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Abstract—The complexity of software implementations of MDS
erasure codes mainly depends on the efficiency of the finite field
operations implementation. In this paper, we propose a method
to reduce the complexity of the finite field multiplication by
using fast transforms between a field and a ring to perform
the multiplication in a ring. We show that moving to a ring
reduces the complexity of the operations. Then, we show that
this construction allows the use of simple scheduling to reduce
the number of operations.

I. I NTRODUCTION

Most of practical Maximum Distance Separable (MDS)
packet erasure codes are implemented in software. In the
various applications like packet erasure channels [2] or dis-
tributed storage systems [8], the coding/decoding process
performs operations over finite fields. The efficiency of the
implementation of these finite field operations is thus critical
for these applications.

To speedup this operation, [2] described an implementation
of finite field multiplications which only uses simple xor oper-
ations, contrarily to classic software multiplications which are
based on lookup tables (LUT). The complexity of multiplying
by an element,i.e. the number of xor operations, depends
on the size of the finite field and also on the element itself.
This kind of complexity is studied for Maximum-Distance
Separable (MDS) codes in [1]. Other work has been done to
reduce redundant xor operations by applying scheduling [6].

Independently, in the context of large finite field for cryp-
tographic applications, [5] proposed a xor-based method to
perform fast hardware implementations of multiplicationsby
transforming each element of a field into an element of a
larger ring. In this polynomial ring, where the operations on
polynomials are done moduloxn + 1, the multiplication by
a monomial is much simpler as the modulo is just a cyclic
shift. The authors identified two classes of fields based on
irreducible polynomials with binary coefficients allowingto
transform each field element into a ring element by adding
additional ”ghost bits”.

In this paper, we extend their approach to define fast
software implementations of xor-based erasure codes. We
propose an original method called PYRIT (PolYnomial RIng
Transform) to perform operations between elements of a finite
field into a bigger ring by using fast transforms between
these two structures. Working in such a ring is much easier
than working in a finite field. Firstly, it reduces the coding
complexity by design. And secondly, it allows the use of
simple scheduling to reduce the number of operations thanks
to the properties of the ring structure.

The next section presents the algebraic framework allowing
to define the various transforms between the finite field and

some subsets of the ring. Then we discuss about the choice of
these transforms and their properties. We also detail the com-
plexity analysis before introducing some scheduling results.

II. A LGEBRAIC CONTEXT

This algebraic context is finite field and ring theories. More
detailed presentation of this context including the proofsof
the following propositions can be found in [7] or [10].

Definition 1. Let Fqw be the finite field withqw elements.

Definition 2. LetRq,n = Fq[x]/(x
n−1) denotes the quotient

ring of polynomials of the polynomial ringF2[x] quotiented
by the ideal generated by the polynomialxn − 1.

Definition 3. Let pu1

1 (x)pu2

2 (x) . . . pur

r (x) = xn − 1 be the
decomposition ofxn−1 into irreducible polynomials overFq.

When n and q are relatively prime, it can be shown that
u1 = u2 = . . . = un = 1 (see [10]). In other words, ifq = 2,
andn is odd, we simply havep1(x)p2(x) . . . pr(x) = xn − 1.

In the rest of this document, we assume thatn and q are
relatively prime.

Proposition 1. The ringRq,n is equal to the direct sum of its
r minimal ideals ofAi = ((xn − 1)/pi(x)) for i = 1, . . . , r.

Moreover, each minimal ideal contains a unique primitive
idempotentθi(x). A construction of this idempotent is given
in [7], Chap. 8, Theorem 6.
SinceFq[x]/(pi(x)) is isomorphic to the finite fieldBi = Fqw

i
,

wherepi(x) is of degreewi, we have :

Proposition 2. Rq,n is isomorphic to the following Cartesian
product :

Rq,n ≃ B1 ⊗B2 ⊗ . . . Br

For each i = 1, . . . , r, Ai is isomorphic toBi. The isomor-
phism is :

φi :
Bi → Ai

b(x) → b(x)θi(x)
(1)

and the inverse isomorphism is :

φ−1
i :

Ai → Bi

a(x) → a(αi)
(2)

whereαi is a root ofpi(x).

