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COMBINATORIAL RESULTS FOR CERTAIN SEMIGROUPS OF
ORDER-DECREASING PARTIAL ISOMETRIES OF A FINITE

CHAIN

F. Al-Kharousi, R. Kehinde and A. Umar

Abstract

Let In be the symmetric inverse semigroup on Xn = {1, 2, . . . , n} and
let DDPn and ODDPn be its subsemigroups of order-decreasing partial
isometries and of order-preserving and order-decreasing partial isometries
of Xn, respectively. In this paper we investigate the cardinalities of some
equivalences on DDPn and ODDPn which lead naturally to obtaining the
order of the semigroups.1 2

MSC2010 : 20M18, 20M20, 05A10, 05A15.

1 Introduction and Preliminaries

Let Xn = {1, 2, . . . , n} and In be the partial one-to-one transformation semigroup
on Xn under composition of mappings. Then In is an inverse semigroup (that is,
for all α ∈ In there exists a unique α′ ∈ In such that α = αα′α and α′ = α′αα′).
The importance of In (more commonly known as the symmetric inverse semigroup
or monoid) to inverse semigroup theory may be likened to that of the symmetric
group Sn to group theory. Every finite inverse semigroup S is embeddable in In,
the analogue of Cayley’s theorem for finite groups. Thus, just as the study of
symmetric, alternating and dihedral groups has made a significant contribution
to group theory, so has the study of various subsemigroups of In, see for example
[3, 5, 6, 10, 14, 19, 20].

A transformation α ∈ In is said to be order-preserving (order-reversing) if
(∀x, y ∈ Domα) x ≤ y =⇒ xα ≤ yα (xα ≥ yα) and, an isometry (or distance-
preserving) if (∀x, y ∈ Domα) | x − y |=| xα − yα |. We shall denote by DPn

and ODPn, the semigroups of partial isometries and of order-preserving partial
isometries of an n−chain, respectively. Eventhough semigroups of partial isome-
tries on more restrictive but richer mathematical structures have been studied
by Wallen [21], and Bracci and Picasso [4] the study of the corresponding semi-
groups on chains was only initiated recently by Al-Kharousi et al. [1, 2]. A little
while later, Kehinde et al. [13] studied DDPn and ODDPn, the order-decreasing
analogues of DPn and ODPn, respectively.

Analogous to Al-Kharousi et al. [2], this paper investigates the combinatorial
properties of DDPn and ODDPn, thereby complementing the results in Kehinde

1Key Words : partial one-one transformation, partial isometries, height, right (left) waist,
right (left) shoulder and fix of a transformation, idempotents and nilpotents.
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et al. [13] which dealt mainly with the algebraic and rank properties of these
semigroups. In this section we introduce basic definitions and terminology as
well as quote some elementary results from Section 1 of Al-Kharousi et al. [1]
and Kehinde et al. [13] that will be needed in this paper. In Section 2 we
obtain the cardinalities of two equivalences defined onODDPn andDDPn. These
equivalences lead to formulae for the orders of ODDPn and DDPn as well as new
triangles of numbers that were as a result of this work recently recorded in [18].

For standard concepts in semigroup and symmetric inverse semigroup theory,
see for example [12, 16]. In particular E(S) denotes the set of idempotents of S.
Let

DDPn = {α ∈ DPn : (∀ x ∈ Domα) xα ≤ x}.(1)

be the subsemigroup of In consisting of all order-decreasing partial isometries of
Xn. Also let

ODDPn = {α ∈ DDPn : (∀ x, y ∈ Domα) x ≤ y =⇒ xα ≤ yα}(2)

be the subsemigroup ofDDPn consisting of all order-preserving and order-decreasing
partial isometries of Xn. Then we have the following result.

Lemma 1.1 DDPn and ODDPn are subsemigroups of In.

Remark 1.2 DDPn = DPn ∩ I−
n and ODDPn = ODPn ∩ I−

n , where I−
n is the

semigroup of partial one-to-one order-decreasing transformations of Xn [19].

Next, let α be an arbitrary element in In. The height or rank of α is h(α) =|
Imα |, the right [left] waist of α is w+(α) = max(Imα) [w−(α) = min(Imα)], the
right [left] shoulder of α is ̟+(α) = max(Domα) [̟(α) = min(Domα)], and fix
of α is denoted by f(α), and defined by f(α) = |F (α)|, where

F (α) = {x ∈ Xn : xα = x}.

