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Abstract. A formal nsquareis the set of positions in anby n matrix. A shuffleof a formal
n-square consists of independent rotations of eacharml of each columnA key result
turns out to be valid at least fox 34 andn=37: Each set of positions can be mapped with
one shuffle onto dransversalof the columns.We @nsider tvo goplications toequi-n
squareqi.e., n-matrices filled with digits Q,.,n—1 in equal amounts).

First, a shuffled equi-square can be seen as a torus witolors and tw orthogonal lay-
ers ofn rings that can be rotatedUnlike Rubik’s aube,each permutation of colored cells can
be implemented with shilés. Alower bound on the required amount of slnd (approxi-
mately n/2 for modestn) obtains by a simple counting gument. Anupper bound of
3(-1)"1 +6n is shown with the aid of theely resuilt.

Our second applicationvokes mlumn transversals and a processnafirection to pro-
ducetheoretically unpredictablsequences of integers in shuffled emtgguares.

The ley result has been achesl with out-of-the-box thinking: optimizing position sets,
aveaging, computations based on number partitions, rotating subsetsgolax negon apart,
and the use of cyclotomic polynomial&.few intermediate results need computer assistence.
These efforts also generated a variety of (partially) uesioproblems.We slected eight of
these for a brief discussion based on tradable theoretical and computer evidence.
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81. Introduction and basic notions

An equi-nsquare(Stein [21]) is amn times n matrix of digits 0..n—1, each occurring times.
The square igatin if each digit occurs in eachwoand each column. The numbsy of equin-
squares is a product of a multinomial coefficianft ¢hoose i timesn)" with n! (the latter counts for
renaming the digits)Table 1 beleov comparess, with the numbet , of latin squaresfor 8<n<20
andn=32.

Equi-n-squares and their underlying formal squares are the major subjects of this Ipaibés
section, we explain our mats for this research and we present some definitions and concepts needed
to formulate our methods and main results in a precise way.

n 8 9 10 11 12 13 14

%l0g(s,)|188.900 253.413 328.645 414.897 512.442 621.529 742|386
%log(l,) | 66.560 92.158 122.909 159.088 200.947 248.727 302.634

n 15 16 17 18 19 20 32

2l0g(s,)| 875. 225 1020.244 1177.626 1347.546 1530.166 1725.642 5121.444
2j0g(l,)) | 362. 864 392.004+ 462.202+ 539.215+ 623.205+ 714.324+ 241Q. 45+

Table 1: Equin-Squares versus Latin Squares

1.1. Motivation. This project once started with an intudiidea to produce seemingly unpredictable
number sequences to serin stream cyphey (Menezes et al [18]).To use equin-squares for this
should not be surprising. There is a growing body of results leimgsquaes (or, quasigroup¥ for
error correcting codegLiu [15], Dénes and Bedwell [4, ch. 9])cryptocodegDenés and Kedwell
[5], Shcherbacon[20], Grosek and Sys [8]messge authentication(e.g., Meyer [19]), andon-linear
pseudo-randonfnois@ sequencege.g., Koscielry [12]). Suchapplications often require ratherdar
latin squares with additional demandselifpseudo) randomness (see Jacobson and Matthews [9] for
this), high non-associaity, or ease of representatiorin contrast, there are no a priori requirements
onn or on equin-squares.

Our search for proofs has lead us to a variety of methods, results, and prabétmzk flows are
used to obtain partitions into latimsets, common to twequi-n-squares, and to produce partitions
into latin column transversals (cf. § 2). Countingrds and weraging are a recurring theme in § 3
where we handle optimal position sets, computations with number partitions, and rotating subsets of
ann-gon apart, making good use gfctotomic polynomials. This allows us to dexiakey resulton
shuffling n-sets into column transversals ana twajor applications, described beldn detail.

The present paper deals only with the combinatorial (and some algebraic) features of the subject.
A discussion of cryptologic features is deferred to a separate paper [22].

1.2. Coordinates and indiection. The columns and rows of ammatrix (n=2) are numbered
0,..,n=1 in right-to-left and bottom-to-top orderA position (cell) is a pair of the form (column
number row number) and the set of all positions isoamal nsquae. The digit assignment of an
equin-square is seen asstateof its formal square: a partition of positions inton equal-sized parts
calledcolors. A set of positions idatin in a given date if its positions are all colored differently.

1. For values ofl, (n<10) consultht t p: // oei s. or g/ A002860. For n=11.. 15estimates were
given by McKay and Rogoyski [16]. The exacalue at 11 is due to McKay and Wanless [1F{r

n> 15 we wsed the lower boundi()2" / n™, atributed to H.J. Ryser.
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The process dhdirectionin an equin-square transforms a nongaive integerx<n" into a non-
negative integery<n" as follovs. If (X,-1..Xo), representsx in the basen theny=(y,-1 .- Yo)n,
wherey, is the digit at positionk( x,) for k=0, ..,n—-1. Thesequence of positions k, x,)k=5 rep-
resents dransversalof the columns. It is thgraph of the functiok = x, (k<n). We all this anH-
graph (horizontal gaph and the indirection process is specified as H-indirectismilarly, V-indi-
rection reads V-graphs, which are transversals of the rowsguvalently, function graphs oriented
along the vertical axis. In the theory of equsquares, a set of positions which is transversal to both
the ravs and the columns is better known asomplete tansversalDénes and Keedwell [3, p. 26];
Stein [21]).

The term "indirection" is bormed from an operator of the C programming language that turns a
memory pointer into memory contenthe suggested process treats an eesiuare as if it were an
array ofn-digit numbers indeed by all n-digit numbers.To maintain and exploit this illusion, a price
has to be paid as we shall see shortly.

1.3. Intrinsic bias. The ratiol , : s, in table 1 illustrates that an eguisquare is unlikely to ve latin
columns and ms. Indirectionoutput may thereforeafl systematicallyo have certain digits at certain
positions. Thalefect can be analyzed as follows.

Let 1<r <n and letC4, ..,C, be distinct colors. The number pfsets inJj_; C; intersectingC;
for eachi =1, .. r is obtained with the method of inclusion-exclusion (van Lint and Wilson [14]):

O (fr — KM
z(l)kEkDD n O

The number oh-sets with gactly r colors is obtained by multiplying the previous amount with the
binomial coefficient i choosea". Theexpected number of colors in awrset is

0 O fr —kmg

n T DDkz(l) kM n O

E:=2 5 .
r=1 H’]D
On O

The expected number of missing colors innaget isB:=n-E. Apparently the state of a formai-
square doeshimatter The numbemB, with its various interpretations (missing rows, missing columns,
missing digits), may be dubbed tinrinsic biasof the formaln-square.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E | 1.67 229 291 354 417 480 543 6.06 6.70 7.33 7.96 8.59 9.22 1048% 11.12
B | 033 071 109 146 183 220 257 294 330 3.67 4.04 441 478 515 551 5.88
Byn| 050 0.89 1.27 164 201 238 275 312 349 386 422 459 496 533 570 6.07

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 @33

E [11.75 12.38 13.01 13.66 14.28 14.91 15.54 16.17 16.80 17.44 18.07 18.70 19.33 19.97 20.60 21.23
B | 625 6.62 6.99 735 7.72 8.09 846 883 9.19 956 9M®30 10.67 11.03 11.40 11.77
Bn| 6.43 6.80 7.17 757 7.96 8.27 8.64 9.01 938 9031 10.48 10.85 11.22 11.59 11,95

Table 2: Expected numbé& of rows and bia® of an equin-square versus-digit biasBy.

Table 2 displays some computed value€aind B, together with the expected numtigy of dig-
its absent in a nongetive rumber <n" (with leading zeros if neededNote thatB < By : values in the
basen, read in an equitsquare from a random sequencengfositions, tend to ha dightly more
different digits. Yet implementations witln =16 or 32 behae well in most of the demanding statisti-
cal tests of [6] on randomness provided the square is shuffled as prescrikaed belo

Stein [21, car5.2] has shown that an egmimatrix must hee a ow o column with at leasyn



distinct colors. This result is sharp, despite the much higher expectation of colgenaria n-set.

1.4. Shuffling Each rav (resp., column) of a formaid-square is a copof n:=2Z/nZ by interpreting
numbers as column numbers (respw naumbers) modulon. We dten identify the sen with
{0,1,..,n=1}. A rotationby an integer amoura is a function of type - n with x> x+a(mod n
--suggesting a geometric interpretatiomads aregular n-gon. Our terminology extends to rows and
columns of a formah-square.

We avoid a systematically biased indirection output by permuting positién¥-move(H-move
independently rotates each column (row) by some amaugbmposition of suctelementary mees
amounts to a sequence alternating betweeand H-maves. A V-move followed by an H-mee is
called aVH-shuffle;in the opposite ordewe havean HV-shuffle. We dso use "shuffle" as a unit of
measurement, referring to a composedend type "HVHVH" as "2%: shuffles".

Key Result. For 2<n< 34 and forn=37, each st ofn positions in a formah-squae can be mapped
onto some H-graph (column transversal) with one VH-shuffle.

The physical model of a shuffled equisquare is @aoruswith two orthogonal layers of rotating
rings and with (true) colors replacing digits.may remind one oRubik’s aube(Joyner [10]) and the
problem of receering from a disturbed state. The first application handles a similar problem on the
torus. Notehat an adapted formulation of part (1) fails for Rubikibe.

Theorem A. Let n=>2.

(1) Every permutation of colored cells of an egusquae can be implemented with a composition
of shuffles.

(2)  For each equi-n-squae there exists a second one whids at least? log(s,) / (2n Flog(n)) shuf-
fles away.

(3) (nas inthe Ky Result.) Every two equir-squaes ae at nost6n+ 3 shufles away ("-" forn
ewen, "+" otherwise).

For convenience, consider atandad operation moderepeating the following cycle of actions to
produce a sequence of outputs from an equally long sequence of inputs.
1. Perform two HV-shuffles (shuffle input deliberately left unspecified).
2. Perform an H-indirection with a non-give input integer <".
3. Output the indirected integer.
Another major objecte is to prove the following resul

Theorem B. (n as in the Ky Result.) Let 1>0 be an intge. Given an equiR-squae and two
sequences dfnon-n@ative intgers o size <n", the standad operation mode turns the fit (input)
sequence into the second (output) sequence with some sequ2nicshoffles.

