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Abstract

Let Fn denote the nth Fibonacci number relative to the initial conditions F0 = 0 and
F1 = 1. In [2], we introduced Fibonacci analogues of the Stirling numbers called Fibo-Stirling
numbers of the first and second kind. These numbers serve as the connection coefficients
between the Fibo-falling factorial basis {(x)↓F,n

: n ≥ 0} and the Fibo-rising factorial basis
{(x)↑F,n

: n ≥ 0} which are defined by (x)↓F,0
= (x)↑F,0

= 1 and for k ≥ 1, (x)↓F,k
=

x(x − F1) · · · (x − Fk−1) and (x)↑F,k
= x(x + F1) · · · (x + Fk−1). We gave a general rook

theory model which allowed us to give combinatorial interpretations of the Fibo-Stirling
numbers of the first and second kind.

There are two natural q-analogues of the falling and rising Fibo-factorial basis. That is,
let [x]q = qx−1

q−1
. Then we let [x]↓q,F,0

= [x]↓q,F,0
= [x]↑q,F,0

= [x]↑q,F,0
= 1 and, for k > 0, we

let
[x]↓q,F,k

= [x]q [x− F1]q · · · [x− Fk−1]q, [x]↓q,F,k
= [x]q([x]q − [F1]q) · · · ([x]q − [Fk−1]q),

[x]↑q,F,k
= [x]q [x+ F1]q · · · [x+ Fk−1]q, and [x]↑q,F,k

= [x]q([x]q + [F1]q) · · · ([x]q + [Fk−1]q).

In this paper, we show we can modify the rook theory model of [2] to give combinatorial
interpretations for the two different types q-analogues of the Fibo-Stirling numbers which
arise as the connection coefficients between the two different q-analogues of the Fibonacci
falling and rising factorial bases.

1 Introduction

Let Q denote the rational numbers and Q[x] denote the ring of polynomials over Q. Many
classical combinatorial sequences can be defined as connection coefficients between various basis
of the polynomial ring Q[x]. There are three very natural bases for Q[x]. The usual power
basis {xn : n ≥ 0}, the falling factorial basis {(x)↓n : n ≥ 0}, and the rising factorial basis
{(x)↑n : n ≥ 0}. Here we let (x)↓0 = (x)↑0 = 1 and for k ≥ 1, (x)↓k = x(x − 1) · · · (x − k + 1)
and (x)↑k = x(x+1) · · · (x+k−1). Then the Stirling numbers of the first kind sn,k, the Stirling
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numbers of the second kind Sn,k and the Lah numbers Ln,k are defined by specifying that for
all n ≥ 0,

(x)↓n =

n
∑

k=1

sn,k xk, xn =

n
∑

k=1

Sn,k (x)↓k , and (x)↑n =

n
∑

k=1

Ln,k (x)↓k .

The signless Stirling numbers of the first kind are defined by setting cn,k = (−1)n−ksn,k. Then
it is well known that cn,k, Sn,k, and Ln,k can also be defined by the recursions that c0,0 = S0,0 =
L0,0 = 1, cn,k = Sn,k = Ln,k = 0 if either n < k or k < 0, and

cn+1,k = cn,k−1 + ncn,k, Sn+1,k = Sn,k−1 + kSn,k, and Ln+1,k = Ln,k−1 + (n+ k)Ln,k

for all n, k ≥ 0. There are well known combinatorial interpretations of these connection coeffi-
cients. That is, Sn,k is the number of set partitions of [n] = {1, . . . , n} into k parts, cn,k is the
number of permutations in the symmetric group Sn with k cycles, and Ln,k is the number of
ways to place n labeled balls into k unlabeled tubes with at least one ball in each tube.

In [2], we introduced Fibonacci analogues of the number sn,k, Sn,k, and Ln,k. We started
with the tiling model of the Fn of [11]. That is, let FT n denote the set of tilings a column
of height n with tiles of height 1 or 2 such that bottom most tile is of height 1. For example,
possible tiling configurations for FT i for i ≤ 4 are shown in

1F   = 1

3F   = 2 4F   = 3

F   = 12

Figure 1: The tilings counted by Fi for 1 ≤ i ≤ 4.

For each tiling T ∈ FT n, we let one(T ) is the number of tiles of height 1 in T and two(T )
is the number of tiles of height 2 in T and define

Fn(p, q) =
∑

T∈FT n

qone(T )ptwo(T ).

It is easy to see that F1(p, q) = q, F2(p, q) = q2 and Fn(p, q) = qFn−1(p, q)+pFn−2(p, q) for n ≥ 2
so that Fn(1, 1) = Fn. We then defined the p, q-Fibo-falling factorial basis {(x)↓F,p,q,n

: n ≥ 0}
and the p, q-Fibo-rising factorial basis {(x)↑F,p,q,n

: n ≥ 0} by setting (x)↓F,p,q,0
= (x)↑F,p,q,0

= 1
and setting

(x)↓F,p,q,k
= x(x− F1(p, q)) · · · (x− Fk−1(p, q)) and

(x)↑F,p,q,k
= x(x+ F1(p, q)) · · · (x+ Fk−1(p, q))

for k ≥ 1.
Our idea to define p, q-Fibonacci analogues of the Stirling numbers of the first kind, sfn,k(p, q),

the Stirling numbers of the second kind, Sfn,k(p, q), and the Lah numbers, Lfn,k(p, q), is to de-
fine them to be the connection coefficients between the usual power basis {xn : n ≥ 0} and
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the p, q-Fibo-rising factorial and p, q-Fibo-falling factorial bases. That is, we define sfn,k(p, q),
Sfn,k(p, q), and Lfn,k(p, q) by the equations

(x)↓F,p,q,n
=

n
∑

k=1

sfn,k(p, q) x
k, (1)

xn =

n
∑

k=1

Sfn,k(p, q) (x)↓F,p,q,k
, and (2)

(x)↑F,p,q,n
=

n
∑

k=1

Lfn,k(p, q) (x)↓F,p,q,k
(3)

for all n ≥ 0.
It is easy to see that these equations imply simple recursions for the connection coefficients

sfn,k(p, q)s, Sfn,k(p, q)s, and Lfn,k(p, q)s. That is, sfn,k(p, q)s, Sfn,k(p, q)s, and Lfn,k(p, q)s can
be defined by the following recursions

sfn+1,k(p, q) = sfn,k−1(p, q)− Fn(p, q)sfn,k(p, q),

Sfn+1,k(p, q) = Sfn,k−1(p, q) + Fk(p, q)Sfn,k(p, q), and

Lfn+1,k(p, q) = Lfn,k−1(p, q) + (Fk(p, q) + Fn(p, q))Lfn,k(p, q)

plus the boundary conditions

sf0,0(p, q) = Sf0,0(p, q) = Lf0,0(p, q) = 1

and
sfn,k(p, q) = Sfn,k(p, q) = Lfn,k(p, q) = 0

if k > n or k < 0. If we define cfn,k(p, q) := (−1)n−k
sfn,k(p, q), then cfn,k(p, q)s can be defined

by the recursions
cfn+1,k(p, q) = cfn,k−1(p, q) + Fn(p, q)cfn,k(p, q) (4)

plus the boundary conditions cf0,0(p, q) = 1 and cfn,k(p, q) = 0 if k > n or k < 0. It also follows
that

(x)↑F,p,q,n
=

n
∑

k=1

cfn,k(p, q) x
k. (5)

In [2], we developed a new rook theory model to give a combinatorial interpretation of the
cfn,k(p, q)s and the Sfn,k(p, q)s and to give combinatorial proofs of their basic properties. This
new rook theory model is a modification of the rook theory model for Sn,k and cn,k except that
we replace rooks by Fibonacci tilings.

