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Abstract

In this paper, we enumerate two families of pattern-avoiding permutations: those avoiding
the vincular pattern 2 41 3, which we call semi-Baxter permutations, and those avoiding the
vincular patterns 2 41 3, 3 14 2 and 3 41 2, which we call strong-Baxter permutations. We
call semi-Baxter numbers and strong-Baxter numbers the associated enumeration sequences.
We prove in addition that the semi-Baxter numbers enumerate plane permutations (avoiding
2 14 3). The problem of counting these permutations was open and has given rise to several
conjectures, which we also prove in this paper.

For each family (that of semi-Baxter – or equivalently, plane – and that of strong-Baxter
permutations), we describe a generating tree, which translates into a functional equation
for the generating function. For semi-Baxter permutations, it is solved using (a variant of)
the kernel method, giving an expression for the generating function. From it, we obtain
closed formulas for the semi-Baxter numbers, a recurrence that they satisfy, as well as their
asymptotic behavior. For strong-Baxter permutations, we show that their generating function
is (a slight modification of) that of a family of walks in the quarter plane, which is known to
be non D-finite.

Along the way, we define families of labeled Dyck paths enumerated by the semi-Baxter,
strong-Baxter, and also by the Baxter and factorial numbers. To our knowledge, the family
of Baxter paths that we define is the first family where objects are single lattice paths which
is enumerated by the well-known sequence of Baxter numbers.

1 Introduction

The main purpose of this article is the study of two enumeration sequences, which we call the semi-
Baxter sequence and the strong-Baxter sequence. They enumerate, among other objects, families
of pattern-avoiding permutations closely related to the well-known family of Baxter permutations,
and to the slightly less popular one of twisted Baxter permutations, which are both counted by
the sequence of Baxter numbers [20, sequence A001181].

Recall that a permutation π = π1π2 . . . πn contains the vincular1 pattern 2 41 3 if there exists
a subsequence πiπjπj+1πk of π (with i < j < k − 1), called an occurrence of the pattern, that
satisfies πj+1 < πi < πk < πj . Containment and occurrences of the patterns 3 14 2, 3 41 2,
2 14 3 and 14 23 are defined similarly. A permutation not containing a pattern avoids it. Baxter
permutations [8, among many others] are those that avoid both 2 41 3 and 3 14 2, while twisted
Baxter permutations [13, and references therein] are the ones avoiding 2 41 3 and 3 41 2. We denote
by Av(P ) the family of permutations avoiding all patterns in P .

The two sequences that will be our main focus are first the one enumerating permutations
avoiding 2 41 3, called semi-Baxter permutations, and second the one enumerating permutations
avoiding all three patterns 2 41 3, 3 14 2 and 3 41 2, called strong-Baxter permutations. Remark

1 Throughout the article, we adopt the convention of denoting by the symbol the elements that are required
to be adjacent in an occurrence of a vincular pattern, rather than using the historical notation with dashes wherever
elements are not required to be consecutive. For instance, our pattern 2 41 3 is sometimes written 2− 41− 3 in the
literature.
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that a permutation avoiding the (classical) pattern 231 necessarily avoids 2 41 3, 3 14 2 and 3 41 2,
and recall that Av(231) is enumerated by the sequence of Catalan numbers. The definitions in
terms of pattern-avoidance and the enumeration results given above can be summarized as shown
in Figure 1.

Catalan ≤ strong-Baxter ≤ Baxter ≤ semi-Baxter ≤ factorial

Av(2 41 3, ⊆ Av(2 41 3, 3 14 2) ⊆ all
Av(231) ⊆ 3 14 2, Av(2 41 3) ⊆ permutations

3 41 2) ⊆ Av(2 41 3, 3 41 2) ⊆

Figure 1: Sequences from Catalan to factorial numbers, with nested families of pattern-avoiding
permutations that they enumerate.

Our first and main contribution is the study of the two sequences of semi-Baxter and strong-
Baxter numbers.

We deal with the semi-Baxter sequence (enumerating semi-Baxter permutations) in Section 3.
It has been proved in [19] (as a special case of a general statement) that this sequence also
enumerates plane permutations, defined by the avoidance of 2 14 3. This sequence is referenced
as A117106 in [20]. We first give a more specific proof that plane permutations and semi-Baxter
permutations are equinumerous, by providing a common generating tree (or succession rule) with
two labels for these two families. Basics and references about generating trees can be found in
Subsection 2.1.

We solve completely the problem of enumerating semi-Baxter permutations (or equivalently,
plane permutations), pushing further the techniques that were used to enumerate Baxter permu-
tations in [8]. Namely, we start from the functional equation associated with our succession rule
for semi-Baxter permutations, and we solve it using variants of the kernel method [8, 18]. This
results in an expression for the (D-finite) generating function for semi-Baxter permutations. From
it, we obtain several formulas for the semi-Baxter numbers: first, a complicated closed formula;
second, a simple recursive formula; and third, three simple closed formulas that were conjectured
by D. Bevan [5].

The problem of enumerating plane permutations was posed by M. Bousquet-Mélou and S. But-
ler in [10]. Some conjectures related to this enumeration problem were later proposed, in particular
by D. Bevan [4, 5] and M. Martinez and C. Savage [21]. Not only do we solve the problem of
enumerating plane permutations (or equivalently, semi-Baxter permutations) completely, but we
also prove these conjectures. We mention that it has been conjectured in [3] by A. Baxter and
M. Shattuck that permutations avoiding 14 23 are also enumerated by the same sequence, but we
have not been able to prove it.

In Section 5, we focus on the study of strong-Baxter permutations and of the strong-Baxter
sequence. Again, we provide a generating tree for strong-Baxter permutations, and translate the
corresponding succession rule into a functional equation for their generating function. However,
we do not solve the equation using the kernel method. Instead, from the functional equation, we
prove that the generating function for strong-Baxter permutations is a very close relative of the
one for a family of walks in the quarter plane studied in [6]. As a consequence, the generating
function for strong-Baxter permutations is not D-finite. Families of permutations with non D-finite
generating functions are quite rare in the literature on pattern-avoiding permutations (although
mostly studied for classical patterns, instead of vincular ones): this makes the example of strong-
Baxter permutations particularly interesting.

The second contribution of our work is to define families of lattice paths that are enumerated
by the sequences of Figure 1.
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This part of our work is motivated by the combination of two observations. First, among
the families of combinatorial objects that are enumerated by Catalan numbers, the one of Dyck
paths is certainly one of the most well-known. Second, although the Baxter numbers are a natural
generalization of the Catalan sequence (see for example the discussion in [12]), we are not aware of
any family of lattice paths enumerated by the Baxter sequence. Of course, there are the triples of
non-intersecting lattice paths [7], but to our knowledge no combinatorial family where the objects
are single paths is known to be enumerated by the Baxter numbers. Mimicking the second row
of the table in Figure 1, we aim at defining nested families of lattice paths enumerated by the
sequences of the first row of this figure. This results in particular in a definition of a family
of lattice paths enumerated by the Baxter numbers, which we believe was missing so far in the
literature on Baxter numbers.

The definitions of the families of factorial, semi-Baxter, Baxter and strong-Baxter paths appear
along the paper, in Subsections 2.2, 3.5, 4.3 and 5.3. Each is a family of labeled Dyck paths, where
some of the up steps (called the free up steps) carry integer labels in a prescribed range. That
these families are nested is clear from the constraints imposed on the labels of the free up steps,
which are always more restrictive. To prove that the family of Baxter paths is enumerated by the
Baxter sequence, we exhibit a generating tree for Baxter paths that corresponds to the succession
rule ΩBax associated with this sequence. We proceed similarly for semi-Baxter and strong-Baxter
paths. For the case of factorial paths, we follow the same idea, but an additional (elementary)
argument is needed to establish that the obtained succession rule corresponds to factorial numbers.

For each family, we believe that giving first the definition of the paths, and then proving that
they grow according to the corresponding succession rule, as we will do, is the clearest way to go.
However, with this presentation, the way we have been able to find appropriate definitions of these
families of paths remains hidden. We believe it deserves a few words in this introduction. The
idea is to observe that the succession rules for the sequences of Figure 1, considered from right
to left, each are a specialization of the previous one. What we mean exactly by specialization is
explained in further details along the paper, following the same idea as in [12]. From the growth
of, say, semi-Baxter paths along Ωsemi, and the restriction of Ωsemi to ΩBax, we then examine
how the restriction on the labels in the succession rules can be interpreted as restrictions on the
objects produced in the generating tree (in our case, with stronger constraints on the labels of the
free up steps).