Theorem B is interpreted déiseoetical unpedictabilty of the output, gien the input. A realistic
discussion of cryptologic features is presented in [22].

Section 2 largely prepares theyfor Theorem A and pves parts 1 and 2. The &y Result is the
conclusion of the entire section 3. Theorems A (part 3) and B arediend discussed in sectiah
closing with a documented list of eight problems.

2. A sophisticated version of Theorem Bratves a pair obrthogonalequin-matrices. Asach cell nov
holds aunique digit pairsome "tempering" of the output is necessary (taking an additional digit of in-
formation). Thisresults into unpredictablendigit output from 6+ 1)-digit input. See [22].
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§82. States, transitions and shuffles

A transition P- Q of equin-squaresP, Q is a bijectve function f of the underlying formah-
square into itself such that tiRecolor atp equals th&-color at f (p) for each positiorp. This mim-
ics aphysical permutatiorof cells-with-content. Two transitions between the same pair of equi-
squares are considereguivalent,suggesting ayroupoid point of viev where each pair of equi-
squares has only one transition (morphigepresentabldoy different bijections.

In this section we deré osme results on the structure of states and on representing transitions, e.g.,
as composed shitds. Ourfirst result gves Theorem A (part 1) of the introduction.

2.1. Shuffle Theoem. For each n=2, every transition between two eguisquaes can be apre-
sented with a composition of sfie$ (either HV or VH). In fact, far even, every permutation of posi-
tions equals a composition of shuffles; for ogddnly even permutations er

Proof. To each position K, r) with column numbek and rav numberr we assign a ranking number
k+nr. A n?cycle, moving each position to a position that ranks one higher maduloan be
achieved by an Hmove, rotating each i@ one unit to the left, followed by a-Move, rotating the 0-th
(i.e., rightmost) column up one unit, leaving all other columns at rest.

We rext describe hwr to implement a transposition of the positions ranked 0 and 1 as a composed
HV-shuffle. For n=2, this can be done with an H-m@ rotating the bottom mw one unit to the left.
For n>2 add, there is a potential problem as eachfdig an gen permutation: no sequence of shuf-
fles can producexactly a ransposition. Thiss where equialence comes into playThe next method
applies rgardless of the parity ofi. If the positions 0 and 1 & the same colgthe transposition is
equiaent with the identity If the colors are diérent, we can find a position ratkx = n with the
color of position 1.Thenx =k +nr with r >0 and the 3-cycle (Q x) is equivalent with (01). Itcan be
produced with 2% H\hufles as follows (whereow(i) and col(j) denote the-th row and j-th col-
umn and all operations are modulp

row(0)+1, ron(r) +(1-k); col(l)-r; row(0)—-1; col(d)+r; row(r)+(k—-1).

As ary symmetric groupS,, is generated by the-cycle (01..m-1) and the transposition {9,
the result for HV-shuffles folles. With due adaptations, the argument works for VH-shuffles too.
Elaborating an argument al® it can be shown thainy 3-cycle can be performeebactly by a
sequence of (at most 4%2) ste$. Henceshufles of an equir-square generate at least the alternating
groupA,z. Forneven, there are odd generators and we obtain the full symmetric §raup i

The Shuffle Theorem suggests the question as to the amount ftihghufeded for a transition.
We havethe following lower bound, cf. Theorem A (part 2).

2.2. Theorem. For each equi-n-squae there ists a second one whids no kess than

.1 log(sy)
" ~2nZlog(n)

shuffles away (sdenotes the number of states arfidenotes upper inger approximation ofx).

dy

Refer to table 1 for values 8log(s,). Onecan verify thaid, equalsih/2Cfor all oddn <100 and
all even n< 30; it equals X n/2 for 30< n< 100 aen.

Proof. Given an @ui-n-squareS, assume we can reaclveey equin-square fromS with at most
d, -1 shuffles. We reach at most?" different equin-squares with 1-1 funtions composedkaghuf-
fles. Havever, n*"<s, if k=d, -1, a contradiction.Hence either some square cannot be reached



from Sat all (contradicting thm. 2.1) or some square can be reached onlg vattmore shuffles. o

For a first guess of anpperbound we may use our proof of thm. 2.1. Count 2% shuffles for each
transposition (A) and one (HYshufle for each long cycle (note thabdwersof the long cycle can be
implemented with one shuffle, too)Vith these tw cycles, generate all transpositions, then general
cycles. Thideads to an estimate 6f(n?) shuffles for a generic transformation.

We @an do a lot better with the results bhelon combination with what is achied in section 3.

The actual upper bound theorem and its proof are postponed to section 4.

2.3. LemmaletO<I| <k and 0<n be integers Then any two partitions of a set of sizke—1 into n
parts of size< k have a common transversal avoiding k— 1 chosen positions.

Proof. LetU,W be two partitions of a seV into n parts of sizesk. We model the situation with a
network as follavs. Thevertex set consists of a source a snk t, and the three collectiond,V,W
(formally assumed disjoint). Each partlih (W) has an outgoing (incoming) awoto (from) each
member oV which it contains. There is an awdrom sto each part dff and from each part & to
t. All arrows hae @pacity 1. Given a t X of vertices, we leK, Xy, Xy denote the intersection of
X withU,V, W, respectiely.

Obviously there is a cut of capacitybetweens and the remainingertices. Le{(S, T) be any cut
of the network with sO0S andt OT. Given SOSandT'OT, we cenote byS - T' the set of all
arrovs from a ertex in S to a ertex in T'. Expressions of typeg} - X andX - {t} are short-
ened toX . A set name is taken to stand for its cardinality if the canmejuires a numbetVe wish
to shav that the capacit$ — T of the cut is at least:

* Tu+(& - TS - Tw)+Swzn.

We may assume thak, + Sy <n. Members ofS\{ s}, resp., of T\{t}, will be referred to asised
resp.,unusedpositions or partsClearly,S, — Ty is at least the number of unused positions minus
times the number of unused partdJof Also, S, — Ty is at least the number of used positions minus
k times the number of used partsviéf Adding up the tw inequalities, we find that the middle terms
at the left of (*) count for at leaktfn — | — k[{Ty, + Sy). After addingTy + S, we e that the left side
of (*) is atleasn+k—-1-I=n.

By the theorem of Ford and Felison [14] there is an integerdl@f strengthn. The flov uses a
subset ol of sizen which is a transversal of both partitions. Omitting &1 — 1 chosen positions
voids no part, yielding a transversabaling the chosen positions. i

This yields part (1) of the next result by natural induction.

2.4. Corollary (Structure of transitions)Let P, Q be equi-n-squares.

(1) Given an intger k with 1<k<n and a setv of kn positions containing edrcoolor k times in
either statethere is a rtition of V into sets of size which are latin both inP and inQ.

(2) Given aseW o positions consuming the same amount oheRcolor and a epresentation g
of the tansition P- Q with g(W) =W, there is a @rtition of the remaining positions into sets
of sizen, togeher with a epresentation fof P - Q that agrees withg on W aad maps edt
part onto itself.

As to (2), note tha¥V (hence also its complemewl) consumes equal amounts Bfcolors and of
Q-colors. W gply (1) onV, yielding parts of size which are latin in both state€learly, we havea
representation oP - Q wich equalsg on W and is defined on a pa8tby assigning to a position (as
colored in staté®) the position inS with the same color in sta@.
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In latin n-squares, a collection &h positions with each m, column, and color occurring times
is usually called &-plex. Contrasting with the alve result, there exist latin-squares decomposable
into k-plexes with n=2mk, such that none of thke-plexes contains d-plex for 1<| <k (see [2]).

For a dfferent application of lemma 2.3, we combine one coloring with the column (or row) parti-
tion of a formaln-square.

2.5. Cowllary (Structure of equir-squares).An equin-squae can be partitioned intan latin H-
graphs (resp., V-graphs). m

Although by lemma 2.3 one cawaid selected positions in producing latin graphs, one cannot
force two selected positions into one latin grapRor eachn>2 we found an rample of an equi+
square with tw positions in a different g, column, and colgrwhich do not fit together in a latin (V
or H) graph.

Cor. 25 may suggest a strengthening of. @4(2) involving a partition intdatin graphs shared by
two states.However, with two rows olored RWB and RBW in the first state an@/R, WBB in the
second state, no commonly latin graph is found in thesertws. Thisalready shows that the
strengthened prop. 2.4(1) fails for eath3. If the remaining rne is colored RWB in both states, we
obtain two equi-3-squares with no common patrtition into latin graphs.

It is also tempting to conclude from c@r5 the structural result that there be a "network taftin
H-graphs and latin V-graphs, each kind partitioning the underlying formal square and with each H-
graph meeting each V-graph in one positid¥ithout the "latin” condition on one partition, such net-
works exist by lemma 2.3However, if we gart with a partition into latin H-graphs, the desired addi-
tional \tgraphs must be latin complete transversals in a modified square, obtained from the original
one by interpreting the ws, columns, and colors as, respetyi, the H-graphs, the original colors,
and the original ys. Thisrelates with theBrualdi-RyserStein conjectu (Brualdi and Ryser [1]).

An example of Stein [21] shows that foryan=2 an equi-n-square (een one with latin rows) need
not possess a latin transversal of sizé&Refer to question Q3 in 4.7.

The next counting result is related with the subject of section 3. All shuffles are considered to be of
the same type --either HV or VH-- and all function graphs must the same type (H or V).

2.6. Proposition. The aveage number skin) of shuffles mapping a given graph to a given arrag of
positions, preserving the indexation, satisfiessh(n) <ye=1. 64872(e is the Euler number).Hence,
the aveage number of shuffles mapping a givesset onto a given graph lies in betweérand riye.

