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Abstract

In this article we introduce a new type of Pascal pyramids. A regular squared
mosaic in the hyperbolic plane yields a (h2r)-cube mosaic in space H2×R and the
definition of the pyramid is based on this regular mosaic. The levels of the pyramid
inherit some properties from the Euclidean and hyperbolic Pascal triangles. We give
the growing method from level to level and show some illustrating figures.
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1 Introduction

There are several approaches to generalize the Pascal’s arithmetic triangle (see, for instance
[1, 3, 5, 14]). A new type of variations of it is based on the hyperbolic regular mosaics denoted
by Schläfli’s symbol {p, q}, where (p− 2)(q− 2) > 4 ([7]). Each regular mosaic induces a so-
called hyperbolic Pascal triangle (see [4]), following and generalizing the connection between
the classical Pascal’s triangle and the Euclidean regular square mosaic {4, 4}. For more
details see [4, 10, 11, 12], but here we also collect some necessary information. We use the
attribute Pascal’s (with apostrophe) only for the original, Euclidean arithmetic triangle and
pyramid.

The hyperbolic Pascal triangle based on the mosaic {p, q} can be envisaged as a digraph,
where the vertices and the edges are the vertices and the edges of a well defined part of lattice
{p, q}, respectively, and the vertices possess a value that give the number of different shortest
paths from the base vertex to the given vertex. In this article we build on the hyperbolic
squared mosaics, thus the other properties hold just for mosaic {4, q}. Figure 1 illustrates
the hyperbolic Pascal triangle when {p, q} = {4, 5}. Here the base vertex has two edges, the
leftmost and the rightmost vertices have three, the others have q edges. The quadrilateral
shape cells surrounded by the appropriate edges correspond to the squares in the mosaic.
Apart from the winger elements, certain vertices (called “Type A”) have 2 ascendants and
q − 2 descendants, while the others (“Type B”) have 1 ascendant and q − 1 descendants.
In the figures we denote vertices of type A by red circles and vertices of type B by cyan
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2 László Németh

diamonds, while the wingers by white diamonds (according to the denotations in [4]). The
vertices which are n-edge-long far from the base vertex are in row n. The general method of
preparing the graph is the following: we go along the vertices of the jth row, according to the
type of the elements (winger, A, B), we draw the appropriate number of edges downwards
(2, q− 2, q− 1, respectively). Neighbour edges of two neighbour vertices of the jth row meet
in the (j + 1)th row, constructing a new vertex of type A. The other descendants of row j
have type B in row j + 1. In the sequel, )n

k
( denotes the kth element in row n, which is either

the sum of the values of its two ascendants or the value of its unique ascendant. We note,
that the hyperbolic Pascal triangle has the property of vertical symmetry.

Figure 1: Hyperbolic Pascal triangle linked to {4, 5} up to row 6

The 3-dimensional analogue of the original Pascal’s triangle is the well-known Pascal’s
pyramid (or more precisely Pascal’s tetrahedron). Its levels are triangles and the numbers
along the three edges of the nth level are the numbers of the nth line of Pascal’s triangle.
Each number inside in any level is the sum of the three adjacent numbers on the level above
(see [2, 6, 8, 9]). In the hyperbolic space based on the hyperbolic regular cube mosaic (cubic
honeycomb) with Schläfli’s symbol {4, 3, 5} was defined a hyperbolic Pascal pyramid (HPP)
as a generalisation of the hyperbolic Pascal triangle (HPT ) linked to mosaic {4, 5} and the
classical Pascal’s pyramid ([10]).

