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ON SUMMATION OF p-ADIC SERIES

BRANKO DRAGOVICH

Abstract. Summation of the p-adic functional series
∑

εn n!P ε
k (n;x)x

n,

where P ε
k (n;x) is a polynomial in x and n with rational coefficients, and

ε = ±1, is considered. The series is convergent in the domain |x|p ≤ 1 for all
primes p. It is found the general form of polynomials P ε

k (n;x) which provide
rational sums when x ∈ Z. A class of generating polynomials Aε

k(n;x) plays
a central role in the summation procedure. These generating polynomials
are related to many sequences of integers. This is a brief review with some
new results.

1. Introduction

In the last thirty years p-adic analysis has had successful applications in p-
adic mathematical physics (from strings to complex systems and the universe
as a whole) and in some related fields (in particular in bioinformation systems,
see, e.g. [1]), see [2, 3] for an early review and [4] for a recent one. The p-adic
series, as a part of p-adic analysis, have been also considered as mathematical
tools of potential applications in physics. The main reason was in the following.
There are series, in particular the power series, of the same form in physics
and p-adic analysis. Recall that the results of physical measurements are
rational numbers which belong to all p-adic number fields Qp as well as to R.
Hence, there is a sense to consider p-adic series in rational points, i.e. when
argument and sum are some rational numbers, and look for their possible
physical content. One of motivations was related to the convergence of series.
Namely, the power series

∑

an x
n, where an ∈ Q, can be treated simultaneously

as p-adic or as real, depending on values of the argument x. Many series which
are divergent in the real case are convergent in the p-adic one. There are
many examples of divergent series, in particular, in perturbation expansions
of quantum field theory and string theory, which diverge due to factorials.
This problem of divergences in some real series motivated an investigation of
various series with factorials with respect to the p-adic norm. To this end,
many p-adic convergent series have been constructed and found their rational
sums for some rational arguments.
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In this paper we are interested in p-adic invariant summation of a class of
infinite functional series which terms contain n!, i.e.

∑

εn n!P ε
k (n; x) x

n, where
ε = ±1 and P ε

k (n; x) are polynomials in x and n of degree k. We show that
there exist polynomials P ε

k (n; x) for any degree k, such that for any x ∈ Z the
corresponding sums are also integer or rational numbers. Moreover, we have
found recurrence relations to calculate all ingredients of such P ε

k (n; x).
All necessary general information on p-adic series can be found in standard

books on p-adic analysis, see, e.g. [5].

2. Series and p-adic invariant summation in integer points

We will give now a brief review of some p-adic series with factorials presented
in the papers [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20].

Recall that necessary and sufficient condition for the p-adic power series to
be convergent is that the general term vanishes as degree goes to infinity [5, 3],
i.e.

S(x) =
+∞
∑

n=1

anx
n, an ∈ Qp, x ∈ Qp, |anx

n|p → 0 as n → ∞,(2.1)

where | · |p denotes the p-adic absolute value (also called p-adic norm). As in
the real case, convergent infinite p-adic series can be summed using usual rules
as for the finite series.

We are interested here in the series which are simultaneously convergent
with respect to p-adic absolute value for every prime number p. One of the
simplest such examples is the well known series

∞
∑

n=0

n! = 0! + 1! + 2! + ...+ n! + ..., |n!|p = p
−

n−sn
p−1 → 0 (n → ∞),(2.2)

where sn = n0 + n1 + ... + nr is the sum of digits in the canonical expansion
of number n in base p, i.e. n = n0 + n1p + ... + nrp

r. It can be shown that if
the sum of series (2.2) has a rational value then it cannot be the same for all
p-adic cases. Probably the sum of series (2.2) is irrational number in all Qp.

From an application point of view it is more interesting to investigate p-adic
series which sum is a rational number, the same for all primes p. As a simple
illustrative example one can refer to

∞
∑

n=1

n! n = 1! 1 + 2! 2 + ...+ n! n+ ... = −1 .(2.3)

In the proof of (2.3) one can employ any of the following two properties:

(i) : n! n = (n+ 1)!− n! , (ii) :

N−1
∑

n=1

n!n = −1 +N ! .(2.4)
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In this section we present a review of some convergent p-adic series, where
summation is performed using mainly property like (i) in (2.4). Method similar
to (ii) of (2.4) will be employed in the next section.

