root of the rightmost factor (which is (xn − 1) / (x − 1)). Henceat least
one ofS,T must bed-balanced.

Proof of (3). Part (2), applied withd = 1, p, q, yields thatS or T is d-balanced. Asω , ω p, ω q are
(respectively) a primitive n-th, q-th and p-th root of unity, each of the cyclotomic polynomials
Cn(x),Cq(x),Cp(x) divides S(x) or T(x). We may assume thatCn(x) divides S(x). Supposethat
Cq(x) also dividesS(x), say:S(x) = Cn(x)⋅Cq(x)⋅Q(x). As S(x) is monic andCpq(x),Cq(x) are primi-
tive, the classical Gauss lemma (Fraleigh [7, Lemma 45.25]) yields thatQ(x) must have integer coeffi-
cients. EvaluatingCn(x)⋅Cq(x) = Cq(xp) at x = 1 we get q. Taking the product with the integer Q(1)
must give S(1)= p, a contradiction. HenceCq(x) must divideT(x).

If Cp(x) doesnot divide S(x) thenT(x) is divided by the productCp(x) Cq(x), which takes the
value p⋅q at x = 1. Arguing as above, this contradicts withT(1)= q. So S(x) is divided by
Cp(x) Cn(x), where the latter has degreeφ (p) + φ (p⋅q) = n − q. Arguing as in part (1), we may assume
that S(x) is of degree ≤ n − q. HenceS(x) must equalCp(x)⋅Cn(x), which represents the subgroup
{0, q, . . , (p − 1)q} of n (a regularp-subpolygon).

By lemma 3.9(4),T must be a complete transversal of the coset collection ofS and, in fact, any
such transversal will meet any rotation ofS (which is a coset).

Note. Thegeneral situation may be more complicated.For instance, the sets {25, 24, 13, 12, 1, 0}
and {10, 8, 6, 4, 2, 0} share no distance and hence cannot be rotated apart in the 36-gon. Neither is a
regular subpolygon.

Proof of (4). If s happens to be a prime and ifS andT are both 1-balanced, then both are regular s-
gons by (1) and hence can be rotated apart inn.

In the general situation we consider an arbitrary primep dividing s. Assume both sets are
n/p2-balanced. Asω n/p2

is a primitive p2-th root of unity, S(x) and T(x) are both divided byCp2(x).
Reasoning as in (2), we obtain equation (I).Its right hand side is a product that can now be divided by
the square ofCp2(x). One factor, Σk∈n xk, has no multiple roots.Hence the other factor
Q(x) : = (x − 1)P(x) + 1 is divided byCp2(x). However, Q(1)= 1 whereasCp2(1) > 1sinceCp2 has only
positive coefficients and at least two terms. Asbefore, this gives a contradiction.

Given three setsS,T,U ⊆ n of the same sizes, no two of which can be rotated apart, we take a
prime p dividing s and find that exactly one ofS,T (say:T) is not n/p2-balanced. Then(considering
T andU) we find by (2) thatU must ben/p2-balanced. Thepair S,U contradicts the first part of (4).

Prop. 3.10(4) will be needed near the end of this section.We now go one step further, dev eloping
conditions for rotatingmultiple setsapart. Inthe next proof we need the elementary fact that for any
x, y, ε ∈ IR, if ε > 0  and x + ε ≤ y − ε , thenx ⋅ y < (x + ε ) ⋅ (y − ε ).
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Lemma 3.11. Let b≥ 2 be an integer and for each i = 0, . . ,b − 1 let Si be a subset ofn with si ≥ 2
points. Lets= s0 + s1 + . .+ sb−1 and (in case b> 2) assume that all si are equal or that s− b ≤ 21. If

(*)
b − 1

b2
s2 < n,

then there exist rotations r1, . . , r b−1 of n such that S0 ∩ ∩b−1
i=1 (Si + r i ) = ∅.

Proof. We first consider the caseb = 2. Using the quoted elementary fact and (*), we find that
s0 ⋅s1 ≤ s2/4 < n. We may assume that the setsS0, S1 have c > 0  points in common. Hence
s0 ⋅s1 < n + c − 1 whence by lemma 3.8, the sets can be rotated apart.

We proceed by induction onb. Let b ≥ 2, assume the lemma valid forb sets, and considerSi ⊆ n
(i = 0, . . ,b) with the conditions of the lemma forb + 1 sets. Letsb be the minimum of the sizes
si , 0≤ i ≤ b, whencesb ≤ s / (b + 1). Theelementary fact and the assumption (*) forb + 1 sets yield

sb ⋅ (s− sb) ≤
s

b + 1
⋅

b⋅s
b + 1

< n.

By lemma 3.8,any two subsets ofn of size sb and s− sb can be rotated apart.
As b + 1 > 2, our lemma uses an additional assumption. If allsi for 0≤ i ≤ b are equal, then

s= (b + 1) ⋅ sb ands− sb = b ⋅ sb. We find that

b − 1

b2 ⋅ (s− sb)2 = (b − 1) ⋅ s2
b < b ⋅ s2

b =
b

(b + 1)2
⋅ s2 < n.

The alternative assumption is thats− (b + 1)≤ 21. We hav esb ≥ 2 and hence

(1)
b − 1

b2 ⋅ (s− sb)2 ≤
b − 1

b2 ⋅ (s− 2)2 <  b

(b + 1)2
⋅ s2 ≤ n,

where the second (strict) inequality can be seen to be valid for b ≤ s− b ≤ 22.4 Hence, with either alter-
native, condition (*) is available for b setsS0, . . , Sb−1. In caseb> 2, we hav e(s− sb) − b ≤ 21 avail-
able to complete the requirements of the lemma forb sets. Applicationof the induction hypothesis
now yields that the setsSi (i = 0, . . ,b − 1) can be rotated apart.The resulting union (of sizes− sb) and
the setSb can be rotated apart by an earlier argument.