With the approach, we have been able to describe restricted families of factorial paths, all
containing Dyck paths, associated with rules Ωsemi, ΩBax and Ωstrong. Note however that, in the
case of permutations, we had two restricted families enumerated by the Baxter numbers: that
of Baxter permutations and that of twisted Baxter ones. The succession rule ΩBax is classically
associated with Baxter permutations, while there is another succession rule (ΩTBax) corresponding
also to Baxter numbers and associated rather with twisted Baxter permutations. Since both ΩBax
and ΩTBax are restrictions of Ωsemi (while being at the same time generalizations of Ωstrong), the
same approach as described above could be applied to define another family of paths, which we
could call twisted Baxter paths, enumerated by the Baxter numbers, and which grow according
to ΩTBax. We have explored this route, but it did not result in any nice conditions on the labels
of the free up steps that would be worthy of being reported in this article.

The article is next organized as follows. Section 2 recalls basics and easy facts about the
Catalan and factorial sequences and objects. Sections 3, 4 and 5 then focus on the sequences
of semi-Baxter numbers, Baxter numbers, and strong Baxter numbers, respectively, and on the
associated objects.

2 Catalan and factorial sequences, succession rules, and lat-
tice paths

With the classical example of Dyck paths, we start by reviewing some basics about generating trees
and succession rules. These are then adapted to define a family of labeled Dyck paths counted by
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the sequence of factorial numbers, which we call factorial paths. In the following sections, for each
sequence considered, we will define a subset of factorial paths that the sequence enumerates.

2.1 Dyck paths and the Catalan succession rule

A Dyck path of size n is a path in the plane, using up steps U = (1, 1) and down steps D = (1,−1),
starting at the point of coordinate (0, 0) and ending in (2n, 0), while always staying above the x-
axis. Of course, a Dyck path can be represented by a word on the alphabet {U,D} (although not
all such words are acceptable). Dyck path are enumerated by the sequence of Catalan numbers
Cn = 1

n+1

(
2n
n

)
[20, A000108]. Later in our work, we will consider families of labeled Dyck paths,

where some of the up steps carry integer labels.
Generating trees and succession rules will also be important for our work. We give a brief

general presentation below. Details can be found for instance in [1, 2, 8, 25]. We also review
the classical generating tree for Dyck paths and the classical succession rule for Catalan numbers,
since we will build on them later in this work.

Consider any combinatorial class C, that is to say any set of discrete objects equipped with a
notion of size, such that there is a finite number of objects of size n for any integer n. Assume
also that C contains exactly one object of size 1. A generating tree for C is an infinite rooted
tree, whose vertices are the objects of C, each appearing exactly once in the tree, and such that
objects of size n are at distance n from the root (with the convention that the root is at distance
1 from itself). The children of some object c ∈ C are obtained by adding an atom (i.e. a piece of
object that makes its size increase by 1) to c. Of course, since every object should appear only
once in the tree, not all additions are possible. We should ensure the unique appearance property
by considering only additions that follow some restricted rules. We will call the growth of C the
process of adding atoms following these prescribed rules.

Such a growth for Dyck paths is described in [2]. The atoms are peaks, that is to say UD factors.
To ensure that all Dyck paths appear exactly once in the generating tree, peaks are inserted in
the last descent of the path, that is to say, in the longest suffix containing only the letter D. More
precisely, the children of a Dyck path w·UDk are w·UUDDk, w·UDUDDk−1, . . . , w·UDk−1UDD
and w ·UDkUD. The first few levels of the generating tree for Dyck paths are shown in Figure 2
(left).

(1)

(3)(2)(1)(2)(1)

(1) (2)

Figure 2: Two ways of looking at the generating tree for Dyck paths: with objects (left) and with
labels from the succession rule ΩCat (right).

Of importance for enumeration purposes is the general shape of a generating tree, not the
specific objects labeling its nodes. From now on, when we write generating tree, we intend this
shape of the tree, without the objects labeling the nodes. A succession rule is a compact way of
representing such a generating tree for a combinatorial class C without referring to its objects, but
identifying them with labels. Therefore, a succession rule is made of one starting label correspond-
ing to the label of the root and of productions encoding the way labels spread in the generating
tree. As we explain in [12], the sequence enumerating the class C can be recovered from the suc-
cession rule itself, without reference to the specifics of the objects in C: indeed, the nth term of
the sequence is the total number of labels (counted with repetition) that are produced from the
root by n− 1 applications of the productions, or equivalently, the number of nodes at distance n
from the root in the generating tree.
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From the growth of Dyck paths described above, we classically obtain the following succession
rule associated with Catalan numbers (corresponding to the tree shown in Figure 2, right):

ΩCat =

{
(1)
(k) (1), (2), . . . , (k), (k + 1).

The intended meaning of the label (k) is the number of D steps in the last descent of a path.

The class of Dyck paths is just one of many families of discrete objects counted by the Catalan
numbers. Among these, of particular interest for us is the class Av(231) of permutations avoiding
the pattern 231. Indeed, in this article, we will be interested in the enumeration of several families
of restricted permutations that contain Av(231) (as well as its symmetries Av(132), Av(213) and
Av(312)).

2.2 Factorial paths and associated succession rule

The factorial numbers [20, A000142] are well-known for counting permutations of size n. As
indicated above, our work enumerates families of restricted permutations containing Av(231). For
each enumeration sequence so obtained, we will define a family of labeled Dyck paths counted by
the same sequence. Therefore, we start by introducing factorial paths, a family of labeled Dyck
paths in bijective correspondence with the set of all permutations: all our paths afterward will be
restricted factorial paths.

Definition 1. A free up step in a Dyck path is any up step which does not immediately follow
a down step, i.e., any step U which does not appear in a DU factor. If U is a free up step, we
usually write it U .

Definition 2. A factorial path of size n is a Dyck path of size n in which every free up step U is
labeled with an integer in [1, d + 1], where d is the total number of D steps occurring before U in
the path.

Figure 3 shows two examples: one factorial path and one labeling of the same underlying Dyck
path which does not satisfy the condition in Definition 2.

1

52

1 3

1

1 6

2 5

Figure 3: A Dyck path (left), a labeling of its free up steps which makes it a factorial path (middle),
and another labeling which does not give a factorial path, label 6 being too large (right).

The proof of Proposition 3 below is a good warm-up exercise before we turn to similar but
more complicated arguments in the next sections.

Proposition 3. Factorial paths grow according to the succession rule

Ωfact =

{
(1, 1)
(k, n) (1, n+ 1), (2, n+ 1), . . . , (k, n+ 1), (k + 1, n+ 1)n−k+1.

As a consequence, they are enumerated by the factorial numbers.

Proof. As in the classical case of Dyck paths, we make factorial paths grow by insertion of a peak
in the last descent. This growth can be captured by a succession rule as follows. To any factorial
path, we assign the label (k, n) where k is the number of D steps in the last descent, and n is the
size of the path.

Consider a factorial path f whose underlying unlabeled Dyck path is d = w · UDk. The Dyck
path obtained adding a peak at the beginning of the last descent, w ·UUDDk, is the only child of
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d such that the added up step is free. In the children of f , this step U may have any label between
1 and n− k + 1, since n− k is the number of D steps before U (in either f or d). This gives the
(k + 1, n+ 1)n−k+1 part of the production, which replaces the single (k + 1) in the case of ΩCat.

Next, in all other children w ·UDUDDk−1, . . . , w ·UDk−1UDD,w ·UDkUD of d, the added
U step is not free, so it receives no label. This corresponds to the (1, n+1), (2, n+1), . . . , (k, n+1)
part of the production, similarly to the first k productions of ΩCat.

The proof that the number of factorial paths of size n is n! follows then easily by induction.
Indeed, there is of course 1 factorial path of size 1, and from the production, we see that each
factorial path of size n has in total k + (n− k + 1) = n+ 1 children.

Remark 4. From Proposition 3, it follows that there exists an (implicit) bijection between facto-
rial paths of size n and permutations of size n. It is however not hard to provide such a bijection
explicitly.