Proof. The number of shuffles i8?"; the number of-arrays is (%), and every shuffle maps the
given function graph onto a unique array in the proper. wignce the requiredverage is

2n n2n

= = >1
SN = o, = -1 @2 -n+1)
As to the second inequalitywe ow that the natural logarithm sh(n) is < ¥2 Equivalently,

1 2 n-1._ k, 1
—In((1—ﬁ)(1—ﬁ)..(l—7))——glln(l—ﬁ)<é.

Note that
k. & K
-In(1-— :i:zlimZi (1<k<n).

Theith termt; (containingk') of the sum folk =1..n -1 of these power series satisfies



1 n-1

= —=
I i leI k=1

The rightmost sum equals a well-known polynomigpressionP;(n) in n (see Zwillinger [23,
Chap. 1]). We wse the fact tha®;,;1(n) < nP;(n):
tuy _ NP i m?
(i +1nd*2 Pi(n)  ([i+1)n’
Therefore the sum of the series is at mg$l —1/n) < 1/2.
As to the last statement, different orders omaet produce disjoint sets of sfie§ connecting the
given graph to the ordered set (array). This leads to the desired expectation. o

We \erified thatsh(n) increases monotonically from34a n=2 to 1 64871 atn=50, 000. Hence
the upper bound @Gfe is probably sharp.

83. Moving a set of positions into a function graph

In this section we consider the strategic problem of transformingedrof n positions of a formal
n-square into a (function) graph with one dlauf Prop.2.6 suggests that this problem may be settled
in the afirmative. With some efforts, this will be confirmed in moderate dimensioasd with the
appropriate combinations of shuffle type (VH, resp., HV) and graph type (H, resp., V).

Let Sbe a set of positions in a formalsquare. AnS+ow (or, a row o S) is a matrix rov R such
thatSn Rz [O. We dso use the term with reference3a R, especially when referring to theze of
an Srow. The collection of allS-rows is denotedowsS). An S{reerow is a natrix row disjoint
with S. A row-unique position o5 is a positionp S whose matrix rev R satisfiesSn R={ p}.

The Srows of size 3 are referred to abody obwsof S; taken togetherthe involved positions ofS
constitute the (horizontabody ofS. All terminology can be adapted to columns as well; we use
colg(S) for the collection o-columns.

3.1. Optimal and weakly optimal sets.A set S of positions isV-optimal (H-optimal) if no V-move
(H-move) increases the number &rows (S-columns). V& dhall concentrate on -gptimality, the
results being similar for H-optimalityA setS is weakly VYoptimalif the number ofS-rows cannot be
raised by rotatingnecolumn ofS. The property is strictly weaker than optimalityhig 7. To V-opti-
mize a set of size with c<n/2 body columns (numbered.Oc-1, say), we basically kra © rotate
all body columns except (say) the zero-th okde mnsider each integer from 1 up 15~ (not
included), rotate theth column with thd-th digit (=1, ..,c—1), and check for improving thews
score. Theolumn-unique positions @& are rotated afterwards into different freavso Forn=7, our
optimization has a worst case complexityQgh®) with ¢ up to[h/2[] Refer to problem Q4 in § 4.7.

In the formulation and proof of the next proposition, a rotatiaf a columnK is identified with
theV-move that just rotate& by v. The number of elements in a eis denoted by A.

Proposition 3.2. Let Sbe a weakly -optimal set of positions in a formalsquae and letK be an S
column. Conside,=Sn K with its subsetJy of row-unique positions @& in K, the setF of posi-
tions in K on Sfree rows, and the sdf, of all remaining positions irK. Then, with sy =#S,,
Uoz#Uo, foz#Fo, and fz#F, we have

So Of <(N—sp) Wy;  Sp fp = (N—Sp) [{(Sp — Uo)-

In either inequalitythe non-negative ddrence between both sides equals the sum, talarad rota-
tions vof K, of the deficitsfrows(S) —#rowgv(S)).
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Proof. As to the first inequalifythe columnK is divided amond-,U,, S5\Ug, Fo. Note that the last
two ts irvolve exactly the rows occupied b$\ K. Hence, ifv is a rotation ofK, then the rows of
v(S) hit K exactly in a union of tw disjoint sets

V() n(FOUp) and FoO SH\Uy,

where the second is independentwf We regad K as a cop of n by rov nhumber The pair
(p,q) USy x (F OUyp) is =en as amvent caused by rotationv of K providedv(p)=q. Grouping
evants by their (unique) cause divides the Sgk (F JUg) into n classes. The&wumber of gents
caused by a rotationis #V(S) n (F OUg)). Theidentity producesiy events. Norotation ofK can
produce more, as this would raise the numb&-aiws. Hence

So L(f +Ug) = #(So x (F U Vo)) = %#(V(So) n (F OUp)) < n [Wo.
The difference between thedwdes of the inequality is the sum of the (nomatire) quantities
Up —#(V(Sy) n (F OUp)) = #rows(S) —#rows(v(9)),

taken w@er al rotationsv of K.
The first conclusion follows at oncd&he second inequality follows from the first upon noticing
that the sum of the left-hand sides equals the sum of the right-hand sides. m

Corollary 3.3. Let Sbe a weakly V-optimal set of positions witk @ free rows in a formah-squae.
(@ The numbeu of row-unique positions in aB-column of size satisfies s- f <u and

0<ﬁ <u.

(b) If #S=n then Shas at least {2+ 1 rows.

Proof. Pat (a) is olvious from prop. 3.2; just note thak n as f >0. Part (b) follows from (a) after
replacing the denominator oy~ 1 and summing the inequalityver al S-columns. Thigyives f <u,
with u, the total number of row-unique positions &f The number of rows satisfiesf =n-r and
u; <r asf #£0. Theresult follows. m

Pat (b) is obviously the best possible fox 3. Thenext estimate of the number ofws is based
on a different method and, in general, matches the real situation much closer.

Proposition 3.4. Let Sbe a set witlc S.columns of size,, sy, .., S.-1, respectivelyin a formal n
squae. Then thee is a \ertical mose V sud that the number o¥ (S)-rows is at least the outcomg
of the following recursive computation.

ro=0; ri+1=ri+D(n_r$ [ (i=0,...c-1).

Proof. Let colyS):={K;:0<i<c} with §:=K;n S and #5 =s for eachi. We will show by
induction on i <c that there are rotationg of K;, 0< j <i such that the set

T 1 =(S+vo) U..0(§ +v)
occupies at least;; <n rows. We take v,y as the identity and’;: =S with r{=s5<n. Assume
1<i<c with rotationsvy, .., V;_; such that the corresponding 3etoccupies at least <n rows. We
mark eactlyr; of them. A pair (p, R), consisting of a positiop S and an unmarked woR, is con-
sidered arevent caused bthe unique rotation df; mappingp into R. The quantity

*) D(n_;i)[ﬁ 0

equals the (up-roundedyerage number ofvents caused by one rotation. Hence there is a rotation



with § +v; occupying at least (*) mgrunmarked rwss. Notethatr;,; <n.
The V-more V, rotatingK; by v, for 0<i <c, mapsSto the se¥ (S) =T, with at least. rows. O

It appears that the recursicomputation in prop. 3.4 is sens#i the order in which the sizes are
involved (e.g., (43, 2, 2)gives 8 and (4,2, 3, 2)gives 9. We therefore define theows value rval(P),
of a partitionP of n as the maximal output of the process, takean dl permutations of.

3.5. The algorithmM nr ows. We want to determine a lower bound: r(n) for the number of nus,
applying to all Voptimal n-sets. Oumethod is much faster than computing the minimunmval(P)
among all partitiond of n. Given thatr =[h/2(J+ 1 is such a lower bound (co08.3(b)), we consider
partitionsP of n with the following assumptiorP consists of the column sizes of ®ptimal nset S
with exactly r<n rows. This requires1 >4 with ¢>1 mlumns.

As eachS-column holds a row-unigue position $by cor 3.3(a), the partitiors maximum, m, sat-
isfiesm<r. Putting aside one maximal part, we ae left with at leasi{n— m)/mOparts and at most
r —m parts. Thealgorithm skips the partitions that do not support the predicted minimumwef ro
unique points (cor3.3(a)) or the assumed number of occupied rows (prop. A.4)rviving critical
partition indicates a potentially sharp lower boundwhich is then returned. After an unsuccessful
round,r is incremented for a next round.

The resultg (n) for 8 n<50 are displayed in table 3. There is no inwgroent of the startalue,
/2K 1, forn<7.

r — /21
r epeat
for mfromr-1 down to 2 /1 maxi mum col um si ze
for ¢ fromn-m/nmJup tor-m // (# of colums) - 1
for each partition P of n-min c parts of size < m
if ( # (rowunique points for P) >r-m) start next partition
P - P plus part m
if (rval(P) >r ) start next partition
else returnr /1 ending M nrows
ro < r+l

The algorithmM nr ows

n 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
start 56 6 7 7 8 8 9 910 10 11 11 12 12 13 13 14 14 15 15|16
r(n) 6 7 8 9 910 11 11 12 13 13 14 14 15 16 17 17 18 19 19 20 21

n 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

start | 1617 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26
r(n) | 21 22 23 24 25 25 25 27 27 28 28 29 29 30 31 31 32 33 33 84 3

Table 3: Lower bound(n) on the number of rows in a V-optimatset

A useful variant of this algorithm starts at the emdler(n) and returnsall critical partitions for
testing purpose3This output guided us to (computer-generated) optiwsats with &actly r (n) rows
for n<17 (refer to question Q5 in 4.7). Notewever, that the rows &lue of a partition is not &bys

3. The variantM nr ows algorithm, written in well-readable Mathematica code, vergin the appendix.
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accurate. E.gfor n=16 andP ={25, 15} (multiset notationfive 2, six 1s) we findval(P) =15, tut
prop. 3.14 belw implies that all 16-sets with a column partition of typeptimize to 16 rows.