Let us now assume thatq = 2. Let us introduce a special
class of polynomials :

Definition 4. The All One Polynomial (AOP) of degreew is
defined as

xw + xw−1 + xw−2 + . . .+ x+ 1
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The AOP of degreew is irreducible overF2 if and only
if w + 1 is a prime andw generatesF∗

w+1, whereF∗

w+1 is
the multiplicative group inFw+1 [13]. The valuesw + 1,
such that the AOP of degreew is irreducible is the sequence
A001122 in [12]. The first values of this sequence are :
3, 5, 11, 13, 19, 29, . . .. In this paper, we only consider irre-
ducible AOP.

According to Proposition 2,R2,w+1 is equal to the direct
sum of its principal idealsA1 = ((xw+1 + 1)/p(x)) = (x +
1) andA2 = ((xw+1 + 1)/x + 1) = (p(x)) andR2,w+1 is
isomorphic to the direct product ofB1 = F2[x]/(p(x)) = F2w

andB1 = F2[x]/(x+ 1) = F2.
It can be shown that the primitive idempotent ofA1 is θ1 =

p(x) + 1. This idempotents is used to build the isomorphism
φ1 betweenA1 andB1.

III. T RANSFORMS BETWEEN THE FIELD AND THE RING

We now considerp(x) as an irreducible AOP of degree
w. This section presents different transforms between the
field B1 = F2w = F2[x]/(p(x)) and the ringR2,w+1 =
F2[x]/(x

w+1 + 1).

A. Isomorphism transform

The first transform is simply the application of the basic
isomorphism betweenB1 and the idealA1 of R2,w+1 (see
Prop. 2).

By definition of the isomorphism, we have:

φ−1
1 (φ1(u(x)).φ1(v(x))) = u(x).v(x)

So, φ1 can be used to send the elements of the field in the
ring, then, to perform the multiplication, and then, to come
back in the field. We show in the following Proposition that
the isomorphism admits a simplified version.

Let W (b(x)), the weight ofb(x), defined as the number of
monomials in the polynomial representation ofb(x).

Proposition 3.

φ1(bB(x)) = bA(x) =

{

bB(x) if W (bB(x)) is even
bB(x) + p(x) else

φ−1
i (bA(x)) = bB(x) =

{

bA(x) if bw = 0
bA(x) + p(x) else

where bw is the coefficient of the monomial of degreew of
bA(x).

Proof: For the first point, we haveφ1(b(x)) =
b(x)θ1(x) = b(x)(p(x) + 1) = b(x)p(x) + b(x). We can
observe thatb(x)p(x) = 0 when W (b(x)) is even and
b(x)p(x) = p(x) when W (b(x)) is odd. The first point is
thus obvious.

For the second point, it can be observed that, from the first
point of this proposition, if an element ofA1 has a coefficient
bw 6= 0, then it was necessarily obtained from the second rule,
i.e. by addingp(x). Then, its image intoB1 can be obtained
by subtracting (adding in binary)p(x). If bw = 0, then nothing
has to be done to obtainbB(x).

B. Embedding transform

Let us denote byφE the embedding function which simply
consists in considering the element of the field as an element
of the ring without any transformation.

Note that the images of the elements ofB1 does not
necessarily belong toA1. However, let us define the function
φ̄−1
1 from R2,w+1 to A1 by φ̄−1

1 (bA(x)) = bA(α), whereα is
a root ofp(x). This function can be seen as an extension of
the functionφ−1

1 to the whole ring.

