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Abstract

Using the theory of exponential Riordan arrays, we show that the Eulerian-Dowling

polynomials are moments for a paramaterized family of orthogonal polynomials. In

addition, we show that the related Dowling and the Tanny-Dowling polynomials are

also moments for appropriate families of orthogonal polynomials. We provide continued

fraction generating functions and Hankel transforms for these polynomials.

1 Introduction

The authors Benoumhani [4, 5] and Rahmani [15] have studied families of polynomials asso-
ciated with the class of geometric lattices introduced by Dowling [9]. These are the Dowling,
the Tanny-Dowling, and the Eulerian-Dowling polynomials.

In this note, we show that these polynomials can be studied within the context of expo-
nential Riordan arrays. They then present themselves as moments of families of orthogonal
polynomials [10, 6, 20]. We describe the coefficient arrays of the associated orthogonal
polynomials in terms of exponential Riordan arrays, and exploiting the link between the
tri-diagonal production matrices [7, 8, 14] of the moment matrices and continued fractions
[21], we determine the Hankel transforms [11, 12] of these polynomials. The articles [2, 3]
use similar techniques to describe the Eulerian polynomials and a special class of generalized
Eulerian polynomials as moment sequences.

2 Essentials of exponential Riordan arrays

We briefly summarize the elements of the theory of exponential Riordan arrays [1, 16, 17]
that we will require. An exponential Riordan array is defined by two power series

g(x) = 1 + g1
x

1!
+ g2

xn

n!
+ . . . =

∞
∑

n=0

gn
xn

n!
,

and

f(x) = x+ f2
x2

2!
+ f3

x3

3!
+ . . . =

∞
∑

n=0

fn
xn

n!
,
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where g0 = 1, f0 = 0 and f1 = 1. (It is possible to relax the conditions f1 = 1 and g0 = 1 to
f1 6= 0 and g0 6= 0, but we do not do this here for simplicity). The matrix M with (n, k)-th
element

n!

k!
[xn]g(x)f(x)k

is then regarded as a concrete realization of the exponential Riordan array defined by the
pair (g(x), f(x)). Here, [xn] is the operator that extracts the coefficient of xn [13]. We often
denote this matrix by [g(x), f(x)]. Associated with the pair (g(x), f(x)) of power series are
two other power series,

A(x) = f ′(f̄(x))

and

Z(x) =
g′(f̄(x))

g(f̄)(x)
,

where the power series f̄(x) is the compositional inverse or reversion of f(x). Thus we have

f(f̄(x)) = x, f̄(f(x)) = x.

The matrix PM with bivariate generating function

exy(Z(x) + yA(x))

is called the production matrix of M . (Note that A(x) and Z(x) are also referred to as r(x)
and c(x) in the literature). It is equal to

PM = M−1M̄

where M̄ is the matrix M with its top row removed. The central fact that we use in this
note is the following. If Z(x) and A(x) are of the form

Z(x) = α + βx, A(x) = 1 + γx+ δx2,

then the production matrix will be tri-diagonal, corresponding to the family of orthogonal
polynomials Pn(x) that satisfy the three-term recurrence

Pn(x) = (x− (α+ (n− 1)γ)Pn−1(x)− ((n− 1)β + (n− 1)(n− 2)δ)Pn−2(x),

with P0(x) = 1 and P1(x) = x− α. The inverse matrix M−1 is then the coefficient array of
these polynomials. Thus if m∗

n,k is the general (n, k)-th element of M−1, we have

Pn(x) =
n

∑

k=0

m∗
n,kx

k.

The first column elements of M then represent the moments of the family of orthogonal
polynomials Pn(x).
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3 Dowling polynomials and Tanny-Dowling polynomi-

als as moments

We define the Whitney numbers wm(n, k) and Wm(n, k) of the first and second kind, respec-
tively, of Dowling lattices, by

∞
∑

n=0

wm(n, k)
zn

n!
=

(1 +mz)−
1
m (ln(1 +mz))k

mkk!
,

and
∞
∑

n=0

Wm(n, k)
xn

n!
=

ez

mkk!
(emz − 1)k.

In terms of exponential Riordan arrays, this means that the Whitney numbers of the first
kind wm(n, k) of the Dowling lattices are the elements of the exponential Riordan array

[

1

(1 +mz)
1
m

,
1

m
ln(1 +mz)

]

.

Similarly, the Whitney numbers of the second kind Wm(n, k) are elements of the inverse
exponential Riordan array

[

ez,
1

m
(emz − 1)

]

=

[

1

(1 +mz)
1
m

,
1

m
ln(1 +mz)

]−1

.