In more practical terms, we have the following (main) result.

Corollary 3.12. Let Sbe ann-set in a formaln-square with b body rows andf free rows. Ifb> 2 we
assume either f≤ 21or all body rows have equal size. If

(†)
b − 1

b2
(b + f )2 < n

(where b+ f equals the total body size and b≤ f ), then Scan be H-moved into an H-graph.

Proof. On eachS-row, we mark the leftmost position ofS. As the total number ofS-rows isn − f , we
have precizely f unmarked positions inS, which must be located on the body rows. Hencethe total
number of positions on body rows isb + f and, in order to have genuine body rows, it is necessary that
b ≤ f . If b ≤ 1, a well-chosen H-move rotates the row-isolated points into different free columns.
Assumeb ≥ 2. By condition (†) and lemma 3.11, we can H-move all body rows of S apart. The
remainingS-rows consist of row-unique positions, which can be rotated to different free columns.

- 13 -

_______________
4 . For b = 3 the inequality (1) first fails ats= 26 with leastn = 127: (3/16) * 262 = 126. 75 < 127and

(2 / 9)* (26− 2)2 = 128. We expect a counterexample with four sets of sizes 2,8, 8, 8where the three
sets of size 8 cannot be rotated apart. Refer to the comments preceding problem Q7.
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b\f 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 5 7 10 13 17 21 26 31 37 43 50 57 65 73 82 91 101 111 122 133
3 . 9 11 15 19 23 27 33 38 44 51 57 65 73 81 89 99 108 118 129
4 . . 13 16 19 23 28 32 37 43 49 55 61 68 76 83 91 100 109 118
5 . . . 17 20 24 28 32 37 41 47 52 58 65 71 7885 93 101 109
6 . . .  . 21 24 28 32 36 41 46 51 56 62 68 7481 87 94 102
7 . . .  .  . 25 28 32 36 40 45 49 55 60 65 7177 83 90 97
8 . . .  .  .  . 29 32 36 40 44 49 53 58 64 6974 80 86 92
9 . . .  .  .  .  . 33 36 40 44 48 53 57 62 67 73 78 84 89
10 . . .  .  .  .  .  . 37 40 44 48 52 57 61 66 71 76 82 87
11 . . .  .  .  .  .  .  . 41 44 48 52 56 61 65 70 75 80 85
12 . . .  .  .  .  .  .  .  . 45 48 52 56 60 65 69 74 79 84
13 . . .  .  .  .  .  .  .  .  . 49 52 56 60 64 69 73 78 83
14 . . .  .  .  .  .  .  .  .  .  . 53 56 60 64 68 73 77 82
15 . . .  .  .  .  .  .  .  .  .  .  . 57 60 64 68 72 77 81
16 . . .  .  .  .  .  .  .  .  .  .  .  . 61 64 68 72 76 81
17 . . .  .  .  .  .  .  .  .  .  .  .  .  . 65 68 72 76 80
18 . . .  .  .  .  .  .  .  .  .  .  .  .  .  . 69 72 76 80
19 . . .  .  .  .  .  .  .  .  .  .  .  .  .  . . 73 76 80
20 . . .  .  .  .  .  .  .  .  .  .  .  .  .  . . . 77 80
21 . . .  .  .  .  .  .  .  .  .  .  .  .  .  . . . . 81

Table 4: Least matrix sizen(b, f ) to rotateb body rows apart, given f free rows

3.13. The Spaghetti Boundary.Let n(b, f ) denote thestrict upper integer approximation of the left
side of (†). Table 4 displays the values ofn(b, f ) for b ≤ f ≤ 21. It also shows that the restriction
f ≤ 21 of cor. 3.12 is always satisfied in dimensionsn ≤ 80.

Consider a generic setS with n positions in a formaln-square. Ithasr rows, of whichb are body
rows, and there aref = n − r free rows. In the table, we look for values f with n(b, f ) ≤ n regardless
of b. SetsS with n − f S-rows can now be H-moved into an H-graph.Given the largest suchf (least
r ), we find thatn − f − 1 is an upper bound on the number of rows for a possible failure of the "crum-
bling spaghetti effect". The least upper bound is called theSpaghetti boundaryfor n (taken 0 for
n = 2, 3).

Thus table 4 yields a simple method to estimate Spaghetti boundaries forn ≤ 80. Someof the
resulting estimates (marked with a star in table 5) are down-corrected by one unit. This occurs whenn
is a multiple of 4 with 8≤ n ≤ 28: in the first f -column where the inequalityn(b, f ) ≤ n fails, it fails
only for b = n/4+ 1. Prop.3.14 below covers this situation and shows that the body rows can be
rotated apart.The estimated Spaghetti boundary forn = 32, 37, 43, 50can also be decreased by one,
due to more complex reasons explained later. Refer to question Q7 in 4.7

n 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29

r (n) 6 7 8 9 9 10 11 11 12 13 13 14 14 15 16 17 17 18 19 19 20 21
s(n) 4* 5  6 7 7* 8 9  10 10* 11 12 13 13* 14 15 16 16* 17 18 19 19* 20

n 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 4950

r (n) 21 22 23 24 25 25 25 27 27 28 28 29 29 30 31 31 32 33 33 34 34
s(n) 21 22 23-1 23 24 25 26 27-1 27 28 29 30 31 32-1 32 33 34 35 36 37 38-1

Starred values have been decreased by one

Table 5: Minimal numberr (n) of rows of optimal sets and Spaghetti boundarys(n)
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3.14. Proposition. Given n= 4(b − 1)≥ 8, any bsubsets of size2 can be rotated apart in a regular n-
gon.