3.6. A worked example on the sharpness ofn). We haver(20)=14 and, according to thegnant)
M nr ows algorithm, the only critical partition of 20 is5§}. Considera V-optimal 20-setS with
fourteen ravs and with a column partition of this critical type. By.c88, anS-column with five
points must hee a least tvo row-unique points. Hence we V@&d most 14-4 * 2 =6 body rows and
a body of at most 264 *2=12 positions. Any two S-columns share som&row. Otherwise, we
could rggard them as a single column of size 10 andyva¥10, 5, 5= 15, prop. 3.4 would contradict
thatSis optimal. Assumeexactly six body ravs (and hence exactly eight row-unique positiofg)is
gives a ptal body of exactly twekr positions and eery two S-columns ivolve a @mmon (body) rav.
Up to isotopism, there is only one way to aghithis, as shown in the diagram of fig. 1.

13 o o
12 o o
11 o o
10 oo

[e]

OFRPNWAUIOONO O
)

[e]

Fig. 1: The critical case in dimension 20

The inequality % [Of <(n—sg) [Ug" of prop. 3.2 becomes an equality witkr 20, f =6, s5=5, and
Up=2. Henceby the cited proposition,very rotation of anS-column results in another-&ptimal
configuration. Bylemma 3.8 bela, the leftmostS-column (with five members) can be rotated to
avdd ary three gven rows, say the ones numbered %,13in the diagram. This neither raises nor
lowers the number db-rows, so the resulting configuration is optimahiag We find that the second
left S-column nev contains three row-unigue positions whereas by Z8rthe othelS-columns must
have & least tvo. Hencewe obtain an optimal configuration witss than six body rows

We mnsider tvo realizations of the diagram in the formal 20-square tedaevalentf they differ
only by permuting the order of the columns and by the location of the zeretthTieere are wer
3.5* 10 non-equvalent realizations.We b not knav whether some of these areogtimal. Our
previous argument shows that the estimd®0)=14 is sharp ffthere is an optimal 20-set on fourteen
rows with a {5} column partition anct most fivdbody rows, a minor narrowing of the problem.

3.7. The Spaghetti Effect.The net step in achieving ourdy result on shuffles deals with the fallo

ing problem. Given an n-setS in a formaln-square with enoug®-rows, can these rows letated
apart, that is: can we find an H-mae H such that the rows dfl(S) correspond to disjoint subsets of
n? We ae speculating here oncaumbling spaghetti &ct: a vertically stretchech-set has small (her
izontal) sections and hence it should crumble completely under suitable "pressure" with aB. H-mo
We reed some preparatory results for a useful answer.

Lemma 3.8. Let § and S be subsets af with cadinality s, resp., 5, and let c=#(S; n S,). If

(*) s <n+c-1,
then § and S can be rotated apart in, i.e., thee is vIn sud that(S; +v) n S, =[J.



Proof. Each pair p,q) with p[O0S, andq US; is considered aewent that iscaused bythe unique
rotation ma@ing p to g. Note that the identity causes precizehevents (p, p) with pOS; n S,.
Hence there arg, [, — ¢ events caused by -1 non-identity rotations.By (*), one of these causes no
event, and hence it ma outside ofS,. m

We rext consider situations where twgets cannot be rotated aparhin

Lemma 3.9. Let n=2 be intger and letS, T be subsets ofh sud that n=(#S){#T). Then the follow-
ing assertions a equivalent.

(1) S and T cannot be rotated apart in.

(2) S and T do not shae a psitive (internal, induced) distance as subsets ofdégdar n-gon.

(3) —S and T cannot be rotated apart in.

(4) For each k On there exists a unique paifi, j) OSx T such that k=i + j ( mod n).

Proof. For the eqwaence (1) <--> (2) we refer to theamt/cause terminology in the proof of lemma
3.8: there ar@ events andn causes. Eacavent (i, j) (withi O0Sandj OT) is caused by xactly one
rotation. Hencesome rotation causesvesal events iff some rotation causes none. The first statement
is equvalent with the ngation of (2) whereas the second is eglént with the ngation of (1).

The equalence (2) <--> (3) follows from the previous egplénce and theact that the mirror sets
Sand-Sare isometric.

As to (3) <--> (4), assume (3) and lefin. Then S+Kk) n T #0, which yieldsi OS and j OT
with —i +k=j (modn). Hencethe transformatiorSxT - n with (i, j)~i+j (mod n) is onto and
therefore bijectie. Revese arguing yields the opposite implication. m

Let w:=w,:=€"""" be the first primitie n-th root of unity Then {w*:0<k<n integer} gives
the roots ofx" — 1 and represents thegelarn-gon as a subset of the compimit circle. The polyno-
mial representatiof a nonempty se ] n is the integer polynomig®(x) : =2 sx'. Given 1<d<n
integer,Sis said to bel-balanced im providedS(w")=0. AsetSOn is aregular mgon inn (a rey-
ular subpolygon) itn dividesn andSis a coset of the subgroup mfmultiples inn.

The n-th cyclotomic polynomiaC,,(x) (Fraleigh[7, pp. 464-470]) is the minimal polynomial«af
ove the rationald (in fact, it is in Z[x]). In particular,C,(X) is irreducible @er Q, its roots are the
primitive n-th roots of unityand the product o€,4(x) for d =1 dividing n equalsx"—1. Thedegree
of C,(x) is the Euler totientgp(n) of n.

Zwillinger [23, 82.3.8] has a list @ ,(x) for n<30. Rackages lik Maple and Mathematica vma
built-in command producing cyclotomic polynomials.

Proposition 3.10. Throughout, re 2is integer and ST are aubsets of.

(1) Let n=p? with pprime and#S=p. If S s 1-balanced im, then Sis a reqular p-gon withinn.

(2) Letn=#S)#HT)andl<d<n. If S and T cannot be rotated apart, then at least onesgr is
d-balanced.

(3) Let n=p[g with p£qg prime and#S=p, #T =q. If S aad T cannot be rotated apart, then one
of ST is a reqular subpolygon ofi wheras the other is a completeatisvesal of its cosets
partition. (Thisincludes the case wheboth ST are regular subpolygons af.)

(4) Letn=s?> and#S=#T =s. If S and T cannot be rotated apart, then for émgrime pdividing
s, e ofS, T is not n/pz-balanced. Inparticular, for any three sets of sizein n, some two can
be rotated apart.

Proof of (1). We may assume the s&to be positioned with OIS and the largest gap between suc-
cessie mints of S occurring at the step reaching 0. As tierage @p between successivetices of
S along the circle is»actly p, the degree 08(x) is at nostn—p. As C,(x) is the minimal polyno-
mial of w and S(w) =0, it divides S(x). Both polynomials are monic and the degreeQx(x) is
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@(n)=n-p, 0 S(x) must hae cegeen— p and hence is agelar polygon. (In&ct,S(x)=C,(x) and
the conclusion also follows from the formula ©g(x).)

Note: statement (1) does not extend to the case wisdnagtvo different prime &ctors. E.g.the
6-set {25, 24,13, 12, 1,)0s 1-balanced in the 36-gon (use tkk(X) = C1g(x%) = x*2 = x8 + 1).

Proof of (2). The statement in lemma 3.9(4) can be expressed as a polynomial congruence relation,
S(X)[T(x) = k%nxk (mod x" - 1).

Hence there is a rational polynomi(x) such that
S(X)[T(x) - k%nxk =P(X)x" - 1).

This can be rearranged as

() SEATEY=((x~1P(x) + )2 X"

For eachd as announced,® is a root of the rightmosattor (which is X" - 1)/(x—1)). Henceat least
one ofS, T must bed-balanced.

Proof of (3). Pat (2), applied withd=1, p, g, yields thatS or T is d-balanced. Asv, w®, w% are
(respectiely) a primitive n-th, g-th and p-th root of unity each of the cyclotomic polynomials
Cn(X),Cqy(x), Cp(x) divides S(x) or T(x). We may assume thab,(x) divides S(x). Supposethat
Cqy(x) aso dvides(x), say:S(x) = Cp(X) Cq(X)[@(X). As S(X) is monic andC p(X), C4(X) are primi-
tive, the classical Gauss lemma (Fraleigh [7, Lemma 45.25]) yieldQtbatmust hae integer coefi-
cients. EwaluatingC,(x)[C4(x) =Cq(xP) a x=1 we getq. Taking the product with the irder Q(1)
must give S(1) = p, a ontradiction. Henc€,(x) must divideT (x).

If Cp(x) doesnot divide S(x) thenT(x) is divided by the produdC(x) C4(X), which takes the
vaue p[ at x=1. Arguing as abee, this contradicts withT(1)=q. So §(x) is dvided by
Co(x) Cn(x), where the latter has gieeg(p) + ¢(p[Q) =n—g. Arguing as in part (1), we may assume
that S(x) is of degee<n—q. HenceS(x) must equalC,(x)[€,(X), which represents the subgroup
{0,q,..,(p—-1)g} of n (a regularp-subpolygon).

By lemma 3.9(4)T must be a complete traresgal of the coset collection &and, in fact, ap
such transversal will meetyanotation ofS (which is a coset).

Note. Thegeneral situation may be more complicatédr instance, the set2§, 24,13,12,1,10
and {10, 8, 6, 4, 2, Pshare no distance and hence cannot be rotated apart in the 36-gon. Neither is a
regular subpolygon.

Proof of (4). If s happens to be a prime andSfandT are both 1-balanced, then both arguter s-
gons by (1) and hence can be rotated apart in

In the general situation we consider an arbitrary pripndividing s. Assume both sets are
n/ p>-balanced. A" is a primitve p3-th root of unity S(x) and T(x) are both divided bYC 2(X).
Reasoning as in (2), we obtain equation [i$.right hand side is a product that camriae dvided by
the square ofCp(x). One factor, 2.on XX, has no multiple roots.Hence the other afttor
Q(x):=(x-1)P(x) +1is dvided byC.(x). However, Q(1)=1 whereasC (1) > 1sinceC . has only
positve mefficients and at least bnerms. Asbefore, this gies a @ntradiction.

Given three setsS, T,U On of the same sizg, no wo o which can be rotated apart, we dak
prime p dividing s and find that exactly one & T (say:T) is rot n/p3-balanced. Thefconsidering
T andU) we find by (2) that) must ben/ p?-balanced. Theair S,U contradicts the first part of (4).

