arXiv:1701.07731v1l [cs.IT] 26 Jan 2017

Fast Erasure Coding based on Polynomial Ring Transforms

Jonathan Detchart, Jerdbme Lacan
ISAE-Supaéro, Université de Toulouse, France

Abstract—The complexity of software implementations of MDS  some subsets of the ring. Then we discuss about the choice of
erasure codes mainly depends on the efficiency of the finite e these transforms and their properties. We also detail the co

operations implementation. In this paper, we propose a metbd ; ; ; ; ;
to reduce the complexity of the finite field multiplication by plexity analysis before introducing some scheduling fssul

using fast transforms between a field and a ring to perform
the multiplication in a ring. We show that moving to a ring Il. ALGEBRAIC CONTEXT

reduces the complexity of the operations. Then, we show that . . e L . .
this construction allows the use of simple scheduling to rae This algebraic context is finite field and ring theories. More

the number of operations. detailed presentation of this context including the prooffs
the following propositions can be found inl [7] ar [10].

| INTRODUCTION Definition 1. LetF,. be the finite field witly* elements.

Most of practical Maximum Distance Separable (MDSYefinition 2. Let R, , = F,[z]/(z" — 1) denotes the quotient
packet erasure codes are implemented in software. In fiféd of polynomials of the polynomial rinf,[z] quotiented
various applications like packet erasure chanrigls [2] er dPY the ideal generated by the polynomial — 1.
tributed storage systems$1[8], the coding/decoding procesgfinition 3. Let pit (x)pi(z) ... ptr(z) = 2" — 1 be the
performs operations over finite fields. The efficiency of thgecomposition of" — 1 into irreducible polynomials oveF,.
implementation of these finite field operations is thus aiti

for these applications. Whenn and ¢ are relatively prime, it can be sh_own that
To speedup this operatioit] [2] described an implementatith = 42 = --- = un = 1 (see [10]). In other words, if = 2,

of finite field multiplications which only uses simple xor ape @nd7 is odd, we simply have, (z)p(z) ... p-(z) = 2" — 1.

ations, contrarily to classic software multiplicationsiathare !N the rest of this document, we assume thaand ¢ are

based on lookup tables (LUT). The complexity of multiplying€latively prime.

by an elementj.e. the number of xor operations, dependproposition 1. The ring R, is equal to the direct sum of its

on the size of the finite field and also on the element itself. minimal ideals ofd; = ((z™ — 1)/pi(z)) fori=1,...,r.

This kind of complexity is studied for Maximum-Distance N . _ _ o

Separable (MDS) codes ifil[1]. Other work has been done toMoreover, each minimal ideal contains a unique primitive

reduce redundant xor operations by applying schedulihg [GHdempotentHi(x). A construction of this idempotent is given
Independently, in the context of large finite field for crypil [7]. Chap. 8, Theorem 6. o

tographic applications/[5] proposed a xor-based method ¥§¢€F4[2]/(pi(x)) is isomorphic to the finite field; = F,.,

perform fast hardware implementations of multiplicatidns Wherepi(z) is of degreew;, we have :

transforming each element of a field into an element of groposition 2. R, ,, is isomorphic to the following Cartesian
larger ring. In this polynomial ring, where the operatioms oproduct :

polynomials are done module™ + 1, the multiplication by Ryn>~B ®By®...B,

a monomial is much simpler as the modulo is just a cyclic o o _ _

shift. The authors identified two classes of fields based &ar eachi = 1,...,r, A; is isomorphic toB;. The isomor-

irreducible polynomials with binary coefficients allowirig phism is :

transform each field element into a ring element by adding b : B, — A; )
iti " its” YTob(x) — b(x)bi(x)

additional "ghost bits”.

In this paper, we extend their approach to define fastgyng the inverse isomorphism is :
software implementations of xor-based erasure codes. We
propose an original method called PYRIT (PolYnomial RIng oL Ai = B )
Transform) to perform operations between elements of afinit ’ a(z) — alo)
field into a bigger ring by using fast transforms bet""ee\ﬁ}hereai is a root of p; (x).
these two structures. Working in such a ring is much easier
than working in a finite field. Firstly, it reduces the coding Let us now assume that= 2. Let us introduce a special
complexity by design. And secondly, it allows the use dflass of polynomials :
simple scheduling to reduce the number of operations than¥ssinition 4. The All One Polynomial (AOP) of degree is
to the properties of the ring structure. defined as
The next section presents the algebraic framework allowing
to define the various transforms between the finite field and I TP |
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The AOP of degreev is irreducible overF; if and only B. Embedding transform

