COMBINATORIAL RESULTS FOR CERTAIN SEMIGROUPS OF ORDER-DECREASING PARTIAL ISOMETRIES OF A FINITE CHAIN

F. Al-Kharousi, R. Kehinde and A. Umar

Abstract

Let \mathcal{I}_{n} be the symmetric inverse semigroup on $X_{n}=\{1,2, \ldots, n\}$ and let $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D D} \mathcal{P}_{n}$ be its subsemigroups of order-decreasing partial isometries and of order-preserving and order-decreasing partial isometries of X_{n}, respectively. In this paper we investigate the cardinalities of some equivalences on $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D D P}{ }_{n}$ which lead naturally to obtaining the order of the semigroups $1^{1} 2^{2}$

MSC2010: 20M18, 20M20, 05A10, 05A15.

1 Introduction and Preliminaries

Let $X_{n}=\{1,2, \ldots, n\}$ and \mathcal{I}_{n} be the partial one-to-one transformation semigroup on X_{n} under composition of mappings. Then \mathcal{I}_{n} is an inverse semigroup (that is, for all $\alpha \in \mathcal{I}_{n}$ there exists a unique $\alpha^{\prime} \in \mathcal{I}_{n}$ such that $\alpha=\alpha \alpha^{\prime} \alpha$ and $\left.\alpha^{\prime}=\alpha^{\prime} \alpha \alpha^{\prime}\right)$. The importance of \mathcal{I}_{n} (more commonly known as the symmetric inverse semigroup or monoid) to inverse semigroup theory may be likened to that of the symmetric group \mathcal{S}_{n} to group theory. Every finite inverse semigroup S is embeddable in \mathcal{I}_{n}, the analogue of Cayley's theorem for finite groups. Thus, just as the study of symmetric, alternating and dihedral groups has made a significant contribution to group theory, so has the study of various subsemigroups of \mathcal{I}_{n}, see for example [3, 5, 6, 10, 14, 19, 20].

A transformation $\alpha \in \mathcal{I}_{n}$ is said to be order-preserving (order-reversing) if $(\forall x, y \in \operatorname{Dom} \alpha) x \leq y \Longrightarrow x \alpha \leq y \alpha(x \alpha \geq y \alpha)$ and, an isometry (or distancepreserving) if $(\forall x, y \in \operatorname{Dom} \alpha)|x-y|=|x \alpha-y \alpha|$. We shall denote by $\mathcal{D} \mathcal{P}_{n}$ and $\mathcal{O D} \mathcal{P}_{n}$, the semigroups of partial isometries and of order-preserving partial isometries of an n-chain, respectively. Eventhough semigroups of partial isometries on more restrictive but richer mathematical structures have been studied by Wallen [21], and Bracci and Picasso [4] the study of the corresponding semigroups on chains was only initiated recently by Al-Kharousi et al. [1, 2]. A little while later, Kehinde et al. [13] studied $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D D \mathcal { P }}{ }_{n}$, the order-decreasing analogues of $\mathcal{D} \mathcal{P}_{n}$ and $\mathcal{O D} \mathcal{P}_{n}$, respectively.

Analogous to Al-Kharousi et al. [2], this paper investigates the combinatorial properties of $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D \mathcal { D }}{ }_{n}$, thereby complementing the results in Kehinde

[^0]et al. [13] which dealt mainly with the algebraic and rank properties of these semigroups. In this section we introduce basic definitions and terminology as well as quote some elementary results from Section 1 of Al-Kharousi et al. [1] and Kehinde et al. [13] that will be needed in this paper. In Section 2 we obtain the cardinalities of two equivalences defined on $\mathcal{O D D} \mathcal{P}_{n}$ and $\mathcal{D D} \mathcal{P}_{n}$. These equivalences lead to formulae for the orders of $\mathcal{O D D} \mathcal{P}_{n}$ and $\mathcal{D D} \mathcal{P}_{n}$ as well as new triangles of numbers that were as a result of this work recently recorded in [18].

For standard concepts in semigroup and symmetric inverse semigroup theory, see for example [12, 16]. In particular $E(S)$ denotes the set of idempotents of S. Let

$$
\begin{equation*}
\mathcal{D D P}_{n}=\left\{\alpha \in \mathcal{D} \mathcal{P}_{n}:(\forall x \in \operatorname{Dom} \alpha) x \alpha \leq x\right\} . \tag{1}
\end{equation*}
$$

be the subsemigroup of \mathcal{I}_{n} consisting of all order-decreasing partial isometries of X_{n}. Also let

$$
\begin{equation*}
\mathcal{O D D P}_{n}=\left\{\alpha \in \mathcal{D D P}_{n}:(\forall x, y \in \operatorname{Dom} \alpha) x \leq y \Longrightarrow x \alpha \leq y \alpha\right\} \tag{2}
\end{equation*}
$$

be the subsemigroup of $\mathcal{D D} \mathcal{P}_{n}$ consisting of all order-preserving and order-decreasing partial isometries of X_{n}. Then we have the following result.

Lemma $1.1 \mathcal{D D P}_{n}$ and $\mathcal{O D D P}{ }_{n}$ are subsemigroups of \mathcal{I}_{n}.
Remark $1.2 \mathcal{D D P}_{n}=\mathcal{D P}{ }_{n} \cap \mathcal{I}_{n}^{-}$and $\mathcal{O D D P}_{n}=\mathcal{O D} \mathcal{P}_{n} \cap \mathcal{I}_{n}^{-}$, where \mathcal{I}_{n}^{-}is the semigroup of partial one-to-one order-decreasing transformations of X_{n} [19].