In [6] was shown that the ground-state energy perturbation series of the
anharmonic oscillator

E(λ) =
1

2
+

∞
∑

n=1

(−1)n+1an2
−2nλn , an ∈ N ,(2.5)

which is divergent in the real case (a1 = 3, a2 = 2 · 3 · 7, a3 = 22 · 32 · 37, ...),
is p-adic convergent for |λ|p < 1 if p 6= 2 and |λ|2 <

1
4
. Paper [7] contains two

similar examples to (2.5) and the following one:

F (x) =
∞
∑

n=1

(−1)n+1 (n!)k (nℓ + w)m xn , w ∈ Z, k ∈ N, m ∈ N ∪ {0} ,(2.6)

which is convergent for every p in the range |x|p ≤ 1 and consequently includes
all integers. After suitable rearrangement of the series terms for F (x) and
−F (x), and then taking F (x) + (−F (x)) = 0, one obtains formula

∞
∑

n=1

(n!)k{(n+ 1)k[(n + 1)ℓ + w]m x− (nℓ + w)m} xn−1 = −(1 + w)m.(2.7)

One can easily see that (2.7) contains (2.3) as a particular case.
In [7] was also discussed possible connection between integer sums of p-

adic series convergent in |x|p ≤ 1 for all p and its real counterpart which is
divergent. Recall that the sum of the divergent series depends on the way
how summation is performed. Using the same summation procedure as in
p-adic convergent cases will give the same integer value in the real divergent
counterpart. This kind of summation of divergent series was called adelic
summation. For example, series (2.3) is highly divergent from real point of
view, but according to the adelic summation the corresponding real sum should
be also −1. Perhaps this adelic summation will find an application in physics
and related sciences.

Inspired by divergent series in a zero-dimensional model of quantum field
theory, in paper [9] the following p-adic series was considered

F (x) =

∞
∑

n=1

(−1)n+1

α
∏

i=1

((µin + νi)!)
kiPℓ(n) x

n ,(2.8)

where α, µi ∈ N, νi ∈ Z, µi + νi ≥ 1 and ℓ, ki ∈ N0, and at least one of
ki ≥ 1. The domain of convergence contains |x|p ≤ 1 and hence includes
x ∈ Z. By suitable rearrangement of terms for F (x) and −F (x), and then
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taking F (x) + (−F (x)) = 0, one obtains summation equality

∞
∑

n=1

α
∏

i=1

((µin + νi)!)
ki

[

α
∏

i=1

(µin+ νi + 1)kiµi
Pℓ(n+ 1) x− Pℓ(n)

]

xn−1

= −
α
∏

i=1

((µi + νi)!)
kiPℓ(1) ,(2.9)

where (µin + νi + 1)kiµi
= (µin + νi + 1)ki(µin + νi + 2)ki...(µin + νi + µi)

ki.
Polynomial Pℓ(n) is

Pℓ(n) = cℓn
ℓ + cℓ−1n

ℓ−1 + ... + c0 ,(2.10)

where c0, c1, ..., cℓ are some integers. Taking x = +1 or −1 and various values
of parameters in (2.9) one gets sum for plenty of p-adic numerical series.

Paper [10] is devoted to rational summation of the wider class of p-adic series

Sε(x) =
∞
∑

n=1

εn
I
∏

i=1

((µin + νi)!)
λiPk(n) x

αn+β ,(2.11)

where ε = ±1, I, µi, α ∈ N, νi ∈ Z, µi + νi ≥ 1, λi, β ∈ N0 and at least one
of λi ∈ N. Pk(n) is a polynomial

Pk(n) = Ckn
k + Ck−1n

k−1 + ... + C0 ,(2.12)

where C0, C1, ..., Ck ∈ Z. The domain of convergence of the series (2.11) is

|x|p < p
1

(p−1)α

∑I
i=1 µiλi(2.13)

which includes x ∈ Z for all p-adic norms.
As rational summation one has in mind summation of convergent series, like