Prop. 3.10(4) will be needed near the end of this sectiémrow go one step furtherdevdoping
conditions for rotatingnultiple setsapart. Inthe next proof we need the elementary fact that fgr an
XY, e0OR,ife>0 andx+e<sy—¢, thenx [y<(X+¢) {y—¢).



Lemma 3.11. Let b=>2 be an intger and for eatr i=0,..,b—1let § be a subset of with §=2
points. Lets=sy+5s; +..+5,1 and (in case b 2) assume that all;sare equal or that s-b<21. If

o 2lecn

then thee exist mtations 1, .., r,-; of n suc that 0 NS +r;) =0.

Proof. We first consider the caske=2. Usingthe quoted elementary fact and (*), we find that
S B <S4 <n. We may assume that the se®, S; have ¢>0 points in common. Hence
S 81 < n+c—1whence by lemma 3.8, the sets can be rotated apart.

We proceed by induction ob. Letb=2, assume the lemma valid fbrsets, and consideg (O n
(i=0,..,b) with the conditions of the lemma fdr+1 sets. Lets, be the minimum of the sizes
s, 0<i<b, whences, <s/(b+1). Theelementary fact and the assumption (*)bar 1 sets yield

S bs
Sols=) < 7 By <™

By lemma 3.8any two subsets ofof size § and s— s, can be rotated apart.
As b+1>2 our lemma uses an additional assumption. Ifslffor O<i<b are equal, then
s=(b+1) [, ands—s,=b [§,. We find that

_b

b-1 5 _
?[{S_Sb) —(b l)[$%<b|:$%—(b+1)2|:$2<n.

The alternatie assumption is thas—(b+1)<21. We haves, =2 and hence
b-1 5> _b-1 2 b

(1) 02 [ds—sp)°< 02 [ds-2) < % Lk n,

where the second (strict) inequality can be seen taliefor b< s—b< 224 Hence, with either alter
native, condition (*) is aailable for b setsS,, ..,S,;. In caseb>2, we have(s-s,) —b<21 aail-
able to complete the requirements of the lemmabfeets. Applicatiorof the induction fipothesis
now yields that the set§ (i =0, ..,b—1) can be rotated aparthe resulting union (of size-s;) and
the setS, can be rotated apart by an earlier argument. m

In more practical terms, we V&te following (main) result.

Corollary 3.12. Let Sbe ann-set in a formah-squae with b body rows andf free rows. Ifb>2we
assume either €21 or all body rows have equal siz#

b-1 2
() 7 (b+f)y"<n
(wher b+ f equals the total body size andclf ), then Scan be H-moved into an H-graph.

Proof. On eachS-row, we mark the leftmost position &. As the total number o-rows isn— f, we
have pecizely f unmarled positions irS, which must be located on the bodys Hencehe total
number of positions on body rowsks- f and, in order to heae genuine body rows, it is necessary that
b<f. If b<l, a well-chosen H-me& mtates the m-isolated points into different free columns.
Assumeb>=2. By condition (1) and lemma 3.11, we can Hveaddl body ravs of S apart. The
remainingS-rows consist of row-unique positions, which can be rotated to different free columns.

4. For b=3 the inequality (1) first fails as=26 with leastn=127: (316) * 26?=126. 75 < 127and
(2/19)* (26-2)°=128. We expect a counterexample with four sets of size, 8, 8where the three
sets of size 8 cannot be rotated apart. Refer to the comments preceding problem Q7.
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bf | 2 3 4 5 6 7 8 910 11 12 13 14 15 16 1718 19 20 21

2 5 7 10 13 17 21 26 31 37 43 50 57 65 73 82 91011 111 122 133
3 9 11 15 19 23 27 33 38 44 51 57 65 73 8198 ¥ 108 118 129

4 13 16 19 23 28 32 37 43 49 55 61 68 7638 91 100 109 118
5 17 20 24 28 32 37 41 47 52 58 65 71 785 93 101 109

6 21 24 28 32 36 41 46 51 56 62 68 7481 87 94 102

7 25 28 32 36 40 45 49 55 60 65 7177 83 90 97
8 29 32 36 40 44 49 53 58 64 6974 80 86 92
9 o . . . . 33 36 40 44 48 53 57 62 6773 78 84 89
0 . . . . . . . . 37 40 44 48 52 57 61 6671 76 82 87
11 o . . . . 41 44 48 52 56 61 6570 75 80 85
12 S . . . . . . . 45 48 52 56 60 65 69 74 79 84
13 49 52 56 60 64 69 73 78 83
14 53 56 60 64 68 73 77 82
15 . 57 60 64 68 72 77 81
16 .61 64 68 72 76 81
17 .65 68 72 76 80
18 69 72 76 80
19 S . . . . . . . . . . . . . 3 76 8

2 | . . . . . . . . . . . . . . . .o . 77 80
21 81

Table 4: Least matrix size(b, f) to rotateb body rows apart, gen f free rows

3.13. The Spaghetti Boundary.Let n(b, f) denote thestrict upper intger approximation of the left
side of (t). Table 4 displays thealues ofn(b, f) for b< f <21. It also shows that the restriction
f <21 of cor 3.12 is alvays satisfied in dimensions< 80.

Consider a generic s&twith n positions in a formah-square. lhasr rows, of whichb are body
rows, and there aré =n—r free ravs. Inthe table, we look foraluesf with n(b, f)<n regardless
of b. SetsSwith n- f Srows can na be Hmoved into an H-graph.Given the largest suclfi (least
r), we find thatn— f —1 is an ypper bound on the number of rows for a possible failure of the "crum-
bling spaghetti ééct". Theleastupper bound is called th&payhetti boundaryfor n (taken 0 for
n=2,3).

Thus table 4 yields a simple method to estimate Spaghetti boundaries 8. Someof the
resulting estimates (marked with a star in table 5) are down-corrected by one unit. This occurs when
is a multiple of 4 with & n<28: in the firstf-column where the inequality(b, f)<n fails, it fails
only for b=n/4+1. Prop.3.14 belov covers this situation and st that the body rows can be
rotated apart.The estimated Spaghetti boundary for32, 37,43, 5@an also be decreased by one,
due to more complereasons explained lateRefer to question Q7 in 4.7

n 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2B 29
rm| 6 7 89 9 1011 1112 131314 % 1516177 181919 20 21
sn) | 4 5 6 7 7 8 9 10 10* 11 12 13 13* 14 15 16 16* 17 18 19 19* 20
n 30 31 323334 3536 3738 3040 41 42 43 44 45 46 47 48 59

rn) | 21 2 28243 2525 2727 282829D 3031312 33B33% A
21 22 23-1 23 24 25 26 27-1 27 28 29 30 31 32-1 32 33 34 35 36 37 38-1

Starred values lva een decreased by one

s(n)

Table 5: Minimal number (n) of rows of gotimal sets and Spaghetti boundagwg)



3.14. Proposition. Given n=4(b-1)=8, any bsubsets of siz2 can be otated apart in aegular n-
gon.

Proof. Assumeb sets of size 2 which cannot be rotated apart. By lemma &x/1b—1 sets among
these can be rotated apart into a Bedf size 2p—-1). LetU:=n\T. If the diameterd, of the
remaining 2-set would occur as a distanct jve ould add the corresponding 2-sefli@s the last
rotated 2-set. Hence (courdglock wise) rotationy by dy mapsU isometrically ontdr'. In particu-
lar, the distancel, does not occur ifi andry, mapsT isometrically ontdJ too. e deduce that the
given 2-sets must all hee dstinct diameters. A®>3, we may nw assumed, [1{ n/2, n/4}.

The sefT is partitioned intd— 1 (rotated) original 2-setsWe [dck one part f,, a,} with a diam-
eterd and we assumey(a;) =a, for definiteness. There exist positiobsU with ry (b;) =a; for
i =1, 2;in particularry(b;) =b,. Inreplacing {a;, a,} by { b, b,}, we obtain a seT’' from T. Like
T, the seflT' is a result of rotating all géen 2-sets except the one of diametlyr Hence its comple-
mentU’ maps isometrically ontd’ by ry . Comparing with the previously obtained isomorphism, we
see that 4, maps the setd,, a,} onto {b,, b,} and rﬁo maps the setlf;, b,} onto itself. However,
réo is nowhere identical ad, # n/2, nor can it swap the indices becauket n/4. m

We refer to question Q8 in 4.7 for additional information on rotating 2-sets apart.

Comparing the bounds in table 5 shows tt{a} > s(n) for most displayed dimensioms in which
case the rows of a-dptimal n-set can be rotated apaithe corrections based on prop. 3.14 being
assumed, the uncertain dimensions are8@,/31, 32andn=35. Combiningnformation on the func-
tion n(b, f) of Table 4 with the critical column partitions provided by lhenr ows algorithm, we are
able to settle some more cases. Our target statement on a fiesguare is thisThe rows of a \opti-
mal set withn positions in a formah-squae can be rotated apatrt.