The space H2×R is one of the eight simply connected 3-dimensional maximal homoge-
neous Riemannian geometries (Thurston geometries [16], [17]). This Seifert fibre space is
derived by the direct product of the hyperbolic plane H2 and the real line R. For more
details see [15]. In the following we define the Pascal pyramids in this space based on the
so-called (h2r)-cube mosaics similarly to the definition of HPP (in [10]). The definition
also could be extended to the other regular tiling, but we deal with the prism tilings with
square, because they are the most natural generalizations of the original Pascal’s triangle
and pyramid. This work was suggested by Professor Emil Molnár.
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2 Construction of the Pascal pyramid PP4,q

In the space H2×R we define an infinite number of so-called (h2r)-cube mosaics. We take a
hyperbolic plane Π as a reference plane and a regular squared mosaic with {4, q} (q ≥ 5) on
it. Denote dy d the common length of the sides of the squares in this mosaic. We consider
the hyperbolic planes parallel to Π, where the distance between two consecutive ones is d.
Let the same mosaic {4, q} be defined on all the planes and let the corresponding vertices of
the mosaics be on the same Euclidean lines which are perpendicular to the hyperbolic planes.
A (h2r)-cube is the convex hull of two corresponding congruent squares on two consecutive
hyperbolic mosaics. All the (h2r)-cubes yield a (h2r)-cube mosaic in the space H2×R based
on the regular hyperbolic planar mosaic {4, q}. (In [15] the (h2r)-cube mosaics were called
prism tilings with squares.) Figure 2 shows three consecutive hyperbolic planes with mosaic
{4, 5} and some lines perpendicular to these planes. Let V be a mosaic vertex on a hyperbolic
plane. The vertex figure of V is a double q-gon based pyramid, where the vertices are the
nearest mosaic vertices to V , all vertices are one-edge-long far from V . Their base vertices
are on the same hyperbolic plane on which V is. The vertex figure of V is illustrated in
Figure 2 (or Figure 10). We mention, that the edges of the vertex figures are not the edges
of the mosaic, they are the diameters of its faces.

Figure 2: Construction of the (h2r)-cube mosaic based on {4, 5}

Take the part T of the mosaic {4, q} on Π on which the hyperbolic Pascal triangle HPT
can be defined (see [4]) and let P be the part of the (h2r)-cube mosaic which contains T
and all its corresponding vertices on other hyperbolic planes that are ”above” plane Π (the
hyperbolic planes which are in the same half space bordered by Π). (Obviously, P contains
also the corresponding edges between the vertices.) The shape of this convex part of the
mosaic resembles an infinite tetrahedron. This part P is darkened in Figure 2.

Let V0 be the base vertex of HPT on plane Π. Let GP be the digraph directed according
to the growing edge-distance from V0, in which the vertices and edges are the vertices and
edges of P . We label an arbitrary vertex V of GP by the number of different shortest paths
along the edges of P from V0 to V . (We mention that all the edges of the mosaic are
equivalent.) Let the labelled digraph GP be the Pascal pyramid (more precisely the Pascal
tetrahedron) in space H2×R, denoted by PP4,q. Some labelled vertices can be seen in Figure
3 in case PP4,5.

Let level 0 be the vertex V0. Level n consists of the vertices of PP4,q whose edge-distances
from V0 are n-edge (the distance of the shortest path along the edges of P is n). It is clear,
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Figure 3: Pascal piramid PP4,5 in space H2×R

that one (infinite) face of PP4,q is a HPT in plane Π and the other two faces are Euclidean
Pascal’s triangles. Figure 4 shows the Pascal pyramid PP4,5 in H2×Rup to level 4. Moreover,
Figures 5–8 show the growing from a level to the next one in case of some lower levels. The
colours and shapes of different types of the vertices are different. (See the definitions later.)
The numbers without colouring and shapes refer to vertices in the lower level in each figures.
The graphs growing from a level to the new one contain graph-cycles with six nodes, which
refer to the convex hulls of the parallel projections of the cubes from the mosaic, where the
direction of the projection is not parallel to any edges of the cubes.

In the following we describe the method of the growing of PP4,q and we give the sum of
the paths connecting vertex V0 and level n.

3 Growing of PP4,q

In the classical Pascal’s pyramid the number of the elements on level n is (n + 1)(n + 2)/2
and its growing from level n to n + 1 is n + 2, but in the hyperbolic Pascal pyramid it is
more complex (see [10]).