Explicitly, we have

wm(n, k) =
n

∑

i=0

(−1)i−k

(

i

k

)

mn−is(n, i),

and

Wm(n, k) =

n
∑

i=k

(

n

i

)

mi−kS(i, k) =
1

mkk!

k
∑

i=0

(

k

i

)

(−1)k−i(mi+ 1)n,

where s(n, k) and S(n, k) are the Stirling numbers of the first and second kind, respectively.
We have

S(n, k) =
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn.

Now the Stirling numbers S(n, k) of the second kind are the elements of the exponential
Riordan array

[1, ex − 1] .

Hence we obtain that the Whitney numbers of the second kind are the elements of the
exponential Riordan array

[ex, x] · [1, emx − 1] =

[

ex,
1

m
(emx − 1)

]

.
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Note that when m = 0, we have W0(n, k) =
(

n
k

)

with corresponding exponential Riordan
array the binomial matrix [ex, x].

Definition 1. The Dowling polyomials Dm(n, x) are defined by

Dm(n, x) =

n
∑

k=0

Wm(n, k)x
k.

Lemma 2. We have

Dm(n, x) = [xn]ete
(emt

−1)x
m .

Proof. Regarded as an infinite vector, the sequence (Dm(n, x))n≥0 has generating function
given by

[

et,
1

m
(emt − 1)

]

.etx = ete
(emt

−1)x
m .

Thus we have
∞
∑

n=0

Dm(n, x)
zn

n!
= eze

(emz
−1)x

m .

Proposition 3. The Dowling polynomials Dm(n, x) form the moments for a family of or-

thogonal polynomials.

Proof. The exponential Riordan array
[

eze
(emz

−1)x
m ,

1

m
(emz − 1)

]

has a tri-diagonal production matrix with generating function

ezy(1 + x+ xmz + y(1 +mz)).

Thus the polynomial sequence Dm(n, x) constitutes the moment sequence for the polynomials

P
(m)
n (z) that have coefficient array

[

eze
(emz

−1)x
m ,

1

m
(emz − 1)

]−1

=

[

e−xz

(1 +mz)
1
m

,
1

m
ln(1 +mz)

]

.

The orthogonal polynomials P
(m)
n (z) then satisfy the following three term recurrence.

P (m)
n (z) = (z − (1 + x+ (n− 1)m))P

(m)
n−1(z)− (n− 1)mxP

(m)
n−2(z),

with P
(m)
0 (z) = 1 and P

(m)
1 (z) = z − (1 + x).

Definition 4. The Tanny-Dowling polynomials Fm(n, x) are defined by

Fm(n, x) =

n
∑

k=0

k!Wm(n, k)x
k.
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Proposition 5. The Tanny-Dowling polynomials Fm(n, x) are the moments for a family of

orthogonal polynomials.

Proof. The Tanny-Dowling polynomials Fm(n, x) have a generating function given by

mez

m+ x− xemz
.

The exponential Riordan array

M =

[

mez

m+ x− xemz
,

emz − 1

m+ x− xemz

]

has a tri-diagonal production matrix, with bivariate generating function

eyz(1 + x+ x(x+m)z + y(1 + (2x+m)z + x(x+m)z2)).

This implies that the polynomials Fm(n, x) are the moment sequence for the family of or-
thogonal polynomials whose coefficient array is given by

[

mez

m+ x− xemz
,

emz − 1

m+ x− xemz

]−1

=

[

(1 + xz)
1−m

m

(1 + z(m+ x))1/m
,
1

m
ln

(

1 + z(m+ x)

1 + zx

)

]

.

The corresponding family of orthogonal polynomials Q
(m)
n (z) satisfies the following three-

term recurrence.

Q(m)
n (z) = (z − (1 + (2n− 1)x+ (n− 1)m))Q

(m)
n−1(z)− (n− 1)2x(x+m)Q

(m)
n−2(z),

with Q
(m)
0 (z) = 1 and Q

(m)
1 (z) = z − (1 + x).

4 The Eulerian-Dowling polynomials as moments

The Eulerian-Dowling polynomials are defined [15] as follows.

Definition 6. The Eulerian-Dowling polynomials Am(n, x) are defined by

Am(n, x) =

n
∑

k=0

k!Wm(n, k)(x− 1)n−k.

Proposition 7. The Eulerian-Dowling polynomials Am(n, x) are the moments for a family

of orthogonal polynomials.