(2.11), that for a rational argument x exists a rational sum S(x). For the
series (2.11), rational summation makes a restriction on possible polynomials
Pk(n). To find suitable polynomials Pk(n) it is useful to introduce an auxiliary
polynomial in (2.11)

Pℓ(n) = aℓ n
ℓ + aℓ−1 n

ℓ−1 + ... + a0 ,(2.14)

where 0 ≤ ℓ < k and a0, a1, ..., aℓ are some integer numbers. Using the same
summation procedure as in the previous cases, and replacing Pk(n) by Aℓ(n)
in (2.11), follows the equality

∞
∑

n=1

εn
I
∏

i=1

((µin + νi)!)
λi

[

I
∏

i=1

(µin+ νi + 1)λi

µi
Aℓ(n + 1) xα − εAℓ(n)

]

xαn+β

= −
I
∏

i=1

((µi + νi)!)
λiAℓ(1) x

α+β,(2.15)
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where (µin + νi + 1)λi
µi

= (µin + νi + 1)λi(µin + νi + 2)ki...(µin + νi + µi)
λi .

Summation expression (2.15) is valid in the domain of convergence of (2.11),
i.e. includes all x ∈ Z. Taking x = t ∈ Q which satisfies the domain of
convergence (2.13) one can construct a polynomial

Pk(n; t) =

I
∏

i=1

(µin+ νi + 1)λi
µi
Aℓ(n+ 1) tα − εAℓ(n)(2.16)

where k = ℓ +
∑I

i=1 µiλi, which depends on t and leads to a rational sum
of (2.11). For a given polynomial Pk(n) the series (2.11) has a rational sum
if there exists an auxiliary polynomial Aℓ(n) such that expression (2.16) is
satisfied. When t ∈ Z then the corresponding sum is an integer the same in
all Zp, where Zp is the ring of p-adic integers. In the next section we shall see
how one can construct all related polynomials Pk(n; x) for any degree k.

In [11] is presented extension of summation formula (2.15) in the form

∞
∑

n=1

εn
∏I

i=1((µin + νi)!)
λi

∏J

j=1((ρjn + σj)!)ηj

[

∏I

i=1(µin+ νi + 1)λi
µi

∏J

j=1(ρjn+ σj + 1)
ηj
ρj

Aℓ(n+ 1) xα − εAℓ(n)

]

xαn+β

= −

∏I

i=1((µi + νi)!)
λi

∏J

j=1((ρj + ηj)!)ηj
Aℓ(1) x

α+β.(2.17)

Paper [12] contains an elaboration of rational summation considered in [10].
Papers [13, 14, 15] were presented at conferences on p-adic functional anal-

ysis and published in their proceedings. A very simple case of (2.15) is
∞
∑

n=0

n! [(n + 1)Aℓ(n + 1)−Aℓ(n)] = −Aℓ(0),(2.18)

where Aℓ(n) is defined by (2.14). It is obvious that all possible polynomials
Aℓ(n) generate the corresponding polynomials Pk(n) = (n+1)Aℓ(n+1)−Aℓ(n),
with k = ℓ+ 1 ≥ 1, which give integer sum −Aℓ(0), i.e.

∞
∑

n=0

n!Pk(n) = −Aℓ(0).(2.19)

It is useful to investigate the series of the form
∞
∑

n=0

n! [nk + uk] = vk,(2.20)

where uk, vk are pairs of integers. The series (2.20) is analyzed in [13], where

(n+ 1)Ak−1(n+ 1)− Ak−1(n) = nk + uk, k = 1, 2, 3, ....(2.21)

Note that (2.21) contains a system of k+1 linear equations with k+1 unknowns
(a0, a1, ..., ak−1, uk) which has always solution, and that vk = −Ak−1(0). It
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was also shown that pairs of integers uk, vk are unique. If we know integers
u1, u2, ..., uk and v1, v2, ..., vk then one can write general summation formula

∞
∑

n=0

n!Pk(n) = Qk, Pk(n) = Ck n
k + ... + C1 n+ C0, Qk =

k
∑

j=1

Cj vj ,

(2.22)

where C0 =
∑k

j=1Cj uj and C0, C1, ..., Ck ∈ Q. Hence only these polynomials

Pk(n) which are defined by (2.22) give p-adic invariant rational summation,
where nontrivial role plays term C0.