The casen=27. Our Spaghetti- an®! nr ows boundaries agree oh=28 free ravs. Accordingto
M nr ows, the only critical (column) partition for a V-optimal 27-set i8;§. This leads to at least
3 * 4 row wnique points by coB.3(a). Hencedhe body size is at moat-12=15. Accordingto table
4, the numbeb of body rows can be anything between 4 andrmBregard of the maximal body size
we conclude thab<8. As the body is concentrated in three columns, each badyas size 2 or 3.
A description of all possible bodywaopartitions is gien below (in multiset notation; cf. earlier).

b b+f partitions ofb+ f

4 L2 {34}

5 13 {33, 2}
6 14 {32 2}
715 {3 %}

Body raw partitions forn=27

For b=4, each body m invdves each of the three column&tter rotating the first three 3-sets apart,
keeping the first one fed, we obtain a 9-point set matching the fourth set at three positiengna
3.8 then shows that the fourth set can also be rotated apart. Each remaining psyit$ion, ( Sp-1)
(with sizess; arranged in decreasing order) can be rotated apart by using

i-1
(_Zos,-)g <n (i=1,..,b-1) (lemma3.8, inductiely).
J:

The casen=30. A critical V-optimal setS has 21 rows {=9) among which ard body raws,
2<b<9. M nr ows throws up only one critical column partition6{}, causing at least 53 row-iso-
lated points by prop. 3.3(aHenceS has at most 2215=6 body ronvs. Forb=2 there areb+ f =11
body positions. This is impossible since each boeyabS can hae & most 5 points (the number of
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columns). V¢ conclude that 3b<6.

b b+f partitions with gauation

3 12 {52! 2}+!{5141 3}+1{43}_

4 13 {5,4,2}°{5,3,,2}"{4,,3,2}" {4,3;}"
5

6

14 {5,3,Zi}+,{4z,23}:,{4,32@2}*,{34,2}+
15 {5 2%} .{4,3,2}" {33, %}
Body raw partitions forn=30

We prepared a small table listing all bodywartitions for each value df. Partitions marlkd
with "+" satisfy the abee inductive inequalities. Therare two negdive ases, which require more
information. Thepartition {4, 3;} is the easiestGiven the number of columns (5), twbody rows of
respectie sze 3,4 share at least tavcolumns. V¢ can rotate three sets of sizeS43apart in a rgu-
lar 30-gon.Let T be the resulting 10-point set . The remaining 3-set can be rotated to shax-tw
umns with the 4-point subset ©f Application of lemma 3.8 yields the result.

As to the triple-4 partition, note thatavibody rows of this size must share 3 columns. After rotat-
ing two rows gart into an 8-set, we @n find tw distinct rotations of the third set each causing at
least three wents (rotating a point of the third set intd acolumn). We se that the remaining 3@
rotations together cause all remaininvgrgs (at most 8—6). Soat least one of these rotations causes
no event.

The casen=31. The critical case i$ =9. Theonly critical column partition for a dptimal n-set is
{7,6,}, which gives at kast 3+4 * 3 row-unique positions by coB.3(a). Thereforethe body size is
at most 16. Table 4 shavs that X b<9. We an eclude b=8 as his would gve a lody size
b+ f>17. Inaddition, each body wlives in five mlumns and hence has si6. Hereare all possi-
ble body rav partitions.

b+ f partitions

12 {52,2},{54,3, {43}

13 {5,4,2},{53,2},{4,,3, 2, {4, 3}
14 {5!3’%}’{42! 23}1{4! 32! 22}1{34’2};
15 {5!25}1{4! 31&}! {33123};

16 {4, %}, {32, %}

Body raw partitions forn=31

~No o h o

In each case, indugg gplication of lemma 3.8 sk that the body rows can be rotated apadept
perhaps for the partition4g}. In this particular case\very two body rows must share at least three
columns. Afterotating two 4-sets apart, lemma 3.8 applies singg83L+3-1.

For the next tvo casesn=32, 37,we will shav that our estimated Spaghetti boundary can be
down-corrected one unit. In both cases, our (original) target statement igeddiydhis.

The casen=32 The n(b, f)-table 4 indicates the critical case=9 with two critical subcasesh=9
andb=3. If b=9, there ard+ f =18 body positions with a2 body row partition. Byprop. 3.14
we can rotate all body rows apatf. b=3, the body hab+ f =12 positions and the possible body
row partitions are:

{8.%}, {7.3,2, {6,432, {6,3}, {52}, {543, {4}

All but the last one can be sely by inductie gplication of lemma 3.8. The remaining triple-4 parti-
tion is taken care of in thm. 3.15 b@loWe mnclude that the Spaghetti boundarnnat32 is at most
22, rather than 23.



The casen=37. Table 4 points at one critical casé=10 with b=3. Thisgives a ody size of 13
positions. Assuméhree body rows of sizegy>s,25s,. Thensy+s;<11 andsy3;<30. If 5,<3
then & +51)3,=(13-5,)38,<30. If s,>3, the partition should be§q, 4, 4 with (s5+5;)3,=36.
This allows to apply lemma 3.8 induadly. It follows that the Spaghetti boundaryret 37 must be
estimated 26, rather than 27.

Dimensions 3237, 43, 50are peculiar in table 4 because of a small peaklnff)-values atb=3
in the columnsf =9,..,12. The argument fon=37 can be imitated to shothat the Spaghetti
boundary an=43 is 31 rather than 32 (critical cade=11, b=3). For n=50 (critical case’f =12,
b=3), another similar argument shows that a decrement of the estimated Spaghetti boundary (38)
depends entirely on whether three 5-sets can be rotated apart in a 50-gon. s 3@ththe answer
is affirmative by theorem 3.15 bela.

Undecided cases =35, 36, 38, 39 For n=35, 38, 39M nr ows produces significant amounts of crit-
ical column partitions, only part of which we could handlemensionn=36 is the first with the esti-
mated Spaghetti boundary (26)ceeding theM nr ows boundary (25), requiring a weapproach.
This situation becomes permanentifict 40.

Two gquestions remain: can three 4-sets (ces82) or three 5-sets (case=50) be rotated apart in
a regular n-gon? Thenext result provides a general and affirvatinswer.

Theorem 3.15.If n=t m? (m, t = 2), then anyt + 1 sets of sizen can be rotated apart in aegular n-
gon.

Proof. Let R, for i =0..t be m-sets inn which cannot be rotated aparnductive gplication of
lemma 3.8 allows us to assume tRafor i =1 ..t are mutually disjoint.By lemma 3.9, parts (3) and
(4) we find that[[!.;R)) - Ry = n (differences taken moduly. HenceasR, — Ry has at mostr? ele-
ments for each=1, we see that

(1) The setsR, - R, for i >1 partitionn into t sets of sizen?.

In particular Ry meets only one oR;, i 21, say:R; n Ry# [ whereas the selR, andR; fori =2 ae
mutually disjoint. Note thaR, andR; now haveexchangeable roles, whence

(2) The setR —-R; fori=0,2,.t partitionn.

We daim that R; — R, is stable under addition modulo. To this end, letv, wOR; - Ry, S0
Rin(Ry+wW)z0O0#(R;—Vv) n Ry. For ary set RO n we hare (R-Ry) —w=R-(Ry+w) (associativ-
ity), whence by (1), the sei — (R, +w) fori =1 partitionn. Hence af}; meetsR, +w, we find
3B Rn(R+w)=0 fori=2.

For any =t ROn we hae (R-R;)+v=R-(R;-V), whence by (2), the sefR® - (R;-V) for
i=0,2,..t partitionn. Hence afky meetsR; — v, we find that

4 Rn(R—-v)=0Ofori=2.

Suppose thatRy+v+w) n R;=0. Then Ry+w) n (R;—v)=0 and we find by (3) and (4) that the
setsRy+w, R -V, Ry, .., R; are mutually disjoint. This contradicts our initial assumption angesro
our claim.

As R; — Ry is finite and contains 0, it issubgroupof n of index t, which necessarily consists of
thet-multiples among 0.n—-1 (Fraleigh [7, I8 6]). It follows that, in particulahe internal distances
of R, aret-folds.

The entire proof so far can be redone with Bn i >0, in the role ofR,. Hence each of oun-sets
exclusiely has internal distances that dréolds. We may therefore assume that the original $ets

are all located inside the subsfgtof vertices numbered 6,2t . ., (m2 —1)t. LetV; be the cose¥,+i
(i=1,..,t-1). Thinkof copiesR; of R, fori=0, ..t inside the rgularn/t-gon, obtained by omitting
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the vertices of tha@-gon which are not &fold. If, say (Ry+r) n Ry =0 for some rotatiom of the
n/t-gon, then Ry+t 1) n Ry =0 in the n-gon, with both sets remaining withW,. Then for each
i 22 the setR; can be rotated anywhere into the cdget, and we would dectively have rotated all
given sts apart.We onclude that no tw of the m-setsR; i =0, ..t can be rotated apart n?=nft,
which (ast + 1= 3) contradicts prop. 3.10 (4). m

The previous theorem can be seenxterd prop. 3.14 (casm=2). It also handles equality in
condition (T) of car3.12 in caseb=t+1, b+ f =(t +1) with equal-sized body wes. Taking
n=128 (withm=8 andt =2), we see thatvery three sets of size 8 can be rotated apart in a 128-gon.
In a footnote on the proof of lemma 3.11 weaakkor an example of three 8-sets that cannot be
rotated apart in a 127-gon.

84. The main results

In the previous section, weviestigated tvo bounds for the number of rows pfsets in a formaih-
square: the minimal number of rows of a V-optimized set, and the maximal humbersoffra set
failing to have its (body) rows rotated aparthe first exceeds the second for most dimension40.
For such dimensions, the-Bptimisation of am-set can be H-optimised to an H-graph. Inwa &her
cases where the estimated boundaries are equal, the proatesolwed dirmatively using more spe-
cific information. The following (ky) result summarizes our actémnents so far.

4.1. Theoem. Given2<n<34 or n=37, each set with n positions in a formaln-squae can be
mapped onto some H-graph (V-graph) with one VH-shuffle (HV-shuffle). m

In a formaln-square, thexpectednumber of rows of am-set (table 2) is rather close to --and
sometimes en lamger than-- the estimated Spaghetti bound for moderdtable 5). This suggests
that for such dimensionsa (near) majority oin-sets can be H-nved into an H-graph without a pre-
liminary V-move. Random samples in dimensions=15. . 20revealed anexcessively lage majority
of n-sets that can be H-med into an H-graph. In fact, on 3@andom sets, the number of countere
amples decreased from 270nat 15 to merely 8 ah=20. We aurrently hae ro explanation for this.
For small n, prop. 4.2 belw provides some information.

4.2. Proposition. For n=2, 3ead n-set in a formalh-squae can be H-moved onto an H-graph and
V-moved onto a Mraph. For n=4,5 each n-set satisfies at least one alternativiBoth alternatives
may fail for a6-set in a formab-squae.

