Forbidden Substrings In Circular K-Successions

Enrique Navarrete*

In this note we define a circular k-succession in a permutation p on [n] as either a pair p(i), p(i + 1) if $p(i + 1) \equiv p(i) + k \pmod{n}$, or as the pair p(n), p(1) if $p(1) \equiv p(n) + k \pmod{n}$. We count the number of permutations that for fixed k, k < n, avoid substrings j(j+k), $1 \leq j \leq n-k$, as well as permutations that avoid substrings $j(j+k) \pmod{n}$ for all $j, 1 \leq j \leq n$. We also count circular permutations that avoid substrings, and show that for substrings $j(j+k) \pmod{n}$, the number of permutations depends on whether n is prime, and more generally, on whether n and k are relatively prime.

Keywords: Circular permutations, circular successions, circular *k*-successions, *k*-shifts, *k*-successions, derangements, forbidden substrings, bijections.

1. Introduction and Previous Results

In [3] we counted the number of permutations according to k-shifts, where we defined $\{d_n^k\}$ as the set of permutations on [n] that for fixed k, k < n, avoid substrings j(j+k), $1 \le j \le n-k$. The number of such permutations, d_n^k , turned out to be

$$d_n^k = \sum_{j=0}^{n-k} (-1)^j \binom{n-k}{j} (n-j!).$$
(1.1)

The forbidden substrings in these permutations can be pictured as a diagonal running k places to the right of the main diagonal of an $n \times n$ chessboard (hence the term "k-shifts"). Note that we will also refer to these forbidden substrings that are k spacings apart as "k-successions"; therefore in [3] we counted permutations with no k-successions for k > 1 (the case k = 1 was discussed in [2]). Note that there are some references that not only count permutations with no successions but also count permutations with i = 1, 2, ..., n - 1 successions (the so-called "succession numbers") but they do it only for the case k = 1, *ie.* for forbidden substrings that are only one spacing apart, j(j + 1), so some care should be taken (see [1], for example).

Table 1 in the Appendix provides some d_n^k values. For example, for n = 4, k = 2, the forbidden substrings that are 2 spacings apart are $\{13, 24\}$, and

^{*}Grupo ANFI, Universidad de Antioquia.

 $d_4^2 = 14$ since there are 14 permutations in S_4 that avoid such substrings or 2-successions.

The sequence $\langle d_n^k \rangle$ is available in OEIS. For example, for k = 4, the sequence is now A277563 [4], and for k = 1 it is A000255 [5]. Note that for k = 0, $d_n^k = Der(n)$, the *n*th derangement number, which is A000166 in OEIS [9].

In [3] we also counted the number of permutations according to k-shifts (mod n), where we defined $\{D_n^k\}$ as the set of permutations on [n] that for fixed k, k < n, avoid substrings j(j+k) for $1 \le j \le n-k$, and avoid substrings j(j+k) (mod n) for $n-k < j \le n$. Note that we can summarize in the single definition "avoid substrings j(j+k) (mod n) for all $j, 1 \le j \le n$ " if we agree to write n instead of 0 when doing addition (mod n).

The forbidden substrings in this case are easily seen along an $n \times n$ chessboard, where for j > n - k, the forbidden positions start again from the first column along a diagonal n - k places below the main diagonal, as in Figure 1 below.

	1	2	3	4
1				×
2	×			
3		×		
4			×	

Figure 1: Forbidden positions in $\{D_4^3\}$.

Figure 1 shows forbidden positions on a 4×4 chessboard that correspond to forbidden substrings of permutations in $\{D_4^3\}$. These forbidden substrings are $\{14; 21, 32, 43\}$. The forbidden substrings below the diagonal are separated by a semicolon; these are the forbidden substrings $j(j+k) \pmod{n}$ for $n-k < j \leq n$. Note that while there are only n-k forbidden substrings in $\{d_n^k\}$, there are n forbidden substrings in $\{D_n^k\}$.