To see this, let us first introduce the skew representation of a factorial path, illustrated in
Figure 4. Introducing the new west step W = (−1, 1), it is the path obtained replacing any
free up step U labeled by i by W i−1UDi−1, and removing pairs of steps D and W that overlap
(or equivalently, removing recursively all DW factors). It is not hard to see that through this
construction, factorial paths of size n are in one-to-one correspondence with underdiagonal paths
of size n, that is to say paths starting at (0, 0), ending at (2n, 0), staying above the x axis and below
the line y = x, using U , D, and W steps, and such that no steps D and W overlap. Of course,
underdiagonal paths of size n contain n up steps. Moreover, denoting ei the distance from the ith
up steps to the line y = x, it holds that ei ≤ i − 1. Sequences (e1, . . . , en) such that ei ≤ i − 1
for all i are known as inversion sequences. The above construction from underdiagonal paths
to inversion sequences is actually easily invertible, providing a bijection between them. Finally,
there is a well-known one-to-one correspondence between inversion sequences and permutations,
yielding the desired bijection. The interested reader may find more about inversion sequences and
this bijection in [21].

Figure 4: The skew representations of the middle and right paths of Figure 3. Only the first one
encodes a factorial path, and is therefore an underdiagonal path. It corresponds to the inversion
sequence (0, 0, 1, 3, 4, 2, 3, 6, 2), and hence to the permutation 498316527.

3 Semi-Baxter numbers

3.1 Definition, context, and summary of our results

Definition 5. A semi-Baxter permutation is a permutation that avoids the pattern 2 41 3.

Definition 6. The sequence of semi-Baxter numbers, (SBn), is defined by taking SBn to be the
number of semi-Baxter permutations of size n.

The name “semi-Baxter” has been chosen because 2 41 3 is one of the two patterns (namely,
2 41 3 and 3 14 2) whose avoidance defines the family of so-called Baxter permutations [17, 14],
enumerated by the Baxter numbers [20, sequence A001181]. (Remark that up to symmetry,
we could have defined semi-Baxter permutations by the avoidance of 3 14 2, obtaining the same
sequence.) Note that 2 41 3 is also one of the two patterns (namely, 2 41 3 and 3 41 2) whose
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avoidance defines the family of so-called twisted Baxter permutations [24, 26], also enumerated by
the Baxter numbers.

The first few terms of the sequence of semi-Baxter numbers are

1, 2, 6, 23, 104, 530, 2958, 17734, . . .

The family of semi-Baxter permutations already appears in the literature, at least on a few
occasions. Indeed, it is an easy exercise to see that the avoidance of 2 41 3 is equivalent to that
of the barred pattern 253̄14, which has been studied by L. Pudwell in [23]. (The definition of
barred patterns, which is not essential to our work, can be found in [23].) In this work, by
means of enumeration schemes L. Pudwell suggests that the enumerative sequences of semi-Baxter
permutations and plane permutations (see Definition 8 p.8) coincide. This conjecture has later been
proved as a special case of a general statement in [19, Corollary 1.9(b)]. In Corollary 10 we give an
alternative and self-contained proof that plane permutations and semi-Baxter permutations are
indeed equinumerous. The sequence enumerating plane permutations has already been registered
on the OEIS [20] as sequence A117106, which is then our sequence (SBn).

The enumeration of plane permutations has received a fair amount of attention in the litera-
ture. The problem first arose as an open problem in [10]. It was studied with a quite experimental
perspective, as one case of many, through enumeration schemes by L. Pudwell in [23]. Then,
D. Bevan computed the first 37 terms of their enumerative sequence [4], by iterating a functional
equation provided in [4, Theorem 13.1]. Although [4] gives a functional equation for the generat-
ing function of semi-Baxter numbers, there is no formula (closed or recursive) for SBn. There is
however a conjectured explicit formula related to Apéry numbers, which, in addition, gives infor-
mation about their asymptotic behavior. Another recursive formula for SBn has been conjectured
by M. Martinez and C. Savage in [21], in relation with inversion sequences avoiding some patterns
(definition and precise statement are provided in Subsection 3.4). Finally, closed formulas for SBn
have been conjectured by D. Bevan in [5].

Our results about semi-Baxter numbers are the following. Most importantly, we solve the
problem of enumerating semi-Baxter permutations, as well as plane permutations. We provide
a common succession rule that governs their growth, presented in Subsection 3.2. By means of
standard tools we translate the succession rule into a functional equation whose solution is the
generating function of semi-Baxter numbers. Then Subsection 3.3 gives a closed expression for
the generating function of semi-Baxter numbers, together with closed, recursive and asymptotic
formulas for SBn. The results of this subsection are proved in Subsections 3.6 and 3.7 following the
same method as in [11]: the functional equation is solved using the obstinate kernel method, a first
closed formula for SBn is obtained by the Lagrange inversion, the recursive formula follows from it
applying the method of creative telescoping [22], which can then be applied again to prove that the
explicit formulas for SBn conjectured in [5] are correct, and finally careful estimates of binomial
coefficients occurring in these formulas give the asymptotic behavior of SBn. In Subsection 3.4
we additionally prove the formulas for SBn conjectured in [4] (in relation with Apéry numbers)
and in [21] (in relation with inversion sequences). Finally, in Subsection 3.5, we define a family of
labeled Dyck paths, which we call semi-Baxter paths, and we show that they are enumerated by
(SBn).

3.2 Succession rule for semi-Baxter permutations and plane permuta-
tions

Throughout the paper we will build permutations of increasing sizes by performing “local ex-
pansions” on the right of any permutation π. More precisely, when inserting a ∈ {1, . . . , n + 1}
on the right of any π of size n, we obtain the permutation π′ = π′1 . . . π

′
nπ
′
n+1 where π′n+1 = a,

π′i = πi if πi < a and π′i = πi + 1 if πi ≥ a. We use the notation π · a to denote π′. For instance,
1 4 2 3 · 3 = 1 5 2 4 3. This is easily understood on the diagrams representing permutations (which
consist of points in the Cartesian plane at coordinates (i, πi)): a local expansion corresponds to
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adding a new point on the right of the diagram, which lies vertically between two existing points
(or below the lowest, or above the highest), and finally normalizing the picture obtained – see
Figure 5.

Proposition 7. Semi-Baxter permutations can be generated by the following succession rule:

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h+ k, 1), . . . , (h+ 1, k).

Proof. First, observe that removing the last element of a permutation avoiding 2 41 3, we obtain
a permutation that still avoids 2 41 3. So, a generating tree for semi-Baxter permutations can be
obtained with local expansions on the right.

For π a semi-Baxter permutation of size n, the active sites are by definition the points a (or
equivalently the values a) such that π · a is also semi-Baxter, i.e., avoids 2 41 3. The other points
a are called non-active sites. An occurrence of 2 31 in π is a subsequence πjπiπi+1 (with j < i)
such that πi+1 < πj < πi. Obviously, the non-active sites a of π are characterized by the fact that
a ∈ (πj , πi] for some occurrence πjπiπi+1 of 2 31. We call a non-empty descent of π a pair πiπi+1

such that there exists πj that makes πjπiπi+1 an occurrence of 2 31. Note that in the case where
πn−1πn is a non-empty descent, choosing πj = πn + 1 always gives an occurrence of 2 31, and it is
the smallest possible value of πj for which πjπn−1πn is an occurrence of 2 31.

To each semi-Baxter permutation π of size n, we assign a label (h, k), where h (resp. k) is the
number of the active sites of π smaller than or equal to (resp. greater than) πn. Remark that
h, k ≥ 1, since πn and πn+1 are always active sites. Moreover, the label of the permutation π = 1
is (1, 1), which is the root in Ωsemi.

Consider a semi-Baxter permutation π of size n and label (h, k). Proving Proposition 7 amounts
to showing that permutations π ·a have labels (1, k+1), . . . , (h, k+1), (h+k, 1), . . . , (h+1, k) when
a runs over all active sites of π. Figure 5, which shows an example of semi-Baxter permutation π
with label (2, 2) and all the corresponding π · a with their labels, should help understanding the
case analysis that follows. Let a be an active site of π.