The main goal of this paper is to show how that model can be modified to give combinatorial
interpretations to two new q-analogues of the cfn,k(1, 1)s and the Sfn,k(1, 1)s. Let [0]q = 1 and

[x]q =
1−qx

1−q
. When n is a positive integer, then [n]q = 1+ q+ · · ·+ qn−1 is the usual q-analogue

of n. Then there are two natural analogues of the falling and rising Fibo-factorial basis. First
we let [x]↓q,F,0

= [x]↓q,F,0
= [x]↑q,F,0

= [x]↑q,F,0
= 1. For k > 0, we let k > 0,

[x]↓q,F,k
= [x]q[x− F1]q · · · [x− Fk−1]q,

[x]↓q,F,k
= [x]q([x]q − [F1]q) · · · ([x]q − [Fk−1]q),

[x]↑q,F,k
= [x]q[x+ F1]q · · · [x+ Fk−1]q, and

[x]↑q,F,k
= [x]q([x]q + [F1]q) · · · ([x]q + [Fk−1]q).
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Then we define cFn,k(q) and cFn,k(q) by the equations

[x]↑q,F,n
=

n
∑

k=1

cFn,k(q)[x]
k
q (6)

and

[x]↑q,F,n
=

n
∑

k=1

cFn,k(q)[x]
k
q . (7)

Similarly, we define SFn,k(q) and SFn,k(q) by the equations

[x]nq =
n
∑

k=1

SFn,k(q)[x]↓q,F,k
(8)

and

[x]nq =
n
∑

k=1

SFn,k(q)[x]↓q,F,k
(9)

One can easily find recursions for these polynomials. For example,

[x]n+1
q =

n+1
∑

k=1

SFn+1,k(q)[x]↓q,F,k
=

n
∑

k=1

SFn,k(q)[x]↓q,F,k
[x]q

=
n
∑

k=1

SFn,k(q)[x]↓q,F,k
([Fk]q + qFk [x− Fk]q)

=
n
∑

k=1

[Fk]qSFn,k(q)[x]↓q,F,k
+

n
∑

k=1

qFkSFn,k(q)[x]↓q,F,k+1
.

Taking the coefficient of [x]↓q,F,k
[x]q on both sides shows that

SFn+1,k(q) = qFk−1SFn,k−1(q) + [Fk]qSFn,k(q) (10)

for 0 ≤ k ≤ n + 1. It is then easy to check that the SFn,k(q)s can be defined by the recursions
(10) with the initial conditions that SF0,0(q) = 1 and SFn,k(q) = 0 if k < 0 or n < k. A similar
argument will show that SFn,k(q) can be defined by the initial conditions that SF0,0(q) = 1 and
SFn,k(q) = 0 if k < 0 or n < k and the recursion

SFn+1,k(q) = SFn,k−1(q) + [Fk]qSFn,k(q). (11)

for 0 ≤ k ≤ n+ 1. Similarly, cFn,k(q) can be defined by the initial conditions that cF0,0(q) = 1
and cFn,k(q) = 0 if k < 0 or n < k and the recursion

cFn+1,k(q) = qFn−1cFn,k−1(q) + [Fn]qcFn,k(q), (12)

for 0 ≤ k ≤ n + 1, and cFn,k(q) can be defined by the initial conditions that cF0,0(q) and
cFn,k(q) = 0 if k < 0 or n < k and the recursion

cFn+1,k(q) = cFn,k−1(q) + [Fn]qcFn,k(q) (13)
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for 0 ≤ k ≤ n+ 1.
The main goal of this paper is to give a rook theory model for the polynomials cFn,k(q),

cFn,k(q), SFn,k(q), and SFn,k(q). Our rook theory model will allow us to give combinatorial
proofs of the defining equations (6), (7), (8), and (9) as well as combinatorial proofs of the
recursions (10), (11), (12), and (13). We shall see that our rook theory model cFn,k(q), cFn,k(q),
SFn,k(q), and SFn,k(q) is essentially the same as the the rook theory model used in [2] to interpret
the Sfn,k(p, q)s and Sfn,k(p, q)s but with a different weighting scheme.

The outline of the paper is as follows. In Section 2, we describe a ranking and unranking
theory for the set of Fibonacci tilings which will a crucial element in our weighting scheme for
our rook theory model that we shall use to give combinatorial interpretations of the polynomials
cFn,k(q), cFn,k(q), SFn,k(q), and SFn,k(q). In section 3, we shall review the rook theory model in
[2] and show how it can be modified for our purposes. In Section 4, we shall prove general product
formulas for Ferrers boards in our new model which will specialize (6), (7), (8), and (9) in the case
where the Ferrers board is the staircase board whose column heights are 0, 1, . . . , n− 1 reading
from left to right. In Section 5, we shall prove various special properties of the polynomials
cFn,k(q), cFn,k(q), SFn,k(q), and SFn,k(q).

2 Ranking and Unranking Fibonacci Tilings.

There is a well developed theory for ranking and unranking combinatorial objects. See for exam-
ple, Williamson’s book [14]. That is, give a collection of combinatorial objects O of cardinality
n, one wants to define bijections rank : O → {0, . . . , n − 1} and unrank : {0, . . . , n − 1} → O
which are inverses of each other. In our case, we let Fn denote the set of Fibonnaci tilings of
height n. Then we construct a tree which we call the Fibonacci tree for Fn. That is, we start
from the top of a Fibonacci tiling and branch left if we see a tile of height 1 and branch right if
we see a tiling of height 2. For example, the Fibonacci tree for F5 is pictured in Figure 2.

5

4

3

2

1

0

Figure 2: The tree for F5

Then for any tiling T ∈ Fn, we define the rank of T for Fn, rankn(T ), to be the number of
paths to the left of the path for T in the Fibonacci tree for Fn. Clearly

{rankn(T ) : T ∈ Fn} = {0, 1, 2, . . . , Fn − 1}

so that
∑

T∈Fn
qrankn(T ) = 1+q+ · · ·+qFn−1 = [Fn]q. It is, in fact, quite easy to see compute the

functions rankn and unrankn in this situation. That is, suppose that we represent the tiling T as
a sequence seq(T ) = (t1, . . . , tn) where reading the tiles starting at the bottom, ti = 1 if there is
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a tiling ti of height 1 that ends at level i in T , ti = 2 if there is ti of height 2 that ends at level i
in T , and ti = 0 if there is no tile ti that ends at level i in T . For example, the tiling of T height
9 pictured in Figure 3 would be represented by the sequence seq(T ) = (1, 0, 2, 1, 1, 1, 0, 2, 1).

Figure 3: A tiling in F9.

For any statement A, we let χ(A) = 1 is A is true and χ(A) = 0 if A is false. Then we have
the following lemma.

Lemma 1. Suppose that T ∈ Fn is a Fibonacci tiling such that seq(T ) = (t1, . . . , tn). Then

rankn(T ) =
∑n

i=1 Fi−1χ(ti = 2).

Proof. The theorem is easy to prove by induction. It is clearly true for n = 1 and n = 2. Now
suppose n ≥ 3. Then it is easy to see from the Fibonacci tree for Fn that if tn = 2 so that
tn−1 = 0, then the tree that starts at level n − 1 which represents taking the path to the left
starting at level n is just the Fibonacci tree for Fn−1 and hence this tree will contain Fn−1 leaves
which will all be to the left of path for the tiling T . Then the tree that starting at level n − 2
which represents taking the path to the right starting at level n is just the Fibonacci tree for
Fn−2 and the number of paths in this tree which lie to the left of the path for T is just that the
number of paths to the left of the tiling T ′ such that seq(T ′) = (t1, . . . , tn−2) in the Fibonacci
tree for Fn−2. Thus in this case

rankn(T ) = Fn−1 + rankn−2(T
′) = Fn−1 + rankn−2(t1, . . . , tn−2). (14)

On the other hand if tn = 1, then we branch left at level n so that the number of paths to the
left of the path for T in the Fibonacci tree for Fn will just be the number of paths to the left
of the tiling T ′′ such that seq(T ′′) = (t1, . . . , tn−1) in the Fibonacci tree for Fn−1. Thus in this
case

rankn(T ) = rankn−1(T
′′) = rankn−1(t1, . . . , tn−1). (15)

For example, for the tiling T in Figure 3, rank9(T ) = F2 + F8 = 1 + 21 = 22.
For the unrank function, we must rely on Zeckendorf’s theorem [15] which states that ev-

ery positive integer n is uniquely represented as sum n =
∑k

i=0 Fci where each ci ≥ 2 and
ci+1 > ci + 1. Indeed, Zeckendorf’s theorem says that the greedy algorithm give us the proper
representation. That is, given n, find k such that Fk ≤ n < Fk+1, then the representation for n
is gotten by taking the representation for n− Fk and adding Fk. For example, suppose that we
want to find T such that rank13(T ) = 100. Then
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1. F11 = 89 ≤ 100 < F12 = 144 so that we need to find the Fibonacci representation of
100 − 89 = 11.

2. F6 = 8 ≤ 11 < F7 = 13 so that we need to find the Fibonacci representation of 11− 8 = 3.

3. F4 = 3 ≤ 3 < F5 = 5.

Thus we can represent 100 = F4 + F6 + F11 = 3 + 8 + 89 so that

seq(T ) = (1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 0, 2, 1).