Proof. Assumeb sets of size 2 which cannot be rotated apart. By lemma 3.11,any b− 1 sets among
these can be rotated apart into a setT of size 2(b − 1). Let U : = n T. If the diameterd0 of the
remaining 2-set would occur as a distance inU , we could add the corresponding 2-set toT as the last
rotated 2-set. Hence (counter-clock wise) rotationr d0

by d0 mapsU isometrically ontoT. In particu-
lar, the distanced0 does not occur inT andr d0

mapsT isometrically ontoU too. We deduce that the
given 2-sets must all have distinct diameters. Asb ≥ 3, we may now assumed0 ∈/ { n/2, n/4 }.

The setT is partitioned intob − 1 (rotated) original 2-sets.We pick one part {a1, a2 } w ith a diam-
eter d and we assumer d(a1) = a2 for definiteness. There exist positionsbi ∈U with r d0

(bi ) = ai for
i = 1, 2; in particular, r d(b1) = b2. In replacing {a1, a2 } by { b1, b2 }, we obtain a setT′ from T. Like
T, the setT′ is a result of rotating all given 2-sets except the one of diameterd0. Hence its comple-
mentU ′ maps isometrically ontoT′ by r d0

. Comparing with the previously obtained isomorphism, we
see thatr d0

maps the set {a1, a2 } onto {b1, b2 } and r 2
d0

maps the set {b1, b2 } onto itself. However,
r 2

d0
is nowhere identical asd0 ≠ n/2, nor can it swap the indices becaused0 ≠ n/4.

We refer to question Q8 in 4.7 for additional information on rotating 2-sets apart.

Comparing the bounds in table 5 shows thatr (n) > s(n) for most displayed dimensionsn, in which
case the rows of a V-optimal n-set can be rotated apart.The corrections based on prop. 3.14 being
assumed, the uncertain dimensions are 27,30, 31, 32andn ≥ 35. Combininginformation on the func-
tion n(b, f ) of Table 4 with the critical column partitions provided by theMinrows algorithm, we are
able to settle some more cases. Our target statement on a formaln-square is this:The rows of a V-opti-
mal set withn positions in a formaln-square can be rotated apart.

The casen = 27. Our Spaghetti- andMinrows boundaries agree onf = 8 free rows. Accordingto
Minrows, the only critical (column) partition for a V-optimal 27-set is {93 }. This leads to at least
3 * 4  row unique points by cor. 3.3(a). Hencethe body size is at mostn − 12= 15. Accordingto table
4, the numberb of body rows can be anything between 4 and 8.In regard of the maximal body size
we conclude thatb< 8. As the body is concentrated in three columns, each body row has size 2 or 3.
A description of all possible body row partitions is given below (in multiset notation; cf. earlier).

b b+ f partitions ofb + f
4 12 { 34 }
5 13 { 33, 22 }
6 14 { 32, 24 }
7 15 { 3, 26 }
Body row partitions forn = 27

For b = 4, each body row inv olves each of the three columns.After rotating the first three 3-sets apart,
keeping the first one fixed, we obtain a 9-point set matching the fourth set at three positions.Lemma
3.8 then shows that the fourth set can also be rotated apart. Each remaining partition (s0, s1, , , . sb−1)
(with sizessi arranged in decreasing order) can be rotated apart by using

(
i−1

j=0
Σ sj )⋅si < n (i = 1, . . ,b − 1) (lemma3.8, inductively).

The casen = 30. A critical V-optimal setS has 21 rows (f = 9) among which areb body rows,
2≤ b ≤ 9. Minrows throws up only one critical column partition, {65 }, causing at least 5* 3  row-iso-
lated points by prop. 3.3(a).HenceS has at most 21− 15= 6 body rows. For b = 2 there areb + f = 11
body positions. This is impossible since each body row of S can have at most 5 points (the number of
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columns). We conclude that 3≤ b ≤ 6.

b b+ f partitions with evaluation
3 12 { 52, 2} +,{ 5, 4, 3} +,{ 43 } −

4 13 { 5, 4, 22 } +,{ 5, 32, 2} +,{ 42, 3, 2} +,{ 4, 33 } −

5 14 { 5, 3, 23 } +,{ 42, 23 } +,{ 4, 32, 22 } +,{ 34, 2} +

6 15 { 5, 25 } +,{ 4, 3, 24 } +,{ 33, 23 } +

Body row partitions forn = 30

We prepared a small table listing all body row partitions for each value ofb. Partitions marked
with "+" satisfy the above inductive inequalities. Thereare two neg ative cases, which require more
information. Thepartition {4, 33 } is the easiest.Given the number of columns (5), two body rows of
respective size 3,4 share at least two columns. We can rotate three sets of sizes 4,3, 3apart in a regu-
lar 30-gon. Let T be the resulting 10-point set . The remaining 3-set can be rotated to share two col-
umns with the 4-point subset ofT. Application of lemma 3.8 yields the result.

As to the triple-4 partition, note that two body rows of this size must share 3 columns. After rotat-
ing two rows apart into an 8-setT, we can find two distinct rotations of the third set each causing at
least three events (rotating a point of the third set into aT-column). We see that the remaining 30− 2
rotations together cause all remaining events (at most 8⋅4− 6). Soat least one of these rotations causes
no event.

The casen = 31. The critical case isf = 9. Theonly critical column partition for a V-optimal n-set is
{7, 64 }, which gives at least 3+ 4 * 3  row-unique positions by cor. 3.3(a). Therefore,the body size is
at most 16. Table 4 shows that 3≤ b ≤ 9. We can exclude b ≥ 8 as this would give a body size
b + f ≥ 17. Inaddition, each body row liv es in five columns and hence has size≤ 5. Hereare all possi-
ble body row partitions.

b b+ f partitions
3 12 { 52, 2}, { 5, 4, 3}, {4 3 };
4 13 { 5, 4, 22 }, { 5, 32, 2}, {4 2, 3, 2}, { 4, 33 };
5 14 { 5, 3, 23 }, {4 2, 23 }, { 4, 32, 22 }, {3 4, 2};
6 15 { 5, 25 }, { 4, 3, 24 }, {3 3,23 };
7 16 { 4, 26 }, {3 2, 25 }.