Next, let α be an arbitrary element in \mathcal{I}_{n}. The height or rank of α is $h(\alpha)=\mid$ $\operatorname{Im} \alpha \mid$, the right [left] waist of α is $w^{+}(\alpha)=\max (\operatorname{Im} \alpha)\left[w^{-}(\alpha)=\min (\operatorname{Im} \alpha)\right]$, the right [left] shoulder of α is $\varpi^{+}(\alpha)=\max (\operatorname{Dom} \alpha)[\varpi(\alpha)=\min (\operatorname{Dom} \alpha)]$, and fix of α is denoted by $f(\alpha)$, and defined by $f(\alpha)=|F(\alpha)|$, where

$$
F(\alpha)=\left\{x \in X_{n}: x \alpha=x\right\} .
$$

Next we quote some parts of [1, Lemma 1.2] that will be needed as well as state some additional observations that will help us understand more the cycle structure of order-decreasing partial isometries.

Lemma 1.3 Let $\alpha \in \mathcal{D} \mathcal{P}_{n}$. Then we have the following:
(a) The map α is either order-preserving or order-reversing. Equivalently, α is either a translation or a reflection.
(b) If $f(\alpha)=p>1$ then $f(\alpha)=h(\alpha)$. Equivalently, if $f(\alpha)>1$ then α is a partial identity.
(c) If α is order-preserving and $f(\alpha) \geq 1$ then α is a partial identity.
(d) If α is order-preserving then it is either strictly order-decreasing ($x \alpha<x$ for all x in $\operatorname{Dom} \alpha$) or strictly order-increasing ($x \alpha>x$ for all x in $\operatorname{Dom} \alpha$) or a partial identity.
(e) If $F(\alpha)=\{i\}$ (for $1 \leq i \leq n$) then for all $x \in \operatorname{Dom} \alpha$ we have that $x+x \alpha=2 i$.
(f) If α is order-decreasing and $i \in F(\alpha)(1 \leq i \leq n)$ then for all $x \in \operatorname{Dom} \alpha$ such that $x<i$ we have $x \alpha=x$.
(g) If α is order-decreasing and $F(\alpha)=\{i\}$ then $\operatorname{Dom} \alpha \subseteq\{i, i+1, \ldots, n\}$.

2 Combinatorial results

For a nice survey article concerning combinatorial problems in the symmetric inverse semigroup and some of its subsemigroups we refer the reader to Umar [20].
As in Umar [20], for natural numbers $n \geq p \geq m \geq 0$ and $n \geq i \geq 0$ we define

$$
\begin{gather*}
F\left(n ; p_{i}\right)=|\{\alpha \in S: h(\alpha)=|\operatorname{Im} \alpha|=i\}|, \tag{3}\\
F\left(n ; m_{i}\right)=|\{\alpha \in S: f(\alpha)=i\}|
\end{gather*}
$$

where S is any subsemigroup of \mathcal{I}_{n}. From [2, Proposition 2.4] we have
Theorem 2.1 Let $S=\mathcal{O D} \mathcal{P}_{n}$. Then $F(n ; p)=\frac{(2 n-p+1)}{p+1}\binom{n}{p}$, where $n \geq p \geq 1$.
We now have
Proposition 2.2 Let $S=\mathcal{O D D \mathcal { P }}{ }_{n}$. Then $F(n ; p)=\binom{n+1}{p+1}$, where $n \geq p \geq 1$.
Proof. By virtue of Lemma 1.3 d] and Theorem [2.1] we see that

$$
\begin{aligned}
F(n ; p) & =\frac{1}{2}\left[\frac{2 n-p+1}{p+1}\binom{n}{p}-\binom{n}{p}\right]+\binom{n}{p} \\
& =\frac{1}{2}\left[\frac{2(n-p)}{p+1}\binom{n}{p}\right]+\binom{n}{p} \\
& =\frac{n-p}{p+1}\binom{n}{p}+\binom{n}{p}=\binom{n}{p+1}+\binom{n}{p}=\binom{n+1}{p+1} .
\end{aligned}
$$

The proof of the next lemma is routine using Proposition 2.2

Lemma 2.3 Let $S=\mathcal{O D D P}{ }_{n}$. Then $F(n ; p)=F(n-1 ; p-1)+F(n-1 ; p)$, for all $n \geq p \geq 2$.

Theorem 2.4 $\left|\mathcal{O D D P}_{n}\right|=2^{n+1}-(n+1)$.
Proof. It is enough to observe that $\left|\mathcal{O D D P}{ }_{n}\right|=\sum_{p=0}^{n} F(n ; p)$.
Lemma 2.5 Let $S=\mathcal{O D D \mathcal { P }}{ }_{n}$. Then $F(n ; m)=\binom{n}{m}$, for all $n \geq m \geq 1$.
Proof. It follows directly from Lemma $1.3[b, c]$ and the fact that all idempotents are necessarily order-decreasing.

Proposition 2.6 Let $U_{n}=\left\{\alpha \in \mathcal{O} \mathcal{D D P}_{n}: f(\alpha)=0\right\}$. Then $\left|U_{n}\right|=$ $\left|\mathcal{O D D P}_{n-1}\right|$.

Proof. The proof is similar to that of [19, Theorem 4.3].

Remark 2.7 The triangles of numbers $F(n ; p)$ and $F(n ; m)$, have as a result of this work appeared in Sloane [18] as [A184049] and [A184050], respectively.

Now we turn our attention to counting order-reversing partial isometries. First recall from [13, Section3.2(c)] that order-decreasing and order-reversing partial isometries exist only for heights less than or equal to $n / 2$. We now have

Lemma 2.8 Let $S=\mathcal{D D} \mathcal{P}_{n}^{*}$ be the set of order-reversing partial isometries of X_{n}. Then $F\left(n ; p_{0}\right)=1$ and $F\left(n ; p_{1}\right)=\binom{n+1}{2}$, for all $n \geq 1$.