if w+1is aprime andw generates?, ,, whereF, ., IS | et us denote bys;; the embedding function which simply
the multiplicative group inF,+, [13]. The valuesw + 1, consists in considering the element of the field as an element
such that the AOP of degree is irreducible is the sequencepf the ring without any transformation.
A001122 in [12]. The first values of this sequence are : Note that the images of the elements Bi does not
3,5,11,13,19,29,... In this paper, we only consider irre-pecessarily belong tal;. However, let us define the function
ducible AOP. - . ~ ¢yt from Ry yqq to Ay by 7 (ba (7)) = ba(a), wherea is
According to Propositiofl]2/2; .,+1 is equal to the direct a oot of p(x). This function can be seen as an extension of
sum of its principal idealsl; = ((z**! 4+ 1)/p(x)) = (z +  the function¢; ! to the whole ring.
1) and Ay = ((z¥* +1)/z + 1) = (p(x)) and Ra 11 iS - .
isomorphic to the direct product @; = Fa[z]/(p(z)) = Fau Proposition 4. For any u(z) and v(z) in By, we have :
and By = Falx $+1) = IFs. 7—1 —
It can be s[h1)</\(/n that the primitive idempotentf is 6; = o1 (95(u@))9p (@) = u@)-v(@)

p(z) + 1. This idempotents is used to build the isomorphism Proof: The embedding function corresponds to a mul-

#1 betweend; and B;. tiplication by 1 in the ring. In fact,1 is equal to the sum

of the idempotentd;(x) of the idealsA;, fori=1,... 1 [7,

chapter 8, thm. 7]. Thugiz (u(z)) = u(z). Y\_, 6;(x). Then,

. : . op(u(z)).¢p(v(z)) is equal to u(z).v(z).(3 2, bi(x))?.
We now considerp(x) as an irreducible AOP of degreetpanks to the properties of idempoterttsz).6; (z) is equal

w. This section presents different transforms between tﬁ? 0;(z) if i = j and 0 else. Thus ¢E(u(¢)).¢E(U(x»

field By = Fow = Fo[z]/(p(z)) and the ringRy i1 = |t -y The function é—" i
Folal/ (29 + 1). is equal tou(z).v(x).(d>,_, 0i(x)). e function¢; ~ is

the computation of the remainder modubg(z). The irre-
ducible polynomialp;(x) corresponds to the ideal;. Thus
A. Isomorphism transform 0;(x) mod p(z) is equal tol if i =1 andO0 else. ]

The first transform is simply the application of the basic This proposition proves that the Embedding function can be

isomorphism betweerB, and the ideald;, of Ry ... (see used to perform a multiplication in the ring instead of doing
Prop.[2). " it in the field. The isomorphism also has this property, bet th

complexities of the transforms between the field and the ring
are more complex.

IIl. TRANSFORMS BETWEEN THE FIELD AND THE RING

By definition of the isomorphism, we have:

1" (1 (u(2)).d1(v(2))) = u(x).v()

So, ¢ can be used to send the elements of the field in tﬁe Sparse transform
ring, then, to perform the multiplication, and then, to come Let us define the transformg from By t0 Ra 1 :
back in the field. We show in the following Proposition that
. . ; S . b =b =¢1(b J.
the isomorphism admits a simplified version. ¢s(bp(x)) A(@) = A1(ba(@)) + 0.p(z)
Let W (b(z)), the weight ofb(z), defined as the number ofwheres = 1 if W(¢1(bp(x)) + p(z)) < W(¢1(bg(z))) and

monomials in the polynomial representationbgf). 0 else.
Proposition 3. Proposition 5. For any u(z) and v(x) in By, we have :
¢1(bp(x)) = ba(x) = { . (Z])ng(x) gISVZ(bB(:c)) is even o1 (95 (u(2))-ds(v(x))) = u(x).v(z)

Proof: As observed in the proof of Propl 43,[1 is just
the computation of the remainder moduidz). Moreover,

671 (ba(z)) = b (z) = { ba(z) if by =0 according to the definition obs, ¢s(u(z)).ds(v(x)) is equal
i ba(z) + p(x) else to u(x).v(z) plus a multiple ofp(x) (possibly equal td)).
where b, is the coefficient of the monomial of degreeof Thus, the remainder ofs(u(x)).¢s(v(x)) modulo p(z) is
ba(z). equa_l tOu(:c).v.(g:). [ |
This proposition shows thats can be used to perform the
Proof: For the first point, we haveg;(b(x)) = multiplication in the ring. The main interest of this traosh
b(z)b(x) = b(x)(p(z) + 1) = b(x)p(z) + b(xz). We can is that the weight of the image afs is small, which reduce
observe thatb(z)p(z) = 0 when W(b(z)) is even and the complexity of the multiplication in the ring.
b(x)p(z) = p(x) when W(b(z)) is odd. The first point is
thus obvious. D. Parity transform