Body row partitions forn = 31

In each case, inductive application of lemma 3.8 shows that the body rows can be rotated apart, except
perhaps for the partition {43 }. In this particular case, every two body rows must share at least three
columns. Afterrotating two 4-sets apart, lemma 3.8 applies since 8⋅4 < 31+ 3− 1.

For the next two casesn = 32, 37,we will show that our estimated Spaghetti boundary can be
down-corrected one unit. In both cases, our (original) target statement is achieved by this.

The casen = 32. The n(b, f )-table 4 indicates the critical casef = 9 with two critical subcases:b = 9
andb = 3. If b = 9, there areb + f = 18 body positions with a 9* 2  body row partition. Byprop. 3.14
we can rotate all body rows apart.If b = 3, the body hasb + f = 12 positions and the possible body
row partitions are:

{8, 22 }, { 7, 3, 2}, { 6, 4, 2}, { 6, 32 }, { 52, 2}, { 5, 4, 3}, { 43 }.

All but the last one can be solved by inductive application of lemma 3.8. The remaining triple-4 parti-
tion is taken care of in thm. 3.15 below. We conclude that the Spaghetti boundary atn = 32 is at most
22, rather than 23.
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The casen = 37. Table 4 points at one critical case:f = 10 with b = 3. Thisgives a body size of 13
positions. Assumethree body rows of sizess0 ≥ s1 ≥ s2. Then s0 + s1 ≤ 11 ands0⋅s1 ≤ 30. If s2 ≤ 3
then (s0 + s1)⋅s2 = (13− s2)⋅s2 ≤ 30. If s2 > 3, the partition should be {5, 4, 4} w ith (s0 + s1)⋅s2 = 36.
This allows to apply lemma 3.8 inductively. It follows that the Spaghetti boundary atn = 37 must be
estimated 26, rather than 27.

Dimensions 32,37, 43, 50are peculiar in table 4 because of a small peak ofn(b, f )-values atb = 3
in the columns f = 9, . . , 12. The argument forn = 37 can be imitated to show that the Spaghetti
boundary atn = 43 is 31 rather than 32 (critical case:f = 11, b = 3). For n = 50 (critical case:f = 12,
b = 3), another similar argument shows that a decrement of the estimated Spaghetti boundary (38)
depends entirely on whether three 5-sets can be rotated apart in a 50-gon. As withn = 32, the answer
is affirmative by theorem 3.15 below.

Undecided casesn = 35, 36, 38, 39. For n = 35, 38, 39,Minrows produces significant amounts of crit-
ical column partitions, only part of which we could handle.Dimensionn = 36 is the first with the esti-
mated Spaghetti boundary (26) exceeding theMinrows boundary (25), requiring a new approach.
This situation becomes permanent forn ≥ 40.

Tw o questions remain: can three 4-sets (casen = 32) or three 5-sets (casen = 50) be rotated apart in
a regular n-gon? Thenext result provides a general and affirmative answer.

Theorem 3.15. If n = t ⋅ m2 (m, t ≥ 2), then anyt + 1 sets of sizem can be rotated apart in a regular n-
gon.

Proof. Let Ri for i = 0 . .t be m-sets inn which cannot be rotated apart.Inductive application of
lemma 3.8 allows us to assume thatRi for i = 1 . .t are mutually disjoint.By lemma 3.9, parts (3) and
(4) we find that (∪t

i=1Ri ) − R0 = n (differences taken modulon). Hence,asRi − R0 has at mostm2 ele-
ments for eachi ≥ 1, we see that

(1) The setsRi − R0 for i ≥ 1 partitionn into t sets of sizem2.

In particular, R0 meets only one ofRi , i ≥ 1, say:R1 ∩ R0 ≠ ∅ whereas the setsR0 andRi for i ≥ 2 are
mutually disjoint. Note thatR0 andR1 now hav eexchangeable roles, whence

(2) The setsRi − R1 for i = 0, 2, . ,t partitionn.

We claim that R1 − R0 is stable under addition modulon. To this end, letv, w ∈ R1 − R0, so
R1 ∩ (R0 + w) ≠ ∅ ≠ (R1 − v) ∩ R0. For any set R⊆ n we have (R− R0) − w = R− (R0 + w) (associativ-
ity), whence by (1), the setsRi − (R0 + w) for i ≥ 1 partitionn. Hence asR1 meetsR0 + w, we find

(3) Ri ∩ (R0 + w) = ∅ for i ≥ 2.

For any set R⊆ n we have (R− R1) + v = R− (R1 − v), whence by (2), the setsRi − (R1 − v) for
i = 0, 2, . . ,t partitionn. Hence asR0 meetsR1 − v, we find that

(4) Ri ∩ (R1 − v) = ∅ for i ≥ 2.

Suppose that (R0 + v + w) ∩ R1 = ∅. Then (R0 + w) ∩ (R1 − v) = ∅ and we find by (3) and (4) that the
setsR0 + w, R1 − v, R2, . . , Rt are mutually disjoint. This contradicts our initial assumption and proves
our claim.

As R1 − R0 is finite and contains 0, it is asubgroupof n of index t, which necessarily consists of
the t-multiples among 0. . n − 1 (Fraleigh [7, I§ 6]). It follows that, in particular, the internal distances
of R0 aret-folds.

The entire proof so far can be redone with any Ri , i > 0, in the role ofR0. Hence each of ourm-sets
exclusively has internal distances that aret-folds. We may therefore assume that the original setsRi

are all located inside the subsetV0 of vertices numbered 0,t, 2t, . . , (m2 − 1)t. LetVi be the cosetV0 + i
(i = 1, . . ,t − 1). Thinkof copiesR′i of Ri for i = 0, . . ,t inside the regularn/t-gon, obtained by omitting
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the vertices of then-gon which are not at-fold. If, say, (R′0 + r ) ∩ R′1 = ∅ for some rotationr of the
n/t-gon, then (R0 + t ⋅ r ) ∩ R1 = ∅ in the n-gon, with both sets remaining withinV0. Then for each
i ≥ 2 the setRi can be rotated anywhere into the cosetVi−1, and we would effectively have rotated all
given sets apart.We conclude that no two of the m-setsR′i , i = 0, . . ,t can be rotated apart inm2 = n/t,
which (ast + 1≥ 3) contradicts prop. 3.10 (4).