Proof. For n=2, 3this already appears from the nr ows boundaryr(n)=nif n=2, 3. In general, a
n-set with at most one bodywaq(column) can be H-mad (V-moved) apart. Hence fon=4, at least
one of the alternates holds in case a 4-set hasows orr columns withr =1, 3, 4. A 4-set with two
rows and tvo columns has a2, 2} rows partition and its parts share a distand&e same goes for the
columns partition. Hence lemma 3.8 yields both altevesti

Consider a 5-séb with r rows. Ifr O{1, 4, 5} we haveat most one body va Suppose =3 with
two body rownvs. Therow partition is {2, 2, I} and the tvo pairs can be rotated apart by lemma 318.
r =2, Swill occupy at least three columns. This case is solvedtatis mutandisas with three rows.

For n=6, the set {0, 0), (1, 0), (1, 1), (2, 1), (0, 2), (2 }Dan't be noved to a gaph as required. o



4.3. Corollary. Let2sn<34o0r n=37.

(& An array withn positions in a formaln-squae can be mapped onto some H-graph with an
HVH-move preserving the ordefhis also holds with "V-graph" and "VHV-move".

(b) Given ann-array and an H-graph (Agraph), thee is an H/HV (VHVH) move mapping the
array onto the graph and preserving the order.

Proof. By theorem 4.1, we can map the set of positions of an &tmto some MWraphG by an HV
move. We map G onto an H-grapiH by an H-mee defined as follas. For eachi with 0<i<n we
rotate the rav of position G[i] so that G[i] moves to he j-th column, whereA[j] is the element that
we mapped t@[i]. Eachmember ofG ends up in a different column, whence we obtain an H-graph
with the correct ordering.

As to part (b), anH-graph can be mapped orderly intyather H-graph with a V-mee. m

Prop. 2.6 provides a rough "statistic" variant of. dag(b). Itneeds (on\&rage) only one shiié
and is valid in all dimensions. A n-array withc columns allwing such a shuffle will alle at least
n""¢ of them. Hence the expectationmf ¢ (the intrinsic bias, cf. table 2) suggests that suchflsisuf
do not exist forevery narray The simplest possible example folyam= 3 invdves an arrayA with
A[0]:=(1,0)and A[1] : =(0, 0). Regardless of the other positions &f there is no shuffle (either HV
or VH) mappingA orderly onto the bottom va

The two shuffles required in 4.3(b) are well-spent: the first does the optimizing and the second
takes care of precisionThe statement can be reformulateet lthis: any 1-1 function of an-set onto
an H-graph extends to a composition of two-$tffles. Combining this with both thm. 4.1 and cor
4.3(b), we get a simple proof that --with the usual restrictiom-erany 1-1 function between two
sets in a formah-squae extends to a composition of three shuffteg versions: HV and VH).

We row derive the two major theorems announced in section 1. Recall thastdredad node of
operationon an equir-square is to perform mHV-shuffles before each H-indirection.

4.4, Theoem (cf. Theorem B).Let 2<n<34 or n=37, and let|>0. Given an equiR-squae,
together with two sequences, both consistingl afon-neyative numbes of sze <n", there is a
sequence a2 [ shuffles sub that the standat mode of operation on an equaisquae turns the fist
(input) sequence into the second (output) sequence.

Proof. An output number can be seen as an arraydifits. We aan find the same array in the matrix
at a suitable sequence ofpositions. Bycorollary 4.3(b), tw successie suffles can map this
sequence orderly onto thegdat graph, described by the input numbdow the output by indirection
is as desired. m

Earlier we described this resultthgoletical unpredictability of the outpufThe literature praides
some other combinatorial methods aiming at this géaluth [11, Algorithm M on p.33] uses an
index-to-walue process with (standard) arrays to hide the inevitable output patterns of pseudo-random
number generators. Lidl and Niederreiter [13] produce mukgplessquences by using one m-
sequence to step through another oMescielry [12] uses one-cell indirection in a latin square to
modulate a linear m-sequence with a shifted/cop

One might consider a more general type of indirection, reading out arbiteargys in an equi-
square. Accordindo a remark following cord.3, ary two n-arrays in an equi-square are linéd
with a sequence of three shuffles (usyal Henceby adapting the previous argument, this method can
produce ap sequence of numbers withree shufesbefore each indirection. The method also needs a
doubled inputo determine the array to read and hence may be qualified as rastefulv Hevever,
with this type of indirection (explicitly allowing repeating cells) the intrinsic square bias for numbers
becomes the natural bias (see § 1) and the need for shuffling decreases.
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4.5. Theoem (cf. Theorem A, part 3)Given2<n<34 or n=37, every two equR-squaes ae &
most6n +3(-1)"* shuffles away from eh@ther.

Proof. Let P andQ be equin-squares. Byemma 2.5 we can fix a latingtaphG in P and a latin H-
graphH in Q. There is a 1-1 function connecting edttolored position o5 with the position oH
having the same color i. We may assume a transitioh: P — Q extending this 1-1 function. As in
the proof of car4.3(b), the inerse functionH - G agrees with a VH-shfié ¢ on H. Hencef fol-
lowed byo keeps eery position ofG fixed. Thisshaws that if each transition preserving the coloring
of G can be implemented witk (or even k +%2) H\:shufles for some intger k, then our transition
f:P - Q can be implemented witk+ 1 HV-shufles (collapsing tw successie Hmaves if needed)
by letting the shuffle sequence be folied by the HVshufflec™. We henceforth concentrate on tran-
sitions f : P - Q leaving all positions of a latin (iR) V-graphG invariant.

By prop. 2.4(2), we may assume a partitionGid complement inton—1 sets of sizen with f
mapping each part onto itselOn each pars we decompose the permutation in¢8) disjoint cycles
C(9)1, ..,C(S)yg of length=2. Notethatt(S)<n/2. Thecarrier of f in Scan be ordered using the
list of cycles and the choice of a "last poil(tS); of C(S); (i=1, .. t(S)). Thegiven permutation ofS
equals the iverse of the gcle L(S):=(1(9); . .1(S)yg)). followed by the cycle provided by the ordered
carrier.

The partsS are talen in pairs with a single part remainingnifis even. Assumen is even; for n
odd, we present the necessary adaptations aftdsw Ora ®lected pair$,, S,) of parts , the transi-
tion is processed as a sequence of HV-shuffles as follows.

(Step 1) For eachi =1, 2,extend thet(S)-cycle L(S) of "last points" to an equélent cycle of length
n/2, e.q., by repeating one of its color§Ve form ann-sequence in which the tmesulting
sequences are mixed alternatingBome HVH\move maps the sequence to (say) the bottom
row of the matrix (car4.3(b)). Therow is then rotated te positions to the right and med
back to the array with thewverse of the initial mee. This makes the werse of the product of
L(S;) and L(S,) equivalent with 4% HV-shuffles.

(Step 2) This applies to the sefs for i =1, 2 separately The ordered carrier i is made into am-
array by repeating a coloit takes two HV-shufles to map the array onto the bottornwr@or.
4.3(b)) which is then rotated one position to the left and mapped backdpgimg the initial
HV shufles. Thismakes the carrier cycle @& equvaent with 4v2 HV-shuffles.

The resulting sequence of sfie$, resulting from steps (1) and (2), reduces to 12%skhiMles after

collapsing success H-moves.

The setSthat is not in a pair is treated with the following modifications. In (Step 1)xteae the
cycle L(S) to an n-cycle by repeating the last color and perform it directly as 4% shuffles with the
method of (Step 2). Step (2) remains the same. This accounts for a total of 8% HV-shuffles.

Compiling all results, we can contract the last Hvenaf one shuffle sequence with the first H-
move d the next shuffle sequence. This amounts to one sequence of-shufl¥s, (1—2)/2
sequences of 12 Hshufles, and a lefteer H-move © finish with. The latter is absorbed by a final
HV-shuffle as described at the beginning of this proof, accountingifeBéhuffles.

For n odd, no set is tan single. We reed a preliminary step valving all selected pairs
(Spi-1, Sy) fori=1,..,0-1)/2.

(Step 0) Let (a;, b;) be he pair consisting of the last point in the representationy$f_,), resp.,
L(S,). Asobsened earlierthe product of these transpositions is obtained by first applying the
cycle (o1, ..,bn-1y2) in revese, then applying the cycley( by, .., an-1y2 bn-1y2). Both
cycles can be performed egdently with 4¥2 H\(cycles. Hencehe product of pairs, required
at this step, can be acheel with 8% HV-shuffles.

In step (1), we mix the twvgven cycles as we did in theven case and perform the resultingcte

with 4% shufles. Step(2) is as abee. The entire state transformation iswnequivalent with: the

result of step (0), followed by the results of step (1), ¥e#ld by the results of step (2), ended with the
obligatory HV-shufle. Aftercontracting succesa& H-moves, this accounts forré+ 3 HV-shuffles.
|



The previous result & denved originally to get an idea of omary shuffles are needed to obtain
ageneric stateof a formal square (e.g., to serss aninitial state). For instance, 93 shuffles should do
for n=16. Theestimates in thm. 4.5 are too high for smmallE.g., forn=2 it can be seen that yan
two gates are connected by one H VH-shufle. They are connected by 1Y% shilgf of either type.
For n<5 some economizing is possible with the aid of prop. 4.2, resulting in an estimate: 8f 57
minor inaccurag may occur fom=4, 5due to a repeated dilemma: HVH or VHV shuffle.

4.6. The physical equir-square. The physical object implementing an equsquare with shdiing
is atoruswith two orthogonal layers oh rings, each of which can be rotated by ameger multiple
of 2r/n radians. Incombination, the te layers divide the torus surface inib rectangular faces and
performing a shiie amounts to rotating rings of one type, then rotating the other Wi faces
evanly painted withn colors, the object becomes a varianRobik'’s aube(see e.g. Joyner [10]).
Theorem 4.5 contributes to the problemregtoring a physical statef the torus from another
state. Estimatesf our method in thequi-octal-squardwith 64 faces, it is close in size to the stan-
dard Rubiks aube) indicate that this may &kip to 45 buffles, each shuffle requiring up to 16 rings to
turn. Incontrast, the cube wer needs more than 20 elementaryvesd Oneexplanation might be
that there are implicit restrictions on moving cells of the cube, contrasting with tH eSiaéorem
2.1. Unsharpness our estimates is a more probable explanation (refer to Q2 below).