Assume first that a > πn (this happens exactly k times), so that π ·a ends with an ascent. The
occurrences of 2 31 in π · a are the same as in π. Consequently, the active sites are not modified,
except that the active site a of π is now split into two actives sites of π ·a: one immediately below
a and one immediately above. It follows that π · a has label (h+ k+ 1− i, i), if a is the i-th active
site from the top. Since i ranges from 1 to k, this gives the second row of the production of Ωsemi.

Assume next that a = πn. Then, π · a ends with a descent, but an empty one. Similar to the
above case, we therefore get one more active site in π · a than in π, and π · a has label (h, k + 1),
the last label in the first row of the production of Ωsemi.

Finally, assume that a < πn (this happens exactly h − 1 times). Now, π · a ends with a non-
empty descent, which is (πn + 1)a. It follows from the discussion at the beginning of this proof
that all sites of π ·a in (a+1, πn+1] become non-active, while all others remain active if they were
so in π (again, with a replaced by two active sites surrounding it, one below it and one above). If
a is the i-th active site from the bottom, it follows that π · a has label (i, k + 1), hence giving all
missing labels in the first row of the production of Ωsemi.

Definition 8. A plane permutation is a permutation that avoids the vincular pattern 2 14 3 (or
equivalently, the barred pattern 213̄54).

Proposition 9. Plane permutations can be generated by Ωsemi.

Proof. The proof of this statement follows applying the same steps as in the proof of Proposi-
tion 7. First, observe that removing the last element of a permutation avoiding 2 14 3, we obtain a
permutation that still avoids 2 14 3. So, a generating tree for plane permutations can be obtained
with local expansions on the right.

For π a plane permutation of size n, the active sites are by definition the values a such that
π · a is also plane, i.e., avoids 2 14 3. The other points a are called non-active sites. An occurrence
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(1,3)(2,2) (2,3) (3,2) (4,1)

Figure 5: The growth of semi-Baxter permutations. Active sites are marked with ♦, non-active
sites by ×, and non-empty descents are represented with bold blue lines.

of 2 13 in π is a subsequence πjπiπi+1 (with j < i) such that πi < πj < πi+1. Note that the non-
active sites a of π are characterized by the fact that a ∈ (πj , πi+1] for some occurrence πjπiπi+1

of 2 13. We call a non-empty ascent of π a pair πiπi+1 such that there exists πj that makes
πjπiπi+1 an occurrence of 2 13. As in the proof of Proposition 7, if πn−1πn is a non-empty ascent,
πj = πn−1 + 1 is the smallest value of πj such that πjπn−1πn is an occurrence of 2 13.

Now, to each plane permutation π of size n, we assign a label (h, k), where h (resp. k) is the
number of the active sites of π greater than (resp. smaller than or equal to) πn. Remark that
h, k ≥ 1, since 1 and πn + 1 are always active sites. Moreover, the label of the permutation π = 1
is (1, 1), which is the root in Ωsemi. The proof is concluded by showing that the permutations π ·a
have labels (1, k+ 1), . . . , (h, k+ 1), (h+ k, 1), . . . , (h+ 1, k), when a runs over all active sites of π.

If a ≤ πn, π · a ends with a descent, and it follows as in the proof of Proposition 7 that the
active sites of π · a are the same as those of π (with a split into two sites). This gives the second
row of the production of Ωsemi (the label (h+ k + 1− i, i) for 1 ≤ i ≤ k corresponding to a being
the i-th active site from the bottom).

If a = πn + 1, π · a ends with an empty ascent, and hence has label (h, k + 1) again as in the
proof of Proposition 7.

Finally, if a > πn + 1 (which happens h − 1 times), π · a ends with a non-empty ascent. The
discussion at the beginning of the proof implies that all sites of π · a in (πn + 1, a] are deactivated
while all others remain active. If a is the i-th active site from the top, it follows that π · a has
label (i, k + 1), hence giving all missing labels in the first row of the production of Ωsemi.

Because the two families of semi-Baxter and of plane permutations grow according to the same
succession rule, we obtain the following.

Corollary 10. Semi-Baxter permutations and plane permutations are equinumerous. In other
words, SBn is also the number of plane permutations of size n.

Note that the two generating trees for semi-Baxter and for plane permutations which are
encoded by Ωsemi are of course isomorphic: this provides a size-preserving bijection between these
two families. It is however not defined directly on the object themselves, but only referring to the
generating tree structure.

3.3 Properties of the semi-Baxter sequence and of its generating func-
tion

For h, k ≥ 1, let Sh,k(x) ≡ Sh,k denote the size generating function for semi-Baxter permutations
having label (h, k). The rule Ωsemi translates into a functional equation for the generating function
S(x; y, z) ≡ S(y, z) =

∑
h,k≥1 Sh,ky

hzk.

Proposition 11. The generating function S(y, z) satisfies the following functional equation:

S(y, z) = xyz +
xyz

1− y
(S(1, z)− S(y, z)) +

xyz

z − y
(S(y, z)− S(y, y)) . (1)
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Proof. Starting from the growth of semi-Baxter permutations according to Ωsemi we write:

S(y, z) = xyz + x
∑
h,k≥1

Sh,k
(
(y + y2 + · · ·+ yh)zk+1 + (yh+kz + yh+k−1z2 + · · ·+ yh+1zk)

)
= xyz + x

∑
h,k≥1

Sh,k

(
1− yh

1− y
y zk+1 +

1−
(
y
z

)k
1− y

z

yh+1zk

)
= xyz +

xyz

1− y
(S(1, z)− S(y, z)) +

xyz

z − y
(S(y, z)− S(y, y)) .

From Proposition 11, a lot of information can be derived about the generating function S(1, 1)
of semi-Baxter numbers, and about these numbers themselves. The results we obtain are stated
below, but the proofs are postponed to Subsections 3.6 and 3.7. A Maple worksheet recording the
computations in these proofs is available from the authors’ webpage2.

First, using the “obstinate kernel method” (used for instance in [8] to enumerate Baxter per-
mutations), we can give a more practical expression for S. As usual, we let ā denote 1/a.

Theorem 12. Let W (x; a) ≡W be the unique formal power series in x such that

W = xā(1 + a)(W + 1 + a)(W + a).

The series solution S(y, z) of eq. (1) satisfies S(1 + a, 1 + a) = Ω≥[F (a,W )], where Ω≥[F (a,W )]
stands for the formal power series in x obtained by considering only those terms in the series
expansion that have non-negative powers of a, and the function F (a,W ) is defined by

F (a,W ) = (1 + a)2 x+
(
ā5 + ā4 + 2 + 2a

)
xW

+
(
−ā5 − ā4 + ā3 − ā2 − ā+ 1

)
xW 2 −

(
ā4 − ā2

)
xW 3.

(2)

Note that in Theorem 12, W and F (a,W ) are algebraic series in x whose coefficients are
Laurent polynomials in a. It follows, as in [8, page 6], that S(1 + a, 1 + a) = Ω≥[F (a,W )] is
D-finite, and hence also S(1, 1).

Using the Lagrange Inversion, we can derive from Theorem 12 an explicit but complicated
expression for the coefficients of S(1, 1), which is reported in Corollary 23 in Subsection 3.7.
Surprisingly this complicated expression hides a very simple recurrence that was conjectured in [4].

Proposition 13. The numbers SBn are recursively characterized by SB0 = 0, SB1 = 1 and for
n ≥ 2

SBn =
11n2 + 11n− 6

(n+ 4)(n+ 3)
SBn−1 +

(n− 3)(n− 2)

(n+ 4)(n+ 3)
SBn−2. (3)

From the recurrence of Proposition 13, we can in turn prove closed formulas for semi-Baxter
numbers, which have been conjectured in [5]. These are much simpler than the one given in
Corollary 23 by the Lagrange inversion, and also very much alike the summation formula for
Baxter numbers (which we recall in Subsection 4.1).

Theorem 14. For any n ≥ 2, the number SBn of semi-Baxter permutations of size n satisfies

SBn =
24

(n− 1)n2(n+ 1)(n+ 2)

n∑
j=0

(
n

j + 2

)(
n+ 2

j

)(
n+ j + 2

j + 1

)

=
24

(n− 1)n2(n+ 1)(n+ 2)

n∑
j=0

(
n

j + 2

)(
n+ 1

j

)(
n+ j + 2

j + 3

)

=
24

(n− 1)n2(n+ 1)(n+ 2)

n∑
j=0

(
n+ 1

j + 3

)(
n+ 2

j + 1

)(
n+ j + 3

j

)
.