The number of permutations in $\{D_n^k\}$ is given by

$$D_n^k = \sum_{j=0}^{n-1} (-1)^j \binom{n}{j} (n-j)!.$$
(1.2)

Furthermore, there are the same number of permutations in $\{D_n^k\}$ as in $\{D_n\}$ whenever n and k are relatively prime $(D_n = D_n^1; \text{ see } [3])$. Table 4 in the Appendix provides a table for some D_n^k values. For example, for n = 4, k = 3, we have seen that forbidden substrings in $\{D_4^3\}$ are $\{14; 21, 32, 43\}$ and $D_4^3 = 4$ since there are 4 permutations in S_4 that avoid such substrings or 3-successions. Furthermore, since (4, 3) = 1, there is the same number of permutations in $\{D_4^3\}$ as in $\{D_4\}$, which are permutations in S_4 that avoid successions $\{12, 23, 34; 41\}$. The sequence $\langle D_n \rangle$ is A000240 in OEIS [6]. In this note we will discuss permutations in $\{d_n^k\}$ and $\{D_n^k\}$ with no *circular* k-successions, as described in the following definition.

Definition 1.1. We define a *circular k-succession* in a permutation p on [n] as either a pair p(i), p(i+1) if $p(i+1) \equiv p(i) + k \pmod{n}$, or as the pair p(n), p(1) if $p(1) \equiv p(n) + k \pmod{n}$. We will denote as $\{d_n^*\}$ the set of permutations in $\{d_n^k\}$ that have no circular k-successions, and similarly, as $\{D_n^*\}$ the set of permutations are in one-line notation.

Hence permutations in $\{d_n^{*k}\}$ avoid substrings j(j+k), $1 \leq j \leq n-k$, and permutations in $\{D_n^{*k}\}$ avoid substrings $j(j+k) \pmod{n}$ for all $j, 1 \leq j \leq n$ (as in $\{d_n^k\}$ and $\{D_n^k\}$, respectively), but in $\{d_n^{*k}\}$ and $\{D_n^{*k}\}$ there is the additional restriction of the circular k-successions.

For example, in $\{D_4^3\}$, we saw above that the forbidden substrings are $\{14; 21, 32, 43\}$, hence the permutation 2134 has a circular 3-succession 21 and the permutation 2413 has a circular 3-succession 32. Hence such permutations won't be allowed in $\{D_4^{*3}\}$ (but 2413 is allowed in $\{D_4^3\}$). Note as mentioned above that the forbidden substrings in $\{D_n^{*k}\}$ are the same as those in $\{D_n^k\}$ and the same is true for $\{d_n^{*k}\}$ and $\{d_n^k\}$, with differences in cardinalities being accounted by circular k-successions, as will be shown below.

Note that in Definition 1.1 we don't really need the definition (mod n) in $\{d_n^{*k}\}$ since forbidden positions in those permutations stay above the main diagonal of an $n \times n$ chessboard.

2. Main Lemmas and Propositions

In [2] we divided permutations according to their starting digit and called these groups *classes*. We showed that permutations in $\{D_n\}$ are equidistributed, meaning that all classes are equinumerous. This is also true for deranged permutations (see [2]).

Now we note that in general $\{d_n^{*k}\}$, which forbids permutations with circular k-successions, will have less permutations than $\{d_n^k\}$. However, if we look at individual classes starting with digits $1, 2, \ldots, n$, we see that there will be classes in $\{d_n^k\}$ and $\{d_n^{*k}\}$ that have the same number of elements, hence they are the same.

Indeed, since forbidden substrings in $\{d_n^k\}$ run strictly over the main diagonal, there will be substrings j(j+k) where $(j+k) \neq i$, i = 1, 2, ..., k, hence $\{d_n^{*k}\}$ will not have circular k-successions starting with i = 1, 2, ..., k. Hence classes in $\{d_n^k\}$ and $\{d_n^{*k}\}$ starting with these digits will be the same, and classes starting with i = k + 1, ..., n will be smaller in $\{d_n^{*k}\}$ than in $\{d_n^k\}$. Hence a total of k classes will be the same in $\{d_n^{*k}\}$ and in $\{d_n^k\}$, and n - k classes will be smaller in $\{d_n^{*k}\}$ than in $\{d_n^k\}$, where n - k is the number of forbidden substrings in $\{d_n^k\}$ and $\{d_n^{*k}\}$.