3 The rook theory model for the SFn,k(q)s and the cFn,k(q)s.

In this section, we shall give a rook theory model which will allow us to give combinatorial
interpretations for the SFn,k(q)s and the cFn,k(q)s. This rook theory model is based on the
one which Bach, Paudyal, and Remmel used in [2] to give combinatorial interpretations to the
Sfn,k(p, q)s and the cfn,k(p, q)s. Thus, we shall briefly review the rook theory model in [2].

A Ferrers board B = F (b1, . . . , bn) is a board whose column heights are b1, . . . , bn, reading
from left to right, such that 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn. We shall let Bn denote the Ferrers board
F (0, 1, . . . , n − 1). For example, the Ferrers board B = F (2, 2, 3, 5) is pictured on the left of
Figure 4 and the Ferrers board B4 is pictured on the right of Figure 4

F(2,2,3,5) = B  = F(0,1,2,3) = 4

Figure 4: Ferrers boards.

Classically, there are two type of rook placements that we consider on a Ferrers board B.
First we let Nk(B) be the set of all placements of k rooks in B such that no two rooks lie in
the same row or column. We shall call an element of Nk(B) a placement of k non-attacking
rooks in B or just a rook placement for short. We let Fk(B) be the set of all placements of k
rooks in B such that no two rooks lie in the same column. We shall call an element of Fk(B)
a file placement of k rooks in B. Thus file placements differ from rook placements in that file
placements allow two rooks to be in the same row. For example, we exhibit a placement of 3
non-attacking rooks in F (2, 2, 3, 5) on the left in Figure 5 and a file placement of 3 rooks on the
right in Figure 5.

X

X

X

X X

X

Figure 5: Examples of rook and file placements.
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Given a Ferrers board B = F (b1, . . . , bn), we define the k-th rook number of B to be
rk(B) = |Nk(B)| and the k-th file number of B to be fk(B) = |Fk(B)|. Then the rook theory
interpretation of the classical Stirling numbers is

Sn,k = rn−k(Bn) for all 1 ≤ k ≤ n and

cn,k = fn−k(Bn) for all 1 ≤ k ≤ n.

The idea of [2] is to modify the sets Nk(B) and Fk(B) to replace rooks with Fibonacci tilings.
The analogue of file placements is very straightforward. That is, if B = F (b1, . . . , bn), then we
let FT k(B) denote the set of all configurations such that there are k columns (i1, . . . , ik) of B
where 1 ≤ i1 < · · · < ik ≤ n such that in each column ij , we have placed one of the tilings Tij

for the Fibonacci number Fbij
. We shall call such a configuration a Fibonacci file placement and

denote it by
P = ((i1, Ti1), . . . , (ik, Tik)).

Let one(P ) denote the number of tiles of height 1 that appear in P and two(P ) denote the number
of tiles of height 2 that appear in P . Then in [2], we defined the weight of P , WF (P, p, q), to be
qone(P )ptwo(P ). For example, we have pictured an element P of FT 3(F (2, 3, 4, 4, 5)) in Figure 6
whose weight is q7p2. Then we defined the k-th p, q-Fibonacci file polynomial of B, fTk(B, p, q),
by setting

fTk(B, p, q) =
∑

P∈FT k(B)

WF (P, p, q).

If k = 0, then the only element of FT k(B) is the empty placement whose weight by definition
is 1.

Figure 6: A Fibonacci file placement.

Then in [2], we proved the following theorem concerning Fibonacci file placements in Ferrers
boards.

Theorem 2. Let B = F (b1, . . . , bn) be a Ferrers board where 0 ≤ b1 ≤ · · · ≤ bn and bn > 0. Let

B− = F (b1, . . . , bn−1). Then for all 1 ≤ k ≤ n,

fTk(B, p, q) = fTk(B
−, p, q) + Fbn(p, q)fTk−1(B

−, p, q). (16)

To obtain the q-analogues that we desire for this paper, we define a new weight functions
for elements of FT k(B) where B = F (b1, . . . , bn) is Ferrers board. That is given a Fibonacci
file placement P = ((i1, Ti1), . . . , (in−k, Tin−k

)) in FT n−k(B), let (j1, . . . , jk) be the sequence of
columns in B which have no tilings, reading from left to right. Then we define

wB,q(P ) = q
∑n−k

s=1 rankbis
(Tis )+

∑k
t=1 Fbjt and

wB,q(P ) = q
∑n−k

s=1 rankbis
(Tis )

8



Note that the only difference between these two weight functions is that if bi is column that
does not contain a tiling in P , then it contributes a factor of qFbi to wB,q(P ) and a factor of 1
to wB,q(P ). We then define FTk(B, q) and FTk(B, q), by setting

FTk(B, q) =
∑

P∈FT k(B)

wB,q(P ) and

FTk(B, q) =
∑

P∈FT k(B)

wB,q(P ).

If k = 0, then the only element of FT k(B) is the empty placement ∅ so that wB,q(∅) = q
∑n

i=1 Fbi

and wB,q(∅) = 1.
Then we have the following analogue of Theorem 2.

Theorem 3. Let B = F (b1, . . . , bn) be a Ferrers board where 0 ≤ b1 ≤ · · · ≤ bn and bn > 0. Let

B− = F (b1, . . . , bn−1). Then for all 1 ≤ k ≤ n,

FTk(B, q) = qFbnFTk(B
−, q) + [Fbn ]qFTk−1(B

−, p, q) (17)

and

FTk(B, q) = FTk(B
−, q) + [Fbn ]qFTk−1(B

−, p, q). (18)

Proof. We claim (17) results by classifying the Fibonacci file placements in FT k(B) accord-
ing to whether there is a tiling in the last column. If there is no tiling in the last column of
P , then removing the last column of P produces an element of FT k(B

−) . Thus such place-
ments contribute qFbnFTk(B

−, q) to FTk(B, q) since the fact that the last column has no tiling
means that it contributes a factor of qFbn to wB,q(P ). If there is a tiling in the last column,
then the Fibonacci file placement that results by removing the last column is an element of
FT k−1(B

−) and the sum of the weights of the possible Fibonacci tilings of height bn for the last
column is

∑

T∈Fbn
qrankbn (T ) = [Fbn ]q. Hence such placements contribute [Fbn ]qFTk−1(B

−, q) to

FTk(B, q). Thus

FTk(B, q) = qFbnFTk(B
−, q) + [Fbn ]qFTk−1(B

−, p, q).

A similar argument will prove (18).

If B = F (b1, . . . , bn) is a Ferrers board, then we let Bx denote the board that results by
adding x rows of length n below B. We label these rows from top to bottom with the numbers
1, 2, . . . , x. We shall call the line that separates B from these x rows the bar. A mixed file
placement P on the board Bx consists of picking for each column bi either (i) a Fibonacci tiling
Ti of height bi above the bar or (ii) picking a row j below the bar to place a rook in the cell
in row j and column i. Let Mn(Bx) denote set of all mixed rook placements on B. For any
P ∈ Mn(Bx), we let one(P ) denote the number of tiles of height 1 that appear in P and two(P )
denote the set tiles of height 2 that appear in P . Then in [2], we defined the weight of P ,
WF (P, p, q), to be qone(P )ptwo(P ). For example, Figure 7 pictures a mixed placement P in Bx

where B = F (2, 3, 4, 4, 5, 5) and x is 9 such that WF (P, p, q) = q7p2.
Also in [2], we proved the following theorem by counting

∑

P∈Mn(Bx)
WF (P, p, q) in two

different ways.

9
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Figure 7: A mixed file placement.

Theorem 4. Let B = F (b1, . . . , bn) be a Ferrers board where 0 ≤ b1 ≤ · · · ≤ bn and bn > 0.

(x+ Fb1(p, q))(x + Fb2(p, q)) · · · (x+ Fbn(p, q)) =

n
∑

k=0

fTk(B, p, q)xn−k. (19)

To obtain the desired q-analogues for this paper, we must define new weight functions for
mixed placements P ∈ Mn(Bx). That is, suppose that P ∩ B is the Fibonacci tile placement
Q = ((i1, Ti1), . . . , (ik, Tin−k

)), and suppose that, for the rooks below the bar in columns 1 ≤
j1 < . . . jk ≤ n, the rook in column js is in row djs for s = 1, . . . , k. Then we define

wBx,q(P ) = wB,q(P )q
∑k

t=1 djt−1 = q
∑n−k

s=1 rankbis
(Tis )+

∑k
t=1 Fbjt

+djt−1
and

wBx,q(P ) = wB,q(P )q
∑k

t=1 djt−1 = q
∑n−k

s=1 rankbis
(Tis )+

∑k
t=1 djt−1

.