The previous theorem can be seen to extend prop. 3.14 (casem= 2). It also handles equality in
condition (†) of cor. 3.12 in caseb = t + 1, b + f = (t + 1)⋅m with equal-sized body rows. Taking
n = 128 (withm= 8 and t = 2), we see that every three sets of size 8 can be rotated apart in a 128-gon.
In a footnote on the proof of lemma 3.11 we asked for an example of three 8-sets that cannot be
rotated apart in a 127-gon.

§4. The main results

In the previous section, we investigated two bounds for the number of rows ofn-sets in a formaln-
square: the minimal number of rows of a V-optimized set, and the maximal number of rows of a set
failing to have its (body) rows rotated apart.The first exceeds the second for most dimensionsn< 40.
For such dimensions, the V-optimisation of ann-set can be H-optimised to an H-graph. In a few other
cases where the estimated boundaries are equal, the problem was solved affirmatively using more spe-
cific information. The following (key) result summarizes our achievements so far.

4.1. Theorem. Given 2≤ n ≤ 34 or n= 37, each set with n positions in a formaln-square can be
mapped onto some H-graph (V-graph) with one VH-shuffle (HV-shuffle).

In a formaln-square, theexpectednumber of rows of ann-set (table 2) is rather close to --and
sometimes even larger than-- the estimated Spaghetti bound for moderaten (table 5). This suggests
that for such dimensionsn a (near) majority ofn-sets can be H-moved into an H-graph without a pre-
liminary V-move. Random samples in dimensionsn = 15 . . 20revealed anexcessively large majority
of n-sets that can be H-moved into an H-graph. In fact, on 105 random sets, the number of counterex-
amples decreased from 270 atn = 15 to merely 8 atn = 20. We currently have no explanation for this.
For small n, prop. 4.2 below provides some information.

4.2. Proposition. For n = 2, 3each n-set in a formaln-square can be H-moved onto an H-graph and
V-moved onto a V-graph. For n= 4, 5, each n-set satisfies at least one alternative. Both alternatives
may fail for a6-set in a formal6-square.

Proof. For n = 2, 3this already appears from theMinrows boundaryr (n) = n if n = 2, 3. In general, a
n-set with at most one body row (column) can be H-moved (V-moved) apart. Hence forn = 4, at least
one of the alternatives holds in case a 4-set hasr rows orr columns withr = 1, 3, 4. A 4-set with two
rows and two columns has a {2, 2} r ows partition and its parts share a distance.The same goes for the
columns partition. Hence lemma 3.8 yields both alternatives.

Consider a 5-setS with r rows. If r ∈{1, 4, 5} we hav eat most one body row. Supposer = 3 with
two body rows. Therow partition is {2, 2, 1} and the two pairs can be rotated apart by lemma 3.8.If
r = 2, S will occupy at least three columns. This case is solved,mutatis mutandis,as with three rows.

For n = 6, the set {(0, 0), (1, 0), (1, 1), (2, 1), (0, 2), (2, 2)} can’t be moved to a graph as required.
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4.3. Corollary. Let2≤ n ≤ 34or n= 37.
(a) An array with n positions in a formaln-square can be mapped onto some H-graph with an

HVH-move preserving the order. This also holds with "V-graph" and "VHV-move".
(b) Given ann-array and an H-graph (V-graph), there is an HVHV (VHVH) move mapping the

array onto the graph and preserving the order.

Proof. By theorem 4.1, we can map the set of positions of an arrayA onto some V-graphG by an HV-
move. We mapG onto an H-graphH by an H-move defined as follows. For eachi with 0≤ i < n we
rotate the row of position G[i ] so that G[i ] moves to the j -th column, whereA[ j ] is the element that
we mapped toG[i ]. Eachmember ofG ends up in a different column, whence we obtain an H-graph
with the correct ordering.

As to part (b), any H-graph can be mapped orderly into any other H-graph with a V-move.

Prop. 2.6 provides a rough "statistic" variant of cor. 4.3(b). It needs (on average) only one shuffle
and is valid in all dimensionsn. A n-array withc columns allowing such a shuffle will allow at least
nn−c of them. Hence the expectation ofn − c (the intrinsic bias, cf. table 2) suggests that such shuffles
do not exist forevery n-array. The simplest possible example for any n ≥ 3 inv olves an arrayA with
A[0] : = (1, 0)and A[1] : = (0, 0). Regardless of the other positions ofA, there is no shuffle (either HV
or VH) mappingA orderly onto the bottom row.

The two shuffles required in 4.3(b) are well-spent: the first does the optimizing and the second
takes care of precision.The statement can be reformulated like this: any 1-1 function of ann-set onto
an H-graph extends to a composition of two HV-shuffles.Combining this with both thm. 4.1 and cor.
4.3(b), we get a simple proof that --with the usual restriction onn-- any 1-1 function between twon-
sets in a formaln-square extends to a composition of three shuffles(two versions: HV and VH).

We now derive the two major theorems announced in section 1. Recall that thestandard mode of
operationon an equi-n-square is to perform two HV-shuffles before each H-indirection.

4.4. Theorem (cf. Theorem B). Let 2≤ n ≤ 34 or n= 37, and let l > 0. Given an equi-n-square,
together with two sequences, both consisting ofl non-negative numbers of size < nn, there is a
sequence of2 ⋅ l shuffles such that the standard mode of operation on an equi-n-square turns the first
(input) sequence into the second (output) sequence.