For example, for n = 4, k = 3, the forbidden substring in $\{d_4^3\}$ is $\{14\}$, so there won't be permutations in $\{d_4^{*3}\}$ ending in 1 and starting with 4, since they would represent circular 3-successions, which are forbidden. Hence the class of permutations starting with 4 is smaller in $\{d_4^{*3}\}$ than in $\{d_4^3\}$ and the other classes starting with i = 1, 2, 3 are equal in both cases. In fact, the cardinalities of the four classes in $\{d_4^{*3}\}$ are $\{4, 4, 4, 4\}$, while the cardinalities of the four classes in $\{d_4^3\}$ are $\{4, 4, 4, 6\}$, the difference being accounted by the permutations 4231 and 4321 which are allowed in $\{d_4^3\}$ but not in $\{d_4^{*3}\}$.

Similarly, for n = 6, k = 2, forbidden substrings in $\{d_6^2\}$ are $\{13, 24, 35, 46\}$, so there will be forbidden circular 2-successions in $\{d_6^*\}$ starting with 3, 4, 5, 6 but not with 1 and 2. Therefore, the classes in $\{d_6^2\}$ and in $\{d_6^*\}$ starting with 1 and 2 will be the same, and the other classes will be smaller in $\{d_6^*\}$ than in $\{d_6^2\}$. In fact, the cardinalities of the six classes in $\{d_6^2\}$ are $\{53, 53, 64, 64, 64, 64\}$, for a total of 362 permutations, while the cardinality of the classes in $\{d_6^*\}$ is 53 in all six cases, for a total of 318. Hence there are 318 permutations in S_6 that have no circular 2-successions, *ie.* permutations that avoid substrings such as 13 in 213456 or in 345621.

From these examples one might suspect that permutations in $\{d_n^{*k}\}$ are equidistributed (equinumerous), a conjecture which is confirmed in the next section.

2.1 Results for permutations in $\{d_n^*\}$

Proposition 2.1. For fixed k, $1 \le k \le n-1$, if d_n^{*k} denotes the number of permutations on [n] that avoid circular k-successions, then $d_n^{*k} = nd_{n-1}^{k-1}$.

Proof. Consider a class in $\{d_n^{*k}\}$ where both $\{d_n^{*k}\}$ and $\{d_n^k\}$ have the same number of elements (there is at least one such class for $1 \le k \le n-1$), and denote the cardinality of such a class by c. Since a circular permutation is an n-to-1 mapping with respect to a linear one, we have that $d_n^{*k} = n \cdot c$. By inclusion-exclusion, it is straightforward to show that

$$c = \sum_{j=0}^{n-k} (-1)^j \binom{n-k}{j} (n-j-1)!$$
(2.1)

since the combinatorial term counts the number of ways to get substrings of length j while the term (n - j - 1)! counts the (n - j)!/(n - j) circular permutations of forbidden substrings of length j and the remaining elements.

Hence, by Equation (1.1), we see that the right-hand side of Equation (2.1) is just d_{n-1}^{k-1} and the proof follows.

For example, in $\{d_4^2\}$ we see that the forbidden substrings are $\{13, 24\}$. Recall from [3] that we define a minimal forbidden substring as two consecutive elements ik. We assign to this minimal substring a length equal to one. Recall also that a forbidden substring of length j can be considered as either a single substring of length j or as j overlapping substrings of length 1.

Hence for the term j = 0 in Equation 2.1 we see that we can choose no forbidden substrings in $\binom{2}{0}$ ways and we can permute them circularly with the remaining elements 1,2,3,4 in 4!/4 ways. For the term j = 1 we can choose 1 forbidden substring in $\binom{2}{1}$ ways and we can permute it circularly with the remaining elements in 3!/3 ways (for example, choose the substring 13 and permute the blocks 13, 2, 4 circularly in 3!/3 ways). For the term j = 2 we can choose 2 forbidden substrings in $\binom{2}{2}$ ways and we can permute them circularly with the remaining elements in 2!/2 ways (that is, permute the blocks 13, 24 circularly in 1! way). Then we have that $d_n^{*k} = n \cdot c = 4 \cdot 3$, so there are 12 permutations in S_4 that avoid substrings $\{13, 24\}$ in circular 2-successions (for example, permutations such as 1342 and 3421 are not allowed).