That is, for each column i the choice of a Fibonacci tiling Ti of height bi above the bar contributes
a factor of qrankbi (Ti) to wBx,q(P ) and the choice of picking a row j below the bar to place a
rook in the cell in row j and column i contributes a factor of qFbi

+j−1 to wBx,q(P ). Similarly,
for each column bi the choice of a Fibonacci tiling Ti of height bi above the bar contributes a
factor of qrankbi (Ti) to wBx,q(P ) and the choice of picking a row j below the bar to place a rook
in the cell in row j and column i contributes a factor of qj−1 to wBx,q(P ).

Then we have the following analogue of Theorem 4.

Theorem 5. Let B = F (b1, . . . , bn) be a Ferrers board where 0 ≤ b1 ≤ · · · ≤ bn and bn > 0.
Then for all positive integers x,

[x+ Fb1 ]q[x+ Fb2 ]q · · · [x+ Fbn ]q =
n
∑

k=0

FTk(B, q)[x]n−k
q (20)

and

([x]q + [Fb1 ]q)([x]q + [Fb2 ]q) · · · ([x]q + [Fbn ]q) =

n
∑

k=0

FTk(B, q)[x]n−k
q (21)

10



Proof. To prove (20), fix x to be a positive integer and consider the sums

S =
∑

P∈Mn(Bx)

wBx,q(P ) and

S =
∑

P∈Mn(Bx)

wBx,q(P ).

For S, in a given column i, our choice of the Fibonacci tiling of height bi will contribute a
factor of

∑

T∈Fn
qrankbi(T ) = [Fbi ]q to S. Our choice of placing a rook below the bar in column i

contribute a factor of
x
∑

j=1

qFbi
+j−1 = qFbi (1 + q + q2 + · · · qx−1) = qFbi [x]q

to S. As [Fbi ]q + qFbi [x]q = [x+ Fbi ]q, each column of bi of B contributes a factor of [x + Fbi ]q
to S so that

S =
n
∏

i=1

[x+ Fbi ]q.

For S, in a given column i, our choice of the Fibonacci tiling of height bi will contribute a
factor of

∑

T∈Fn
qrankbi(T ) = [Fbi ]q to S. Our choice of placing a rook below the bar in column i

contribute a factor of
x
∑

j=1

qj−1 = [x]q

to S. Thus each column bi contributes a factor of [x]q + [Fbi ]q to S so that

S =

n
∏

i=1

([x]q + [Fbi ]q).

On the other hand, suppose that we fix a Fibonacci file placement P ∈ FT k(B). Then
we want to compute SP =

∑

Q∈Mn(B),Q∩B=P wBx,q(Q) which is the sum of wBx,q(Q) over all
mixed placements Q such that Q intersect B equals P . It it easy to see that such a Q arises by
choosing a rook to be placed below the bar for each column that does not contain a tiling. Each
such column contributes a factor of 1 + q+ · · ·+ qx−1 = [x]q in addition to the weight wB,q(P ).
Thus it follows that SP = wB,q(P )[x]n−k

q . Hence it follows that

S =
n
∑

k=0

∑

P∈FT k(B)

SP

=
n
∑

k=0

[x]n−k
q

∑

P∈FT k(B)

wB,q(P )

=

n
∑

k=0

FTk(B, q) [x]n−k
q .

The same argument will show that

S =
n
∑

k=0

FTk(B, q) [x]n−k
q .

11



Now consider the special case of the previous two theorems when Bn = F (0, 1, 2, . . . , n− 1).
Then (17) implies that

FTn+1−k(Bn+1, q) = qFnFTn+1−k(Bn, p, q) + [Fn]qFTn−k(Bn, q).

It then easily follows that for all 0 ≤ k ≤ n,

cFn,k(q) = FTn−k(Bn, q). (22)

Note that cFn,0(q) = 0 for all n ≥ 1 since there are no Fibonacci file placements in FT n(Bn)
since there are only n− 1 non-zero columns. Moreover such a situation, we see that (22) implies
that

[x]q[x+ F1]q[x+ F2]q · · · [x+ Fn−1]q =

n
∑

k=1

cFn,k(q) [x]
k
q .

Thus we have given a combinatorial proof of (6).
Similarly (18) implies that

FTn+1−k(Bn+1, q) = FTn+1−k(Bn, p, q) + [Fn]qFTn−k(Bn, q).

It then easily follows that for all 0 ≤ k ≤ n,

cFn,k(q) = FTn−k(Bn, q). (23)

Moreover such a situation, we see that (23) implies that

[x]q([x]q + [F1]q)([x]q + [F2]q) · · · ([x]q + [Fn−1]q) =

n
∑

k=1

cFn,k(q) [x]
k
q .

Thus we have given a combinatorial proof of (7).
The Fibonacci analogue of rook placements defined in [2] is a slight variation of Fibonacci

file placements. The main difference is that each tiling will cancel some of the top most cells in
each column to its right that has not been canceled by a tiling which is further to the left. Our
goal is to ensure that if we start with a Ferrers board B = F (b1, . . . , bn), our cancellation scheme
will ensure that the number of uncanceled cells in the empty columns are b1, . . . , bn−k, reading
from left to right. That is, if B = F (b1, . . . , bn), then we let NT k(B) denote the set of all
configurations such that that there are k columns (i1, . . . , ik) of B where 1 ≤ i1 < · · · < ik ≤ n

such that the following conditions hold.

1. In column i1, we place a Fibonacci tiling Ti,1 of height bi1 and for each j > i1, this tiling
cancels the top bj − bj−1 cells at the top of column j. This cancellation has the effect of
ensuring that the number of uncanceled cells in the columns without tilings at this point
is b1, . . . , bn−1, reading from left to right.

2. In column i2, our cancellation due to the tiling in column i1 ensures that there are bi2−1

uncanceled cells in column i2. Then we place a Fibonacci tiling Ti,2 of height bi2−1 and
for each j > i2, we cancel the top bj−1 − bj−2 cells in column j that has not been canceled
by the tiling in column i1. This cancellation has the effect of ensuring that the number of
uncanceled cells in columns without tilings at this point is b1, . . . , bn−2, reading from left
to right.

12



3. In general, when we reach column is, we assume that the cancellation due to the tilings
in columns i1, . . . , ij−1 ensure that the number of uncanceled cells in the columns without
tilings is b1, . . . , bn−(s−1), reading from left to right. Thus there will be bis−(s−1) uncanceled
cells in column is at this point. Then we place a Fibonacci tiling Ti,s of height bis−(s−1)

and for each j > is, this tiling will cancel the top bj−(s−1)− bj−s cells in column j that has
not been canceled by the tilings in columns i1, . . . , is−1. This cancellation has the effect
of ensuring that the number of uncanceled cells in columns without tilings at this point is
b1, . . . , bn−s, reading from left to right.

We shall call such a configuration a Fibonacci rook placement and denote it by

P = ((i1, Ti1), . . . , (ik, Tik)).

Let one(P ) denote the number of tiles of height 1 that appear in P and two(P ) denote the number
of tiles of height 2 that appear in P . Then in [2], we defined the weight of P , WF (P, p, q),
to be qone(P )ptwo(P ). For example, on the left in Figure 8, we have pictured an element P

of NT 3(F (2, 3, 4, 4, 6, 6)) whose weight is q5p2. In Figure 8, we have indicated the canceled
cells by the tiling in column i by placing an i in the cell. We note in the special case where
B = F (0, k, 2k, . . . , (n − 1)k), then our cancellation scheme is quite simple. That is, each
tiling just cancels the top k cells in each column to its right which has not been canceled by
tilings to its left. For example, on the right in Figure 8, we have pictured an element P of
NT 3(F (0, 1, 2, 3, 4, 5)) whose weight is q6p. Again, we have indicated the canceled cells by the
tiling in column i by placing an i in the cell.

1

1

1

1

3

3

3

2

2

2

4

2

4

5

Figure 8: A Fibonacci rook placement.

We define the k-th p, q-Fibonacci rook polynomial of B, rTk(B, p, q), by setting

rTk(B, p, q) =
∑

P∈NT k(B)

WF (P, p, q).

If k = 0, then the only element of FT k(B) is the empty placement whose weight by definition
is 1.

Then in [2], we proved the following two theorems concerning Fibonacci rook placements in
Ferrers boards.