As one face of PP4,q is the hyperbolic Pascal triangle, then there are three types of
vertices A, B and 1 corresponding to the Introduction. The denotations of them are also the
same. From all A and B only one edge starts each to the inside of the pyramid, these are
the Euclidean edges of the mosaic (see Figure 3). The types of the inside vertices of these
edges differ from the types A and B, let us denote them by type D and type E, respectively.
The other two sides of the Pascal pyramid are Euclidean Pascal’s triangles, which have two
types of vertices, let us denote them by C and 1. For a vertex C connects three new vertices
in the next level, two vertices C on the side of PP4,q and one vertex of type D inside the
pyramid. Sometimes, if it is important, we distinguish the types 1. If a vertex of type 1
belongs to HPT we write it by 1h.
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Figure 4: Pascal pyramid PP4,5

Figure 5: Connection between levels one, two and three in PP4,5

The growing methods of them are illustrated in Figure 9 (compare it with the growing
method in [4] and [10]). In the figures we denote vertices of type C by yellow squares.

For the classification and the exact definitions of the inner vertices we examine the
vertex figures of the inner vertices. As the structure descends from a hyperbolic plane to the
consecutive one, there are two types of the vertex figures. During the growing (step from
level i − 1 to level i) an arbitrary inner vertex V on level i can be reached from level i − 1
with three or two edges. This fact allows us a classification of the inner vertices. Let the



6 László Németh

Figure 6: Connection between levels three and four in PP4,5

Figure 7: Connection between levels four and five in PP4,5

type of a vertex on level i be D or E, respectively, if it has three or two joining edges to level
i− 1 (as before). Figure 10 shows the vertex figures of the inner vertices of PP4,q. Vertices
Wi−1 (small green circles) are on level i − 1, Wi and the centres are on level i. We don’t
know the types of W (or not important to know). The other vertices of the double pyramid
are on level i + 1 and the classification of them gives their types. An edge of the double
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Figure 8: Connection between levels five and six in PP4,5

Figure 9: Growing method in case of the faces

pyramid and its centre V determine a square (a side-face of a (h2r)-cube) from the mosaic.
(Recall, that an edge of the vertex figure is a diagonal of a side-face of a (h2r)-cube.) Since
from a vertex of a square we can go to the opposite vertex two ways, then a vertex D of the
double pyramid, where D and a Wi−1 are connected by an edge, can be reached with two
paths from level i − 1. (For example on the left hand side of Figure 10, between a vertex
Wi−1 and D there are the paths Wi−1−Di−D and Wi−1−Wi−D.)

So, the type of the third vertex of the faces on the double pyramid whose other two vertices
are Wi−1 is D. The others connect to only one Wi−1, they can be reached by two ways from
level i, their types are E. See Figure 10. In the figures we denote vertices of type D by
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blue hexagons and vertices of type E by green pentagons. The blue thick directed edges are
mosaic-edges between levels i − 1 and i, while the red thin ones are between levels i and
i+ 1.

Figure 10: Growing method in case of the inner vertices with vertex figures

In Figure 11 the growing method is presented in case of the inner vertices. These vertices
are the centres and some vertices of the double pyramids are presented in Figure 10.

Figure 11: Growing method in case of the inner vertices

Finally, we denote the sums of vertices of types A, B, C, D and E on level n by an, bn,
cn, dn and en, respectively.

Summarising the details we prove Theorem 1.

Theorem 1. The growing of the numbers of the different types of the vertices are described
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by the system of linear inhomogeneous recurrence sequences (n ≥ 1)

an+1 = an + bn + 1,

bn+1 = (q − 4)an + (q − 3)bn,

cn+1 = cn + 2,

dn+1 = an + dn,

en+1 = bn + en,

(1)

with zero initial values.

We mention that cn (n ≥ 1) is an arithmetical sequence and cn = 2(n− 1).