Note that even though permutations in $\{d_n^k\}$ are not equidistributed, we gain this property when we forbid circular k-successions in $\{d_n^k\}$, as recorded in the following corollary, which follows from Proposition 2.1, $d_n^{*k} = nd_{n-1}^{k-1}$.

Corollary 2.2. The classes in $\{d_n^{*k}\}$ are equidistributed (equinumerous) and the cardinality of each class is given by d_{n-1}^{k-1} .

Note that the property of classes being equidistributed is not shared by all types of permutations with forbidden substrings. For example, $\{d_n\}$ and $\{d_n^k\}$ don't have this property, while $\{D_n\}$ and $\{D_n^k\}$ do.

Now we define c_n^{*k} as the number of circular permutations on [n] (in cycle notation) that avoid substrings j(j+k), $1 \le j \le n-k$, *ie.* the same forbidden substrings as in $\{d_n^k\}$ and $\{d_n^{*k}\}$. We have the following corollary that counts such permutations.

Corollary 2.3. For fixed $k, 1 \le k \le n-1$, the number of circular permutations c_n^{*k} on [n] that avoid substrings $j(j+k), 1 \le j \le n-k$, is given by

$$c_{n}^{*k} = \sum_{j=0}^{n-k} (-1)^{j} \binom{n-k}{j} (n-j-1)!.$$
(2.2)

Proof. This is the number c from the proof of Proposition 2.1. Hence we may write $d_n^{*k} = nc_n^{*k}$, where $c_n^{*k} = d_{n-1}^{k-1}$.

For example, $c_{5}^{*2} = d_{4}^{1} = 11$, so there are 11 circular permutations in $\{c_{5}^{*2}\}$ that avoid substrings $\{13, 24, 35\}$. Furthermore, there are $5 \cdot 11 = 55$ permutations in $\{d_{5}^{*2}\}$ that avoid such substrings in circular 2-successions.

Similarly, $c_4^{*2} = d_3^1 = 3$, so there are 3 circular permutations that avoid substrings {13,24}. These are the permutations {(1234), (1423), (1432)}, and since n = 4, to each of these circular permutations correspond 4 permutations in $\{d_4^{*2}\}$ with no circular 2-succession (for example the ones for (1234) are {1234, 2341, 3412, 4123}).

Corollary 2.4. The number of circular permutations on [n] that avoid substrings $j(j+1), 1 \le j \le n-1$, (ie. k = 1) is given by

$$c_n^* = Der(n-1),$$
 (2.3)

where Der(n) is the nth derangement number.

Proof. Since we have that

$$Der(n) = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (n-j)!$$
(2.4)

and since Equation 2.2 holds for k = 1, the result is immediate $(c_n^{*1} = c_n^{*1})$.

For example, for n = 3, k = 1, the number of circular permutations that avoid substrings $\{12, 23\}$ is Der(2) = 1 and this circular permutation is (132), which corresponds to the 3 permutations $\{132, 213, 321\}$ in $\{d^*_3\}$.

Tables 1 - 3 in the Appendix show some values for d_n^k , d_n^{*k} , and c_n^{*k} .

2.2 Results for permutations in $\{D_n^{*k}\}$

As in the case of D_n^k , the numbers D_n^{*k} are more difficult to get. As opposed to permutations in $\{d_n^{*k}\}$, permutations in $\{D_n^{*k}\}$ avoid circular k-successions starting with all digits since a total of n substrings are forbidden (as opposed to n - k forbidden substrings in $\{d_n^{*k}\}$).

We first count the number of permutations in $\{D_n^*\}$, (*ie.* k = 1). We have the following proposition.