Theorem 6. Let B = F (b1, . . . , bn) be a Ferrers board where 0 ≤ b1 ≤ · · · ≤ bn and bn > 0. Let

B− = F (b1, . . . , bn−1). Then for all 1 ≤ k ≤ n,

rTk(B, p, q) = rTk(B
−, p, q) + Fbn−(k−1)

(p, q)rTk−1(B
−, p, q). (24)
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Theorem 7. Let B = F (b1, . . . , bn) be a Ferrers board where 0 ≤ b1 ≤ · · · ≤ bn and bn > 0.

xn =

n
∑

k=0

rTn−k(B, p, q)(x− Fb1(p, q))(x − Fb2(p, q)) · · · (x− Fbk(p, q)). (25)

To obtain the q-analogues that we want for this paper, we need to define two new weight
functions on Fibonacci rook tilings. That is, suppose that B = F (b1, . . . , bn) is a Ferrers board
and P = ((i1, Ti1), . . . , (ik, Tik)) is an Fibonacci rook tiling in NT k(B). Then we know that
the number of uncanceled cells in the n − k columns which do not have tilings are b1, . . . , bn−k

reading from left to right. Suppose that the number of uncanceled cells in the columns with
tilings are e1, . . . , ek reading from left to right so that tiling Tij is of height ej for j = 1, . . . , k.
The we define

WB,q(P ) = q
∑k

s=1 rankes (Tis )+
∑n−k

t=1 Fbt and

WB,q(P ) = q
∑k

s=1 rankes (Tis ).

For example, if B = (2, 3, 4, 4, 5, 5) and P = ((1, T1), (3, T3), (5, T5)) is the rook tiling pictured
in Figure 8, then e1 = 2, e2 = 3 and e3 = 4 and one can check that rank2(T1) = 0, rank3(T3) =
F2 = 1, and rank4(T5) = F3 = 2. Thus WB,q(P ) = q0+1+2+F2+F3+F4 = q9 and WB,q(P ) =
q0+1+2 = q3. If k = 0, then the only element of FT k(B) is the empty placement ∅ which means
that WB,q(∅) = q

∑n
i=1 Fbi and WB,q(∅) = 1.

Then we define RTk(B, q) by setting

RTk(B, q) =
∑

P∈NT k(B)

WB,q(P )

and
RTk(B, q) =

∑

P∈NT k(B)

WB,q(P ).

Note that because of our cancellation scheme, there is a very simple relationship between
RTk(B, q) and RTk(B, q) in the case where B = F (b1, . . . , bn). That is, in any placement
P ∈ NT k(B), the empty columns have b1, . . . , bn−k uncanceled cells, reading from left to right,
so that

RTk(B, q) = q
∑n−k

i=1 FbiRTk(B, q). (26)

Let B = F (b1, . . . , bn) be a Ferrers board and x be a positive integer. Then we let AugBx

denote the board where we start with Bx and add the flip of the board B about its baseline below
the board. We shall call the the line that separates B from these x rows the upper bar and the
line that separates the x rows from the flip of B added below the x rows the lower bar. We shall
call the flipped version of B added below Bx the board B. For example, if B = F (2, 3, 4, 4, 5, 5),
then the board AugB7 is pictured in Figure 9.

The analogue of mixed placements in AugBx are more complex than the mixed placements
for Bx. We process the columns from left to right. If we are in column 1, then we can do one of
the following three things.

i. We can put a Fibonacci tiling in cells in the first column in B. Then we must cancel the
top-most cells in each of the columns in B to its right so that the number of uncanceled
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Figure 9: An example of an augmented board AugBx.

cells in the columns to its right are b1, b2, . . . , bn−1, respectively, as we read from left to
right. This means that we will cancel bi− bi−1 at the top of column i in B for i = 2, . . . , n.
We also cancel the same number of cells at the bottom of the corresponding columns of
B.

ii. We can place a rook in any row of column 1 that lies between the upper bar and lower
bar. This rook will not cancel anything.

iii. We can put a flip of Fibonacci tiling in column 1 of B. This tiling will not cancel anything.

Next assume that when we get to column j, the number of uncanceled cells in the columns
that have no tilings in B and B are b1, . . . , bk for some k as we read from left to right. Suppose
there are bi uncanceled cells in B in column j. Then we can do one of three things.

i. We can put a Fibonacci tiling of height bi in the uncanceled cells in column j in B. Then
we must cancel top-most cells of the columns in B to its right so that the number of
uncanceled cells in the columns which have no tilings up to this point are b1, b2, . . . , bk−1,
We also cancel the same number of cells at the bottom of the corresponding columns of B

ii. We can place a rook in any row of column j that lies between the upper bar and lower
bar. This rook will not cancel anything.

iii. We can put a flip of Fibonacci tiling in the bi uncanceled cells in column j of B. This
tiling will not cancel anything

We let Mn(AugBx) denote set of all mixed rook placements on AugBx. For any placement
P ∈ Mn(AugBx), we defineWAugBx,q(P ) and WAugBx,q(P ) as follows. For any column i, sup-
pose that the number of uncanceled cells in B in column i is ti. Then the factor Wi,AugBx,q(P )
that the placement in column i contributes to WAugBx,q(P ) is

1. qrankti (Ti) if there is tiling Ti in B in column i,

15



2. qFti
+si−1 if there is a rook in row sthi row from the top in the x rows that lie between the

upper bar and lower bar, and

3. −qrankti(Ti) if there is a flip of a tiling Ti in column i of B.

Then we define

WAugBx,q(P ) =

n
∏

i=1

Wi,AugBx,q(P ).

Similarly, the factor Wi,AugBx,q(P ) that the tile placement in column i contributes to
WAugBx,q(P ) is

1. qrankti (Ti) if there is tiling Ti in B in column i,

2. qsi−1 if there is a rook in row sthi row from the top in the x rows that lie between the upper
bar and lower bar, and

3. −qrankti(Ti) if there is a flip of a tiling Ti in column i of B.

Then we define

WAugBx,q(P ) =
n
∏

i=1

Wi,AugBx,q(P ).

For example, Figure 10 pictures a mixed placement P in AugBx where B = F (2, 3, 4, 4, 5, 5)
and x is 7 where rank2(T1) = 0, rank4(T4) = F2 = 1, and rank4(T5) = F3 = 2 where Ti is the
tiling in column i for i ∈ {1, 4, 5}. The rooks columns 2 and 6 are in row 5 and the rook in
column 3 is in row 3 so that s2 = s6 = 5 and s3 = 3. Thus

WAugBx,q(P ) = −q0+(4+F2)+(2+F3)+1+2+(4+F4) = −q19 and

WAugBx,q(P ) = −q0+(4)+(2)+1+2+(4) = −q13

1
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3

4

5

6

7

B 

B 

X

upper bar 

lower bar 

1

1

1

X

1

1

1

X

4

4

Figure 10: A mixed rook placement.

Our next theorem results from counting
∑

P∈Mn(AugBx)
WAugBx,q(P ) in two different ways.
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Theorem 8. Let B = F (b1, . . . , bn) be a Ferrers board where 0 ≤ b1 ≤ · · · ≤ bn and bn > 0 and

x ∈ P. Then

[x]nq =

n
∑

k=0

RTn−k(B, q)([x]q − [Fb1 ]q)([x]q − [Fb2 ]q) · · · ([x]q − [Fbk ]q). (27)

Proof. Fix x to be a positive integer and consider the sum S =
∑

P∈Mn(AugBx)
WAugBx,q(P ).

First we consider the contribution of each column as we proceed from left to right. Given our
three choices in column 1, the contribution of our choice of the tilings of height b1 in column 1
of B is [Fb1 ]q, the choice of placing a rook in between the upper bar and the lower is [x]q, and
the contribution of our choice of the tilings of height b1 in column 1 of B is −[Fb1 ]q. Thus the
contribution of our choices in column 1 to S is [Fb1 ]q + [x]q − [Fb1 ]q = [x]q.

In general, after we have processed our choices in the first j columns, our cancellation scheme
ensures that the number of uncanceled cells in B and B in the j-th column is bi for some i ≤ j.
Thus given our three choices in column j, the contribution of our choice of the tilings of height
bi in column j of B is [Fbi ]q, the choice of placing a rook in between the upper bar and the lower
is [x]q, and the contribution of our choice of the tilings of height bi in column j of B is −[Fbi ]q.
Thus the contribution of our choices in column j to S is [Fbi ]q + [x]q − [Fbi ]q = [x]q. It follows
that S = [x]nq .

On the other hand, suppose that we fix a Fibonacci rook placement P ∈ NT n−k(B).
Then we want to compute the SP =

∑

Q∈Mn(AugBx),Q∩B=P WAugBx,q(P ) which is the sum

of WAugBx,q(P ) over all mixed placements Q such that Q intersect B equals P . Our cancella-
tion scheme ensures that the number of uncanceled cells in B and B in the k columns that do
not contain tilings in P is b1, . . . , bk as we read from right to left. For each such 1 ≤ i ≤ k, the
factor that arises from either choosing a rook to be placed in between the upper bar and lower
bar or a flipped Fibonacci tiling of height bi in B is [x]q − [Fbi ]q. It follows that

SP = WB,q(P )
k
∏

i=1

[x]q − [Fbi ]q.