Lemma 3.1. For the sequences dn and en (n ≥ 1) hold

dn = −an + 1
q−4bn + (n− 1),

en = an − (n− 1).
(2)

Proof. Obviously, for n = 1 the equations hold. In case n > 1 we suppose that dn−1 =
−an−1 + 1

q−4bn−1 + (n − 2) and en−1 = an−1 − (n − 2). Firstly, from the first, second and

fourth rows of (1) we have

an + dn = an−1 + bn−1 + 1 + an−1 + dn−1 = an−1 + bn−1 + 1 + 1
q−4bn−1 + (n− 2)

= q−4
q−4an−1 + q−3

q−4bn−1 + n− 1 = 1
q−4bn + (n− 1).

Secondly, from the first and fifth row of (1) we gain an−en = an−1−en−1 +1 = (n−2)+1 =
n− 1.

Moreover, let sn (n ≥ 1) be the number of all the vertices on level n, so that s0 = 1 and

sn = an + bn + cn + dn + en + 3

= an + q−3
q−4bn + 2n+ 1.

(3)

Table 1 shows the numbers of the vertices on levels up to 10 in case PP4,5.

Theorem 2. The sequences {an}, {bn}, {cn}, {dn}, {en} and {sn} can be described by the
same fourth order linear homogeneous recurrence sequence

xn = qxn−1 + 2(1− q)xn−2 + qxn−3 − xn−4 (n ≥ 5), (4)

the initial values be can gained from Theorem 1 (in case PP4,5 from Table 1). The sequences
{an}, {bn} can be also described by

xn = (q − 1)xn−1 + (1− q)xn−2 + xn−3 (n ≥ 4). (5)
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Moreover, the explicit formulae

an=

(
2− q

2
+
D + 2

2D

√
D

)
αn
1 +

(
2− q

2
− D + 2

2D

√
D

)
αn
2 + 1,

bn=

(
q − 3

2
+

1− q
2q

√
D

)
αn
1 +

(
q − 3

2
− 1− q

2q

√
D

)
αn
2 − 1,

dn=

(
q2 − 5q + 5

2(q − 4)
− q2 − 3q − 1

2D

√
D

)
αn
1 +

(
q2 − 5q + 5

2(q − 4)
+
q2 − 3q − 1

2D

√
D

)
αn
2

+n− 1

q − 4
+ 1,

en=

(
2− q

2
+
D + 2

2D

√
D

)
αn
1 +

(
2− q

2
− D + 2

2D

√
D

)
αn
2 − n+ 2,

sn=

(
q

2
−
√
D

2D

)
αn
1 +

(
q

2
+

√
D

2D

)
αn
2 + 2n− 1

q − 4
+ 1,

are valid, where D = q(q − 4), α1 = (q − 2 +
√
D)/2 and α2 = (q − 2−

√
D)/2.

Proof. The sequences {an} and {bn} are the same as {an}, {bn} in [4]. So they can be
described by (5) and their explicit formulae hold. According to Lemma 3.1 and (3) more
explicit formulae are derived by the combination of explicit formulae of {an} and {bn}.

Let us extend (5) to (4) considering the sequence {an}. Substitute an into (5) and sum
an and an−1 than we receive implicit form (4) for {an}. Similarly, (4) is also the implicit
form of {bn}.

Now we prove that (4) holds for sn also. Multiply the equation (3) by q, 2(1− q), q and
−1 where n = n, n− 1, n− 2 and n− 3, respectively. If we sum them, then we obtain

qsn + 2(1− q)sn−1 + qsn−2 − sn−3 = qan + 2(1− q)an−1 + qan−2 − an−3+
q − 3

q − 4
(qbn + 2(1− q)bn−1 + qbn−2 − bn−3) +

q(2n+ 1) + 2(1− q) (2(n− 1) + 1) + q (2(n− 2) + 1)− (2(n− 3) + 1) =

an+1 +
q − 3

q − 4
bn+1 + 2n+ 3 = sn+1.

n 0 1 2 3 4 5 6 7 8 9 10

an 0 0 1 2 4 9 22 56 145 378 988

bn 0 0 0 1 4 12 33 88 232 609 1596

cn 0 0 2 4 6 8 10 12 14 16 18

dn 0 0 0 1 3 7 16 38 94 239 617

en 0 0 0 0 1 5 17 50 138 370 979

sn 1 3 6 11 21 44 101 247 626 1615 4201

Table 1: Number of types of vertices (n ≤ 10) in case PP4,5
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This proves (4) for {sn}.
In case of {dn} and {en} we can prove the relation (4) similarly to {sn}.