Proposition 2.5. The number of permutations in $\{D^*_n\}$ is given by

$$D^*{}_n = n \left[\sum_{j=0}^{n-1} (-1)^j \binom{n}{j} (n-j-1)! + (-1)^n \right].$$
 (2.5)

Proof. As in the proof of Proposition 2.1, we first obtain the number of circular permutations without forbidden substrings. It is easy to see that the number of such permutations is given by

$$C = \sum_{j=0}^{n-1} (-1)^j \binom{n}{j} (n-j-1)! + (-1)^n$$
(2.6)

since the combinatorial term counts the number of ways to get forbidden substrings while the term (n - j - 1)! counts the (n - j)!/(n - j) circular permutations of forbidden substrings and the remaining elements. The result is then obtained by inclusion-exclusion, where for the term j = n, we note that the only way to get an *n*-element substring is by the circular permutation (12...n).

For example, the forbidden substrings in $\{D^*_4\}$ are $\{12, 23, 34; 41\}$. It is easy to count, for instance, that there are $\binom{4}{2}$ forbidden substrings of length j = 2 and 2!/2 circular permutations of these substrings and the remaining elements. For example, a substring of length 2 is given by 123 and we count 2!/2 = 1! circular permutation of the blocks 123, 4. Another substring of length 2 (alternatively, two substrings of length 1) is given by 12 34 and we also count 2!/2 = 1! circular permutation of these two blocks. Furthermore, the only way to get j = 4 forbidden substrings is by the circular permutation (1234), which produces the forbidden substrings $\{12, 23, 34; 41\}$. Hence C = 1 by Equation 2.6 and by Equation 2.5 we have that $D^*_4 = 4$, which counts the permutations $\{1432, 2143, 3214, 4321\}$ in S_4 that have no circular succession, (*ie.* no circular 1-succession) and avoid substrings $\{12, 23, 34; 41\}$.

If we now move on to permutations without k-successions that avoid substrings $j(j+k) \pmod{n}$ for $1 \leq j \leq n$, we see that as in the case of $\{D_n^k\}$, the number of permutations in $\{D_n^{*k}\}$ depends on whether n is prime, and more generally, on whether n and k are relatively prime. Since the proof follows closely the one for $\{D_n^k\}$, we refer the reader to [3] for the details.

We will only record the main counting result in the proposition below.

Proposition 2.6. The number of permutations in $\{D_n^{*k}\}$ with n relative prime to k, $n \ge 3$, k < n, is the same as the number of permutations in $\{D_n^*\}$.

The key result in the proof of the proposition is that, if (n, k) = 1, there are forbidden substrings of all lengths in $\{D_n^k\}$ (see [3]). But forbidden substrings are the same in $\{D_n^k\}$ and in $\{D_n^{*k}\}$, so in this case there will also exist forbidden substrings of all lengths in $\{D_n^{*k}\}$.

The proposition implies the following corollary:

Corollary 2.7. The number of permutations in $\{D_p^*\}$, k = 1, 2, ..., p-1, is the same as the number of permutations in $\{D_p^*\}$, p prime, $p \ge 3$.

Proof.
$$(p,k) = 1, k = 1, 2, ..., p - 1.$$

Note that Proposition 2.6 is not true if n is not relative prime to k, for example in $\{D_4^{*2}\}$. In this case the forbidden substrings are $\{13, 24; 31, 42\}$, and we can't get substrings of lengths 3 or 4. On the other hand, since (4, 3) = 1, we see that forbidden substrings in $\{D_4^{*3}\}$ are $\{14; 21, 32, 43\}$, and we can get substrings of all lengths. For example, 2143 is a substring of length 3 (recall that the unit forbidden substring *ik* has length one, hence the length of forbidden substrings will be one less than the number of elements), and a substring of length 4 (alternatively, 4 substrings of length 1) is given by the circular permutation (1432). We then have that $D_4^{*} = 4$ by Equation 2.5 and hence $D_4^{*3} = 4$ by Proposition 2.6.