In paper [14] a modified generalized hypergeometric series was considered,
the domain of convergence was found and a summation formula was derived. It
was also reconsidered summation formula (2.20) and related recurrence relation
was found (see also [15])

Sk+1(n) = δ0k − kSk(n)−
k−1
∑

ℓ=0

(

k + 1

ℓ

)

Sℓ(n) + n!nk ,(2.23)

where Sk(n) =
∑n−1

i=0 i! ik and δ0k is the Kronecker symbol (δ0k = 1 if k = 0
and δ0k = 0 if k 6= 0). From (2.23) follows

n−1
∑

i=0

i! (ik + uk) = vk + n!Ak−1(n) ,(2.24)

where uk and vk satisfy the following recurrence relations:

uk+1 = −kuk −

k−1
∑

ℓ=1

(

k + 1

ℓ

)

uℓ + 1 , u1 = 0, k ≥ 1 ,(2.25)

vk+1 = −kvk −
k−1
∑

ℓ=1

(

k + 1

ℓ

)

vℓ − δ0k , k ≥ 0 .(2.26)

Note that Ak(n) is a polynomial in n and in limit n → ∞ formula (2.24)
becomes (2.20). Using recurrence relations (2.25) and (2.26) one can calculate
uk and vk, which the first eleven values are presented in Table 1.

Note that in [14] is introduced the following functional summation formula:

∞
∑

i=0

n! [nkxk + Uk(x)] x
n = Vk(x) ,(2.27)

where Uk(x) and Vk(x) are certain polynomials in x with integer coefficients.
When x = 1 we have Uk(1) = uk and Vk(1) = vk.
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k 1 2 3 4 5 6 7 8 9 10 11

uk 0 1 -1 -2 9 -9 -50 267 -413 -2180 17731

vk -1 1 1 -5 5 21 -105 141 777 -5513 13209

Table 1. The first eleven values of uk and vk [14, 15]. Note
that in encyclopedia of integer sequences [23], sequence uk over-
laps with A000583 in absolute values, while vk coincides with
A014619.

Paper [14] contains a proof that the sum of p-adic series

∞
∑

n=0

n!nk xn , k ∈ N0 , x ∈ N \ {1}(2.28)

cannot be the same rational number in Zp for every p. It also contains conjec-
ture that the sum of (2.28) is a rational number iff k = x = 1. In particular,
according to this conjecture uk 6= 0 in (2.20) when k 6= 1 and the correspond-
ing sums

∑

n!nk are p-adic irrational numbers. Following this research in [16]
was shown that uk 6= 0 for k ≡ 0 or 2 (mod 3). Then has shown [17] that uk

can be zero at most twice (see also [18, 19]).
Paper [20] is devoted to the first-order and second-order differential equa-

tions which contain as a solution an analytic function of the form

Fk(x) =
∞
∑

n=0

n!Pk(n) x
n , k ∈ N0 , |x|p < p

1
p−1 ,(2.29)

where Pk(n) = nk + Ck−1n
k−1 + ... + C0 is a polynomial in n with Ci ∈ Z (in

a more general case Ci ∈ Q or Ci ∈ Cp). It is shown the existence of linear
differential equations which solution is Fk(x) for any polynomial Pk(n) and
some of such equations are constructed. For example, the related first-order
and second-order linear differential equations for F0(x) =

∑

∞

n=0 n! x
n are:

x2 F ′

0(x) + (x− 1)F0(x) = −1 ,(2.30)

x2 F ′′

0 (x) + (3x− 1)F ′

0(x) + F0(x) = 0 .(2.31)