2for instance at http://user.math.uzh.ch/bouvel/publications/Semi-Baxter.mw
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There is actually a fourth formula that has been conjectured in [5], namely

SBn =
24

(n− 1)n(n+ 1)2(n+ 2)

n∑
j=0

(
n+ 1

j

)(
n+ 1

j + 3

)(
n+ j + 2

j + 2

)
.

Taking the multiplicative factors inside the sums, it is easy to see (for instance going back to the
definition of binomial coefficients as quotients of factorials) that it is term by term equal to the
second formula of Theorem 14.

From the first (or any) of the formulas above, we can derive the dominant asymptotics of SBn.

Corollary 15. Let ϕ = 1
2 (
√

5− 1). It holds that

SBn ∼ A
µn

n6
,

where A = 12
π 5−1/4ϕ−15/2 ≈ 94.34 and µ = ϕ−5 = (11 + 5

√
5)/2.

3.4 Proofs of two conjectures about semi-Baxter numbers

As indicated in Subsection 3.1, in addition to the formulas reported in Theorem 14 above, two
conjectural formulas for SBn have been proposed in the literature, in different contexts.

The first one is attributed to M. Van Hoeij and reported by D. Bevan in [4]. The conjecture is

an explicit formula for semi-Baxter numbers that involves Apéry numbers an =
∑n
j=0

(
n
j

)2(n+j
j

)
(sequence A005258 on [20]). We will prove the validity of this conjecture using the recursive
formula for semi-Baxter numbers (Proposition 13) and the following recurrence satisfied by Apéry
numbers:

an+1 =
11n2 + 11n+ 3

(n+ 1)2
an +

n2

(n+ 1)2
an−1. (4)

Proposition 16 ([4], Conjecture 13.2). For n ≥ 2,

SBn =
24((5n3 − 5n+ 6)an+1 − (5n2 + 15n+ 18)an)

5(n− 1)n2(n+ 2)2(n+ 3)2(n+ 4)

Proof. For the sake of brevity we write A(n) = 5n3 − 5n+ 6 and B(n) = 5n2 + 15n+ 18 so that
the statement becomes

SBn =
24(A(n) an+1 −B(n) an)

5(n− 1)n2(n+ 2)2(n+ 3)2(n+ 4)
. (5)

The validity of eq. (5) is proved by induction on n: for n = 2, 3, it holds SB2 = A(2)a3−B(2)a2
2000 =

36·147−68·19
2000 = 2 and SB3 = A(3)a4−B(3)a3

23625 = 126·1251−108·147
23625 = 6.

Then, suppose that eq. (5) is valid for n− 1 and n− 2. In order to prove it for n, consider the
recursive formula of eq. (3) and substitute in it SBn−1 and SBn−2 by using eq. (5). Now, after
some work of manipulation and by using eq. (4) we can write SBn as in eq. (5).

Remark 17. With Corollary 23, Theorem 14 and Proposition 16, we get five expressions for the
nth semi-Baxter number as a sum over j. Note that although the sums are equal, the corresponding
summands in each sum are not (this is readily checked for n = 8 and j = 5 for instance). Therefore,
Corollary 23, Theorem 14 and Proposition 16 give five essentially different ways of expressing the
semi-Baxter numbers.

The second conjecture appears in the work of M. Martinez and C. Savage on pattern-avoiding
inversion sequences [21].
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Recall that an inversion sequence of size n is an integer sequence (e1, e2, . . . , en) satisfying
0 ≤ ei < i for all i ∈ {1, 2, . . . , n}. In [21] the authors introduce the notion of pattern avoidance
in inversion sequences in quite general terms.

Of interest to us here is only the set In(210, 100) of inversion sequences avoiding the patterns
210 and 100, which can be characterized as follows. A weak left-to-right maximum of an inversion
sequence (e1, e2, . . . , en) is an entry ei satisfying ei ≥ ej for all j ≤ i. Every inversion sequence e
can be decomposed in etop, which is the (weakly increasing) sequence of weak left-to-right maxima
of e, and ebottom, which is the (possibly empty) sequence of the remaining entries of e.

Proposition 18 ([21], Observation 10). An inversion sequence e avoids 210 and 100 if and only
if etop is weakly increasing and ebottom is strictly increasing.

The enumeration of inversion sequences avoiding 210 and 100 is solved in [21], with a sum-
mation formula as reported in Proposition 19 below. Let top(e) = max (etop) and bottom(e) =
max (ebottom). If ebottom is empty, the convention is to take bottom(e) = −1.

Proposition 19 ([21], Theorem 32). Let Qn,a,b be the number of e ∈ In(210, 100) with top(e) = a

and bottom(e) = b. Then Qn,a,b =
∑b−1
i=−1Qn−1,a,i +

∑a
j=b+1Qn−1,j,b, with initial conditions

Qn,a,b = 0, if n ≤ a, and Qn,a,−1 = n−a
n

(
n−1+a

a

)
. Hence,

|In(210, 100)| =
n−1∑
a=0

a−1∑
b=−1

Qn,a,b =
1

n+ 1

(
2n

n

)
+

n−1∑
a=0

a−1∑
b=0

Qn,a,b. (6)

We prove the following conjecture of [21].

Theorem 20. There are as many inversion sequences of size n avoiding 210 and 100 as plane
permutations of size n. In other words |In(210, 100)| = SBn.

Proof. We prove the statement by showing that ∪nIn(210, 100) grows according to Ωsemi. Given
an inversion sequence e ∈ In(210, 100), we make it grow by adding a rightmost entry.

Let a be the top(e) and b be the bottom(e). From Proposition 18, it follows that f = (e, p) =
(e1, . . . , en, p) is an inversion sequence of size n+ 1 avoiding 210 and 100 if and only if n ≥ p > b.
Moreover, if p ≥ a, then f top = (etop, p) and f bottom = ebottom; and if b < p < a, then f top = etop

and f bottom = (ebottom, p).
Now, we assign to any e ∈ In(210, 100) the label (h, k), where h = a − b and k = n − a.

The sequence e = (0) has label (1, 1), since a = top(e) = 0 and b = bottom(e) = −1. Let e be
an inversion sequence of In(210, 100) with label (h, k). The labels of the inversion sequences of
In+1(210, 100) produced adding a rightmost entry p to e are

• (h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k) when p = n, n− 1, . . . , a+ 1,

• (h, k + 1) when p = a,

• (1, k + 1), . . . , (h− 1, k + 1) when p = a− 1, . . . , b+ 1,

which concludes the proof that ∪nIn(210, 100) grows according to Ωsemi.

3.5 Semi-Baxter paths

To our knowledge, only families of restricted permutations are known to be counted by the semi-
Baxter numbers. Here, we provide a new occurrence of these numbers in terms of labeled Dyck
paths, as a restricted family of factorial paths.

Definition 21. A semi-Baxter path is a factorial path where the labels of the free up steps satisfy
the following additional constraint: for every pair of free up steps (U ′, U ′′) with U ′ occurring before
U ′′ and no free up step between them, the label of U ′′ is in the range [1, h], where h ≥ 1 is the sum
of the label of U ′ with the number of D steps between U ′ and U ′′.
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A semi-Baxter path can be obtained from a Dyck path by properly labeling its free up steps as
shown in Figure 6 (left). The factorial path in Figure 6 (right) is not a semi-Baxter path, because
the last free up step is labeled by 6, which is here a value outside of the range of Definition 21.
Observe that unlike in factorial paths, the sequence of labels corresponding to consecutive free up
steps in semi-Baxter paths has to be non-increasing.

1

1

1

1

62

3

42

3

Figure 6: A semi-Baxter path (left) and a factorial path which is not a semi-Baxter path (right).

Let SBn denote the set of semi-Baxter paths of size n. With Proposition 22 below, we prove
that SB = ∪nSBn is enumerated by sequence of semi-Baxter numbers.

Proposition 22. Semi-Baxter paths grow according to the rule Ωsemi.