As in the case of $\{d_n^*{}^k_n\}$, permutations in $\{D_n^*{}^k_n\}$ are equidistributed, as established by the following corollary:

Corollary 2.8. The classes in $\{D_n^*\}$ are equidistributed (equinumerous) and the cardinality of each class is given by the term C in Equation 2.6.

Proof. Equation 2.5 in Proposition 2.5.

We now define C_n^{*k} as the number of circular permutations on [n] (in cycle notation) that avoid substrings $j(j+k) \pmod{n}$ for $1 \leq j \leq n$, *ie.* the same substrings as in $\{D_n^k\}$ and $\{D_n^{*k}\}$. We have the following corollary that counts such permutations for n and k relatively prime.

Corollary 2.9. For (n, k) = 1, the number of circular permutations C_n^{*k} on [n] that avoid substrings $j(j + k) \pmod{n}$ for $1 \le j \le n$, is given by

$$C_{n}^{*k} = \sum_{j=0}^{n-1} (-1)^{j} \binom{n}{j} (n-j-1)! + (-1)^{n}.$$
 (2.7)

Proof. This is the number C from the proof of Proposition 2.5. Since forbidden substrings in $\{C_n^{*k}\}$ are the same as those in $\{D_n^{*k}\}$ and since (n,k) = 1, there are forbidden substrings of all lengths $j = 0, 1, 2, \ldots, n-1, n$, so the sum in Equation 2.7 applies.

For example, since (4,3) = 1, we use Equation 2.7 to compute $C_4^* = 1$, so there is only one circular permutation that avoids substrings $\{14; 21, 32, 43\}$. This circular permutation is (1234), which corresponds to the four permutations $\{1234, 2341, 3412, 4123\}$ in $\{D_4^* = 1\}$ with no circular 3-succession. Since (4, 1) = 1, we also have $C_4^* = C_4^* = 1$ by Equation 2.7, and the circular permutation that avoids substrings $\{12, 23, 34; 41\}$ is (1432), which corresponds to the permutations $\{1432, 2143, 3214, 4321\}$ in $\{D_4^*\}$, as seen above.

We have that the gcd of n and k is very important to determine the number of permutations in $\{C_n^{*k}\}$. In fact, if for the same n we have that $(n, k_1) = (n, k_2)$,

then $\{C_n^{*k_1}\}$ and $\{C_n^{*k_2}\}$ will have the same number of permutations. The same is true for $\{D_n^{*k_1}\}$.

Note that usually $C_n^{*k} \neq c_n^{*k}$ except for the case n = 3 (and trivially for n = 2). Indeed, we have that $C_3^* = c_3^* = 1$ since both numbers count the permutation (132), and $C_3^{*2} = c_3^{*2} = 1$ since both numbers count the permutation (123). This in turn implies that $D_3^* = d_3^* = 3$ and $D_3^{*2} = d_3^* = 3$.

As a final remark for the case k = 1 in circular permutations, recall that $c_n^{*1} = c_n^*$, and this counts the number of circular permutations that avoid substrings j(j + 1), $1 \leq j \leq n - 1$; *ie.* substrings $12, 23, \ldots, (n - 1)n$. By Corollary 2.4, $c_n^* = Der(n - 1)$, so for example, for n = 4, we have that $c_4^* = Der(3) = 2$, and the 2 permutations that avoid such substrings are $\{(1324), (1432)\}$.

On the other hand, $C_n^{*1} = C_n^*$, and this counts the number of permutations that avoid substrings $j(j + 1) \pmod{n}$ for $1 \leq j \leq n$; *ie.* substrings $\{12, 23, \ldots, (n - 1)n, n1\}$. By Corollary 2.9, since (4, 1) = 1, we have seen that $C_4^{*1} = 1$ and the single permutation that avoids such substrings is (1432) (the permutation (1324) from $\{c_4^*\}$ is excluded since it has the succession 41, which is forbidden in $\{C_4^*\}$).

Note that while in some references such as [1] C_n^* is referred to as "the number of circular permutations without a succession", we also consider circular permutations without a succession in $\{c_n^*\}$ on the smaller subset of forbidden substrings $\{12, 23, \ldots, (n-1)n\}$. Furthermore, the same reference counts circular permutations with $i = 1, 2, \ldots, n-1$ successions (the so-called "circular succession numbers") but it does it only for forbidden substrings that are one spacing apart, j(j + k), k = 1.