8 BRANKO DRAGOVICH

3. Functional summation formula and polynomials Aε
k(n; x)

This section is devoted to investigation of the finite functional summation
formula of the form

n−1
∑

i=0

εii! [ikxk + Uε
k(x)] x

i = V ε
k (x) + n!Aε

k−1(n; x) ,(3.1)

where ε = ±1 and Aε
k(n; x) are certain polynomials in x, which coefficients are

polynomials in n (also of degree k) with integer coefficients. Uε
k(x) and V ε

k (x)
are polynomials related to the polynomials Aε

k−1(n; x) as follows:

Uε
k(x) = xAε

k−1(1; x)− εAε
k−1(0; x) , V ε

k (x) = −εAε
k−1(0; x).(3.2)

If x = 1 and ε = +1 then summation formula (3.1) reduces to (2.24). When
ε = +1 and n → ∞ formula (3.1) evidently becomes (2.27).

This section is based on papers [21, 22] and their elaboration with some new
results. Here the main role is plaid by the polynomials Aε

k(n; x), because they
contain all information on properties of summation formula (3.1) .

Theorem 3.1. Let Sε
k(n; x) =

∑n−1
i=0 εi i! ik xi, where ε = ±1. Then one has

the recurrence formula

Sε
k(n; x) = δ0k + ε x Sε

0(n; x) + ε x

k+1
∑

ℓ=1

(

k + 1

ℓ

)

Sε
ℓ (n; x)− εn n!nk xn .(3.3)

Theorem 3.2. The recurrence relation (3.3) has solution in the form

n−1
∑

i=0

εi i! [ik xk + Uε
k(x)] x

i = V ε
k−1(x) + Aε

k−1(n; x) ε
n−1 n! xn ,(3.4)

where polynomials Uε
k(x) , V

ε
k−1(x) and Aε

k−1(n; x) satisfy the following recur-

rence relations:
k+1
∑

ℓ=1

(

k + 1

ℓ

)

xk−ℓ+1Uε
ℓ (x)− ε Uε

k(x)− xk+1 = 0 , Uε
1 (x) = x− ε ,(3.5)

k+1
∑

ℓ=1

(

k + 1

ℓ

)

xk−ℓ+1 V ε
ℓ−1(x)− ε V ε

k−1(x) + δ0k εx = 0 , V ε
0 (x) = −ε ,(3.6)

k+1
∑

ℓ=1

(

k + 1

ℓ

)

xk−ℓ+1Aε
ℓ−1(n; x)− εAε

k−1(n; x)− nk xk = 0 ,(3.7)

where Aε
0(n; x) = 1 and k ∈ N.

Proofs for the above theorems can be found in [21, 22]. Recurrence rela-
tions (3.5)-(3.7) can be taken as definitions of polynomials Uε

k(x), V
ε
k (x) and

Aε
k(n; x). Connection of Uε

k(x) and V ε
k (x) to Aε

k(n; x) follows from the above
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relations (3.5)-(3.7). Hence, in the sequel it is sufficient to investigate proper-
ties of the generating polynomials Aε

k(n; x), because properties of Uε
k(x) and

V ε
k (x) can be derived from (3.2).

Theorem 3.3. Let Aε
k(n; x) =

∑k

j=0A
ε
kj(n) x

j. Then there is the following

recurrence formula for calculation of Aε
kj(n):

(

k + 1

k + 1

)

Aε
kj(n) +

(

k + 1

k

)

Aε
k−1,j−1(n) +

(

k + 1

k − 1

)

Aε
k−2,j−2(n) + ...

+

(

k + 1

k − j + 1

)

Aε
k−j,0(n) =

{

εAε
k−1,j(n) , j = 0, 1, ..., k − 1,

nk , j = k ,
(3.8)

where k = 1, 2, 3, ... and Aε
00(n) = 1.