Next we quote some parts of [1, Lemma 1.2] that will be needed as well as
state some additional observations that will help us understand more the cycle
structure of order-decreasing partial isometries.

Lemma 1.3 Let α ∈ DPn. Then we have the following:

(a) The map α is either order-preserving or order-reversing. Equivalently, α is
either a translation or a reflection.

(b) If f(α) = p > 1 then f(α) = h(α). Equivalently, if f(α) > 1 then α is a
partial identity.

(c) If α is order-preserving and f(α) ≥ 1 then α is a partial identity.
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(d) If α is order-preserving then it is either strictly order-decreasing
(xα < x for all x in Domα) or strictly order-increasing (xα > x for all x
in Domα) or a partial identity.

(e) If F (α) = {i} (for 1 ≤ i ≤ n) then for all x ∈ Domα we have that
x+ xα = 2i.

(f) If α is order-decreasing and i ∈ F (α) (1 ≤ i ≤ n) then for all x ∈ Domα
such that x < i we have xα = x.

(g) If α is order-decreasing and F (α) = {i} then Domα ⊆ {i, i+ 1, . . . , n}.

2 Combinatorial results

For a nice survey article concerning combinatorial problems in the symmetric
inverse semigroup and some of its subsemigroups we refer the reader to Umar
[20].
As in Umar [20], for natural numbers n ≥ p ≥ m ≥ 0 and n ≥ i ≥ 0 we define

F (n; pi) =| {α ∈ S : h(α) =| Imα |= i} |,(3)

F (n;mi) =| {α ∈ S : f(α) = i} |(4)

where S is any subsemigroup of In. From [2, Proposition 2.4] we have

Theorem 2.1 Let S = ODPn. Then F (n; p) = (2n−p+1)
p+1

(

n

p

)

, where n ≥ p ≥ 1.

We now have

Proposition 2.2 Let S = ODDPn. Then F (n; p) =
(

n+ 1
p+ 1

)

, where n ≥ p ≥ 1.

Proof. By virtue of Lemma 1.3[d] and Theorem 2.1 we see that

F (n; p) =
1

2

[

2n− p+ 1

p+ 1

(

n

p

)

−

(

n

p

)]

+

(

n

p

)

=
1

2

[

2(n− p)

p+ 1

(

n

p

)]

+

(

n

p

)

=
n− p

p+ 1

(

n

p

)

+

(

n

p

)

=

(

n

p+ 1

)

+

(

n

p

)

=

(

n + 1

p+ 1

)

.

✷

The proof of the next lemma is routine using Proposition 2.2
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Lemma 2.3 Let S = ODDPn. Then F (n; p) = F (n − 1; p − 1) + F (n − 1; p),
for all n ≥ p ≥ 2.

Theorem 2.4 | ODDPn |= 2n+1 − (n + 1).

Proof. It is enough to observe that | ODDPn |=
∑n

p=0 F (n; p).

Lemma 2.5 Let S = ODDPn. Then F (n;m) =
(

n

m

)

, for all n ≥ m ≥ 1.

Proof. It follows directly from Lemma 1.3[b,c] and the fact that all idempotents
are necessarily order-decreasing. ✷

Proposition 2.6 Let Un = {α ∈ ODDPn : f(α) = 0}. Then | Un |=
| ODDPn−1 |.

Proof. The proof is similar to that of [19, Theorem 4.3]. ✷

Remark 2.7 The triangles of numbers F (n; p) and F (n;m), have as a result of
this work appeared in Sloane [18] as [A184049] and [A184050], respectively.

Now we turn our attention to counting order-reversing partial isometries. First
recall from [13, Section3.2(c)] that order-decreasing and order-reversing partial
isometries exist only for heights less than or equal to n/2. We now have

Lemma 2.8 Let S = DDP∗
n be the set of order-reversing partial isometries of

Xn. Then F (n; p0) = 1 and F (n; p1) =
(

n + 1
2

)

, for all n ≥ 1.

Proof. These follow from the simple observation that

{α ∈ ODDPn : h(α) = 0 or 1} = {α ∈ DDP∗
n : h(α) = 0 or 1}

and Proposition 2.2. ✷

Lemma 2.9 Let α ∈ DDP∗
n. Then for all p ≥ 1 we have

F (2p+ 1, p+ 1) = 1 and F (2p, p) = 3.