Proof. These follow from the simple observation that

$$
\left\{\alpha \in \mathcal{O D D P}_{n}: h(\alpha)=0 \text { or } 1\right\}=\left\{\alpha \in \mathcal{D D} \mathcal{P}_{n}^{*}: h(\alpha)=0 \text { or } 1\right\}
$$

and Proposition 2.2.

Lemma 2.9 Let $\alpha \in \mathcal{D D P}_{n}^{*}$. Then for all $p \geq 1$ we have $F(2 p+1, p+1)=1$ and $F(2 p, p)=3$.

Proof. (i) By Lemma $1.3[\mathrm{f}, \mathrm{g}]$ we see that for $i \in\{0,1, \ldots, p\},\binom{p+1+i}{p+1-i}$ is the unique order-reversing isometry of height $p+1$; and (ii) for $i \in\{0,1, \ldots, p-1\}$, $\binom{p+i}{p-i},\binom{p+1+i}{p-i}$ and $\binom{p+1+i}{p+1-i}$ are the only order-reversing isometries of height p.

The following technical lemma will be useful later.
Lemma 2.10 Let $\alpha \in \mathcal{D D P}_{n}^{*}$. Suppose $\varpi^{+}(\alpha)-r \in \operatorname{Dom} \alpha$ and $\varpi^{+}(\alpha)-s \notin$ Dom α for all $1 \leq s<r$. Then $\varpi(\alpha)>r$.

Proof. By order-reversing we see that $\left(\varpi^{+}(\alpha)\right) \alpha=w^{-}(\alpha)$ and $(\varpi(\alpha)) \alpha=w^{+}(\alpha)$. Thus $\varpi^{+}(\alpha)-r \geq \varpi(\alpha) \Longrightarrow \varpi^{+}(\alpha)-\varpi(\alpha) \geq r$. So by isometry we have $w^{+}(\alpha)-w^{-}(\alpha)=\varpi^{+}(\alpha)-\varpi(\alpha) \geq r \Longrightarrow w^{+}(\alpha) \geq w^{-}(\alpha)+r \Longrightarrow w^{+}(\alpha)>$ $r \Longrightarrow \varpi(\alpha)>r$, as required.

Lemma 2.11 Let $S=\mathcal{D D}_{n}^{*}$. Then $F(n ; p)=F(n-2 ; p-1)+F(n-2 ; p)$, for all $n \geq p \geq 2$.

Proof. Let $\alpha \in \mathcal{D D} \mathcal{P}_{n}^{*}$ and $h(\alpha)=p$. Define $A=\left\{\alpha \in \mathcal{D D P}_{n-2}^{*}: h(\alpha)=p\right\}$ and $B=\left\{\alpha \in \mathcal{D D P}_{n-2}^{*}: h(\alpha)=p-1\right\}$. Clearly, $A \cap B=\emptyset$. Define a map $\theta:\left\{\alpha \in \mathcal{D D P}_{n}^{*}: h(\alpha)=p\right\} \rightarrow A \cup B$ by $(\alpha) \theta=\alpha^{\prime}$ where
(i) $x \alpha^{\prime}=x \alpha(x \in \operatorname{Dom} \alpha)$, if $\alpha \in A$. It is clear that α^{\prime} is an order-decreasing isometry and $h(\alpha)=p$;
(ii) if $\{n-1, n\} \subseteq \operatorname{Dom} \alpha\}$ and $\alpha \in B$, let $\operatorname{Dom} \alpha^{\prime}=\{x-1: x \in \operatorname{Dom} \alpha$ and $x<$ $n\}$ and $(x-1) \alpha^{\prime}=x \alpha-1 \leq x-1$ and so α^{\prime} is order-decreasing and $h(\alpha)=p-1$; (iii) if $\{n-2, n-1\} \subseteq \operatorname{Dom} \alpha\}$ and $\alpha \in B$, let $\operatorname{Dom} \alpha^{\prime}=\{x-1: x \in$ Dom α and $x<n-1\}$ and $(x-1) \alpha^{\prime}=x \alpha-1 \leq x-1$ and so α^{\prime} is orderdecreasing and $h(\alpha)=p-1$;
(iv) otherwise, if $\alpha \in B$, let $\operatorname{Dom} \alpha^{\prime}=\left\{x-r: x \in \operatorname{Dom} \alpha\right.$ and $\left.x<\varpi^{+}(\alpha)\right\}$, where r is such that $\varpi^{+}(\alpha)-r \in \operatorname{Dom} \alpha$ and $\varpi^{+}(\alpha)-s \notin \operatorname{Dom} \alpha$ for all $1 \leq s<r$. Define $(x-r) \alpha^{\prime}=x \alpha-r \leq x-r$ and so α^{\prime} is order-decreasing and Lemma 2.10 ensures that $h(\alpha)=p-1$.

Moreover, in (ii) and (iii), we have $\left|(x-1) \alpha^{\prime}-(y-1) \alpha^{\prime}\right|=\mid(x \alpha-1)-$ $(y \alpha-1)|=|x \alpha-y \alpha|=|x-y|=|(x-1)-(y-1)|$, and in (iv), we have $\left|(x-r) \alpha^{\prime}-(y-r) \alpha^{\prime}\right|=|(x \alpha-r)-(y \alpha-r)|=|x \alpha-y \alpha|=|x-y|=$ $|(x-r)-(y-r)|$. Hence α^{\prime} is an isometry.

Also observe that in (ii), we have $\varpi^{+}\left(\alpha^{\prime}\right)=n-2$; in (iii) we have $\varpi^{+}\left(\alpha^{\prime}\right)=$ $n-3$; and in (iv) we have $\varpi^{+}\left(\alpha^{\prime}\right)<n-3$. These observations coupled with the definitions of α^{\prime} ensures that θ is a bijection.
To show that θ is onto it is enough to note that we can in a symmetric manner define θ^{-1} from $A \cup B \rightarrow\left\{\alpha \in \mathcal{D D} \mathcal{P}_{n}^{*}: h(\alpha)=p\right\}$. This establishes the statement of the lemma.