Proof. Similarly to Dyck paths and factorial paths, we make semi-Baxter paths grow by insertion
of a peak in the last descent, as shown in Figure 7. To any s ∈ SBn, denoting e the label of its
rightmost free up step U (which always exists, since the first step of the path is always a free up
step), we assign the label (h, k), where h is equal to e plus the number of down steps between
U and the rightmost up step of s (they might coincide) and k is the number of steps of the last
descent of s. With this labeling, we shall see that the growth of semi-Baxter paths can be encoded
by Ωsemi.

The unique semi-Baxter path in SB1 receives the label (1, 1). From any s ∈ SBn of label (h, k),
we perform two kinds of insertions, which we shall see correspond to all productions of (h, k) in
Ωsemi.

a) We add a peak at the beginning of the last descent of s. This means that the added U step
follows another up step and hence is free, while the number of down steps in the last descent
increases by one. Moreover, U receives a label, which can be any value in the range [1, h].
If i is the label assigned to U , for 1 ≤ i ≤ h, then the path produced has label (i, k + 1).

b) We add a peak immediately after any down step of the last descent of s. In this case the added
step U is not free, and hence carry no label. Denoting s = w · UDk (with this U possibly
labeled), the children of s so produced are w · UDjUDDk−j for 1 ≤ j ≤ k, so they have
labels (h+ j, k + 1− j).

3

1

11

1

1

1

1

11

1

11

1

11

1

1

(3,2)

(5,1)

(1,3)

(4,2)

(2,3) (3,3)

1 2

1

Figure 7: The growth of a semi-Baxter path of label (3, 2).

3.6 Generating function of semi-Baxter numbers: proof

Recall that S(y, z) denotes the multivariate generating function of semi-Baxter permutations. In
Theorem 12, we have given an expression for S(1 + a, 1 + a), which we now prove.
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Proof of Theorem 12. The linear functional equation of eq. (1) has two catalytic variables, y and
z and its solution S(y, z) is not symmetric in y and z. To solve eq. (1) it is convenient to set
y = 1 + a and collect all the terms having S(1 + a, z) in them, obtaining the kernel form of the
equation:

K(a, z)S(1 + a, z) = xz(1 + a) +
xz(1 + a)

a
S(1, z)− xz(1 + a)

z − 1− a
S(1 + a, 1 + a), (7)

where the kernel function is K(a, z) = 1− xz(1+a)
a − xz(1+a)

z−1−a . For brevity, we refer to the right-hand
side of eq. (7) as R(x, a, z, S(1, z), S(1 + a, 1 + a)).

The kernel function is quadratic in z. Denoting Z+(a) and Z (a) the solutions of K(a, z) = 0
with respect to z, and Q =

√
a2 − 2ax− 6a2x+ x2 + 2ax2 + a2x2 − 4a3x, we have

Z+(a) =
1

2

a+ x+ ax−Q
x(1 + a)

= (1 + a) + (1 + a)2x+
(1 + a)3(1 + 2a)

a
x2 +O(x3),

Z (a) =
1

2

a+ x+ ax+Q

x(1 + a)
=

a

(1 + a)x
− a− (1 + a)2x− (1 + a)3(1 + 2a)

a
x2 +O(x3).

The kernel root Z is not a well-defined power series in x, whereas the other kernel root Z+

is a power series in x whose coefficients are Laurent polynomials in a. So, setting z = Z+, the
function S(1 + a, z) is a convergent power series in x and the right-hand side of eq. (7) is equal to
zero, i.e. R(x, a, Z+, S(1, Z+), S(1 + a, 1 + a)) = 0.

At this point we follow the usual kernel method approach (see for instance [8]) and attempt
to eliminate the term S(1, Z+) by exploiting transformations that leave the kernel, K(a, z), un-
changed. Examining the kernel shows that the transformations

Φ : (a, z)→
(
z − 1− a

1 + a
, z

)
and Ψ : (a, z)→

(
a,
z + za− 1− a
z − 1− a

)
leave the kernel unchanged and generate a group of order 10.

Among all the elements of this group we consider the following pairs (f1(a, z), f2(a, z)):

[a, z]←→
Φ

[
z − 1− a

1 + a
, z

]
←→

Ψ

[
z − 1− a

1 + a
,
z − 1

a

]
←→

Φ

[
z − 1− a

az
,
z − 1

a

]
←→

Ψ

[
z − 1− a

az
,

1 + a

a

]
.

These have been chosen since, for each of them, f1(a, Z+) and f2(a, Z+) are well-defined power
series in x with Laurent polynomial coefficients in a. Moreover, they share the property that
S(1 + f1(a, Z+), f2(a, Z+)) are convergent power series in x. It follows that, substituting each of
these pairs for (a, z) in eq. (7), we obtain a system of five equations, whose left-hand sides are all
0, and with six overlapping unknowns:

0 = R(x, a, Z+, S(1, Z+), S(1 + a, 1 + a))

0 = R
(
x, Z+−1−a

1+a , Z+, S(1, Z+), S(1 + Z+−1−a
1+a , 1 + Z+−1−a

1+a )
)

0 = R
(
x, Z+−1

a , Z+−1−a
1+a , S(1, Z+−1

a ), S(1 + Z+−1−a
1+a , 1 + Z+−1−a

1+a )
)

0 = R
(
x, Z+−1−a

aZ+
, Z+−1

a , S(1, Z+−1
a ), S(1 + Z+−1−a

aZ+
, 1 + Z+−1−a

aZ+
)
)

0 = R
(
x, Z+−1−a

aZ+
, 1+a

a , S(1, 1+a
a ), S(1 + Z+−1−a

aZ+
, 1 + Z+−1−a

aZ+
)
)
.

Eliminating all unknowns except S(1+a, 1+a) and S(1, 1+ ā), this system reduces (after some

work) to the following equation, where P (a, z) = (−z+1+a)
z(z−1)a4 (−za4 + z2a4 − za3 + z2a3 − z3a2 −
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2a2 + z2a2 + za2 − 4a+ 5az − 3az2 + z3a+ 3z − z2 − 2):

S(1 + a, 1 + a)− (1 + a)2x

a4
S (1, 1 + ā) + P (a, Z+) = 0. (8)

The form of eq. (8) allows us to separate its terms according to the power of a:

• S(1 + a, 1 + a) is a power series in x with polynomial coefficient in a whose lowest power of
a is 0,

• S(1, 1 + ā) is a power series in x with polynomial coefficient in ā whose highest power of a is

0; consequently, and since (1+a)2x
a4 = x(a−4 + 2a−3 + a−2), we obtain that (1+a)2x

a4 S(1, 1 + ā)
is a power series in x with polynomial coefficients in ā whose highest power of a is −2.

Hence when we expand the series −P (a, Z+) as a power series in x, the non-negative powers of a
in the coefficients must be equal to those of S(1 + a, 1 + a), while the negative powers of a come

from (1+a)2x
a4 S(1, 1 + ā).

Then, in order to have a better expression for P (a, z), we perform a further substitution setting
z = w+1+a. More precisely, let W ≡W (x; a) be the power series in x defined by W = Z+−(1+a).
We have the following expression for F (a,W ) := −P (a, Z+):

F (a,W ) = −P (a, Z+) = −P (a,W + 1 + a) = (1 + a)2 x+
(

1
a5 + 1

a4 + 2 + 2a
)
xW

+
(
− 1
a5 −

1
a4 + 1

a3 −
1
a2 −

1
a + 1

)
xW 2

−
(

1
a4 −

1
a2

)
xW 3.

Moreover, since K(a,W + 1 + a) = 0, the function W is recursively defined by

W = xā(1 + a)(W + 1 + a)(W + a), (9)

as claimed.

3.7 Formulas for semi-Baxter numbers: proofs

From the expression of S(1 + a, 1 + a) obtained above, the Lagrange inversion allows us to derive
an explicit expression for the semi-Baxter numbers, as shown below in Corollary 23. This first
formula for SBn is complicated, but we show how to obtain from it the simple recurrence of
Proposition 13. Next, this recurrence allow us to prove the conjectured simpler formulas for SBn
stated in Theorem 14. Finally, from one of these nice formulas, we prove the asymptotic estimate
of SBn stated in Corollary 15.