Proposition 4. For anyu(x) and v(x) in B1, we have :

φ̄−1
1 (φE(u(x)).φE(v(x))) = u(x).v(x)

Proof: The embedding function corresponds to a mul-
tiplication by 1 in the ring. In fact,1 is equal to the sum
of the idempotentsθi(x) of the idealsAi, for i = 1, . . . , l [7,
chapter 8, thm. 7]. Thus,φE(u(x)) = u(x).

∑l

i=0 θi(x). Then,
φE(u(x)).φE(v(x)) is equal to u(x).v(x).(

∑l

i=0 θi(x))
2.

Thanks to the properties of idempotents,θi(x).θj(x) is equal
to θi(x) if i = j and 0 else. Thus,φE(u(x)).φE(v(x))
is equal to u(x).v(x).(

∑l

i=0 θi(x)). The function φ̄−1
i is

the computation of the remainder modulopi(x). The irre-
ducible polynomialpi(x) corresponds to the idealAi. Thus
θi(x) mod p(x) is equal to1 if i = 1 and0 else.

This proposition proves that the Embedding function can be
used to perform a multiplication in the ring instead of doing
it in the field. The isomorphism also has this property, but the
complexities of the transforms between the field and the ring
are more complex.

C. Sparse transform

Let us define the transformφS from B1 to R2,w+1 :

φS(bB(x)) = bA(x) = φ1(bB(x)) + δ.p(x)

whereδ = 1 if W (φ1(bB(x)) + p(x)) < W (φ1(bB(x))) and
0 else.

Proposition 5. For anyu(x) and v(x) in B1, we have :

φ̄−1
1 (φS(u(x)).φS(v(x))) = u(x).v(x)

Proof: As observed in the proof of Prop. 4,̄φ−1
i is just

the computation of the remainder modulop(x). Moreover,
according to the definition ofφS , φS(u(x)).φS(v(x)) is equal
to u(x).v(x) plus a multiple ofp(x) (possibly equal to0).
Thus, the remainder ofφS(u(x)).φS(v(x)) modulo p(x) is
equal tou(x).v(x).

This proposition shows thatφS can be used to perform the
multiplication in the ring. The main interest of this transform
is that the weight of the image ofφS is small, which reduce
the complexity of the multiplication in the ring.

D. Parity transform

Proposition 6. The idealA1 is composed of the set of elements
of R2,w+1 with even weight.

Proof: We can observe from Proposition 3 that all the
image of φ1 have even weight. Since the number of even-
weight element ofR2,w+1 is equal to the number of elements
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of A1, A1 is composed of the set of elements ofR2,w+1 with
even weight.

Let us consider the functionφP , fromB1 to R2,w+1, which
adds a single parity bit to the vector corresponding to the finite
field element. The obtained element has an even weight (by
construction), and thus, according to the previous Proposition,
it belongs toA1.

Since the images byφP of two distinct elements are distinct,
φP is a bijection betweenB1 andA1. The inverse function,
φ−1
P , consists just in removing the last coefficient of the ring

element.
It should be noted thatφP is not an isomorphism, but just

a bijection betweenB1 andA1. However it will be shown in
next Section that this function can be used in the context of
erasure codes.

IV. A PPLICATION OF TRANSFORMS

In typical xor-based erasure coding systems [2], the encod-
ing process consists in multiplying an information vector by
the generator matrix. Since in software, xor are performed
using machine words ofsz bits, sz interleaved codewords are
encoded in parallel.

We consider a system withk input data blocks andm output
parity blocks.

The total number of xor of the encoding is thus defined
by the generator matrix which must be as sparse as possible.
First, we use a systematic generator matrix built from ak×k-
identity matrix and ak×m Generalized Cauchy (GC) matrix
[11]. A GC matrix generates a systematic MDS code and it
contains only1 on its first row and on its first column. Then,
to improve the sparsity of the generator matrix in the ring, we
use the Sparse transformφS . This has to be done only once
since the ring matrix is the same for all the codewords.

For the information vectors, it is not efficient to useφS

since the xors of machine words do not take into account
the sparsity of the xor-ed vectors. We thus use Embedding or
Parity transforms, which are less complex thanφ1.