The next lemma which can be proved by induction, is necessary.
Lemma 2.12 Let $S=\mathcal{D D P}_{n}^{*}$. Then we have the following:

$$
\sum_{i \geq 0}\binom{n-1-2 i}{2}= \begin{cases}\frac{(n+1)(n-1)(2 n-3)}{24}, & \text { if } n \text { is odd; } \\ \frac{n(n-2)(2 n+1)}{24}, & \text { if } n \text { is even. } .\end{cases}
$$

Lemma 2.13 Let $S=\mathcal{D D P}_{n}^{*}$. Then we have the following:

$$
F\left(n ; p_{2}\right)= \begin{cases}\frac{(n+1)(n-1)(2 n-3)}{n(n-2)(2 n+1)}, & \text { if } n \text { is odd } ; \\ \frac{n(24}{24}, & \text { if } n \text { is even } .\end{cases}
$$

Proof. By applying Lemmas 2.8 and 2.11 sucessively we get

$$
\begin{aligned}
F\left(n ; p_{2}\right) & =F\left(n-2 ; p_{1}\right)+F\left(n-2 ; p_{2}\right)=F\left(n-2 ; p_{2}\right)+\binom{n-1}{2} \\
& =F\left(n-4 ; p_{2}\right)+\binom{n-3}{2}+\binom{n-1}{2} \\
& =F\left(n-6 ; p_{2}\right)+\binom{n-5}{2}+\binom{n-3}{2}+\binom{n-1}{2} .
\end{aligned}
$$

By iteration the result follows from Lemma 2.12 and the facts that $F\left(2 ; p_{2}\right)=0$ and $F\left(3 ; p_{2}\right)=1=\binom{2}{2}$.

Proposition 2.14 Let $S=\mathcal{D D}^{*}{ }_{n}$. Then for all $\lfloor(n+1) / 2\rfloor \geq p \geq 1$, we have $F(n ; p)= \begin{cases}\frac{(n+1)(n-1)(n-3) \cdots(n-2 p+3)(2 n-3 p+3)}{2^{p}(p+1)!}, & \text { if } n \text { is odd; } \\ \frac{n(n-2)(n-4) \cdots(n-2 p+2)(2 n-p+3)}{2^{p}(p+1)!}, & \text { if } n \text { is even. } .\end{cases}$

Proof. (By Induction).
Basis Step: $F\left(n ; p_{1}\right)=\binom{n+1}{1+1}=\binom{n+1}{2}$ is true by Lemma 2.8 and the observation made in its proof, while the formula for $F\left(n ; p_{2}\right)$ is true by Lemma 2.13 .

Inductive Step: Suppose $F(m ; p)$ is true for all $\lfloor(n+1) / 2\rfloor>m \geq p \geq 1$.
Case 1. If m is odd, consider (using the induction hypothesis)

$$
\begin{aligned}
F(m+2 ; p) & =F(m ; p)+F(m ; p-1) \\
& =\frac{(m+1)(m-1)(m-3) \cdots(m-2 p+3)(2 m-3 p+3)}{2^{p}(p+1)!} \\
& +\frac{(m+1)(m-1)(m-3) \cdots(m-2 p+5)(2 m-3 p+6)}{2^{p-1} p!} \\
& =\frac{(m+3)(m+1)(m-1) \cdots(m-2 p+5)(2 m-3 p+7)}{2^{p}(p+1)!}
\end{aligned}
$$

which is the formula for $F(m+2 ; p)$ when m is odd.
Case 2. If m is even, consider (using the induction hypothesis)

$$
\begin{aligned}
F(m+2 ; p) & =F(m ; p)+F(m ; p-1) \\
& =\frac{m(m-2)(m-4) \cdots(m-2 p+2)(2 m-p+3)}{2^{p}(p+1)!} \\
& +\frac{m(m-2)(m-4) \cdots(m-2 p+4)(2 m-p+4)}{2^{p-1} p!} \\
& =\frac{(m+2) m(m-2) \cdots(m-2 p+4)(2 m-p+7)}{2^{p}(p+1)!}
\end{aligned}
$$

which is the formula for $F(m+2 ; p)$ when m is even.

Proposition 2.15 Let $S=\mathcal{D D P}_{n}^{*}$ and let $b_{n}=\sum_{p \geq 0} F(n ; p)$. Then for $n \geq 0$, we have

1. $b_{2 n+1}=5 \cdot 2^{n+1}-4 n-8$;
2. $b_{2 n}=7 \cdot 2^{n}-4 n-6$.

Proof. Apply induction and use the fact that $\left|\mathcal{D D} \mathcal{P}_{n}^{*}\right|=\sum_{p=0}^{n} F(n ; p)$.

Proposition 2.16 Let $S=\mathcal{D D P}_{n}$. Then
(1) if n is odd and $(n+1) / 2 \geq p \geq 2$
$F(n ; p)=\frac{(n+1)(n-1)(n-3) \cdots(n-2 p+3)(2 n-3 p+3)}{2^{p}(p+1)!}+\binom{n+1}{p+1}$;
(2) if n is even and $n / 2 \geq p \geq 2$
$F(n ; p)=\frac{n(n-2)(n-4) \cdots(n-2 p+2)(2 n-p+3)}{2^{p}(p+1)!}+\binom{n+1}{p+1} ;$
(3) if $\lfloor(n+1) / 2\rfloor<p, F(n ; p)=\binom{n+1}{p+1}$.

Proof. It follows from Propositions $2.2 \& 2.14$ and Lemmas 1.3 c] \& [2.8.
Combining Theorem [2.4, Lemmas 1.3 a, c] \& [2.9, Proposition 2.15 and the observation made in the proof of Lemma 2.8 we get the order of $\mathcal{D D} \mathcal{P}_{n}$ which we record as a theorem below.