Proof. Substituting Aε
k(n; x) =

∑k

j=0A
ε
kj(n) x

j into recurrence relation (3.7)
we have

ℓ−1
∑

j=0

xj

k+1
∑

ℓ=1

(

k + 1

ℓ

)

Aε
ℓ−1,j(n)x

k+1−ℓ − ε

k−1
∑

j=0

Aε
k−1,j(n)x

j − nkxk = 0 ,(3.9)

where k = 1, 2, 3, ... Looking for terms with xi and xk we obtain

• xi :

(

k + 1

k + 1

)

Aε
ki(n) +

(

k + 1

k

)

Aε
k−1,i−1(n) +

(

k + 1

k − 1

)

Aε
k−2,i−2(n)

+ ...+

(

k + 1

k − i+ 1

)

Aε
k−i,0(n)− εAε

k−1,i(n) = 0 , i = 0, 1, ..., k − 1 .(3.10)

• xk :

(

k + 1

k + 1

)

Aε
kk(n) +

(

k + 1

k

)

Aε
k−1,k−1(n) +

(

k + 1

k − 1

)

Aε
k−2,k−2(n)

+ ...+

(

k + 1

1

)

Aε
00(n)− nk = 0 .(3.11)

�

Using recurrence relation (3.8) we can calculate Aε
kj(n). Performing calcu-

lation for k = 1, 2, ..., 5, we obtain Aε
k(n; x) presented below.
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Aε
0(n; x) =Aε

00(n) = 1.(3.12)

Aε
1(n; x) =

1
∑

j=0

Aε
1j(n) x

j = (n− 2)x+ ε.(3.13)

Aε
2(n; x) =

2
∑

j=0

Aε
2j(n) x

j = (n2 − 3n + 3)x2

+ (n− 5)εx+ 1.(3.14)

Aε
3(n; x) =

3
∑

j=0

Aε
3j(n) x

j = (n3 − 4n2 + 6n− 4)x3

+ (n2 − 7n+ 17)εx2 + (n− 9)x+ ε.(3.15)

Aε
4(n; x) =

4
∑

j=0

Aε
4j(n) x

j = (n4 − 5n3 + 10n2 − 10n+ 5)x4

+ (n3 − 9n2 + 31n− 49)εx3

+ (n2 − 12n+ 52)x2 + (n− 14)εx+ 1.(3.16)

Aε
5(n; x) =

5
∑

j=0

Aε
5j(n) x

j = (n5 − 6n4 + 15n3 − 20n2 + 15n− 6)x5

+ (n4 − 11n3 + 49n2 − 111n+ 129)εx4

+ (n3 − 15n2 + 88n− 246)x3

+ (n2 − 18n+ 121)εx2 + (n− 20)x+ ε.(3.17)

In the above examples we can note the following properties:

• Aε
kj(n) =

j
∑

i=0

akj,i n
i , akj,j = εk+j , ε = ±1.(3.18)

• Aε
kk(n) =

k
∑

i=0

akk,i n
i , akk,i = (−1)k+i

(

k + 1

i+ 1

)

.(3.19)

• Aε
k1(n) =

1
∑

i=0

ak1,i n
i =

(

n−
k(k + 3)

2

)

εk+1 ,(3.20)

where k(k+3)
2

in (3.20) is the sum of 2 + 3 + ... + (k + 1).
Using expressions (3.12)-(3.17) we can write some useful values of Aε

k(n; x)
in Table 2.
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k 1 2 3 4 5 6

Aε
k(0; 1) 1 -2 + ε 4 - 5ε -13 + 18ε 58 -63ε -272 + 251ε

Aε
k(1; 1) 1 -1+ε 2-4ε -9 +12 ε 43 - 39ε -192+162ε

Aε
k(0;−1) 1 2 + ε 4 + 5ε 13 + 18ε 58 +63ε 272 + 251ε

Aε
k(1;−1) 1 1+ε 2+4ε 9 +12 ε 43 + 39ε 192+162ε

Table 2. The first six values of Aε
k(n; x), where n = 0, 1 and

x = ±1.