For k > 1, this note generalizes the enumeration of circular permutations without k-successions (or k-shifts) for both kinds of forbidden substrings (above the diagonal of an $n \times n$ chessboard in $\{c_n^{*k}\}$ and both above and below the diagonal, *ie.* (mod n) in $\{C_n^{*k}\}$). It also enumerates the corresponding permutations in one-line notation in $\{d_n^{*k}\}$ and $\{D_n^{*k}\}$.

For further references, the sequence $\langle C^*_n \rangle$ is A000757 in OEIS [7], $\langle D^*_n \rangle$ is A167760 [8], $\langle d^*_n \rangle$ is A000240 [6], and $\langle c^*_n \rangle$ can be looked up in the derangement numbers A000166 [9] due to Corollary 2.4. Note that A000240 not only counts the number of permutations of [n] having no circular succession, d^*_n , but also the number of permutations D_n on [n] having no substring in $\{12, 23, \ldots, (n-1)n, n1\}$, as well as the number of permutations of [n] having exactly one fixed point (see [2]).

Tables 4 - 6 in the Appendix show some values for D_n^k , D_n^{*k} , and C_n^{*k} .

References

- [1] C. Charalambides, Enumerative Combinatorics, CRC Press, 2002.
- [2] E. Navarrete, Forbidden Patterns and the Alternating Derangement Sequence, arXiv:1610.01987 [math.CO], 2016.
- [3] E. Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
- [4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, sequence A277563.
- [5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, sequence A000255.
- [6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, sequence A000240.
- [7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, sequence A000757.
- [8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, sequence A167760.
- [9] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, sequence A000166.

n	Der_n	d_n	d_n^2	d_n^3	d_n^4	d_n^5
1	0					
2	1	1				
3	2	3	4			
4	9	11	14	18		
5	44	53	64	78	96	
6	265	309	362	426	504	600
7	1,854	2,119	2,428	2,790	3,216	3,720
8	$14,\!833$	$16,\!687$	$18,\!806$	$21,\!234$	$24,\!024$	$27,\!240$

APPENDIX

Table 1: Some values for d_n^k .

n	d_n^*	d_{n}^{*2}	d_{n}^{*3}	d_{n}^{*4}	d_{n}^{*5}	d_{n}^{*6}
1						
2	0					
3	3	3				
4	8	12	16			
5	45	55	70	90		
6	264	318	384	468	576	
7	1,855	2,163	2,534	2,982	3,528	4,200
8	$14,\!832$	16,952	$19,\!424$	22,320	25,728	29,760

Table 2: Some values for $d^*{}^k_n$.

n	$c^*{}_n$	c_{n}^{*2}	c_{n}^{*3}	c_{n}^{*4}	c_{n}^{*5}	c_{n}^{*6}
1						
2	0					
3	1	1				
4	2	3	4			
5	9	11	14	18		
6	44	53	64	78	96	
7	265	309	362	426	504	600
8	1,854	$2,\!119$	$2,\!428$	2,790	3,216	3,720

Table 3: Some values for c_n^{*k} .

	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
n=2	0					
n = 3	3	3				
n = 4	8	8	8			
n = 5	45	45	45	45		
n = 6	264	270	240	270	264	
n = 7	1,855	1,855	1,855	1,855	1,855	1,855

Table 4: Some values for D_n^k .

	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
n=2	0					
n = 3	3	3				
n = 4	4	8	4			
n = 5	40	40	40	40		
n = 6	216	234	192	234	216	
n = 7	1,603	$1,\!603$	$1,\!603$	$1,\!603$	$1,\!603$	$1,\!603$

Table 5: Some values for D_{n}^{*k} .

	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
n=2	0					
n = 3	1	1				
n = 4	1	2	1			
n = 5	8	8	8	8		
n = 6	36	39	32	39	36	
n = 7	229	229	229	229	229	229

Table 6: Some values for C_{n}^{*k} .