Proof. (i) By Lemma 1.3[f,g] we see that for i ∈ {0, 1, . . . , p},
(

p+1+i

p+1−i

)

is the

unique order-reversing isometry of height p+ 1; and (ii) for i ∈ {0, 1, . . . , p− 1},
(

p+i

p−i

)

,
(

p+1+i

p−i

)

and
(

p+1+i

p+1−i

)

are the only order-reversing isometries of height p. ✷

The following technical lemma will be useful later.

Lemma 2.10 Let α ∈ DDP∗
n. Suppose ̟+(α) − r ∈ Domα and ̟+(α) − s /∈

Domα for all 1 ≤ s < r. Then ̟(α) > r.
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Proof. By order-reversing we see that (̟+(α))α = w−(α) and (̟(α))α = w+(α).
Thus ̟+(α) − r ≥ ̟(α) =⇒ ̟+(α) − ̟(α) ≥ r. So by isometry we have
w+(α)− w−(α) = ̟+(α)−̟(α) ≥ r =⇒ w+(α) ≥ w−(α) + r =⇒ w+(α) >
r =⇒ ̟(α) > r, as required. ✷

Lemma 2.11 Let S = DDP∗
n. Then F (n; p) = F (n− 2; p− 1)+F (n− 2; p), for

all n ≥ p ≥ 2.

Proof. Let α ∈ DDP∗
n and h(α) = p. Define A = {α ∈ DDP∗

n−2 : h(α) = p}
and B = {α ∈ DDP∗

n−2 : h(α) = p − 1}. Clearly, A ∩ B = ∅. Define a map
θ : {α ∈ DDP∗

n : h(α) = p} → A ∪ B by (α)θ = α′ where
(i) xα′ = xα (x ∈ Domα), if α ∈ A. It is clear that α′ is an order-decreasing
isometry and h(α) = p;
(ii) if {n−1, n} ⊆ Domα} and α ∈ B, let Domα′ = {x−1 : x ∈ Domα and x <
n} and (x−1)α′ = xα−1 ≤ x−1 and so α′ is order-decreasing and h(α) = p−1;
(iii) if {n − 2, n − 1} ⊆ Domα} and α ∈ B, let Domα′ = {x − 1 : x ∈
Domα and x < n − 1} and (x − 1)α′ = xα − 1 ≤ x − 1 and so α′ is order-
decreasing and h(α) = p− 1;
(iv) otherwise, if α ∈ B, let Domα′ = {x − r : x ∈ Domα and x < ̟+(α)},
where r is such that̟+(α)−r ∈ Domα and ̟+(α)−s /∈ Domα for all 1 ≤ s < r.
Define (x− r)α′ = xα− r ≤ x− r and so α′ is order-decreasing and Lemma 2.10
ensures that h(α) = p− 1.

Moreover, in (ii) and (iii), we have | (x − 1)α′ − (y − 1)α′ |=| (xα − 1) −
(yα − 1) |=| xα − yα |=| x − y |=| (x − 1) − (y − 1) |, and in (iv), we have
| (x− r)α′ − (y − r)α′ |=| (xα− r)− (yα− r) |=| xα− yα |=| x− y |=
| (x− r)− (y − r) | . Hence α′ is an isometry.

Also observe that in (ii), we have ̟+(α′) = n− 2; in (iii) we have ̟+(α′) =
n− 3; and in (iv) we have ̟+(α′) < n− 3. These observations coupled with the
definitions of α′ ensures that θ is a bijection.
To show that θ is onto it is enough to note that we can in a symmetric manner
define θ−1 from A∪B → {α ∈ DDP∗

n : h(α) = p}. This establishes the statement
of the lemma. ✷

The next lemma which can be proved by induction, is necessary.

Lemma 2.12 Let S = DDP∗
n. Then we have the following:

∑

i≥0

(

n− 1− 2i

2

)

=

{

(n+1)(n−1)(2n−3)
24

, if n is odd;
n(n−2)(2n+1)

24
, if n is even.