Proof. An output number can be seen as an array ofn digits. We can find the same array in the matrix
at a suitable sequence ofn positions. Bycorollary 4.3(b), two successive shuffles can map this
sequence orderly onto the target graph, described by the input number. Now the output by indirection
is as desired.

Earlier we described this result astheoretical unpredictability of the output.The literature provides
some other combinatorial methods aiming at this goal.Knuth [11, Algorithm M on p.33] uses an
index-to-value process with (standard) arrays to hide the inevitable output patterns of pseudo-random
number generators. Lidl and Niederreiter [13] produce multiplexed sequences by using one m-
sequence to step through another one.Koscielny [12] uses one-cell indirection in a latin square to
modulate a linear m-sequence with a shifted copy.

One might consider a more general type of indirection, reading out arbitraryn-arrays in an equi-n-
square. Accordingto a remark following cor. 4.3, any two n-arrays in an equi-n-square are linked
with a sequence of three shuffles (usualn). Henceby adapting the previous argument, this method can
produce any sequence of numbers withthree shufflesbefore each indirection. The method also needs a
doubled inputto determine the array to read and hence may be qualified as rather wasteful. However,
with this type of indirection (explicitly allowing repeating cells) the intrinsic square bias for numbers
becomes the natural bias (see § 1) and the need for shuffling decreases.
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4.5. Theorem (cf. Theorem A, part 3).Given 2≤ n ≤ 34 or n= 37, every two equi-n-squares are at
most6n + 3(−1)n−1 shuffles away from each other.

Proof. Let P andQ be equi-n-squares. Bylemma 2.5 we can fix a latin V-graphG in P and a latin H-
graphH in Q. There is a 1-1 function connecting eachP-colored position ofG with the position ofH
having the same color inQ. We may assume a transitionf : P → Q extending this 1-1 function. As in
the proof of cor. 4.3(b), the inverse functionH → G agrees with a VH-shuffle σ on H . Hence f fol-
lowed byσ keeps every position ofG fixed. Thisshows that if each transition preserving the coloring
of G can be implemented withk (or even k + ½) HV-shuffles for some integer k, then our transition
f : P → Q can be implemented withk + 1 HV-shuffles (collapsing two successive H-moves if needed)
by letting the shuffle sequence be followed by the HV-shuffleσ −1. We henceforth concentrate on tran-
sitions f : P → Q leaving all positions of a latin (inP) V-graphG invariant.

By prop. 2.4(2), we may assume a partition ofG’s complement inton − 1 sets of sizen with f
mapping each part onto itself.On each partS we decompose the permutation intot(S) disjoint cycles
C(S)1, . . ,C(S)t(S) of length≥ 2. Notethat t(S) ≤ n/2. Thecarrier of f in S can be ordered using the
list of cycles and the choice of a "last point"l (S)i of C(S)i (i = 1, . . ,t(S)). Thegiven permutation ofS
equals the inverse of the cycle L(S) : = (l (S)1 . . l (S)t(S)), followed by the cycle provided by the ordered
carrier.

The partsS are taken in pairs with a single part remaining ifn is even. Assumen is even; for n
odd, we present the necessary adaptations afterwards. Ona selected pair (S1, S2) of parts , the transi-
tion is processed as a sequence of HV-shuffles as follows.
(Step 1) For eachi = 1, 2,extend thet(Si )-cycle L(Si ) of "last points" to an equivalent cycle of length

n/2, e.g., by repeating one of its colors.We form ann-sequence in which the two resulting
sequences are mixed alternatingly. Some HVHV-move maps the sequence to (say) the bottom
row of the matrix (cor. 4.3(b)). Therow is then rotated two positions to the right and moved
back to the array with the reverse of the initial move. This makes the reverse of the product of
L(S1) and L(S2) equivalent with 4½ HV-shuffles.

(Step 2) This applies to the setsSi for i = 1, 2separately. The ordered carrier inSi is made into ann-
array by repeating a color. It takes two HV-shuffles to map the array onto the bottom row (cor.
4.3(b)) which is then rotated one position to the left and mapped back by reversing the initial
HV shuffles. Thismakes the carrier cycle onSi equivalent with 4½ HV-shuffles.

The resulting sequence of shuffles, resulting from steps (1) and (2), reduces to 12½ HV-shuffles after
collapsing successive H-moves.

The setS that is not in a pair is treated with the following modifications. In (Step 1), we extend the
cycle L(S) to an n-cycle by repeating the last color and perform it directly as 4½ shuffles with the
method of (Step 2). Step (2) remains the same. This accounts for a total of 8½ HV-shuffles.

Compiling all results, we can contract the last H-move of one shuffle sequence with the first H-
move of the next shuffle sequence. This amounts to one sequence of 8 HV-shuffles, (n − 2) / 2
sequences of 12 HV-shuffles, and a leftover H-move to finish with. The latter is absorbed by a final
HV-shuffle as described at the beginning of this proof, accounting for 6n − 3 shuffles.

For n odd, no set is taken single. We need a preliminary step involving all selected pairs
(S2i−1, S2i ) for i = 1, . . , (n − 1) / 2.
(Step 0) Let (ai , bi ) be the pair consisting of the last point in the representations ofL(S2i−1), resp.,

L(S2i ). As observed earlier, the product of these transpositions is obtained by first applying the
cycle (b1, . . , b(n − 1) / 2) in rev erse, then applying the cycle (a1, b1, . . , a(n − 1) / 2, b(n − 1) / 2). Both
cycles can be performed equivalently with 4½ HV-cycles. Hencethe product of pairs, required
at this step, can be achieved with 8½ HV-shuffles.