Hence it follows that

S =

n
∑

k=0

∑

P∈NT n−k(B)

SP

=

n
∑

k=0

(

k
∏

i=1

[x]q − [Fbi ]q

)

∑

P∈NT k(B)

WB,q(P )

=
n
∑

k=0

RTn−k(B, q)

(

k
∏

i=1

[x]q − [Fbi ]q

)

.

Theorem 9. Let B = F (b1, . . . , bn) be a Ferrers board where 0 ≤ b1 ≤ · · · ≤ bn and bn > 0 and

x ≥ bn. Then

[x]nq =

n
∑

k=0

RTn−k(B, q)[x− Fb1 ]q[x− Fb2 ]q · · · [x− Fbk ]q. (28)
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Proof. It is easy to see from our cancellation scheme that

RTn−k(B, q) = qFb1
+···+FbkRTn−k(B, q).

Thus it follows from (27) that

[x]nq =
n
∑

k=0

RTn−k(B, q)q−(Fb1
+···+Fbk

)([x]q − [Fb1 ]q)([x]q − [Fb2 ]q) · · · ([x]q − [Fbk ]q).

However since x ≥ Fbi for every i,

[x]q − [Fbi ]q = qFbi [x− Fbi ]q

so that

[x]nq =

n
∑

k=0

RTn−k(B, q)[x− Fb1 ]q[x− Fb2 ]q · · · [x− Fbk ]q.

Now consider the special case of the previous three theorems when Bn = F (0, 1, 2, . . . , n−1).
Then (17) implies that

RTn+1−k(Bn+1, q) = qFk−1RTn+1−k(Bn, q) + [Fk]qRTn−k(Bn, q).

Similarly (18) implies that

RTn+1−k(Bn+1, q) = RTn+1−k(Bn, q) + [Fk]qRTn−k(Bn, q).

It then easily follows that for all 0 ≤ k ≤ n,

SFn,k(q) = RTn−k(Bn, q) (29)

and
SFn,k(q) = RTn−k(Bn, q). (30)

Note that SFn,0(q) = SFn,0(q) = 0 for all n ≥ 1 since there are no Fibonacci rook placements
in NT n(Bn) since there are only n − 1 non-zero columns. Moreover such a situation, we see
that (29) implies that for x ≥ n,

[x]nq =

n
∑

k=1

SFn,k(q)[x]q[x− F1]q[x− F2]q · · · [x− Fk−1]q

Thus we have given a combinatorial proof of (8). Similarly, (30) implies that for x ≥ n,

[x]nq =

n
∑

k=1

SFn,k(q)[x]q([x]q − [F1]q)([x]q − [F2]q) · · · ([x]q − [Fk−1]q)

Thus we have given a combinatorial proof of (9).
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4 Identities for SFn,k(q) and cFn,k(q)

In this section, we shall derive various identities and special values for the Fibonacci analogues
of the Stirling numbers SFn,k(q), SFn,k(q), cFn,k(q), and cFn,k(q).

Note that by (26),

SFn,k(q) = q
∑k−1

i=1 FiSFn,k(q). (31)

Then we have the following theorem.

Theorem 10. 1. SFn,n(q) = 1 and SFn,n(q) = q
∑n−1

i=1 Fi.

2. SFn,n−1(q) =
∑n−1

i=1 [Fi]q and SFn,n−1(q) = q
∑n−2

i=1 Fi
∑n−1

i=1 [Fi]q.

3. SFn,n−2(q) =
∑n−2

i=1 [Fi]q(
∑n−2

j=i [Fj ]q) and SFn,n−2(q) = q
∑n−3

i=1 Fi
∑n−2

i=1 [Fi]q(
∑n−2

j=i [Fj ]q).

4. SFn,1(q) = 1 and SFn,1(q) = 1.

5. SFn,2(q) = (n− 1) and SFn,2(q) = q(n− 1).

6. SFn,3(q) =
(1+q)n−1−(q(n−1)+1)

q2
and SFn,3(q) = (1 + q)n−1 − (q(n − 1) + 1).

Proof. For (1), it is easy to see that SFn,n(q) = 1 since the only placement in FT n−n(Bn) is

the empty placement. The fact that SFn,k(q) = q
∑n−1

i=1 Fi then follows from (31).
For (2), we can see that SFn,n−1(q) =

∑n−1
i=1 [Fi]q because placements in FT n−(n−1)(Bn) =

FT 1(Bn) have exactly one column which is filled with a Fibonacci tiling. If that column is
column i+ 1, then i ≥ 1 and the sum of the weights of the possible tilings in column i is [Fi]q.

The fact that SFn,n−1(q) = q
∑n−2

i=1 Fi
∑n−1

i=1 [Fi]q then follows from (31).
For (3), we can classify the placements in FT n−(n−2)(Bn) = FT 2(Bn) by the left-most

column which contains a tiling. If that column is column i + 1, then i ≥ 1 and the sum of the
weights of the possible tilings in column i is [Fi]q. Moreover, any tiling in column i cancels one
cell in the remaining columns so that number of uncanceled cells in the columns to the right of
column i+ 1 will be i, . . . , n− 2, reading from right to left. It then follows that

SFn,n−2(q) =

n−2
∑

i=1

[Fi]q(

n−2
∑

j=i

[Fj ]q).

The fact that

SFn,n−1(q) = q
∑n−3

i=1 Fi

n−2
∑

i=1

[Fi]q(

n−2
∑

j=i

[Fj ]q)

then follows from (31).
For (4), note that the elements in FT n−1(Bn) have a tiling in every column. Given our

cancellation scheme, there is exactly one such configuration. For example, the unique element of
FT 5(B6) is pictured in Figure 11 where we have placed is in the cells canceled by the tiling in
column i. Thus the unique element of FT n−1(Bn) is just the Fibonacci rook placement where
there is tiling of height one in each column. Thus SFn,1(q) = SFn,1(q) = 1 since the rank of
each tiling height 1 is 0.

For (5), note that the elements in FT n−2(Bn) have exactly one column i ≥ 2 which does not
have a tiling. Given our cancellation scheme, if the column with out a tiling is column i ≥ 2,
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Figure 11: The Fibonacci rook tiling in FT 5(B6).

then any non-empty column to the left of column i will be filled with a tiling of height 1 and
every column to the right of column i will be filled with a tiling of height 2. For example, the
unique element of FT 6(B8) is pictured in Figure 12 where we have placed is in the cells canceled
by the tiling in column i. Since the ranks of the tilings of heights 1 and 2 are 0, it follows that
SFn,2(q) = n− 1. The fact that SFn,n−1(q) = q(n− 1) then follows from (31).

2

2
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2

2

3

3

3

3

4

4
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2

3

4
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6

7

Figure 12: A Fibonacci rook tiling in FT 6(B8).

For (6), we proceed by induction. Note that we have proved

SF3,3(q) = qF1+F2 = q2 = (1 + q)2 − (2q + 1).

Now assume that n ≥ 3 and SFn,3(q) = (1 + q)n−1 − ((n − 1)q + 1). Then

SFn+1,3(q) = qF2SFn,2(q) + [F3]qSFn,3(q)

= q (q(n− 1)) + (1 + q)
(

(1 + q)n−1 − ((n− 1)q + 1)
)

= q2(n− 1) + (1− q)n − (n− 1)q − (n− 1)q2 − q − 1

= (1− q)n − (nq + 1).

The fact that SFn,3(q) =
(1+q)n−1−((n−1)q+1)

q2
then follows from (31).

Next we define
SFk(q, t) :=

∑

n≥k

SFn,k(q)t
n

for k ≥ 1 It follows from Theorem 10 that

SF1(q, t) =
∑

n≥1

SFn,1(q)t
n =

∑

n≥1

tn =
t

1− t
. (32)
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Then for k > 1,

SFk(q, t) =
∑

n≥k

SFn,k(q)t
n

= tk +
∑

n>k

SFn,k(q)t
n

= tk + t
∑

n>k

(

SFn−1,k−1(q) + [Fk]qSFn−1,k−(p, q)
)

tn−1

= tk + t

(

∑

n>k

SFn−1,k−1(q)t
n−1

)

+ [Fk]qt

(

∑

n>k

SFn−1,k(q)t
n−1

)

= tk + t(SFk−1(q, t)− tk−1) + [Fk]qtSFk(q, t).