Proof. It is known [15] that the Eulerian-Dowling polynomials have generating function given
by

m(1− x)ez(x−1)

emz(x−1) − (mx−m+ 1)
.
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However, the exponential Riordan array

[

m(1 − x)ez(x−1)

emz(x−1) − (mx−m+ 1)
,

1− emz(x−1)

emz(x−1) − (mx−m+ 1)

]

has a production matrix with generating function

eyz(x+ (m(x− 1) + 2)z + y(1 + (m(x− 1) + 2)z + (m(x− 1) + 1)z2)),

that is tri-diagonal. Thus the Eulerian-Dowling polynomials are moments for the orthogonal
polynomials that have

[

m(1− x)ez(x−1)

emz(x−1) − (mx−m+ 1)
,

1− emz(x−1)

emz(x−1) − (mx−m+ 1)

]−1

or
[

(1 + z)
1−m

m

(1 + z(1 −m) +mxz)1/m
,
ln(1 + z(1 −m) +mxz)− ln(1 + z)

m(x− 1)

]

as coefficient array. These polynomials therefore satisfy the following three-term recurrence.

Pn(z) = (z − (x+ (n− 1)(m(x− 1) + 2))Pn−1(z)− ((n− 1)2m(x− 1) +m(n− 1))Pn−2(z),

with P0(z) = 1, P1(z) = z − x.

5 Continued fractions and Hankel transforms

The Eulerian-Dowling polynomials Am(n, x), as moments, have the following continued frac-
tion expression for their generating function

∑∞

n=0Am(n, x)z
n.

1

1− xz −
(m(x − 1) + 1)z2

1− (x(m+ 1)− (m− 2))z −
4(m(x − 1) + 1)z2

1− (x(2m + 1) − 2(m − 2))z −
9(m(x − 1) + 1)z2

1− (x(3m + 1)− 3(m− 2))z − · · ·

.

In particular, we obtain that the Hankel transform of the sequence Am(n, x) is given by

hn = (m(x− 1) + 1)(
n+1
2 )

n
∏

k=0

k!2.

In a similar fashion, we see that the Dowling polynomials Dm(n, x) have a generating
function given by

1

1− (x+ 1)z −
mxz2

1− (x+m+ 1)z −
2mxz2

1− (x+ 2m+ 1)z −
3mxz2

1− (x+ 3m+ 1)z − · · ·

.
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This implies that the Hankel transform of the Dowling polynomials is given by

hn = (mx)(
n+1
2 )

n
∏

k=0

k!.

The Tanny-Dowling polynomials Fm(n, x) have a generating function given by

1

1− (x+ 1)z −
x(x+m)z2

1− (3x+m+ 1)z −
4x(x+m)z2

1− (5x+ 2m+ 1)z −
9x(x+m)z2

1− (7x+ 3m+ 1)z − · · ·

.

Thus the Hankel transform of the sequence Fm(n, x) is given by

hn = (x(x+m))(
n+2
2 )

n
∏

k=0

k!2.

6 Bivariate geometric polynomials and the Tanny-Dowling

polynomials

The geometric polynomials ωn(x) are defined by

ωn(x) =
n

∑

k=0

k!S(n, k)xk.

We define the bivariate geometric polynomials ωn(x, y) by

ωn(x, y) =
n

∑

k=0

k!S(n, k)xkyn−k.

We then have the following result.

Proposition 8. The bivariate geometric polynomials ωn(z,m) are moments for the family

of orthogonal polynomials that have coefficient array given by the exponential Riordan array

[

1

1 + zx
,
1

m
ln

(

1 + z(m+ x)

1 + xz

)]

.

We have

[

1

1 + zx
,
1

m
ln

(

1 + z(m + x)

1 + xz

)]−1

=

[

m

m+ x− xemz
,

emz − 1

m+ x− xemz

]

.
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Thus the bivariate geometric polynomials ωn(x,m) have exponential generating function

m

m+ x− xemz
.

Using the production matrix of the moment array
[

m
m+x−xemz ,

emz−1
m+x−xemz

]

we also find that the
bivariate geometric polynomials ωn(x,m) have a generating function given by the following
continued fraction.

1

1−
xz

1−
(x+m)z

1−
2xz

1−
2(x+m)z

1−
3xz

1−
3(x+m)z

1− · · ·

,

or
1

1− xz −
x(x+m)z2

1− (3x+m)z −
4x(x+m)z2

1− (5x+ 2m)z −
9x(x+m)z2

1− (7x+ 3m)z − · · ·

.

In particular, the Hankel transform of the bivariate geometric polynomials is given by

hn = (x(x+m))(
n+1
2 )

n
∏

k=0

k!2.

Now since

[ez , z] ·

[

m

m+ x− xemz
,

emz − 1

m+ x− xemz

]

=

[

mez

m+ x− xemz
,

emz − 1

m+ x− xemz

]

,

we obtain the following result.