Theorem 2.17 Let $\mathcal{D D} \mathcal{P}_{n}$. Then for all $n \geq 0$ we have
(1) $\left|\mathcal{D D} \mathcal{P}_{2 n+1}\right|=2^{2 n+2}+5 \cdot 2^{n+1}-\left(2 n^{2}+9 n+12\right)$;
(2) $\left|\mathcal{D D P}_{2 n}\right|=2^{2 n+1}+7 \cdot 2^{n}-\left(2 n^{2}+7 n+8\right)$.

Lemma 2.18 Let $S=\mathcal{D D P}_{n}$. Then $F(n ; m)=\binom{n}{m}$, for all $n \geq m \geq 2$.

Proof. It follows directly from [13, Lemma 3.18] and the fact that all idempotents are necessarily order-decreasing.

Proposition 2.19 Let $S=\mathcal{D D} \mathcal{P}_{n}$. Then $F\left(2 n ; m_{1}\right)=2^{n+1}-2$ and $F(2 n-$ $\left.1 ; m_{1}\right)=3 \cdot 2^{n-1}-2$, for all $n \geq 1$.

Proof. Let $F(\alpha)=\{i\}$. Then by Lemma [1.3]e], for any $x \in \operatorname{Dom} \alpha$ we have $x+x \alpha=2 i$. Thus, by Lemma 1.3 g$]$, there $2 i-2$ possible elements for $\operatorname{Dom} \alpha$: $(x, x \alpha) \in\{(i, i),(i+1, i-1),(i+2, i-2), \ldots,(2 i-1,1)\}$. However, (excluding $(i, i))$ we see that there are $\sum_{j=0}\binom{i-1}{j}=2^{i-1}$, possible partial isometries with $F(\alpha)=\{i\}$, where $2 i-1 \leq n \Longleftrightarrow i \leq(n+1) / 2$. Moreover, by symmetry we see that $F(\alpha)=\{i\}$ and $F(\alpha)=\{n-i+1\}$ give rise to equal number of decreasing partial isometries. Note that if n is odd (even) the equation $i=n-i+1$ has one (no) solution. Hence, if $n=2 a-1$ we have

$$
2 \sum_{i=1}^{a-1} 2^{i-1}+2^{a-1}=2\left(2^{a-1}-1\right)+2^{a-1}=3.2^{a-1}-2
$$

decreasing partial isometries with exactly one fixed point; if $n=2 a$ we have

$$
2 \sum_{i=1}^{a} 2^{i-1}=2\left(2^{a}-1\right)=2^{a+1}-2
$$

decreasing partial isometries with exactly one fixed point.

Theorem 2.20 Let $\mathcal{D D} \mathcal{P}_{n}$. Then

$$
a_{n}=\left|\mathcal{D} \mathcal{D} \mathcal{P}_{n}\right|=3 a_{n-1}-2 a_{n-2}-2^{\left\lfloor\frac{n}{2}\right\rfloor}+n+1,
$$

with $a_{0}=1$ and $a_{-1}=0$.
Proof. It follows from Propositions 2.6 \& 2.19, Lemma 2.18 and the fact that $\left|\mathcal{D D P}_{n}\right|=\sum_{m=0}^{n} F(n ; m)$.

Remark 2.21 The triangle of numbers $F(n ; m)$ and sequence $\left|\mathcal{D D} \mathcal{P}_{n}\right|$ have as a result of this work appeared in Sloane [18] as [A184051] and [A184052], respectively. However, the triangles of numbers $F(n ; p)$ for $\mathcal{D D P}{ }_{n}$ and $\mathcal{D D P}^{*}{ }_{n}$ and the sequence $\left|\mathcal{D D P}_{n}^{*}\right|$ are as at the time of submitting this paper not in Sloane [18]. For some computed values of $F(n ; p)$, see Tables 3.1 and 3.2.

$n \backslash p$	0	1	2	3	4	5	6	7	$\sum F(n ; p)=\left\|\mathcal{D D P}_{n}^{*}\right\|$
0	1								1
1	1	1							2
2	1	3	0						4
3	1	6	1	0					8
4	1	10	3	0	0				14
5	1	15	7	1	0	0			24
6	1	21	13	3	0	0	0		38
7	1	28	22	8	1	0	0	0	60

Table 3.1

$n \backslash p$	0	1	2	3	4	5	6	7	$\sum F(n ; p)=\left\|\mathcal{D D P}_{n}\right\|$
0	1								1
1	1	1							2
2	1	3	1						5
3	1	6	5	1					13
4	1	10	13	5	1				30
5	1	15	27	16	6	1			66
6	1	21	48	38	21	7	1		137
7	1	28	78	78	57	28	8	1	279

Table 3.2

3 Number of \mathcal{D}^{*}-classes

For the definitions of the Green's relations $(\mathcal{L}, \mathcal{R}$ and $\mathcal{D})$ and their starred analogues $\left(\mathcal{L}^{*}, \mathcal{R}^{*}\right.$ and $\left.\mathcal{D}^{*}\right)$, we refer the reader to Howie [12] and Fountain [8], (respectively) or Ganyushkin and Mazorchuk (9).