It follows that

SFk(q, t) =
t

(1− [Fk]qt)
SFk−1(q, t). (33)

The following theorem easily follows from (32) and (33).

Theorem 11. For all k ≥ 1,

SFk(q, t) =
tk

(1− [F1]qt)(1− [F2]qt) · · · (1− [Fk]qt)
.

Note that it follows from (31) and Theorem 11 that

SFk(q, t) =
∑

n≥k

SFn,k(q)t
n =

q
∑k−1

i=1 Fitk

(1− [F1]qt)(1− [F2]qt) · · · (1− [Fk]qt)
.

For any formal power series in f(x) =
∑

n≥0 fnx
n, we let f(x)|xn = fn denote the coefficient

of xn in f(x). Our next result will give formulas for SFn,k(q)|qs for s = 0, 1, 2.

Theorem 12. 1. For all n ≥ k ≥ 1, SFn,k(q)|q0 =

(

n− 1

k − 1

)

.

2. For all n > k ≥ 2, SFn,k(q)|q = (k − 2)

(

n− 1

k

)

.

3. For all n ≥ s, SFn,3(q)|qs =

(

n− 1

s+ 2

)

.

4. For all n ≥ k ≥ 3, SFn,k(q)|q2 = (k − 3)

(

n− 1

k

)

+

(

k − 1

2

)(

n− 1

k + 1

)

.

5. for all n ≥ k ≥ 4,

SFn,k(q)|q3 = (k − 4)

(

n− 1

k

)

+

((

k − 1

2

)

+

(

k − 2

2

)

− 1

)(

n− 1

k + 1

)

+

(

k

3

)(

n− 1

k + 2

)

.
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6. For all n ≥ k ≥ 4,

SFn,k(q)|q4 = (k − 4)

(

n− 1

k

)

+

((

k − 1

2

)

+

(

k − 2

2

)

+

(

k − 3

2

)

− 3

)(

n− 1

k + 1

)

+

(

2

(

k

3

)

+

(

k − 1

3

)

− k + 1

)(

n− 1

k + 2

)

+

(

k + 1

4

)(

n− 1

k + 3

)

.

Proof. For (1), note that a placement P in FT n−k(Bn) must have k− 1 empty columns among
columns 2, . . . , n. If WF (P ) = 1, then it must be the case that all the tilings in the columns
which contain tilings in P must have rank 0 so that the tiling must contain only tiles of height
1. Thus P is completely determined by the choice of the k − 1 empty columns among columns
2, . . . , n. Thus SFn,k(p, q)|q0 =

(

n−1
k−1

)

.
For (3), note that by part 6 of Theorem 10, we have that for any s ≥ 0,

SFn,3(q)|qs = SFn,3(q)|qs+2 = (1 + q)n−1 − ((n− 1)q + 1)|qs+2

=

(

n− 1

s+ 2

)

.

For (2), note that SFn,2(q)|q = 0 since SFn,k(q) = (n− 1) by part 5 of Theorem 10. By (3),
SFn,3(q)|q =

(

n−1
3

)

. Thus our formula holds for n = 2 and n = 3.

Next fix k ≥ 4 and assume by induction that SFn,k−1(q)|q = (k − 3)
(

n−1
k−1

)

for all n ≥ k − 1.

Then we shall prove by induction on n that SFn,k(q)|q = (k − 2)
(

n−1
k

)

. The base case n = k

holds since SFk,(q) = 1. But then assuming that SFn,k(q)|q = (k − 2)
(

n−1
k

)

, we see that

SFn+1,k(q)|q = SFn,k−1(q)|q + ((1 + q + q2 + · · · + qFk−1)SFn,k(q))|q

= (k − 3)

(

n− 1

k − 1

)

+ SFn,k(q))|q0 + SFn,k(q))|q

= (k − 3)

(

n− 1

k − 1

)

+

(

n− 1

k − 1

)

+ (k − 2)

(

n− 1

k

)

= (k − 2)

(

n

k

)

.

Parts (4), (5), and (6) can easily be proved by induction.
For example, by (3),

SFn,3(q)|q2 =

(

n− 1

4

)

so that our formula holds for k = 3. Now suppose that k ≥ 4 and our formula holds for k − 1.
That is,

SFn,k−1(q)|q2 = (k − 4)

(

n− 1

k − 1

)

+

(

k − 2

2

)(

n− 1

k

)

.

Next observe that SFk,k(q)|q2 = 0 since SFk,k(q) = 1 so that our formula holds for n = k. Note
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also that for k ≥ 4, Fk ≥ 3. But then for n ≥ k ≥ 4,

SFn+1,k(q)|q2 = SFn,k−1(q)|q2 +
(

[Fk]qSFn,k(q)
)

|q2

= SFn,k−1(q)|q2 +
(

(1 + q + q2)SFn,k(q)
)

|q2

= SFn,k−1(q)|q2 + SFn,k(q)|q0 + SFn,k(q)|q + SFn,k(q)|q2

= (k − 4)

(

n− 1

k − 1

)

+

(

k − 2

2

)(

n− 1

k

)

+

(

n− 1

k − 1

)

+ (k − 2)

(

n− 1

k

)

+SFn,k(q)|q2

= (k − 3)

(

n− 1

k − 1

)

+

(

k − 1

2

)(

n− 1

k

)

+ SFn,k(q)|q2 .

This gives us a recursion for SFn+1,k(q)|q2 in terms of SFn,k(q)|q2 which we can iterate to prove
that

SFn,k(q)|q2 = (k − 3)

(

n− 1

k

)

+

(

k − 1

2

)(

n− 1

k + 1

)

.

For (5), we first have to establish the base case k = 4.

SFn+1,4(q)|q3 = SFn,3(q)|q3 +
(

[F4]qSFn,4(q)
)

|q3

= SFn,3(q)|q3 +
(

(1 + q + q2)SFn,4(q)
)

|q3

= SFn,k−1(q)|q3 + SFn,k(q)|q + SFn,k(q)|q2 + SFn,k(q)|q3

=

(

n− 1

5

)

+ 2

(

n− 1

4

)

+

((

n− 1

4

)

+ 3

(

n− 1

5

))

+ SFn,k(q)|q3

= 3

(

n− 1

4

)

+ 4

(

n− 1

5

)

+ SFn,4(q)|q3 .

This gives us a recursion for SFn+1,4(q)|q3 in terms of SFn,4(q)|q3 which we can iterate to prove
that

SFn,4(q)|q3 = 3

(

n− 1

5

)

+ 4

(

n− 1

6

)

.

Thus our formula for (5) holds for k = 4.
Next assume that k ≥ 5. First we note that SFk,k(q)|q3 = 0 since SFk,k(q) = 1 so that our

formula holds for n = k. Note also that for k ≥ 5, Fk ≥ 5. Now suppose our formula holds for
k − 1. That is,

SFn,k−1(q)|q3 =

(k − 5)

(

n− 1

k − 1

)

+

((

k − 2

2

)

+

(

k − 3

2

)

− 1

)(

n− 1

k

)

+

(

k − 1

3

)(

n− 1

k + 1

)

.

Next observe that SFk,k(q)|q3 = 0 since SFk,k(q) = 1 so that our formula holds for n = k. Note
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also that for k ≥ 4, Fk ≥ 3. But then for n ≥ k ≥ 5,

SFn+1,k(q)|q3 = SFn,k−1(q)|q3 +
(

[Fk]qSFn,k(q)
)

|q3

= SFn,k−1(q)|q2 +
(

(1 + q + q2 + q3)SFn,k(q)
)

|q3

= SFn,k−1(q)|q3 + SFn,k(q)|q0 + SFn,k(q)|q + SFn,k(q)|q2 + SFn,k(q)|q3

= (k − 5)

(

n− 1

k − 1

)

+

((

k − 2

2

)

+

(

k − 3

2

)

− 1

)(

n− 1

k

)

+

(

k − 1

3

)(

n− 1

k + 1

)

+

(

n− 1

k − 1

)

+ (k − 2)

(

n− 1

k

)

+ (k − 3)

(

n− 1

k

)

+

(

k − 1

2

)(

n− 1

k + 1

)

+SFn,k(q)|q3

= (k − 4)

(

n− 1

k − 1

)

+

((

k − 1

2

)

+

(

k − 2

2

)

− 1

)(

n− 1

k

)

+

(

k

3

)(

n− 1

k + 1

)

+SFn,k(q)|q3 .

This gives us a recursion for SFn+1,k(q)|q3 in terms of SFn,k(q)|q3 which we can interate to prove
that

SFn,k(q)|q3 = (k − 4)

(

n− 1

k

)

+

((

k − 1

2

)

+

(

k − 2

2

)

− 1

)(

n− 1

k + 1

)

+

(

k

3

)(

n− 1

k + 2

)

.