Lemma 2.13 Let S = DDP∗
n. Then we have the following:

F (n; p2) =

{

(n+1)(n−1)(2n−3)
24

, if n is odd;
n(n−2)(2n+1)

24
, if n is even.
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Proof. By applying Lemmas 2.8 and 2.11 sucessively we get

F (n; p2) = F (n− 2; p1) + F (n− 2; p2) = F (n− 2; p2) +

(

n− 1

2

)

= F (n− 4; p2) +

(

n− 3

2

)

+

(

n− 1

2

)

= F (n− 6; p2) +

(

n− 5

2

)

+

(

n− 3

2

)

+

(

n− 1

2

)

.

By iteration the result follows from Lemma 2.12 and the facts that F (2; p2) = 0

and F (3; p2) = 1 =
(

2
2

)

. ✷

Proposition 2.14 Let S = DDP∗
n. Then for all ⌊(n + 1)/2⌋ ≥ p ≥ 1, we have

F (n; p) =







(n+1)(n−1)(n−3)···(n−2p+3)(2n−3p+3)
2p(p+1)!

, if n is odd;
n(n−2)(n−4)···(n−2p+2)(2n−p+3)

2p(p+1)!
, if n is even.

.

Proof. (By Induction).

Basis Step: F (n; p1) =
(

n + 1
1 + 1

)

=
(

n+ 1
2

)

is true by Lemma 2.8 and the

observation made in its proof, while the formula for F (n; p2) is true by Lemma
2.13.

Inductive Step: Suppose F (m; p) is true for all ⌊(n + 1)/2⌋ > m ≥ p ≥ 1.
Case 1. If m is odd, consider (using the induction hypothesis)

F (m+ 2; p) = F (m; p) + F (m; p− 1)

=
(m+ 1)(m− 1)(m− 3) · · · (m− 2p+ 3)(2m− 3p+ 3)

2p(p+ 1)!

+
(m+ 1)(m− 1)(m− 3) · · · (m− 2p+ 5)(2m− 3p+ 6)

2p−1p!

=
(m+ 3)(m+ 1)(m− 1) · · · (m− 2p+ 5)(2m− 3p+ 7)

2p(p+ 1)!
,

which is the formula for F (m+ 2; p) when m is odd.
Case 2. If m is even, consider (using the induction hypothesis)

F (m+ 2; p) = F (m; p) + F (m; p− 1)

=
m(m− 2)(m− 4) · · · (m− 2p+ 2)(2m− p+ 3)

2p(p+ 1)!

+
m(m− 2)(m− 4) · · · (m− 2p+ 4)(2m− p+ 4)

2p−1p!

=
(m+ 2)m(m− 2) · · · (m− 2p+ 4)(2m− p+ 7)

2p(p+ 1)!
,
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which is the formula for F (m+ 2; p) when m is even. ✷

Proposition 2.15 Let S = DDP∗
n and let bn =

∑

p≥0 F (n; p). Then for n ≥ 0,
we have

1. b2n+1 = 5 · 2n+1 − 4n− 8;

2. b2n = 7 · 2n − 4n− 6.

Proof. Apply induction and use the fact that | DDP∗
n |=

∑n
p=0 F (n; p).

Proposition 2.16 Let S = DDPn. Then

(1) if n is odd and (n+ 1)/2 ≥ p ≥ 2

F (n; p) = (n+1)(n−1)(n−3)···(n−2p+3)(2n−3p+3)
2p(p+1)!

+
(

n+1
p+1

)

;

(2) if n is even and n/2 ≥ p ≥ 2

F (n; p) = n(n−2)(n−4)···(n−2p+2)(2n−p+3)
2p(p+1)!

+
(

n+1
p+1

)

;

(3) if ⌊(n+ 1)/2⌋ < p, F (n; p) =
(

n+1
p+1

)

.

Proof. It follows from Propositions 2.2 & 2.14 and Lemmas 1.3[c] & 2.8. ✷

Combining Theorem 2.4, Lemmas 1.3[a,c] & 2.9, Proposition 2.15 and the
observation made in the proof of Lemma 2.8 we get the order of DDPn which we
record as a theorem below.

Theorem 2.17 Let DDPn. Then for all n ≥ 0 we have

(1) | DDP2n+1 |= 22n+2 + 5 · 2n+1 − (2n2 + 9n+ 12);

(2) | DDP2n |= 22n+1 + 7 · 2n − (2n2 + 7n+ 8).

Lemma 2.18 Let S = DDPn. Then F (n;m) =
(

n

m

)

, for all n ≥ m ≥ 2.