First, notice that from [1, Lemma 2.1] we deduce that number of \mathcal{L}-classes in $K(n, p)=\left\{\alpha \in \mathcal{D} \mathcal{P}_{n}: h(\alpha)=p\right\}$ (as well as the number of \mathcal{R}-classes there) is $\binom{n}{p}$. To describe the \mathcal{D}-classes in $\mathcal{D} \mathcal{P}_{n}$ and $\mathcal{O D} \mathcal{P}_{n}$, first we recall (from [1]) that the gap and reverse gap of the image set of α (with $h(\alpha)=p$) are ordered ($p-1$)-tuples defined as follows:

$$
g(\operatorname{Im} \alpha)=\left(\left|a_{2} \alpha-a_{1} \alpha\right|,\left|a_{3} \alpha-a_{2} \alpha\right|, \ldots,\left|a_{p} \alpha-a_{p-1} \alpha\right|\right)
$$

and

$$
\left.g^{R}(\operatorname{Im} \alpha)=\left(\left|a_{p} \alpha-a_{p-1} \alpha\right|\right), \ldots,\left|a_{3} \alpha-a_{2} \alpha\right|,\left|a_{2} \alpha-a_{1} \alpha\right|\right)
$$

where $\alpha=\left(\begin{array}{cccc}a_{1} & a_{2} & \cdots & a_{p} \\ a_{1} \alpha & a_{2} \alpha & \cdots & a_{p} \alpha\end{array}\right)$ with $1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq n$. Further, let $d_{i}=\left|a_{i+1} \alpha-a_{i} \alpha\right|$ for $i=1,2, \ldots, p-1$. Then

$$
g(\operatorname{Im} \alpha)=\left(d_{1}, d_{2}, \ldots, d_{p-1}\right) \text { and } g^{R}(\operatorname{Im} \alpha)=\left(d_{p-1}, d_{p-2}, \ldots, d_{1}\right)
$$

For example, if

$$
\alpha=\left(\begin{array}{ccccc}
1 & 2 & 4 & 7 & 8 \\
3 & 4 & 6 & 9 & 10
\end{array}\right), \beta=\left(\begin{array}{cccc}
2 & 4 & 7 & 8 \\
10 & 8 & 5 & 4
\end{array}\right) \in \mathcal{D} \mathcal{P}_{10}
$$

then $g(\operatorname{Im} \alpha)=(1,2,3,1), g(\operatorname{Im} \beta)=(2,3,1), g^{R}(\operatorname{Im} \alpha)=(1,3,2,1)$ and $g^{R}(\operatorname{Im} \beta)=$ $(1,3,2)$. Next, let $d(n, p)$ be the number of distinct ordered p-tuples: $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ with $\sum_{i=1}^{p} d_{i}=n$. This is clearly the number of compositions of n into p parts. Thus, we have

Lemma 3.1 17, p.151] $d(n, p)=\binom{n-1}{p-1}$.
We shall henceforth use the following well-known binomial identity when needed:

$$
\sum_{m=p}^{n}\binom{m}{p}=\binom{n+1}{p+1}
$$

We take this opportunity to state and prove a result which was omitted in [2].
Theorem 3.2 Let $S=\mathcal{O} \mathcal{D} \mathcal{P}_{n}$. Then
(1) the number of \mathcal{D}-classes in $K(n, p)(p \geq 1)$ is $\binom{n-1}{p-1}$;
(2) the number of \mathcal{D}-classes in S is $1+2^{n-1}$.

Proof.
(1) It follows from [1, Theorem 2.5]: $(\alpha, \beta) \in \mathcal{D}$ if and only if $g(\operatorname{Im} \alpha)=g(\operatorname{Im} \beta)$; [1, Lemma 3.3]: $p-1 \leq \sum_{i=1}^{p-1} d_{i} \leq n-1$; Lemma3.1; and so the number of \mathcal{D}-classes is $\sum_{i=p-1}^{n-1} d(i, p-1)=\sum_{i=p-1}^{n-1}\binom{i-1}{p-2}=\binom{n-1}{p-1}$.
(2) The number of \mathcal{D}-classes in S is $1+\sum_{p=1}^{n}\binom{n-1}{p-1}=1+2^{n-1}$.

The following results from [13] will be needed:
Lemma 3.3 [13, Lemma 2.3] Let $\alpha, \beta \in \mathcal{D D P}_{n}$ or $\mathcal{O D D P}{ }_{n}$. Then
(1) $\alpha \leq_{\mathcal{R}^{*}} \beta$ if and only if $\operatorname{Dom} \alpha \subseteq \operatorname{Dom} \beta$;
(2) $\alpha \leq_{\mathcal{L}^{*}} \beta$ if and only if $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$;
(3) $\alpha \leq_{\mathcal{H}^{*}} \beta \quad$ if and only if $\operatorname{Dom} \alpha \subseteq \operatorname{Dom} \beta$ and $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$.

From [13, (3)], for $\alpha, \beta \in \mathcal{D D} \mathcal{P}_{n}$, we have $(\alpha, \beta) \in \mathcal{D}^{*}$ if and only if

$$
g(\operatorname{Im} \alpha)=\left\{\begin{array}{l}
g(\operatorname{Im} \beta) ; \text { or } \tag{5}\\
g^{R}(\operatorname{Im} \beta), \text { if } p \leq a_{p}-a_{1} \leq(n-1) / 2
\end{array}\right.
$$

Similarly, from [13, (4)], for $\alpha, \beta \in \mathcal{O D \mathcal { D }}{ }_{n}$, we have

$$
\begin{equation*}
(\alpha, \beta) \in \mathcal{D}^{*} \text { if and only if } g(\operatorname{Im} \alpha)=g(\operatorname{Im} \beta) \tag{6}
\end{equation*}
$$

Now a corollary of Theorem 3.2 follows:
Corollary 3.4 Let $S=\mathcal{O D D P}{ }_{n}$. Then
(1) the number of \mathcal{D}^{*}-classes in $K(n, p)(p \geq 1)$ is $\binom{n-1}{p-1}$;
(2) the number of \mathcal{D}^{*}-classes in S is $1+2^{n-1}$.