For the second point, it can be observed that, from the firé
point of this proposition, if an element of; has a coefficient
b # 0, then it was necessarily obtained from the second ru
i.e. by addingp(z). Then, its image intd3; can be obtained Proof: We can observe from Propositioh 3 that all the
by subtracting (adding in binary)z). If b, = 0, then nothing image of ¢; have even weight. Since the number of even-
has to be done to obtaiis(z). m weight element of?; ,,+1 is equal to the number of elements

Foposition 6. The idealA; is composed of the set of elements
f R2 w+1 With even weight.
&2



of A;, A; is composed of the set of elements®f ,,.1 with A. Coding complexity

even weight. - _ ‘B The coding process is composed of three phases : the field
Let us consider the functiopp, from By t0 R w1, Which 4 ring transform, the matrix vector multiplication and tfireg

adds a single parity bit to the vector corresponding to theefin i, fie|q transform. We assume that the information vector is a

field element. The obtained element has an even weight (Wetor of & elements of the fieldy. .

construction), and thus, according to the previous Prdiposi For the first and the third phases, TaBle | gives the com-

it belongs toA;. o ~ plexities of Embedding and Parity transforms obtained from
Since the images by of two distinct elements are distinct, heir definition in Sectiofi Tl1.

¢p is a bijection betweerB; and A;. The inverse function,

¢p", consists just in removing the last coefficient of the ring || field to ring | ring to field
element. Embedding 0 m.aw

It should be noted thapp is not an isomorphism, but just Parity bits kw 0
a bijection betweerB; and A;. However it will be shown in TABLE |

. . . . NUMBER OF XOR FOREMBEDDING AND PARITY TRANSFORMS
next Section that this function can be used in the context of

erasure codes.

The choice between the two methods thus depends on the
values of the parameters : i > m, Parity transform has

In typical xor-based erasure coding systenis [2], the encagwer complexity. Else, "Embedding” complexity is better.
ing process consists in multiplying an information vectgr b For the matrix vector operation, let us first consider the
the generator matrix. Since in software, xor are performegultiplication of two ring elements. As explained in the
using machine words ofz bits, sz interleaved codewords areprevious section, the first element (which corresponds to an

IV. APPLICATION OF TRANSFORMS

encoded in parallel. o information symbol) is managed by the software implementa-
We consider a system withinput data blocks and: output - tion by machine words. So the complexity of the multiplicati
parity blocks. ondy depends on the weight of the second element, denoted by

The total number of xor of the encoding is thus defineg, ¢ {0,1,...,w +1}. The complexity of this multiplication

by the generator matrix which must be as sparse as possiiethus (w + 1).ws.

First, we use a systematic generator matrix built froknak- Now, we can consider the specificities of the various trans-

identity matrix and & x m Generalized Cauchy (GC) matrixforms. In the Parity transform, the last bit of the paritydis

[11]. A GC matrix generates a systematic MDS code andi§not used (i.e. it is not transmitted on the erasure char®el

contains onlyl on its first row and on its first column. Then,it is not necessary to compute it. It follows that the comitiex

to improve the sparsity of the generator matrix in the ring, Wof the multiplication is onlyw.ws,.

use the Sparse transforgy. This has to be done only once Similarly, for the Embedding transform, the last bit of

since the ring matrix is the same for all the codewords. the input vector is always equal 1. So, we also have a
For the information vectors, it is not efficient to ugg  complexity equal taw.ws.

since the xors of machine words do not take into accountTo have an average number of operations done in the

the sparsity of the xor-ed vectors. We thus use Embeddingraultiplication of the generator matrix by the input datadiis,

Parity transforms, which are less complex than we have to evaluate the average weight of the entries of the
When Embedding is used for information vectors angenerator matrix in the ring.