Proof. It follows directly from [13, Lemma 3.18] and the fact that all idempotents
are necessarily order-decreasing. ✷

Proposition 2.19 Let S = DDPn. Then F (2n;m1) = 2n+1 − 2 and F (2n −
1;m1) = 3 · 2n−1 − 2, for all n ≥ 1.
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Proof. Let F (α) = {i}. Then by Lemma 1.3[e], for any x ∈ Domα we have
x+ xα = 2i. Thus, by Lemma 1.3[g], there 2i− 2 possible elements for Domα :
(x, xα) ∈ {(i, i), (i+ 1, i− 1), (i+ 2, i− 2), . . . , (2i− 1, 1)}. However, (excluding

(i, i)) we see that there are
∑

j=0

(

i−1
j

)

= 2i−1, possible partial isometries with

F (α) = {i}, where 2i− 1 ≤ n ⇐⇒ i ≤ (n+1)/2. Moreover, by symmetry we see
that F (α) = {i} and F (α) = {n− i+ 1} give rise to equal number of decreasing
partial isometries. Note that if n is odd (even) the equation i = n− i+1 has one
(no) solution. Hence, if n = 2a− 1 we have

2
a−1
∑

i=1

2i−1 + 2a−1 = 2(2a−1 − 1) + 2a−1 = 3.2a−1 − 2

decreasing partial isometries with exactly one fixed point; if n = 2a we have

2
a
∑

i=1

2i−1 = 2(2a − 1) = 2a+1 − 2

decreasing partial isometries with exactly one fixed point. ✷

Theorem 2.20 Let DDPn. Then

an =| DDPn |= 3an−1 − 2an−2 − 2⌊
n

2
⌋ + n+ 1,

with a0 = 1 and a−1 = 0.

Proof. It follows from Propositions 2.6 & 2.19, Lemma 2.18 and the fact that
| DDPn |=

∑n
m=0 F (n;m). ✷

Remark 2.21 The triangle of numbers F (n;m) and sequence | DDPn | have
as a result of this work appeared in Sloane [18] as [A184051] and [A184052],
respectively. However, the triangles of numbers F (n; p) for DDPn and DDP∗

n

and the sequence | DDP∗
n | are as at the time of submitting this paper not in

Sloane [18]. For some computed values of F (n; p), see Tables 3.1 and 3.2.

n\p 0 1 2 3 4 5 6 7
∑

F (n; p) =| DDP∗
n |

0 1 1
1 1 1 2
2 1 3 0 4
3 1 6 1 0 8
4 1 10 3 0 0 14
5 1 15 7 1 0 0 24
6 1 21 13 3 0 0 0 38
7 1 28 22 8 1 0 0 0 60
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Table 3.1

n\p 0 1 2 3 4 5 6 7
∑

F (n; p) =| DDPn |
0 1 1
1 1 1 2
2 1 3 1 5
3 1 6 5 1 13
4 1 10 13 5 1 30
5 1 15 27 16 6 1 66
6 1 21 48 38 21 7 1 137
7 1 28 78 78 57 28 8 1 279

Table 3.2

3 Number of D∗-classes

For the definitions of the Green’s relations (L,R and D) and their starred ana-
logues (L∗,R∗ and D∗), we refer the reader to Howie [12] and Fountain [8], (re-
spectively) or Ganyushkin and Mazorchuk [9].

First, notice that from [1, Lemma 2.1] we deduce that number of L-classes
in K(n, p) = {α ∈ DPn : h(α) = p} (as well as the number of R-classes there)

is
(

n

p

)

. To describe the D-classes in DPn and ODPn, first we recall (from [1])

that the gap and reverse gap of the image set of α (with h(α) = p) are ordered
(p− 1)-tuples defined as follows:

g(Imα) = (| a2α− a1α |, | a3α− a2α |, . . . , | apα− ap−1α |)

and
gR(Imα) = (| apα− ap−1α |), . . . , | a3α− a2α |, | a2α− a1α |),

where α =
(

a1 a2 · · · ap
a1α a2α · · · apα

)

with 1 ≤ a1 < a2 < · · · < ap ≤ n. Further,

let di =| ai+1α− aiα | for i = 1, 2, . . . , p− 1. Then

g(Imα) = (d1, d2, . . . , dp−1) and gR(Imα) = (dp−1, dp−2, . . . , d1).