4.7. Conclusion and open mblems. We ahieved two dstinct goals from a combinatorial study of
equin-squares and their underlying formal squares. One is a principle on which to produce unpre-
dictable sequences of nongative integers, the other is an upper bound on the fighufistance
between tw equi-n-squares. Bothesults are valid under the common restrictiahnz 34 orn=37

and the proofs borvolargely from the same intermediate results. Our main results, as well as some of
the intermediate results,Vemised various questions and we wish to discuss some of these.

The somewhat irregular restriction arderives from an interaction of seral combinatorial meth-
ods (as described in § 3) and is probably not shiagpn beyond the restriction, haever, little infor-
mation is &ailable. Elaboratiorof our methods shows thatsets in a formah-square are mapped by
some VHVmove mto a V-graph fom<45 (with possible rception ofn=42). Thereare usually
mary arrays in an equirsquare representing avgn n-digit number offering increased opportunities
to shufle one of these arrays onto a graph. This suggests that thm. 4.4 may hold well beyonrd its cur
rent limitations.

Note. Ourremarks folleving thm 4.1 indicate that performing "on purpose” 1% shuffles before
each indirection can reproduce an output sequence, obtained under standard operation mode from a
given input sequenceyith a very low ratio of eors (15<n<20). Thissuggests that, practically
speaking, our method should wonrker with 1% shulffles, alternating between H- and V-indirection.

Q1. Determine alln for which thm. 4.4holds as formulatedHow many shuffles ameeded for other
n (if any)? Is thee a fnite asympotic value for p c?

Our upper bound for the number of dteg implementing a generic transition seems too high.
Hard evidence has been providedabior n<5. Ourproof strategy of thm. 4.5 (realizing the transi-
tion stepwise on succesgsiparts) necessarily includes some cleaning up of undesired changes at each
step. Thismay suggest some further economizir@gyven the considerable gap with the lower bound
in thm. 2.2, the following is a challenging question.

Q2. Is it true that the lower bound on thequited number of shuffles implementing a geneendi
tion is closest to realityin other words, is this amall world phenomené@n

The following open problems relate with our combinatorial tools. Firstgardeof comments fol-
lowing cor. 2.5, we define avavy-latin nsquareto be an equir-square allowing a partition into latin
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H-graphs and one into latin-§faphs with each H-graph meeting each V-graph in one position (a
wavy-latin network It follows from cor 2.5 that an equi-square with latin rows or with latin col-
umns is vaw-latin. Asobsenred in 8§ 2, lack of latim-size transversals seems a major obstacle for an
equin-square to be aw-latin.

The defined property isvariant under color renaming, permuting the order of rows and of col-
umns (sotopisn), and transposition. This leads to a small collection of "typEst.n=3, we hae 9
types, of which one is notawy-latin. For n=4, we counted 360 types of which exactly 8 are not
wavy-latin.

11 2

1 21 3

10 11 3 3 .

10 1 00 320 0 (non-wawy-latin n-squares)
220 2 200

A random sample of 2000 equi-5-squdréms not reealed a countesample. Inaddition, all
equi-5-squares with each color having a horizontal or vertical alignment of at least four celisyare w
latin. We reduced this to 164 cases, mostly verified with computer assistence.

Q3. Does the ratio (wavy-latim-squaes / equin-squaes) tend to 1 with ineasing 1? Is there a
size ny sud that all equin-squares ag wavy-latin for n=ny?

(General formah-squares.) Gien an n-setS of positions, the result of counting row-unique posi-
tions in anS-column or countingS-rows may provide a sufficient reason 8mot to be Voptimal
(props. 3.3(a) and 3.4). Otherwise, wevénd rely on an algorithm of comptiy O(n"?) for n>7.

To compute a V-optimal configuration of avgn n-set, one could follw the computation of the ws
value of its column patrtition (which ©(Ch/2) at worst) to knw the best order in which to rotate the
individual (body) columns and the apropriate amount of the rotatidosever, there is anxample at
n=16 where the rows value (15) is not the optimal value (16). See § 3.5.

Q4. (n=7.) Isthere a fast(er) method to optimize a generic seingbositions or to decide that a
generic nset is optimal? Mar pecifically is this problem NP? Is it NP complete?

Our M nr ows lower boundr (n) for the number of rows of a-&ptimal n-set in an equi-square
is proven sharp forn<17 by computer-suppliedxamples. Asto the sharpness af(20)=14, we
found a minor reduction of the problem (cf. 3.6).

Q5. Find sharp lower bounds fai(n), n=18. On replacing "V-optimal" by "weakly V-optimal", er
there any nfor whic this gives a smaller boundary?

The ley o the major results in this paper is thm. 4.1 on mapping-aet onto a function graph
with one shufe. We cerived that aty 1-1 function of am-set onto a graph extends to a composition
of two shuffles and that a 1-1 function betweerotmtsets extends to a composition of three fbsif
(both VH and HV).

Q6. For which ncan eab n-set in a formah-squae be napped onto an H- or-graph with one shuf-
fle? Howmany shuffles arreeded for othen? Is there a fhite asymptotic value? Can 1-1 maps
between gneric nsets be extended to a composition of less B&nffles?

Table 4 proides a rough-and-ready method to estimate the Spaghetti boundary for dimensions
<80. Themethod rests upon cd.12, valid under the restriction (for= 3) that the numbef of free
rows is<21. Aclose inspection of the preceding lemma 3.11 shows that this restriction is a kind of

5. Considering the exception rates for 2, 3, 4,a sample of 2000 equi-5-squares is probably too small to
male a ®lid prognosis. Unfortunatelyt takes us 10 minutes omenage to explore one 5-square.



common denominator for a variety of situations. In fact, it turns out that the linfitiocreases with
the numbeb of body ravs as described in table 6 (computed with Maple). This enlarges the range of
applicability of our method. N.B.: the computed limitiat 2 does not contribute to lemma 3.11.

b= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1p
f< |3 21 21 23 26 28 32 35 37 40 43 46 49 51 |55

Table 6: specified limits ori for variousb.

Our estimated Spaghetti boundary is sharp for sized (2), 5(2), 6(3), 7(3)8(4), 9(5), 127)
(boundary between parentheseBix n=10, 11, 13, 15, 18, 2&ur boundary is sharp up to one unit.
This involves some computgrrovided facts related with question Q8 heloNote that improving the
Spaghetti boundary may yield additional support for an earlier cgmrvon thm. 4.1, thahost n
sets in a formah-square can be transformed into an H-graph with just an ¥#&mo

Q7. Find sharp Spaghetti boundaries for other siaes

The problem of rotating a collection of 2-sets apart ingaleg n-gon shows up in our attempts to
improve the Spaghetti boundary of form@asquares (see prop. 3.14). It can bewshthat the rgular
n-gon (with n even) admits a partition of its vertices into 2-sets assumimgyepossible diameter
value if and only ifnis of type & or 8v+2 (with v>0 integer). Allowing pairs with the same diame-
ter complicates things. In agelar n-gon withn=kmandk>1 add, the pairs of diameten can be
grouped intan cycles of lengtrk, whence no more thddk/20m pairs can be disjoint.

Given any n=5, defineb asn/3 if n is divisible by 3 and(n+2)/3Jotherwise. Br n<8 we wse
lower rather than upper irger approximation.We \erified with computer assistance that fo 38
ary set of b pairs can be rotated apart. One easily verifies thabtbisvides asharpbound forn<11
as well as for alh divisible by 3 and fom=14, 20(casesk =3, 7, 5above). Exhaustrte mmputer
search reealed that fom< 32, these are thaenly sharp cases. Hence:

Q8. What is the lagest numbeib such that anyb pairs in a regular n-gon can be rotated apart?

The following observation on latin squares (Dénes end Keedwell [3, ch.487]p.is a painful
truth extending to equi-squares and perhaps to all problems raisedealjo.) for most computa-
tional problems, values of greater than20 are tnmanaeable. The exact boundary may vary with

the problem at handOur results being a mixture of reasoning and computing, to get around this
obstacle requires increasing the share of reasoning --if possible.
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Appendix: The algorithm M nr ows

A reader with Mathematica at hand may check some computational results in section 3 by entering
the following code in a Mathematica notebB@lkb file). TheM nr ows algorithm here is the ‘ri-
ant" one (see 3.5), returning the list of critical column partitions if the number of rows is critical (it
returns the empty list or axeessie list otherwise). Note our special treatment of singletons in-a par
tition (which is easily seen not to affect the resulifithout this, Mathematica gets into problems with
the dimensiom approaching 40 (wo postponed tan = 50).

rowuni que[n_Integer, s Integer, f Integer] :=
Max[Ceiling[s f/(n - s)], s - f] /; s <n

M nrows[n_Integer, r_Integer] := Mdul e[
{Crit ={}, K={}, P={}, PP ={}, plen, klen, rval, cl, cu, ru},
Forfm=r - 1, m>1 m-,

For[c = Ceiling[(n - M/mM, ¢c <=r - m c++,

K= Select[IntegerPartitions[n - m {c}], Max[#] <= m &];
kl en = Lengt h[ K] ;

For[k = 1, k <= klen, k++,
ru Tot al [ Map[ r owmuni que[ n
If[ru>r - m Continue[]];
P = Select[Join[{n}, K[[Kk]

cl = Length[P];

cu=c¢ +1- cl;(* nunber of singletons *)

PP = Pernutations[P];

pl en = Lengt h[ PP];

1, p <= plen, p++,

0; (* check rows value *)

For[j =1, j <=<cl, j++, rval += Ceiling[(n - rval) PP[[p, j]l1/Nn]];

[f[rval + cu > r, Break[]]

, #,.n - 1] & KI[k]]]];

j], # > 1 & ;(* drop singletons *)

]1;(* for p ... *)
If[rval + cu <=r, AppendTo[Crit, Join[P, Table[1, {j, 1, cu}]ll]
] (* for k ... *)

](* for ¢ ... *)

]:(* for m... *)

Crit
](* end of nodule *)

6. | used this code with Mathematica versions 7 and 8.
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