Remark 1. If q = 4, then the sequences give results of the Euclidean Pascal’s pyramid. Its
all faces are Pascal’s triangle, thus bn = 0, en = 0, an coincide cn, that way the growing
equation system (1) is just cn+1 = cn + 3, dn+1 = cn + dn.

Remark 2. The generating function of the sequence sn is given by

1− (q − 3)x− (q − 4)x2

1− qx+ (2q − 2)x2 − qx3 + x4
.

In the case PP4,5 it is

1− 2x− x2

1− 5x+ 8x2 − 5x3 + x4
,

which is not in the OEIS at present.

4 Sum of the values on levels in PP4,q

In this section we determine the sum of the values of the elements on level n.

Denote, respectively, ân, b̂n, ĉn, d̂n and ên the sums of the values of vertices of type A,
B, C, D and E on level n.

Theorem 3. If n ≥ 1, then

ân+1 = 2ân + 2b̂n + 2,

b̂n+1 = (q − 4)ân + (q − 3)b̂n,

ĉn+1 = 2ĉn + 4,

d̂n+1 = ân + cn + 3d̂n + 2ên,

ên+1 = b̂n + (q − 4)d̂n + (q − 2)ên

(6)

with zero initial values.

Proof. From Figures 9 and 11 the results can be read directly. For example all the vertices
of type A, B and 1 on level n generate two vertices of type A on level n + 1 and it follows
from the first equation of (6).

Table 2 shows the sum of the values of the vertices on levels up to 10.

Let ŝn be the sum of the values of all the vertices on level n, then ŝ0 = 1 and

ŝn = ân + b̂n + ĉn + d̂n + ên + 3 (n ≥ 1).

The value ŝn also shows the number of paths from V0 to level n.
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Theorem 4. The sequences {ân}, {b̂n}, {ĉn}, {d̂n}, {ên} and {ŝn} can be described by the
same sixth order linear homogeneous recurrence sequence

xn = (2q + 3)xn−1 + (−q2 − 7q − 5)xn−2 + (4q2 + 10q + 9)xn−3+

(−5q2 − 13q − 10)xn−4 + (2q2 + 12q + 12)xn−5 + (−4q − 8)xn−6 (7)

the initial values are from the equation system (3). The sequences {ân}, {b̂n} can be also
described by

xn = qxn−1 − (q + 1)xn−2 + 2xn−3 (n ≥ 3). (8)

Moreover, for sequences {ĉn}, {ŝn}

ĉn = 3ĉn−1 − 2ĉn−2 (n ≥ 2), (9)

ŝn = (q + 3)ŝn−1 − (3q + 4)ŝn−2 + (2q + 4)ŝn−3 (n ≥ 3) (10)

and the explicit formula of ŝn

ŝn =

(
−1

2
+ (q − 1)

√
D

2D

)
αn
1 +

(
−1

2
− (q − 1)

√
D

2D

)
αn
2 + 2 · 2n (11)

is valid, where D = q2 − 2q − 7, α1 = 1
2

(
1 + q +

√
D
)

and α2 = 1
2

(
1 + q −

√
D
)

.

We do not give the implicit formulae for all sequences, because generally, they are com-
plicated, but they can be calculated easily with computer.