Sparse is used for the generator matrix, the obtained resulrhe generator matrix is & x m-GC matrix with the first

in the ring can be sent into the field by usiag" (proof column and the first row are filled by. The other elements

similar to the proofs of Propositions 4 oF 5). can be considered as random non zero elements. They are
When Parity is used for the information vector, the image @fenerated byg which chooses the lowest ring element among

the vector in the ring only contains elements of the idéal the two ones corresponding to the field element. Let us denote

Since these elements are multiplied by the generator matgiweir average weight by, . For this case, the average number

(in the ring), the obtained result only contains elements @f xor is thus :

the ideal A;. This elements have an even weight, so it is

not necessary to keep the parity bit before sending them on (k+m—1)w+ (k—1).(m—1).wwsg

the "erasure channel”. We just be aware that, since Parityry;s |eads to the following general expression of the coding

transform is not an isomorphism, these data can not PSmpIexity :

decoded by another method. Indeed, to decode, it is negessar

to apply¢p (add the parity bit), then to decode by multiplying (min(k,m) +k+m — 1).w + (k —1).(m — 1).w.wg,

by the inverse matrix, and then to to apmy,1 (remove the

parity bit on the correct information vector). To estimate the complexity on a practical example, we fix

the value ofw to 4. Classic combinatorial evaluation (not
resented here) gives the average weight for nonzeros gnage

V. COMPLEXITY ANALYSIS Ef s )o g g g
In this section, we determine the total number of xor o w+1 (2w (w

operations done in the coding and the decoding processes. Wés = uii _g° w/2 )



So,wg, = 1.66. We plot in Figur¢ L the evolution of the factor The complexity of the matrix vector multiplication was
over optimal (useck.g.in [8], table IIl) which is the density studied in the previous paragraph.

of the matrix normalized by the minimal densifyyn.w. We The complexity of the a x r-matrix inversion is generally
vary the value of: for three values ofn: 3, 5 and7. For each in O(r?) operations in the field. But if the matrix has a Cauchy
pair (k, m), we generate 10000 random GC matrices and kespucture, this complexity can be reduced¢r?) [2].

the best we found. Note that, contrarily to the matrix vector multiplicatiahg
matrix inversion complexity does not depend on the size of
factor over optimal the source and parity blocks. And thus, it becomes negégibl
1.8 when the size of the blocks increase.
L6} VI. SCHEDULING
% 14l e ' An interesting optimization on MDS erasure codes under
Ke} ' xor-based representation is the scheduling of xor opersitio
191 / Such techniques are proposed |in [3], [4], [8] ahd [9]. The
general principle consists in "factorizing” some xor ofi&nas
1 | | | | | | | which are done several times to generate the parity blocks.
2 4 6 8 10 12 14 We show in the two next paragraphs that these techniques
k can be used very efficiently on the ring elements.
e mM=3 —e m=5 e m=7 ~However, it can be observed that the matrices defined over
best m=3 +_ best m=5_- best m=7 rings have two main advantages.
Fig. 1. Factor over optimal depending om A. Complexity reduction

Over finite fields, the scheduling consists in searching

We can observe that the values are very low. For exampfgmmon patterns on the binary representation of the ganerat
[8] gives the lowest density of Cauchy matrices for the fie|H1atr|ce§. Thew x w-matrices representing _the multiplication
F,. and we can observe that our values are always lower t the field elements does not have particular structure and
these ones thus, they must be entirely considered in the scheduling

To reduce the complexity in specific cases, we can obselfil)gorfthm' .
that the ring containsy elements whose the corresponding NS iS not the case for théw + 1) x (w + 1)-matrices
matrix is optimal (one diagonal). By using these elements, orresponding to a ﬂ?g element because, thanks to the form

1 w .
can search by brute force MDS matrices built only with the<¥ the Polynomialz*™" + 1, they are composed of diagonals
optimal elements. For example, let us consider the elenggntEIther full of 0 or 1. This means that they can be represented

the fieldF,4 sent into the ringR, 5. The Vandermonde matrix in the scheduling algorithm just by their first column or,
defined by: ' equivalently, by the ring polynomial.

V= (W) _ This allows to drastically reduce the algorithm complexity
#=0,..,4;5=0,...,4 and thus to handle bigger matrices. From a polynomial point
wherez is a monomial inRy 5 has the minimal number of of view, the search of scheduling just consist in finding some
1. It can be verified that this matrix can be used to build @mmon patterns in the equations generating the paritkbloc
systematic a MDS code. For this matrix, the total number of Example : Let us assume that = 5 and that three data
xor done in the generation of the parity packets (includhe t polynomialsag(x), a1 (z) andas(z) are combined to generate
field-to-ring and ring-to-field transforms) is the three paritiepg(z) = (14 2%)ag(x) +2%a1 () + 23as(x),
p1(2) = ag(z) +23a1 (2)+(1+27)as(x) andpa(z) = ag(z)+
a1(z) + 23az(z).
Its factor over optimal is equal t@.2 which is lower than  In this case, the scheduling just consists in computing
the values given in Figufg 1 and which is close to the lowest(z) = ao(z) + z%az(x) and thenpy(z) = p'(z) +
bound given in[[L]. atag(z) + 2?aq (), pi(x) = p'(z) + 23ay1(2z) + az(x) and
p2 = p'(x) + az(z).
B. Decoding complexity To estimate the_ compl_exny, we can (_:onS|der the number of
S o _ ] sums of polynomials. Without scheduling, we needsums
As the decoding is a matrix inversion and a matrix vectqy o, polz), 4 for pi(z), and 3 for po(z)) instead of with