When Embedding is used for information vectors and
Sparse is used for the generator matrix, the obtained result
in the ring can be sent into the field by usingφ−1

1 (proof
similar to the proofs of Propositions 4 or 5).

When Parity is used for the information vector, the image of
the vector in the ring only contains elements of the idealA1.
Since these elements are multiplied by the generator matrix
(in the ring), the obtained result only contains elements of
the idealA1. This elements have an even weight, so it is
not necessary to keep the parity bit before sending them on
the ”erasure channel”. We just be aware that, since Parity
transform is not an isomorphism, these data can not be
decoded by another method. Indeed, to decode, it is necessary
to applyφP (add the parity bit), then to decode by multiplying
by the inverse matrix, and then to to applyφ−1

P (remove the
parity bit on the correct information vector).

V. COMPLEXITY ANALYSIS

In this section, we determine the total number of xor
operations done in the coding and the decoding processes.

A. Coding complexity

The coding process is composed of three phases : the field
to ring transform, the matrix vector multiplication and thering
to field transform. We assume that the information vector is a
vector ofk elements of the fieldF2w .

For the first and the third phases, Table I gives the com-
plexities of Embedding and Parity transforms obtained from
their definition in Section III.

field to ring ring to field

Embedding 0 m.w

Parity bits k.w 0

TABLE I
NUMBER OF XOR FOREMBEDDING AND PARITY TRANSFORMS

The choice between the two methods thus depends on the
values of the parameters : ifk > m, Parity transform has
lower complexity. Else, ”Embedding” complexity is better.

For the matrix vector operation, let us first consider the
multiplication of two ring elements. As explained in the
previous section, the first element (which corresponds to an
information symbol) is managed by the software implementa-
tion by machine words. So the complexity of the multiplication
ondy depends on the weight of the second element, denoted by
w2 ∈ {0, 1, . . . , w+1}. The complexity of this multiplication
is thus(w + 1).w2.

Now, we can consider the specificities of the various trans-
forms. In the Parity transform, the last bit of the parity blocks
is not used ( i.e. it is not transmitted on the erasure channel). So
it is not necessary to compute it. It follows that the complexity
of the multiplication is onlyw.w2.

Similarly, for the Embedding transform, the last bit of
the input vector is always equal to0. So, we also have a
complexity equal tow.w2.

To have an average number of operations done in the
multiplication of the generator matrix by the input data blocks,
we have to evaluate the average weight of the entries of the
generator matrix in the ring.

The generator matrix is ak ×m-GC matrix with the first
column and the first row are filled by1. The other elements
can be considered as random non zero elements. They are
generated byφS which chooses the lowest ring element among
the two ones corresponding to the field element. Let us denote
their average weight bywφS

. For this case, the average number
of xor is thus :

(k +m− 1).w + (k − 1).(m− 1).w.wφS

This leads to the following general expression of the coding
complexity :

(min(k,m) + k +m− 1).w + (k − 1).(m− 1).w.wφS

To estimate the complexity on a practical example, we fix
the value ofw to 4. Classic combinatorial evaluation (not
presented here) gives the average weight for nonzeros images
of φS :

wφS
=

w + 1

2w+1 − 2
.
(

2w −

(

w

w/2

)

)
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So,wφS
= 1.66. We plot in Figure 1 the evolution of the factor

over optimal (usede.g. in [8], table III) which is the density
of the matrix normalized by the minimal density,k.m.w. We
vary the value ofk for three values ofm: 3, 5 and7. For each
pair (k,m), we generate 10000 random GC matrices and keep
the best we found.

2 4 6 8 10 12 14
1

1.2

1.4

1.6

1.8

k

fa
ct

o
r

factor over optimal

m=3 m=5 m=7
best m=3 best m=5 best m=7

Fig. 1. Factor over optimal depending onm

We can observe that the values are very low. For example,
[8] gives the lowest density of Cauchy matrices for the field
F24 and we can observe that our values are always lower than
these ones.