In step (1), we mix the two giv en cycles as we did in the even case and perform the resulting cycle
with 4½ shuffles. Step(2) is as above. The entire state transformation is now equivalent with: the
result of step (0), followed by the results of step (1), followed by the results of step (2), ended with the
obligatory HV-shuffle. After contracting successive H-moves, this accounts for 6n + 3 HV-shuffles.
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The previous result was derived originally to get an idea of how many shuffles are needed to obtain
a generic stateof a formal square (e.g., to serve as an initial state). For instance, 93 shuffles should do
for n = 16. Theestimates in thm. 4.5 are too high for smalln. E.g., for n = 2 it can be seen that any
two states are connected by one HV- or VH-shuffle. They are connected by 1½ shuffle of either type.
For n ≤ 5 some economizing is possible with the aid of prop. 4.2, resulting in an estimate of 5n ± 3. A
minor inaccuracy may occur forn = 4, 5due to a repeated dilemma: HVH or VHV shuffle.

4.6. The physical equi-n-square. The physical object implementing an equi-n-square with shuffling
is a toruswith two orthogonal layers ofn rings, each of which can be rotated by any integer multiple
of 2π /n radians. Incombination, the two layers divide the torus surface inton2 rectangular faces and
performing a shuffle amounts to rotating rings of one type, then rotating the other type.With faces
ev enly painted withn colors, the object becomes a variant ofRubik’s cube(see e.g. Joyner [10]).

Theorem 4.5 contributes to the problem ofrestoring a physical stateof the torus from any other
state. Estimatesof our method in theequi-octal-square(with 64 faces, it is close in size to the stan-
dard Rubik’s cube) indicate that this may take up to 45 shuffles, each shuffle requiring up to 16 rings to
turn. In contrast, the cube never needs more than 20 elementary moves. Oneexplanation might be
that there are implicit restrictions on moving cells of the cube, contrasting with the Shufffle Theorem
2.1. Unsharpnessof our estimates is a more probable explanation (refer to Q2 below).

4.7. Conclusion and open problems. We achieved two distinct goals from a combinatorial study of
equi-n-squares and their underlying formal squares. One is a principle on which to produce unpre-
dictable sequences of non-negative integers, the other is an upper bound on the shuffle distance
between two equi-n-squares. Bothresults are valid under the common restriction 2≤ n ≤ 34 or n = 37
and the proofs borrow largely from the same intermediate results. Our main results, as well as some of
the intermediate results, have raised various questions and we wish to discuss some of these.

The somewhat irregular restriction onn derives from an interaction of several combinatorial meth-
ods (as described in § 3) and is probably not sharp.For n beyond the restriction, however, little infor-
mation is available. Elaborationof our methods shows thatn-sets in a formaln-square are mapped by
some VHV-move onto a V-graph forn< 45 (with possible exception ofn = 42). Thereare usually
many arrays in an equi-n-square representing a given n-digit number, offering increased opportunities
to shuffle one of these arrays onto a graph. This suggests that thm. 4.4 may hold well beyond its cur-
rent limitations.

Note. Ourremarks following thm 4.1 indicate that performing "on purpose" 1½ shuffles before
each indirection can reproduce an output sequence, obtained under standard operation mode from a
given input sequence,with a very low ratio of errors (15≤ n ≤ 20). This suggests that, practically
speaking, our method should work even with 1½ shuffles, alternating between H- and V-indirection.

Q1. Determine alln for which thm. 4.4holds as formulated.How many shuffles are needed for other
n (if any)? Is there a finite asympotic value for n→ ∞?

Our upper bound for the number of shuffles implementing a generic transition seems too high.
Hard evidence has been provided above for n ≤ 5. Ourproof strategy of thm. 4.5 (realizing the transi-
tion stepwise on successive parts) necessarily includes some cleaning up of undesired changes at each
step. Thismay suggest some further economizing.Given the considerable gap with the lower bound
in thm. 2.2, the following is a challenging question.

Q2. Is it true that the lower bound on the required number of shuffles implementing a generic transi-
tion is closest to reality, in other words, is this asmall world phenomenon?

The following open problems relate with our combinatorial tools. First, in regard of comments fol-
lowing cor. 2.5, we define awavy-latin n-squareto be an equi-n-square allowing a partition into latin
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H-graphs and one into latin V-graphs with each H-graph meeting each V-graph in one position (a
wavy-latin network). It follows from cor. 2.5 that an equi-n-square with latin rows or with latin col-
umns is wavy-latin. Asobserved in § 2, lack of latinn-size transversals seems a major obstacle for an
equi-n-square to be wavy-latin.

The defined property is invariant under color renaming, permuting the order of rows and of col-
umns (isotopism), and transposition. This leads to a small collection of "types".For n = 3, we have 9
types, of which one is not wavy-latin. For n = 4, we counted 3160 types of which exactly 8 are not
wavy-latin.
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(non-wavy-latin n-squares)

A random sample of 2 000 equi-5-squares5 has not revealed a counterexample. In addition, all
equi-5-squares with each color having a horizontal or vertical alignment of at least four cells are wavy-
latin. We reduced this to 164 cases, mostly verified with computer assistence.

Q3. Does the ratio (wavy-latinn-squares / equi-n-squares) tend to 1 with increasing n? Is there a
size n0 such that all equi-n-squares are wavy-latin for n≥ n0?

(General formaln-squares.) Given an n-setS of positions, the result of counting row-unique posi-
tions in anS-column or countingS-rows may provide a sufficient reason forS not to be V-optimal
(props. 3.3(a) and 3.4). Otherwise, we have to rely on an algorithm of complexity O(nn/2) for n ≥ 7.
To compute a V-optimal configuration of a given n-set, one could follow the computation of the rows
value of its column partition (which isO(n/2!) at worst) to know the best order in which to rotate the
individual (body) columns and the apropriate amount of the rotations.However, there is an example at
n = 16 where the rows value (15) is not the optimal value (16). See § 3.5.

Q4. (n ≥ 7.) Is there a fast(er) method to optimize a generic set ofn positions or to decide that a
generic n-set is optimal? More specifically, is this problem NP? Is it NP complete?