For example, if

α =
(

1 2 4 7 8
3 4 6 9 10

)

, β =
(

2 4 7 8
10 8 5 4

)

∈ DP10

then g(Imα) = (1, 2, 3, 1), g(Imβ) = (2, 3, 1), gR(Imα) = (1, 3, 2, 1) and gR(Im β) =
(1, 3, 2).Next, let d(n, p) be the number of distinct ordered p-tuples: (d1, d2, . . . , dp)
with

∑p
i=1 di = n. This is clearly the number of compositions of n into p parts.

Thus, we have

9



Lemma 3.1 [17, p.151] d(n, p) =
(

n−1
p−1

)

.

We shall henceforth use the following well-known binomial identity when
needed:

n
∑

m=p

(

m

p

)

=

(

n+ 1

p+ 1

)

.

We take this opportunity to state and prove a result which was omitted in [2].

Theorem 3.2 Let S = ODPn. Then

(1) the number of D-classes in K(n, p) (p ≥ 1) is
(

n−1
p−1

)

;

(2) the number of D-classes in S is 1 + 2n−1.

Proof.

(1) It follows from [1, Theorem 2.5]: (α, β) ∈ D if and only if g(Imα) = g(Imβ);
[1, Lemma 3.3]: p− 1 ≤

∑p−1
i=1 di ≤ n− 1; Lemma3.1; and so the number of

D-classes is
∑n−1

i=p−1 d(i, p− 1) =
∑n−1

i=p−1

(

i−1
p−2

)

=
(

n−1
p−1

)

.

(2) The number of D-classes in S is 1 +
∑n

p=1

(

n−1
p−1

)

= 1 + 2n−1.

✷

The following results from [13] will be needed:

Lemma 3.3 [13, Lemma 2.3] Let α, β ∈ DDPn or ODDPn. Then

(1) α ≤R∗ β if and only if Domα ⊆ Domβ;

(2) α ≤L∗ β if and only if Imα ⊆ Im β;

(3) α ≤H∗ β if and only if Domα ⊆ Domβ and Imα ⊆ Im β.

From [13, (3)], for α, β ∈ DDPn, we have (α, β) ∈ D∗ if and only if

g(Imα) =

{

g(Im β); or
gR(Im β), if p ≤ ap − a1 ≤ (n− 1)/2.

(5)

Similarly, from [13, (4)], for α, β ∈ ODDPn, we have

(α, β) ∈ D∗ if and only if g(Imα) = g(Im β).(6)

Now a corollary of Theorem3.2 follows:

Corollary 3.4 Let S = ODDPn. Then

10



(1) the number of D∗-classes in K(n, p) (p ≥ 1) is
(

n−1
p−1

)

;

(2) the number of D∗-classes in S is 1 + 2n−1.

Observe that for all α ∈ DPn with h(α) = p,

ap − a1 =
p−1
∑

i=1

(ai+1 − ai) =
p−1
∑

i=1

di,(7)

where g(Domα) = (d1, d2, . . . , dp−1).Moreover, an ordered p-tuple: (d1, d2, . . . , dp)
is said to be symmetric if

(d1, d2, . . . , dp) = (d1, d2, . . . , dp)
R = (dp, dp−1, . . . , d1).

Now, let ds(n, p) be the number of distinct symmetric ordered p-tuples:
(d1, d2, . . . , dp) with

∑p
i=1 di = n. Then we have

Lemma 3.5 [2, Lemma 3.5] ds(n; p) =







0, if n is odd and p is even;
(

⌊n−1

2
⌋

⌊ p−1

2
⌋

)

, otherwise.

Now by virtue of (5) and [1, Theorem 2.5], it is not difficult to see that the
number of D∗-classes in DDPn is the same as the number of D-classes in ODPn

less those pairs that are merged into single D∗-classes in DDPn. Thus, we have

Lemma 3.6 Let g(m, p) be the number of D-classes in ODPn (consisting of
maps of height p and

∑

di = m) that are merged into single D∗-classes in DDPn.
Then m ≤ (n− 1)/2, and

g(m, p) =











1
2

(

m−1
p−2

)

, if n is odd and p is odd;

1
2
[
(

m−1
p−2

)

−
(

⌊m−1

2
⌋

⌊ p−2

2
⌋

)

], otherwise.

Proof. The result follows from (5), Lemmas 3.1 & 3.5 and the observation that

g(n, p) =
d(n− 1, p− 1)− ds(n− 1, p− 1)

2
.