Denoting A+1
k (n; x) ≡ A+

k (n; x) and A−1
k (n; x) ≡ A−

k (n; x) from Table 2 we
have (cf. [23])

A+
k (0; 1) : 1, −1, −1, 5, −5, −21, ... cf. A014619(3.21)

A−

k (0; 1) : 1, −3, 9, −31, 121, −523, ... cf. A040027(3.22)

A+
k (1; 1) : 1, 0, −2, 3, 4, −30, ... cf. A007114(3.23)

A−

k (1; 1) : 1, −2, 6, −21, 82, −354, ... cf. A032347(3.24)

A+
k (0;−1) : 1, 3, 9, 31, 121, 523, ... cf. A040027(3.25)

A−

k (0;−1) : 1, 1, −1, −5, −5, 21, ... cf. A014619(3.26)

A+
k (1;−1) : 1, 2, 6, 21, 82, 354, ... cf. A032347(3.27)

A−

k (1;−1) : 1, 0, −2, −3, 4, 30, ... cf. A007114 .(3.28)

Aε
k(n; x) in sequences (3.21)-(3.28) overlap (up to the sign) with related

elements in the on-line encyclopedia of integer sequences [23]. Using (3.21)-
(3.28) it is worth to present also Uε

k(x) for x = ±1 and ε = ±1, see below.

U+
k (1) : 0, 1, −1, −2, 9, −9, ... cf. A000587(3.29)

U−

k (1) : 2, −5, 15, −52, 203, −877, ... cf. A000110(3.30)

U+
k (−1) : −2, −5, −15, −52, −203, −877, ... cf. A000110(3.31)

U−

k (−1) : 0, 1, 1, −2, −9, −9, ... cf. A000587 .(3.32)

It is worth pointing out that −U+
k (−1) = Bk+1 for k ∈ N, where Bk are

the Bell numbers. Recall that the Bell number Bk is equal to the number of
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partitions of a set of k elements. These numbers satisfy the recurrence relation

Bk+1 =
k

∑

ℓ=0

(

k

ℓ

)

Bℓ , B0 = 1.(3.33)

Taking limit n → ∞ in (3.4) and then replacing i by n one obtains
∞
∑

n=0

n! [nkxk + Uε
k(x)] x

n = V ε
k (x) .(3.34)

Summation formula (3.34) can be generalized in
∞
∑

n=0

n!P ε
k (n; x) x

n = Qε
k(x) ,(3.35)

where polynomials P ε
k (n; x) and Qε

k(x) are

P ε
k (n; x) =

k
∑

j=1

Cj [n
jxj + Uε

j (x)] , Qε
k(x) =

k
∑

j=1

Cj V
ε
j (x)(3.36)

and Cj ∈ Q. Summation formula (3.36) is the general one, p-adic invariant,
valid for all x ∈ Z and Qε

k(x) ∈ Q.

4. Concluding remarks

Summarizing, in this paper we presented a brief review of previously ob-
tained particular results on summation of p-adic functional series of the form
∑

∞

n=1 n!P
ε
k (n; x)x

n. Some new results are contained in section 3, particularly
in formulas (3.34)-(3.36). Significant role of the polynomials Aε

k(n; x) is em-
phasized, because all information on summability of (3.34) is coded in these
polynomials. Moreover, the polynomials Aε

k(n; x) for x = ±1 and ε = ±1
are related to some well known sequences of integer numbers, including the
Bell numbers. In [22] some aspects of the more general series of the type
∑

∞

n=1(n + ν)!P ε
k (n; x)x

αn+β are considered, which can be easily connected to
results obtained in section 3.

It is worth mentioning that power series everywhere convergent on R and all
Qp, as well as their adelic aspects, are considered in [8, 11]. Kurepa’s hypothesis
on the left factorial is investigated in [15] and infinitely many its equivalents are
found. Some concrete examples can be found in author’s papers, in particular
in [13].
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tional series in integer points”, accepted for publication in Filomat, [arXiv:1508.05079
[math.NT]].

[23] N. J. A. Sloane, “The on-line encyclopedia of integer sequences”, https://oeis.org/.

1Institute of Physics, University of Belgrade, Belgrade, Serbia

2Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade,

Serbia

E-mail address : dragovich@ipb.ac.rs

http://arxiv.org/abs/1508.05079

	1. Introduction
	2. Series and p-adic invariant summation in integer points
	3. Functional summation formula and polynomials Ak(n; x)
	4. Concluding remarks
	Acknowledgements
	References