Our Minrows lower boundr (n) for the number of rows of a V-optimal n-set in an equi-n-square
is proven sharp for n ≤ 17 by computer-supplied examples. Asto the sharpness ofr (20)= 14, we
found a minor reduction of the problem (cf. 3.6).

Q5. Find sharp lower bounds forr (n), n≥ 18. On replacing "V-optimal" by "weakly V-optimal", are
there any nfor which this gives a smaller boundary?

The key to the major results in this paper is thm. 4.1 on mapping ann-set onto a function graph
with one shuffle. We derived that any 1-1 function of ann-set onto a graph extends to a composition
of two shuffles and that a 1-1 function between two n-sets extends to a composition of three shuffles
(both VH and HV).

Q6. For which n can each n-set in a formaln-square be mapped onto an H- or V-graph with one shuf-
fle? Howmany shuffles are needed for othern? Is there a finite asymptotic value? Can 1-1 maps
between generic n-sets be extended to a composition of less than3 shuffles?

Table 4 provides a rough-and-ready method to estimate the Spaghetti boundary for dimensions
≤ 80. Themethod rests upon cor. 3.12, valid under the restriction (forb ≥ 3) that the numberf of free
rows is ≤ 21. A close inspection of the preceding lemma 3.11 shows that this restriction is a kind of
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make a solid prognosis. Unfortunately, it takes us 10 minutes on average to explore one 5-square.



common denominator for a variety of situations. In fact, it turns out that the limit onf increases with
the numberb of body rows as described in table 6 (computed with Maple). This enlarges the range of
applicability of our method. N.B.: the computed limit atb = 2 does not contribute to lemma 3.11.

b = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f ≤ 35 21 21 23 26 28 32 35 37 40 43 46 49 51 55

Table 6: specified limits onf for variousb.

Our estimated Spaghetti boundary is sharp for sizesn = 4 (2), 5 (2), 6 (3), 7 (3) ,8 (4), 9 (5), 12(7)
(boundary between parentheses).For n = 10, 11, 13, 15, 18, 21our boundary is sharp up to one unit.
This involves some computer-provided facts related with question Q8 below. Note that improving the
Spaghetti boundary may yield additional support for an earlier observation on thm. 4.1, thatmost n-
sets in a formaln-square can be transformed into an H-graph with just an H-move.

Q7. Find sharp Spaghetti boundaries for other sizesn.

The problem of rotating a collection of 2-sets apart in a regular n-gon shows up in our attempts to
improve the Spaghetti boundary of formaln-squares (see prop. 3.14). It can be shown that the regular
n-gon (with n ev en) admits a partition of its vertices into 2-sets assuming every possible diameter
value if and only ifn is of type 8v or 8v + 2 (with v > 0  integer). Allowing pairs with the same diame-
ter complicates things. In a regular n-gon with n = km andk > 1  odd, the pairs of diameterm can be
grouped intom cycles of lengthk, whence no more thank/2⋅m pairs can be disjoint.

Given any n ≥ 5, defineb asn/3 if n is divisible by 3 and(n + 2) / 3 otherwise. For n ≤ 8 we use
lower rather than upper integer approximation.We verified with computer assistance that forn ≤ 38
any set of b pairs can be rotated apart. One easily verifies that thisb provides asharpbound forn ≤ 11
as well as for alln divisible by 3 and forn = 14, 20(casesk = 3, 7, 5above). Exhaustive computer
search revealed that forn ≤ 32, these are theonlysharp cases. Hence:

Q8. What is the largest numberb such that anyb pairs in a regular n-gon can be rotated apart?

The following observation on latin squares (Dénes end Keedwell [3, ch. 13, p.467]) is a painful
truth extending to equi-n-squares and perhaps to all problems raised above: (...) for most computa-
tional problems, values ofn greater than20 are unmanageable. The exact boundary may vary with
the problem at hand.Our results being a mixture of reasoning and computing, to get around this
obstacle requires increasing the share of reasoning --if possible.
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Appendix: The algorithm Minrows

A reader with Mathematica at hand may check some computational results in section 3 by entering
the following code in a Mathematica notebook6 (.nb file). TheMinrows algorithm here is the "vari-
ant" one (see 3.5), returning the list of critical column partitions if the number of rows is critical (it
returns the empty list or an excessive list otherwise). Note our special treatment of singletons in a par-
tition (which is easily seen not to affect the result).Without this, Mathematica gets into problems with
the dimensionn approaching 40 (now postponed ton ≈ 50).

rowunique[n_Integer, s_Integer, f_Integer] :=
Max[Ceiling[s f/(n - s)], s - f] /; s < n

Minrows[n_Integer, r_Integer] := Module[
{Crit = {}, K = {}, P = {}, PP = {}, plen, klen, rval, c1, cu, ru},
For[m = r - 1, m > 1, m--,
For[c = Ceiling[(n - m)/m], c <= r - m, c++,
K = Select[IntegerPartitions[n - m, {c}], Max[#] <= m &];
klen = Length[K];
For[k = 1, k <= klen, k++,
ru = Total[Map[rowunique[n, #, n - r] &, K[[k]]]];
If[ru > r - m, Continue[]];
P = Select[Join[{m}, K[[k]]], # > 1 &];(* drop singletons *)
c1 = Length[P];
cu = c + 1 - c1;(* number of singletons *)
PP = Permutations[P];
plen = Length[PP];
For[p = 1, p <= plen, p++,
rval = 0; (* check rows value *)
For[j = 1, j <= c1, j++, rval += Ceiling[(n - rval) PP[[p, j]]/n]];
If[rval + cu > r, Break[]]
];(* for p ... *)
If[rval + cu <= r, AppendTo[Crit, Join[P, Table[1, {j, 1, cu}]]]]
] (* for k ... *)
](* for c ... *)
];(* for m ... *)
Crit
](* end of module *)
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