To reduce the complexity in specific cases, we can observe
that the ring containsw elements whose the corresponding
matrix is optimal (one diagonal). By using these elements, we
can search by brute force MDS matrices built only with these
optimal elements. For example, let us consider the elementsof
the fieldF24 sent into the ringR2,5. The Vandermonde matrix
defined by:

V =
(

xi.j
)

i=0,...,4;j=0,...,4

wherex is a monomial inR2,5 has the minimal number of
1. It can be verified that this matrix can be used to build a
systematic a MDS code. For this matrix, the total number of
xor done in the generation of the parity packets (including the
field-to-ring and ring-to-field transforms) is

(min(k,m)+k+m−1).w+(k−1).(m−1).w = k.w+k.m.w

Its factor over optimal is equal to1.2 which is lower than
the values given in Figure 1 and which is close to the lowest
bound given in [1].

B. Decoding complexity

As the decoding is a matrix inversion and a matrix vector
multiplication, we can use the same approach to perform the
multiplication. We first invert the sub-matrix in the field, then
we transform each entry of this matrix into ring elements.
Then, we perform the ring multiplication.

The complexity of the decoding thus depends on the com-
plexity of the matrix inversion and on the complexity of the
matrix vector multiplication.

The complexity of the matrix vector multiplication was
studied in the previous paragraph.

The complexity of the ar× r-matrix inversion is generally
in O(r3) operations in the field. But if the matrix has a Cauchy
structure, this complexity can be reduced toO(r2) [2].

Note that, contrarily to the matrix vector multiplication,the
matrix inversion complexity does not depend on the size of
the source and parity blocks. And thus, it becomes negligible
when the size of the blocks increase.

VI. SCHEDULING

An interesting optimization on MDS erasure codes under
xor-based representation is the scheduling of xor operations.

Such techniques are proposed in [3], [4], [8] and [9]. The
general principle consists in ”factorizing” some xor operations
which are done several times to generate the parity blocks.

We show in the two next paragraphs that these techniques
can be used very efficiently on the ring elements.

However, it can be observed that the matrices defined over
rings have two main advantages.

A. Complexity reduction

Over finite fields, the scheduling consists in searching
common patterns on the binary representation of the generator
matrices. Thew × w-matrices representing the multiplication
by the field elements does not have particular structure and
thus, they must be entirely considered in the scheduling
algorithm.

This is not the case for the(w + 1) × (w + 1)-matrices
corresponding to a ring element because, thanks to the form
of the polynomialxw+1 + 1, they are composed of diagonals
either full of 0 or 1. This means that they can be represented
in the scheduling algorithm just by their first column or,
equivalently, by the ring polynomial.

This allows to drastically reduce the algorithm complexity
and thus to handle bigger matrices. From a polynomial point
of view, the search of scheduling just consist in finding some
common patterns in the equations generating the parity blocks.

Example : Let us assume thatn = 5 and that three data
polynomialsa0(x), a1(x) anda2(x) are combined to generate
the three paritiesp0(x) = (1+x4)a0(x)+x2a1(x)+x3a2(x),
p1(x) = a0(x)+x3a1(x)+(1+x3)a2(x) andp2(x) = a0(x)+
a1(x) + x3a2(x).

In this case, the scheduling just consists in computing
p′(x) = a0(x) + x3a2(x) and then p0(x) = p′(x) +
x4a0(x) + x2a1(x), p1(x) = p′(x) + x3a1(x) + a2(x) and
p2 = p′(x) + a2(x).

To estimate the complexity, we can consider the number of
sums of polynomials. Without scheduling, we need11 sums
(4 for p0(x), 4 for p1(x), and 3 for p2(x)) instead of with
scheduling, we only need 10 sums (2 for p′(x), 3 for p0(x),
3 for p1(x) and2 for p2(x)).