Proof. Let v̂n = 3 (n ≥ 1) be constant sequences and v̂0 = 1. The value v̂n gives the sum of
the number of vertices of type “1” on level n. Substitute 2 = 2v̂n/3 and 4 = 4v̂n/3 into the
first and third equations of (3) and complete it with equation v̂n+1 = v̂n. Than we have the

n 0 1 2 3 4 5 6 7 8 9 10

ân 0 0 2 6 18 58 194 658 2242 7642 26114

bn 0 0 0 2 10 38 134 462 1582 5406 18462

ĉn 0 0 4 12 28 60 124 252 508 1020 2044

dn 0 0 0 6 36 170 768 3458 15596 70314 316296

ên 0 0 0 0 8 70 418 2156 10388 48342 220746

ŝn 1 3 9 29 103 399 1641 6989 30319 132735 583665

Table 2: Sum of values of types of vertices (n ≤ 10) in case PP4,5
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system of linear homogeneous recurrence sequences (n ≥ 1)

ân+1 = 2ân + 2b̂n + 2
3
vn,

b̂n+1 = (q − 4)ân + (q − 3)b̂n,

ĉn+1 = 2ĉn + 4
3
vn,

d̂n+1 = ân + cn + 3d̂n + 2ên,

ên+1 = b̂n + (q − 4)d̂n + (q − 2)ên,

v̂n+1 = v̂n

(12)

and
ŝn = ân + b̂n + ĉn + d̂n + ên + v̂n (n ≥ 0).

The shorter form of the linear homogeneous recurrence sequences (12) is

ui+1 = Mui, (13)

where uj = [âj b̂j ĉj d̂j êj v̂j ]T and

M =



2 2 0 0 0 2
3

q − 4 q − 3 0 0 0 0

0 0 1 0 0 4
3

1 0 1 3 2 0

0 1 0 q − 4 q − 2 0

0 0 0 0 0 1


.

The characteristic polynomial of M is

p6(x) = (x− 1) (x− 2)
(
x2 − (q + 1)x+ q + 2

) (
x2 + (1− q)x+ 2

)
(14)

and according to Theorem 3 from [10] the equation (14) is the characteristic equation of all
the sequences r̂i+1 = yTui, where y = [y1 y2 . . . y6]

T . Thus (14) is the characteristic equa-
tion of ŝn, ân, . . . , ên with y = (1, 1, 1, 1, 1, 1), y = (1, 0, 0, 0, 0, 0), . . . , y = (0, 0, 0, 0, 1, 0),
respectively.

The equation (14) implies the six ordered linear recurrence sequence (7) for the considered
sequences, but for the lower order implicit formulae we have to examine the first elements
of the sequences. One can easily check, that the polynomial

pŝ(x) = (x− 2)
(
x2 − (q + 1)x+ q + 2

)
= x3 − (q + 3)x2 + (3q + 4)x− (2q + 4), (15)

moreover in case of âi and b̂i (see [4])

p3(x) = (x− 1)
(
x2 + (1− q)x+ 2

)
= x3 − qx2 + (1 + q)x− 2,

in case of ĉi the

p2(x) = (x− 1)(x− 2) = x2 − 3x+ 2.
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These polynomials imply the recurrence relations (7)–(10), respectively.
The roots of polynomial (15) are α1, α2, α3 = 2 and

ŝn = β1 · αn
1 + β2 · αn

2 + β3 · 2n (n ≥ 1)

provide the explicit formulae (see [13]). Solutions of the linear equation system from n =
1, 2, 3 determine the exact values of β’s.

Remark 3. In the case PP4,5 the growing ratio of values is limn→∞ ŝn+1/ŝn = α1≈ 4.414,
where α1 is the largest eigenvalue of matrix M. Recall, that these growing ratios are 3 and
≈10.351 in the Euclidean and hyperbolic cases, respectively ([10]).

Remark 4. The generating function of the sequence ŝn is given by

1− qx+ 4x2

1− (q + 3)x+ (3q + 4)x2 − (2q + 4)x3
.

In the case PP4,5 it is
1− 5x+ 4x2

1− 8x+ 19x2 − 14x3
,

which is not in the OEIS at present.
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