✷

Now have the main result of this section.

Theorem 3.7 Let B(n, p) be the number of D-classes in ODPn (consisting of
maps of height p) that are merged into single D∗-classes in DDPn. Then for
n ≥ p ≥ 1, we have

B(n, p) =



























1
2
[
(

⌊n−1

2
⌋

p−1

)

−
(

⌊n−1

4
⌋

p−1

2

)

], if p is odd;

1
2
[
(

⌊n−1

2
⌋

p−1

)

− 2
(

⌊n−1

4
⌋

p

2

)

], if n ≡ 1, 2 (mod 4), & p is even;

1
2
[
(

⌊n−1

2
⌋

p−1

)

− 2
(

⌊n−3

4
⌋

p

2

)

−
(

⌊n−3

4
⌋

p−2

2

)

], if n ≡ −1, 0 (mod 4), & p is even.
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Proof. The result follows from (5), (7) and Lemma 3.6. To see this, let n ≡
0 (mod 4) and p be even. Then n = 4k for some integer k, and

B(n, p) =

⌊n−1

2
⌋

∑

m=p

g(m, p) =
2k−1
∑

m=p

g(m, p)

= g(p, p) + g(p+ 2, p) + · · ·+ g(2k − 2, p)

+ g(p+ 1, p) + g(p+ 3, p) + · · ·+ g(2k − 1, p)

=
1

2

[(

p− 1

p− 2

)

−

(

p−2
2

p−2
2

)

+

(

p+ 1

p− 2

)

−

(

p

2
p−2
2

)

+ · · ·+

(

2k − 3

p− 2

)

−

(

k − 2
p−2
2

)]

+
1

2

[(

p

p− 2

)

−

(

p

2
p−2
2

)

+

(

p+ 2

p− 2

)

−

(

p+2
2

p−2
2

)

+ · · ·+

(

2k − 2

p− 2

)

−

(

k − 1
p−2
2

)]

=
1

2

[(

2k − 1

p− 1

)

− 2

(

k − 1
p

2

)

−

(

k − 1
p−2
2

)]

=
1

2

[(

n−2
2

p− 1

)

− 2

(

n−4
4
p

2

)

−

(

n−4
4

p−2
2

)]

.

All the other cases are handled similarly. ✷

Now have the main result of this section.

Corollary 3.8 The number of D∗-classes in DDPn (consisting of maps of height

p ≥ 1) is
(

n−1
p−1

)

− B(n, p).

Proof. The result follows from Theorem 3.7 and the remarks preceding Lemma3.6.
✷

Corollary 3.9 The number of D∗-classes in DDPn denoted by dn is

dn =

{

2n−1 − 2⌊
n−3

2
⌋ + ·2⌊

n+1

4
⌋, if n ≡ −1, 0 (mod 4);

2n−1 − 2⌊
n−3

2
⌋ + 3 · 2⌊

n−3

4
⌋, if n ≡ 1, 2 (mod 4).

Proof. The result follows from Theorem 3.7 and Corollary 3.8. To see this, let
n ≡ 1, 2 (mod 4). Then n = 4k + 1, 4k + 2 for some integer k, and

dn = 1 +
n
∑

p=1

(

n− 1

p− 1

)

−
⌊n−1

2
⌋

∑

p=1

B(n, p) = 1 + 2n−1 −
2k
∑

p=1

B(n, p)

= 1 + 2n−1 − [B(n, 1) +B(n, 3) + · · ·+B(n, 2k − 1)]

− [B(n, 2) +B(n, 4) + · · ·+B(n, 2k)]

= 1 + 2n−1 −
1

2

[(

2k

0

)

−

(

k

0

)

+

(

2k

2

)

−

(

k

1

)

+ · · ·+

(

2k

2k − 2

)

−

(

k

k − 1

)]
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−
1

2

[(

2k

1

)

− 2

(

k

1

)

+

(

2k

3

)

− 2

(

k

2

)

+ · · ·+

(

2k

2k − 1

)

− 2

(

k

k

)]

= 1 + 2n−1 −
1

2

[

(22k − 1)− (3 · 2k + 1) + 2
]

= 2n−1 − 2⌊
n−3

2
⌋ + 3 · 2⌊

n−3

4
⌋.

The case n ≡ −1, 0 (mod 4) is handled similarly. ✷
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