Observe that for all $\alpha \in \mathcal{D} \mathcal{P}_{n}$ with $h(\alpha)=p$,

$$
\begin{equation*}
a_{p}-a_{1}=\sum_{i=1}^{p-1}\left(a_{i+1}-a_{i}\right)=\sum_{i=1}^{p-1} d_{i}, \tag{7}
\end{equation*}
$$

where $g(\operatorname{Dom} \alpha)=\left(d_{1}, d_{2}, \ldots, d_{p-1}\right)$. Moreover, an ordered p-tuple: $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ is said to be symmetric if

$$
\left(d_{1}, d_{2}, \ldots, d_{p}\right)=\left(d_{1}, d_{2}, \ldots, d_{p}\right)^{R}=\left(d_{p}, d_{p-1}, \ldots, d_{1}\right)
$$

Now, let $d_{s}(n, p)$ be the number of distinct symmetric ordered p-tuples: $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ with $\sum_{i=1}^{p} d_{i}=n$. Then we have

Lemma 3.5 [2, Lemma 3.5] $d_{s}(n ; p)= \begin{cases}0, & \text { if } n \text { is odd and } p \text { is even; } \\ \binom{\left\lfloor\frac{n-1}{2}\right\rfloor}{\left\lfloor\frac{p-1}{2}\right\rfloor}, & \text { otherwise. }\end{cases}$
Now by virtue of (5) and [1, Theorem 2.5], it is not difficult to see that the number of \mathcal{D}^{*}-classes in $\mathcal{D D} \mathcal{P}_{n}$ is the same as the number of \mathcal{D}-classes in $\mathcal{O D} \mathcal{P}_{n}$ less those pairs that are merged into single \mathcal{D}^{*}-classes in $\mathcal{D D} \mathcal{P}_{n}$. Thus, we have

Lemma 3.6 Let $g(m, p)$ be the number of \mathcal{D}-classes in $\mathcal{O D P}_{n}$ (consisting of maps of height p and $\sum d_{i}=m$) that are merged into single \mathcal{D}^{*}-classes in $\mathcal{D D} \mathcal{P}_{n}$. Then $m \leq(n-1) / 2$, and
$g(m, p)= \begin{cases}\frac{1}{2}\binom{m-1}{p-2}, & \text { if } n \text { is odd and } p \text { is odd; } \\ \frac{1}{2}\left[\binom{m-1}{p-2}-\binom{\left\lfloor\frac{m-1}{2-1}\right\rfloor}{\left\lfloor\frac{p-2}{2}\right\rfloor}\right], & \text { otherwise } .\end{cases}$
Proof. The result follows from (5), Lemmas $3.1 \& 3.5$ and the observation that

$$
g(n, p)=\frac{d(n-1, p-1)-d_{s}(n-1, p-1)}{2}
$$

Now have the main result of this section.
Theorem 3.7 Let $B(n, p)$ be the number of \mathcal{D}-classes in $\mathcal{O D P}_{n}$ (consisting of maps of height p) that are merged into single \mathcal{D}^{*}-classes in $\mathcal{D D} \mathcal{P}_{n}$. Then for $n \geq p \geq 1$, we have

Proof. The result follows from (5), (7) and Lemma 3.6. To see this, let $n \equiv$ $0(\bmod 4)$ and p be even. Then $n=4 k$ for some integer k, and

$$
\begin{aligned}
B(n, p) & =\sum_{m=p}^{\left\lfloor\frac{n-1}{2}\right\rfloor} g(m, p)=\sum_{m=p}^{2 k-1} g(m, p) \\
& =g(p, p)+g(p+2, p)+\cdots+g(2 k-2, p) \\
& +g(p+1, p)+g(p+3, p)+\cdots+g(2 k-1, p) \\
& =\frac{1}{2}\left[\binom{p-1}{p-2}-\binom{\frac{p-2}{2}}{\frac{p-2}{2}}+\binom{p+1}{p-2}-\binom{\frac{p}{2}}{\frac{p-2}{2}}+\cdots+\binom{2 k-3}{p-2}-\binom{k-2}{\frac{p-2}{2}}\right] \\
& +\frac{1}{2}\left[\binom{p}{p-2}-\binom{\frac{p}{2}}{\frac{p-2}{2}}+\binom{p+2}{p-2}-\binom{\frac{p+2}{2}}{\frac{p-2}{2}}+\cdots+\binom{2 k-2}{p-2}-\binom{k-1}{\frac{p-2}{2}}\right] \\
& =\frac{1}{2}\left[\binom{2 k-1}{p-1}-2\binom{k-1}{\frac{p}{2}}-\binom{k-1}{\frac{p-2}{2}}\right] \\
& =\frac{1}{2}\left[\binom{\frac{n-2}{2}}{p-1}-2\binom{\frac{n-4}{4}}{\frac{p}{2}}-\binom{\frac{n-4}{4}}{\frac{p-2}{2}}\right] .
\end{aligned}
$$

All the other cases are handled similarly.
Now have the main result of this section.
Corollary 3.8 The number of \mathcal{D}^{*}-classes in $\mathcal{D D} \mathcal{P}_{n}$ (consisting of maps of height $p \geq 1)$ is $\binom{n-1}{p-1}-B(n, p)$.