For (6), again, we first have to establish the base case k = 4.

SFn+1,4(q)|q4 = SFn,3(q)|q4 +
(

[F4]qSFn,4(q)
)

|q4

= SFn,3(q)|q4 +
(

(1 + q + q2)SFn,4(q)
)

|q4

= SFn,k−1(q)|q4 + SFn,k(q)|q2 + SFn,k(q)|q3 + SFn,k(q)|q4

=

(

n− 1

6

)

+

(

n− 1

4

)

+ 3

(

n− 1

5

)

+ 3

(

n− 1

5

)

+ 4

(

n− 1

6

)

+

SFn,k(q)|q4

=

(

n− 1

4

)

+ 6

(

n− 1

5

)

+ 5

(

n− 1

6

)

+ SFn,4(q)|q3 .

This gives us a recursion for SFn+1,4(q)|q4 in terms of SFn,4(q)|q4 which we can iterate to prove
that

SFn,4(q)|q4 =

(

n− 1

5

)

+ 6

(

n− 1

6

)

+ 5

(

n− 1

7

)

.

Thus our formula for (6) holds for k = 4.
Next assume that k ≥ 5. First we note that SFk,k(q)|q4 = 0 since SFk,k(q) = 1 so that our

formula holds for n = k. Note also that for k ≥ 5, Fk ≥ 5. Now suppose our formula holds for
k − 1. That is,

SFn,k−1(q)|q4 = (k − 5)

(

n− 1

k − 1

)

+

((

k − 2

2

)

+

(

k − 3

2

)

+

(

k − 3

2

)

− 3

)(

n− 1

k

)

+

((

k − 1

3

)

+

(

k − 2

3

)

− (k − 1) + 1

)(

n− 1

k + 1

)

+

(

k

4

)(

n− 1

k + 2

)

.
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Next observe that SFk,k(q)|q5 = 0 since SFk,k(q) = 1 so that our formula holds for n = k. Note
also that for k ≥ 5, Fk ≥ 5. But then for n ≥ k ≥ 5,

SFn+1,k(q)|q4 = SFn,k−1(q)|q4 +
(

[Fk]qSFn,k(q)
)

|q4

= SFn,k−1(q)|q4 +
(

(1 + q + q2 + q3 + q4)SFn,k(q)
)

|q4

= SFn,k−1(q)|q3 + SFn,k(q)|q0 + SFn,k(q)|q + SFn,k(q)|q2 + SFn,k(q)|q3

+SFn,k(q)|q4

= (k − 5)

(

n− 1

k − 1

)

+

((

k − 2

2

)

+

(

k − 3

2

)

+

(

k − 3

2

)

− 3

)(

n− 1

k

)

+

+

((

k − 1

3

)

+

(

k − 2

3

)

− (k − 1) + 1

)(

n− 1

k + 1

)

+

(

k

4

)(

n− 1

k + 2

)

+

(

n− 1

k − 1

)

+ (k − 2)

(

n− 1

k

)

+ (k − 3)

(

n− 1

k

)

+

(

k − 1

2

)(

n− 1

k + 1

)

+(k − 4)

(

n− 1

k

)

+

((

k − 1

2

)

+

(

k − 2

2

)

− 1

)(

n− 1

k + 1

)

+

(

k

3

)(

n− 1

k + 2

)

+SFn,k(q)|q4

= (k − 4)

(

n− 1

k − 1

)

+

((

k − 1

2

)

+

(

k − 2

2

)

+

(

k − 3

2

)

− 3

)(

n− 1

k

)

+

((

k

3

)

+

(

k − 1

3

)

− k + 1

)(

n− 1

k + 1

)

+

(

k + 1

4

)(

n− 1

k + 2

)

+SFn,k(q)|q4 .

This gives us a recursion for SFn+1,k(q)|q4 in terms of SFn,k(q)|q4 which we can iterate to prove
that

SFn,k(q)|q4 = (k − 4)

(

n− 1

k

)

+

((

k − 1

2

)

+

(

k − 2

2

)

+

(

k − 2

2

)

− 3

)(

n− 1

k + 1

)

+

(

2

(

k

3

)

+

(

k − 1

2

)

− k + 1

)(

n− 1

k + 2

)

+

(

k + 1

4

)(

n− 1

k + 3

)

.

A sequence of real numbers a0, . . . , an is is said to be unimodal if there is a 0 ≤ j ≤ n such that
a0 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ an and is said to be log-concave if for 0 ≤ i ≤ n, a2i − ai−1ai+1 ≥ 0
where we set a−1 = an+1 = 0. If a sequence is log-concave, then it is unimodal. A polynomial
P (x) =

∑n
k=0 akx

k is said to be unimodal if a0, . . . , an is a unimodal sequence and is said to be
log-concave if a0, . . . , an is log concave.

It is easy to see from Theorem 10 that SFn,k(q) is unimodal for all n ≥ k when k ∈ {1, 2, 3}.
Computational evidence suggests that SFn,4(q) is unimodal for all n ≥ 4 and that SFn,5(q) is
unimodal for all n ≥ 5. However, it is not the case that SFn,6(q) is unimodal for all n ≥ 6. For
example, one can use part 3 of Theorem 10 to compute

SF8,6(q) =

21+28q+31q2+29q3+30q4+25q5+23q2+22q7+15q8+10q9+7q10+5q11+3q12+2q13+q14.
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It is not difficult to see that for any Ferrers board B = F (b1, . . . , bn), the coefficients that
appear in the polynomials FTk(B, q) and FTk(B, q) are essentially the same. That is, we have
the following theorem.

Theorem 13. Let B = F (b1, . . . , bn) be a skyline board. Then

FTk(B, q) =

(

n
∏

i=1

(1 + [Fbi ]qz)

)

|zk (34)

and

FTk(B, q) =

(

n
∏

i=1

(qFbi + [Fbi ]qz)

)

|zk = q
∑n

i=1 Fbi

(

n
∏

i=1

(1 +
1

q
[Fbi ] 1

q
z)

)

|zk (35)

Proof. It is easy to see that if we are creating a Fibonacci file tiling in FT k(B), then in column
i, we have two choices, namely, we can leave the column empty or put a Fibonacci tiling of
height bi. For FTk(B, q), the weight of an empty column is 1 and the sum of weights of the
Fibonacci tilings of height bi is [Fbi ]q. Thus (

∏n
i=1(1 + [Fbi ]qz)) |zk is equal to the sum over all

Fibonacci file tilings where exactly k columns have tiling which is equal to FTk(B, q).
Similarly, For FTk(B, q), the weight of an empty column i when it is empty is qFbi and the

sum of weights of the Fibonacci tilings of height bi is [Fbi ]q. Thus
(
∏n

i=1(q
Fbi + [Fbi ]qz)

)

|zk is
equal to the sum over all Fibonacci file tilings where exactly k columns have tiling which is equal
to FTk(B, q).

It follow that for any n, the coefficient of qn in (
∏n

i=1(1 + [Fbi ]qz)) |zk is equal to the coefficient

of 1
qn+k in

(

∏n
i=1(1 +

1
q
[Fbi ] 1

q
z)
)

|zk . It follows that

FTk(B, q)qn = FTk(B, q)|
q
−n−k+

∑n
i=1

Fbi
.

It is easy to see from (34) that

cFn,n−1(q) =

n−1
∑

i=1

[Fi]q

so that coefficient of qk in cFn,n−1(q) weakly decreases as k goes from 0 to Fn−1 − 1. It follows
that the coefficient of qk in cF)n,n−1(q) weakly increase. Similarly, it is easy to see that

cFn,1(q) =
n−1
∏

i=1

[Fi]q

so that cFn,1(q) is just the rank generating function of a product of chains which is know to be
symmetric and unimodal, see [3].

From our computational evidence, it seems that the polynomials cFn,2(q) are unimodal.
However, it is not the case cFn,k(q) are unimodal for all n and k. For example, cF9,7(q) starts
out

28 + 42q + 50q2 + 53q3 + 58q4 + 57q5 + 58q6 + 60q7 + . . . .

Finally, our results show that the matrices ||(−1)n−k
cFn,k(q)|| and ||SFn,k(q)|| are inverses

of each other. One can give a combinatorial proof of this fact. Indeed, the combinatorial proof
of [2] which shows that matrices ||(−1)n−k

cfn,k(q)|| and ||Sfn,k(q)|| are inverses of each other
can also be applied to show that the matrices ||(−1)n−k

cFn,k(q)|| and ||SFn,k(q)|| are inverses
of each other.
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