B. Additional patterns

Ring-based matrices allow to find more common patterns
than field-based matrices. The main idea is to observe that,
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in the ring, we can ”factorize” not only common operations,
but also operations which are multiple by a monomial (i. e.
cyclic-shift) of operations done in some other equations. This
is possible only because the multiplications are done modulo
xw+1 + 1.

Example : Let us assume thatn = 5 and that three
data polynomialsa0(x), a1(x) and a2(x) are combined to
generate the paritiesp0(x) = a0(x)+x2a1(x)+(1+x2)a2(x),
p1(x) = x2a0(x) + x3a1(x) + (x + x4)a2(x) and p2(x) =
x2a0(x)+ a1(x)+ (x2 +x3)a2(x). We can observe that, with
a ”simple” scheduling, it is not possible to factorize some
operations.

However, by rewriting the polynomials, we can reveal fac-
torizations :p1(x) = x2a0(x)+x(x2a1(x)+a2(x))+x4a2(x)
and p2(x) = x2a0(x) + x3(x2a1(x) + a2(x)) + x2a2(x).
So, if p′(x) = x2a1(x) + a2(x), we havep0(x) = p′(x) +
a0(x) + x2a2(x), p1(x) = xp′(x) + x2a0(x) + x2a2(x) and
p2(x) = x3p′(x) + x2a0(x) + x2a2(x).

To estimate the complexity by the same method than
in the previous example, we need11 polynomial additions
with scheduling compared to12 additions necessary without
scheduling.

C. Scheduling results

To evaluate the potential gain of the scheduling, we have
implemented an exhaustive search of the best patterns on
generator matrices.

This algorithm was applied on several codes for the field
F24 . Table II presents the results in term of ”factor over
optimal” which is defined as the total number of 1 in the
matrix over the number of 1 for the optimal MDS matrix , i.e
k.m.w.

When working in a ring, we include to the complexity
the operations needed to apply the transforms. In this case,
Embedding transform has a lower complexity. So we added
m.w to the number of 1 in the matrix resulting from the
scheduling algorithm.

For each case, we have generated100 random Generalized
Cauchy matrices.

The measured parameters are :

• average field matrix : average number of1 in the GC
matrices divided byk.m.w

• best field matrix : lowest number of1 among the GC
matrices divided byk.m.w

• average ring matrix : average number of1 in the ring
matrices (without scheduling) + ring-field correspondence
divided byk.m.w

• best ring matrix : best number of1 among the ring
matrices (without scheduling) + ring-field correspondence
divided byk.m.w

• average with scheduling : average number of xors with
scheduling + ring-field correspondence divided byk.m.w

• best with scheduling : best number of xors with schedul-
ing + ring-field correspondence divided byk.m.w

This table confirms that, even without scheduling, ring
matrices have a lower density than field matrices, thanks to
the Sparse transform. Applying scheduling to these matrices

k+m,k 12,8 16,10

average field matrix 1.79 1.90
best field matrix 1.73 1.85

average ring matrix 1.59 1.63
best ring matrix 1.5 1.58

average with scheduling 1.32 1.26
best with scheduling 1.19 1.20

TABLE II
FACTOR OVER OPTIMAL FORw = 4

allows a significant gain of complexity. Indeed, it reduces the
complexity by more than20% on the best matrices. The final
results are similar to the results obtained (without scheduling)
on the optimal matrix in Section V-A. To the best of our
knowledge, other scheduling approaches do not reach this level
of sparsity for these parameters.

VII. C ONCLUSION

In this paper, we have presented a new method to build
MDS erasure codes with low complexity. By using transforms
between a finite field and a polynomial ring, sparse generator
matrices can be obtained. This allows to significantly reduce
the complexity of the matrix vector multiplication. It alsoal-
lows simple schedulers that drastically improve the complexity
by reducing the number of operations.
Similar results can be obtained with Equally-Spaced Polyno-
mials (ESP) [5], but they are not presented here due to lack
of space.
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