Proof. The result follows from Theorem 3.7]and the remarks preceding Lemma3.6,

Corollary 3.9 The number of \mathcal{D}^{*}-classes in $\mathcal{D D P}_{n}$ denoted by d_{n} is $d_{n}= \begin{cases}2^{n-1}-2^{\left\lfloor\frac{n-3}{2}\right\rfloor}+\cdot 2^{\left\lfloor\frac{n+1}{4}\right\rfloor}, & \text { if } n \equiv-1,0(\bmod 4) ; \\ 2^{n-1}-2^{\left\lfloor\frac{n-3}{2}\right\rfloor}+3 \cdot 2^{\left\lfloor\frac{n-3}{4}\right\rfloor}, & \text { if } n \equiv 1,2(\bmod 4) .\end{cases}$

Proof. The result follows from Theorem 3.7 and Corollary 3.8. To see this, let $n \equiv 1,2(\bmod 4)$. Then $n=4 k+1,4 k+2$ for some integer k, and

$$
\begin{aligned}
d_{n} & =1+\sum_{p=1}^{n}\binom{n-1}{p-1}-\sum_{p=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} B(n, p)=1+2^{n-1}-\sum_{p=1}^{2 k} B(n, p) \\
& =1+2^{n-1}-[B(n, 1)+B(n, 3)+\cdots+B(n, 2 k-1)] \\
& -[B(n, 2)+B(n, 4)+\cdots+B(n, 2 k)] \\
& =1+2^{n-1}-\frac{1}{2}\left[\binom{2 k}{0}-\binom{k}{0}+\binom{2 k}{2}-\binom{k}{1}+\cdots+\binom{2 k}{2 k-2}-\binom{k}{k-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2}\left[\binom{2 k}{1}-2\binom{k}{1}+\binom{2 k}{3}-2\binom{k}{2}+\cdots+\binom{2 k}{2 k-1}-2\binom{k}{k}\right] \\
& =1+2^{n-1}-\frac{1}{2}\left[\left(2^{2 k}-1\right)-\left(3 \cdot 2^{k}+1\right)+2\right] \\
& =2^{n-1}-2^{\left\lfloor\frac{n-3}{2}\right\rfloor}+3 \cdot 2^{\left\lfloor\frac{n-3}{4}\right\rfloor} .
\end{aligned}
$$

The case $n \equiv-1,0(\bmod 4)$ is handled similarly.
Acknowledgements. The second named author would like to thank Bowen University, Iwo and Sultan Qaboos University for their financial support and hospitality, respectively.

References

[1] Al-Kharousi, F. Kehinde, R. and Umar, A. On the semigroup of partial isometries of a finite chain. Comm. Algebra 44(2) (2016), 639-647.
[2] Al-Kharousi, F. Kehinde, R. and Umar, A. Combinatorial results for certain semigroups of partial isometries of a finite chain. Australas. J. Combin. 58(3) (2014), 365-375.
[3] Borwein, D., Rankin, S. and Renner, L. Enumeration of injective partial transformations. Discrete Math. 73 (1989), 291-296.
[4] Bracci, L., and Picasso, L. E. Representations of semigroups of partial isometries. Bull. Lond. Math. Soc. 39 (2007), 792-802.
[5] Fernandes, V. H. The monoid of all injective orientation-preserving partial transformations on a finite chain. Comm. Algebra 28 (2000), 3401-3426.
[6] Fernandes, V. H., Gomes, G. M. S. and Jesus, M. M. The cardinal and idempotent number of various monoids of transformations on a finite chain. Bull. Malays. Math. Sci. Soc. 34 (2011), 79-85.
[7] Fountain, J. B. Adequate semigroups. Proc. Edinburgh Math. Soc. 22 (1979), 113-125.
[8] Fountain, J. B. Abundant semigroups. Proc. London Math. Soc. (3) 44 (1982), 103-129.
[9] Ganyushkin, O. and Mazorchuk, V. Classical Finite Transformation Semigroups. An Introduction, Springer-Verlag, London, 2009.
[10] Garba, G. U. Nilpotents in semigroups of partial one-to-one order-preserving mappings. Semigroup Forum 48 (1994), 37-49.
[11] Gould, V. Graph expansions of right cancellative monoids. Internat. J. Algebra Comput. 6 (1996), 713-733.
[12] Howie, J. M. Fundamentals of semigroup theory. London Mathematical Society Monographs. New series, 12. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
[13] Kehinde, R., Makanjuola, S. O. and Umar, A. On the semigroup of orderdecreasing partial isometries of a finite chain. (Submitted).
[14] A. Laradji and A. Umar, Combinatorial results for the symmetric inverse semigroup. Semigroup Forum 75 (2007), 221-236.
[15] Lawson, M. V. Inverse semigroups. The theory of partial symmetries, World Scientific, Publishing Co., Inc., River Edge, NJ, 1998.
[16] Lipscomb, S. Symmetric Inverse Semigroups, Mathematical Surveys and Monographs, 46. American mathematical Society, Providence, R. I., 1996.
[17] J. Riordan, Combinatorial Identities, John Wiley and Sons, New York, 1968.
[18] Sloane, N. J. A. (Ed.), The On-Line Encyclopedia of Integer Sequences, 2011. Available at http://oeis.org/.
[19] Umar, A. On the semigroups of partial one-to-one order-decreasing finite transformations, Proc. Roy. Soc. Edinburgh, Sect. A, 123 (1993), 355-363.
[20] Umar, A. Some combinatorial problems in the theory of symmetric inverse semigroups, Algebra Discrete Math. 9 (2010), 115-126.
[21] Wallen, Lawrence J. Semigroups of partial isometries. Bull. Amer. Math. Soc. 75 (1969), 763-764.

F. Al-Kharousi
Department of Mathematics and Statistics
Sultan Qaboos University
Al-Khod, PC 123 - OMAN
E-mail:fatma9@squ.edu.om
R. Kehinde
Department of Mathematics and Statistics
Bowen University
P. M. B. 284, Iwo, Osun State
Nigeria.
E-mail:kennyrot2000@yahoo.com

A. Umar

Department of Mathematics
Petroleum Institute, P. O. Box 2533
Abu Dhabi, U. A. E.
E-mail:aumar@pi.ac.ae

[^0]: ${ }^{1}$ Key Words: partial one-one transformation, partial isometries, height, right (left) waist, right (left) shoulder and fix of a transformation, idempotents and nilpotents.
 ${ }^{2}$ Financial support from Sultan Qaboos University Internal Grant: IG/SCI/DOMS/13/06 is gratefully acknowledged.