Corollary 23. The number SBn of semi-Baxter permutations of size n satisfies:

for all n ≥ 1, SBn+1 = 1
n

∑n
j=0

(
n
j

) [
2
(
n+1
j+2

)(
n+j+2
n+2

)
+
(
n
j+1

)(
n+j+2
n−3

)
+ 3

(
n
j+4

)(
n+j+4
n+1

)
+2
(
n
j+2

)(
n+j+4
n

)
(2− n+j+5

n+1 −
n
j+5 ) + 2n

j+3

(
n
j+2

)(
n+j+2
n

)]
.

Proof. The nth semi-Baxter number, SBn, is the coefficient of xn in S(1, 1), which we denote as
usual [xn]S(1, 1). Notice that this number is also the coefficient [a0xn]S(1 + a, 1 + a), and so by
Theorem 12 it is the coefficient of a0xn in F (a,W ) = −P (a,W + 1 + a), namely

SBn = [a0xn−1]
(
(1 + a)2 +

(
1
a5 + 1

a4 + 2 + 2a
)
W +

(
− 1
a5 −

1
a4 + 1

a3 −
1
a2 −

1
a + 1

)
W 2

+
(

1
a4 −

1
a2

)
W 3
)
.

This expression can be evaluated from [asxk]W i, for i = 1, 2, 3. Precisely,

SBn = [a5xn−1]W + [a4xn−1]W + 2[a0xn−1]W + 2[a−1xn−1]W − [a5xn−1]W 2 − [a4xn−1]W 2

+[a3xn−1]W 2 − [a2xn−1]W 2 − [a1xn−1]W 2 +
[
a0xn−1

]
W 2 + [a4xn−1]W 3 − [a2xn−1]W 3.
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The Lagrange inversion and eq. (9) then prove that

[asxk]W i =
i

k

k−i∑
j=0

(
k

j

)(
k

j + i

)(
k + j + i

j + s

)
, for i = 1, 2, 3.

We can then substitute this into the above expression for SBn and so, for n ≥ 2, express SBn as
SBn =

∑n−1
j=0 FSB(n, j), where

FSB(n, j) = 1
n−1

(
n−1
j

){(
n−1
j+1

) [(
n+j+1
j+5

)
+ 2
(
n+j+1

j

)]
+ 2
(
n−1
j+2

) [
−
(
n+j+2
j+5

)
+
(
n+j+1
j+3

)
−
(
n+j+2
j+2

)
+
(
n+j+1

j

)]
+3
(
n−1
j+3

) [(
n+j+2
j+4

)
−
(
n+j+2
j+2

)]}
.

(10)

Then, manipulating the products in each term by means of binomial coefficient identities we obtain
the announced explicit formula for the semi-Baxter coefficients:

for all n ≥ 1, SBn+1 = 1
n

∑n
j=0

(
n
j

) [
2
(
n+1
j+2

)(
n+j+2
n+2

)
+
(
n
j+1

)(
n+j+2
n−3

)
+ 3

(
n
j+4

)(
n+j+4
n+1

)
+2
(
n
j+2

)(
n+j+4
n

)
(2− n+j+5

n+1 −
n
j+5 ) + 2n

j+3

(
n
j+2

)(
n+j+2
n

)]
.

Proof of Proposition 13. From Corollary 23, we can write SBn =
∑n−1
j=0 FSB(n, j), where the

summand FSB(n, j) given by eq. (10) is hypergeometric, and we prove the announced recurrence
using creative telescoping [22]. The Maple package ZEILBERGER implements this approach: using
FSB(n, j) as input, it yields

(n+ 5)(n+ 6) · FSB(n+ 2, j)− (11n2 + 55n+ 60) · FSB(n+ 1, j)− n(n− 1) · FSB(n, j)

= GSB(n, j + 1)−GSB(n, j), (11)

whereGSB(n, j) is known as the certificate. It has the additional property thatGSB(n, j)/FSB(n, j)
is a rational function of n and j. The expression GSB(n, j) is quite cumbersome and we do not
report it here — it can be readily reconstructed using ZEILBERGER as done in the Maple worksheet
associated with our paper.

To complete the proof of the recurrence it is sufficient to sum both sides of eq. (11) over j, j
ranging from 0 to n+ 1. Since the coefficients on the left-hand side of eq. (11) are independent of
j, summing it over j gives

(n+ 5)(n+ 6) · SBn+2 − (11n2 + 55n+ 60) · SBn+1 − n(n− 1) · SBn
− (11n2 + 55n+ 60) · FSB(n+ 1, n+ 1)− n(n− 1) · (FSB(n, n) + FSB(n, n+ 1)) (12)

Summing the right-hand side over j gives a telescoping series, and simplifies as GSB(n, n + 2) −
GSB(n, 0). From the explicit expression of FSB(n, j) and GSB(n, j), it is elementary to check that

FSB(n+ 1, n+ 1) = FSB(n, n) = FSB(n, n+ 1) = GSB(n, n+ 2) = GSB(n, 0) = 0.

Summing eq. (11) therefore gives

(n+ 5)(n+ 6) · SBn+2 − (11n2 + 55n+ 60) · SBn+1 − n(n− 1) · SBn = 0.

Shifting n 7→ n− 2 and rearranging finally gives the recurrence of Proposition 13.

Proof of Theorem 14. For each of the summation formulas given in Theorem 14, we apply the
method of creative telescoping, as in the proof of Proposition 13. In all three cases, this produces
a recurrence satisfied by these numbers, and every time we find exactly the recurrence given in
Proposition 13. Checking that the initial terms of the sequences coincide completes the proof.
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Proof of Corollary 15. From Theorem 14, and letting

A(n; j) ≡ A(j) =
24

(n− 1)n2(n+ 1)(n+ 2)

(
n

j + 2

)(
n+ 2

j

)(
n+ j + 2

j + 1

)
,

we have that for all n ≥ 2, SBn =
∑n
j=0A(j). From this expression, the proof of Corollary 15

follows the same strategy as in [11, Section 2.6]. We first show that the summands A(j) form
a unimodal sequence, and we identify the value j0 where A(j) is maximal. Second, we find an
estimate of A(j) when j is close to j0 (in an interval of width O(n1/2+ε)). We next split the sum∑n
j=0A(j) into two parts: the terms for j outside of this interval, and those for j inside. The

third step is to prove that the first part is negligible with respect to the second part. And the
fourth step is to estimate the second part of the sum, using the estimate of A(j) when j is close
to j0.

This is achieved in a series of four lemmas below. Combining Lemmas 27 and 28, it then
follows immediately that, for any ε ∈ (0, 1/6), we have

SBn = Aµnn−6
(

1 +O
(
n3ε−1/2

))
,

where ϕ = 1
2 (
√

5 − 1), A = 12
π 5−1/4ϕ−15/2 ≈ 94.34 and µ = ϕ−5 = (11 + 5

√
5)/2. And this

completes the proof of Corollary 15.

Remark 24. The computations presented in the lemmas below are actually simpler than those
in [11, Section 2.6], because we are interested in the dominant asymptotics only. But follow-
ing [11] more closely and keeping higher order terms in our expansions, one could establish further
subdominant terms in the asymptotic expansion of SBn.

Lemma 25. For large enough n, the numbers A(j) form a unimodal sequence. Moreover, the
maximum of this sequence occurs at j = ϕn+O(1), for ϕ = 1

2 (
√

5− 1).

Proof. Let R be the ratio R ≡ R(j) = A(j)
A(j+1) = (j+1)(j+2)(j+3)

(n+2−j)(n−j−2)(n+j+3) . Rewrite it as R = F ·G·H,

where F = (j+1)
(n−j−2) , G = (j+2)

(n−j+2) and H = j+3
n+j+3 . Computing the derivatives in j of F , G and H,

we check that each of them is an increasing function of j, thus R is increasing with j. Moreover,
for n large enough, it holds that R(0) ≤ 1 and R(n− 3) ≥ 1. Therefore, A(j) is a unimodal (and
actually log-concave) sequence and there exists j0 ∈ [0, n− 3] such that R(j0) = 1.

To find this value j0 where A(j) reaches its maximum, we simply set R = 1 and solve it for j.
The equation R = 1 is quadratic in j and we choose the only solution lying in the range [0, n− 3].
Expanding it in n gives j0 = ϕn− 3

2 + 3
10

√
5 +O(n−1), with ϕ = 1

2 (
√

5− 1).