multiplication, we can use the same approach to perform t Eheduling, we only need 10 surs for p(z), 3 for po(x)
multiplication. We first invert the sub-matrix in the fielden 3 for . () and2 for ps(z)). L

we transform each entry of this matrix into ring elements.
Then, we perform the ring multiplication. o
The complexity of the decoding thus depends on the cof: Additional patterns
plexity of the matrix inversion and on the complexity of the Ring-based matrices allow to find more common patterns
matrix vector multiplication. than field-based matrices. The main idea is to observe that,

(min(k, m)+k+m—1).w+(k—1).(m—1).w = k.w+k.m.w



. . . . +
in the ring, we can "factorize” not only common operations, K T:; = I 127’2 I 116:00
. . . . average fiela matrix . .

but _also _operat|0ns WhICh are multlple by a monor_nlak_e( best field matrix T73 (185

cyclic-shift) of operations done in some other equatiortsis T average ring matrix || 1.59 || 1.63

is possible only because the multiplications are done nwdul best ring matrix 15 || 158

zwtl 4 average with schedulindg| 1.32 1.26
’ best with scheduling 1.19 1.20

Example : Let us assume that = 5 and that three

TABLE Il

data polynomialsio(z), ai(x) and az(x) are combined to FACTOR OVER OPTIMAL FORw — 4

generate the parities (z) = ao(x)+z2a1(x)+ (1+2%)az(z),
pi(z) = 2ag(z) + 2%a1(2) + (v + 2*)az(z) and pa(z)
22ao(x) + a1 (z) + (22 + 2%)az(x). We can observe that, with

a "simple” scheduling, it is not possible to factorize somallows a significant gain of complexity. Indeed, it redudes t
operations. complexity by more tha20% on the best matrices. The final

However, by rewriting the polynomials, we can reveal faaesults are similar to the results obtained (without scliegl
torizations :p1 (z) = ?ag(x)+z(x%a;1 (z) +az(z))+2*a2(z) on the optimal matrix in Sectioh_ VAA. To the best of our
and pa(z) = 22%ap(z) + 23(22%a1(x) + az2(x)) + 2%az(x). knowledge, other scheduling approaches do not reach thk le
So, if p/'(x) = x2%a1(x) + az(z), we havepy(z) = p'(z) + of sparsity for these parameters.
ao(z) + 22az(x), p1(z) = xp'(x) + 2%a0(x) + 22az(x) and
pa(x) = 23/ () + 22ap(x) + 22az(x).

To estimate the complexity by the same method than
in the previous example, we nedd polynomial additions
with scheduling compared t62 additions necessary without
scheduling.

VIl. CONCLUSION

In this paper, we have presented a new method to build
MDS erasure codes with low complexity. By using transforms
between a finite field and a polynomial ring, sparse generator
matrices can be obtained. This allows to significantly reduc
the complexity of the matrix vector multiplication. It alsd-

C. Scheduling results lows simple schedulers that drastically improve the comiple

To evaluate the potential gain of the scheduling, we ha@®¥ reducing the number of operations.
implemented an exhaustive search of the best patterns Yfilar results can be obtained with Equally-Spaced Pelyno
generator matrices. mials (ESP)I[5], but they are not presented here due to lack

This algorithm was applied on several codes for the fieRf space.

Fy.. Table[dl presents the results in term of "factor over
optimal” which is defined as the total number of 1 in the
matrix over the number of 1 for the optimal MDS matrix , i.eq]
k.m.w.

When working in a ring, we include to the complexity 2]
the operations needed to apply the transforms. In this case,
Embedding transform has a lower complexity. So we added]
m.w to the number of 1 in the matrix resulting from the
scheduling algorithm.

For each case, we have generatéd random Generalized [4]
Cauchy matrices.

The measured parameters are :

« average field matrix : average number bfin the GC

matrices divided bye.m.w 6

« best field matrix : lowest number aof among the GC
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