Corollary 9. The Tanny-Dowling polynomials Fm(n, x) are given by the binomial transform

of the bivariate geometric polynomials ωn(x,m). That is,

Fm(n, x) =

n
∑

k=0

(

n

k

)

ωk(x,m).

We can define a modified version of the bivariate geometric polynomials as follows.

ω̃n(x,m) =

n
∑

k=0

(k + 1)!S(n, k)xkmn−k.

We can then show the following.
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Proposition 10. The modified bivariate geometric polynomials ω̃n(x,m) are the moments

for the family of orthogonal polynomials which have their coefficient array given by the ex-

ponential Riordan array

[

1

(1 + zx)2
,
1

m
ln

(

1 + z(m+ x)

1 + xz

)]

.

We have

[

1

1 + zx
,
1

m
ln

(

1 + z(m+ x)

1 + xz

)]−1

=

[

(

m

m+ x− xemz

)2

,
emz − 1

m+ x− xemz

]

.

Thus the modified bivariate geometric polynomials ω̃n(x,m) have exponential generating
function

m2

(m+ x− xemz)2
.

Using the production matrix of the moment array
[

m2

(m+x−xemz)2
, emz−1
m+x−xemz

]

we also find

that the modified bivariate geometric polynomials ω̃n(x,m) have a generating function given
by the following continued fraction.

1

1−
2xz

1−
(x+m)z

1−
3xz

1−
2(x+m)z

1−
4xz

1−
3(x+m)z

1− · · ·

,

or
1

1− 2xz −
2x(x+m)z2

1− (4x+m)z −
6x(x+m)z2

1− (6x+ 2m)z −
12x(x+m)z2

1− (8x+ 3m)z − · · ·

.

In particular, these polynomials have a Hankel transform given by

hn = (x(x+m))(
n+1
2 )

n
∏

k=0

((k + 1)(k + 2))n−k = (x(x+m))(
n+1
2 )(n+ 1)!

n
∏

k=0

k!2.
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7 Example sequences

The polynomials that we have studied give rise to many known and interesting integer
sequences by taking different values of the variable x and the parameter m. The following
is a small selection of these. We refer to these example sequences by their entry number in
the On-Line Encyclopedia of Integer Sequences [18, 19].

Example 11. The Dowling polynomials.
The sequence D1(n, 1) is the sequence A000110(n+ 1) beginning

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, . . . .

These are the once shifted Bell numbers.
The sequence D2(n, 1) is the sequence A007405 of the Dowling numbers

1, 2, 6, 24, 116, 648, 4088, 28640, 219920, 1832224, 16430176, . . . .

The sequence D1(n, 3) is the sequence A035009(n+ 1) which is the Stirling transform of
the binomial transform of the natural numbers. This sequence begins

1, 3, 11, 47, 227, 1215, 7107, 44959, 305091, 2206399, 16913987, . . . .

Example 12. The Tanny-Dowling polynomials.
The sequence F0(n, 1) is the sequence A000522 that counts the total number of arrange-

ments of a set of n elements. This sequence begins

1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 9864101, . . . .

The sequence F1(n, 1) is the sequence A000629 that counts the number of necklaces of
partitions of n+ 1 labeled beads. This sequence begins

1, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, 14174522, 204495126, . . . .

The sequence F0(n, 2) is A010844, which counts the number of ways to sort a spreadsheet
with n columns. This sequence begins

1, 3, 13, 79, 633, 6331, 75973, 1063623, 17017969, 306323443, 6126468861, 134782314943, . . . .

The sequence F1(n, 2) is A004123, which counts the number of generalized weak orders
on n points. This sequence begins

1, 2, 10, 74, 730, 9002, 133210, 2299754, 45375130, 1007179562, . . . .

Example 13. The Eulerian-Dowling polynomials

The sequence A0(n, 2) is the sequence A000522 that counts the total number of arrange-
ments of a set with n elements.

The sequence A−2(n, 2) is the sequence A119880 with e.g.f. e2x sech(x). This coincides
with the values of the Swiss-Knife polynomials (A153641) at x = 2. This sequence begins

1, 2, 3, 2,−3, 2, 63, 2,−1383, 2, 50523, 2,−2702763, 2, 199360983, . . . .

The sequence A1(n, 3) is A123227, or 2
n+1 polylog(−n, 1/3). This sequence begins

1, 3, 12, 66, 480, 4368, 47712, 608016, 8855040, 145083648, . . . .
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http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000629
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A004123
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A010844
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A035009
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A119880
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A123227
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