Lemma 26. Let ε ∈ (0, 1/6) and j = ϕn+ r, with r = s
√
n and |s| ≤ nε. Then:

A(j) =
24√
8π3
· ϕ−5n−9 · n−13/2 · e−(1/ϕ3+1/2)·s2

(
1 +O

(
n3ε−1/2

))
.

Moreover, this estimate is uniform in j.

Proof. We start with an estimate of each of the binomial coefficients occurring in A(j), obtained
using expansions of the Gamma function.

First, recall the Stirling expansion Γ(n + 1) = nn ·
√

2πn · e−n ·
(
1 +O

(
1
n

))
. Hence, with

j = ϕn+ r and r = s
√
n, we also have

Γ(j + 3) = (j + 2)j+2 ·
√

2π · √ϕn
(

1 +O(nε−1/2)
)
· e−(j+2) ·

(
1 +O

(
1

j + 2

))
= (j + 2)j+2 ·

√
2πϕn · e−(j+2) ·

(
1 +O(nε−1/2)

)
,

and similarly Γ(n− j − 1) = (n− j − 2)n−j−2 ·
√

2π(1− ϕ)n · e−(n−j−2) ·
(
1 +O(nε−1/2)

)
.
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Note that the above expansions for Γ(j + 3) and Γ(n− j − 1) are both uniform in j. This will
also be the case for the other expansions obtained later in this proof, but we will not remark on
it every time.

We further expand

log nn

(j+2)j+2(n−j−2)n−j−2 = n log n
n−j−2 − (j + 2) log j+2

n−j−2

= n log

(
1

1−ϕ ·
1

1− s
(1−ϕ)

√
n
− 2

(1−ϕ)n

)
− (j + 2) log

(
ϕ

1−ϕ ·
1+ s

ϕ
√

n
+ 2

ϕn

1− s
(1−ϕ)

√
n
− 2

(1−ϕ)n

)
= n

(
log 1

1−ϕ + s
(1−ϕ)

√
n

+ s2

2(1−ϕ)2n + 2
(1−ϕ)n +O(n3ε−3/2)

)
− (j + 2)

(
log ϕ

1−ϕ + s
ϕ(1−ϕ)

√
n

+ s2(2ϕ−1)
2ϕ2(1−ϕ)2n + 2

(1−ϕ)n +O(n3ε−3/2)
)

= n log 1
1−ϕ + s

√
n

(1−ϕ) + s2

2(1−ϕ)2 + 2
(1−ϕ) +O(n3ε−1/2)

− (j + 2) log ϕ
1−ϕ −

s
√
n

(1−ϕ) −
s2

2ϕ(1−ϕ)2 −
2

(1−ϕ) +O(n3ε−1/2)

= n log 1
1−ϕ − (j + 2) log ϕ

1−ϕ + s2

2(1−ϕ)2

(
1− 1

ϕ

)
+O(n3ε−1/2).

So, exponentiating, we obtain

nn

(j + 2)j+2(n− j − 2)n−j−2
=

(
1

1− ϕ

)n(
1− ϕ
ϕ

)j+2

· e−s
2/2ϕ(1−ϕ)

(
1 +O

(
n3ε−1/2

))
.

This gives our estimate for the binomial coefficient
(
n
j+2

)
= Γ(n+1)

Γ(j+3)Γ(n−j−1) occurring in A(j):

(
n

j + 2

)
=

1√
2πϕ(1− ϕ)n

·
(

1

1− ϕ

)n(
1− ϕ
ϕ

)j+2

· e−s
2/2ϕ(1−ϕ)

(
1 +O

(
n3ε−1/2

))
.

We need to compute similar estimates for the other two binomial coefficients occurring in A(j),
namely

(
n+2
j

)
and

(
n+j+2
j+1

)
. Skipping the details, we obtain(

n+ 2

j

)
=

1√
2πϕ(1− ϕ)n

·
(

1

1− ϕ

)n+2(
1− ϕ
ϕ

)j
· e−s

2/2ϕ(1−ϕ)
(

1 +O
(
n3ε−1/2

))
and

(
n+ j + 2

j + 1

)
=

√
1 + ϕ

2πϕn
· (1 + ϕ)n+j+2ϕ−(j+1) · e−s

2/2
(

1 +O
(
n3ε−1/2

))
.

Consequently, since ϕ2 = 1− ϕ and 1 + ϕ = 1/ϕ, we obtain(
n

j + 2

)(
n+ 2

j

)(
n+ j + 2

j + 1

)
=

1√
8π3
· ϕ−9 · ϕ−5n · n−3/2 · e−(1/ϕ3+1/2)·s2

(
1 +O

(
n3ε−1/2

))
.

This finally gives us our claimed estimate for A(j) = 24
(n−1)n2(n+1)(n+2)

(
n
j+2

)(
n+2
j

)(
n+j+2
j+1

)
:

A(j) =
24√
8π3
· ϕ−5n−9 · n−13/2 · e−(1/ϕ3+1/2)·s2 ·

(
1 +O

(
n3ε−1/2

))
.

Lemma 27. Let ε ∈ (0, 1/6). Then for all m ≥ 0,∑
|j−ϕn|>n1/2+ε

A(j) = o(ϕ−5nn−m).

Proof. Let j+ = bϕn+ n1/2+εc and j− = dϕn− n1/2+εe. By Lemma 25 (unimodality), we have∑
|j−ϕn|>n1/2+ε

A(j) ≤ (ϕn− n1/2+ε) ·A(j−) + (n− ϕn− n1/2+ε) ·A(j+).
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Moreover, by Lemma 26, it holds that

A(j±) =
24√
8π3
· ϕ−5n−9 · n−13/2 · e−(1/ϕ3+1/2)·n2ε

·
(

1 +O
(
n3ε−1/2

))
.

It follows that for every m ≥ 0,

(ϕn− n1/2+ε)A(j−) = o(ϕ−5nn−m) and (n− ϕn− n1/2+ε)A(j+) = o(ϕ−5nn−m).

Lemma 28. Let ε ∈ (0, 1/6). Then,∑
|j−ϕn|≤n1/2+ε

A(j) = Aµnn−6
(

1 +O
(
n3ε−1/2

))
,

where A = 12
π 5−1/4ϕ−15/2 ≈ 94.34 and µ = ϕ−5 = (11 + 5

√
5)/2.

Proof. The estimate of Lemma 26 being uniform in j, we can write∑
|j−ϕn|≤n1/2+ε

A(j) =
∑

|j−ϕn|≤n1/2+ε

24√
8π3
· ϕ−5n−9 · n−13/2 · e−(1/ϕ3+1/2)·(j−ϕn)2/n ·

(
1 +O

(
n3ε−1/2

))
=

24√
8π3
· ϕ−5n−9 · n−13/2 ·

(
1 +O

(
n3ε−1/2

)) ∑
|j−ϕn|≤n1/2+ε

e−(1/ϕ3+1/2)·(j−ϕn)2/n.

Using the Euler-Maclaurin formula, we rewrite this sum as an integral as follows:∑
|j−ϕn|≤n1/2+ε

e−(1/ϕ3+1/2)·(j−ϕn)2/n =
√
n ·
∫ ∞
−∞

e−(1/ϕ3+1/2)s2ds+ o(n−m)

=
√
n ·

√
2πϕ3

√
5

+ o(n−m).

In this formula, m is any positive integer (since the error term in the Euler-Maclaurin formula is
smaller than any polynomial in n). Note also that the leading

√
n comes from changing integration

variables from j to s (with j = ϕn + s
√
n). The estimate given in Lemma 28 finally follows by

elementary computations.

4 Baxter numbers

This section starts with an overview of some known results about Baxter numbers. We believe it
helps understanding the relations, similarities and differences between this well-known sequence
and the two main sequences studied in our work (semi-Baxter numbers in Section 3 and strong-
Baxter numbers in Section 5). Next, studying two families of restricted semi-Baxter permutations
enumerated by Baxter numbers, we show that Ωsemi generalizes two known succession rules for
Baxter numbers. Finally, we introduce Baxter paths, a family of restricted semi-Baxter paths
enumerated by Baxter numbers as well. To our knowledge, this is the first definition of a com-
binatorial family enumerated by Baxter numbers where the objects are single paths (although
triples of non-intersecting lattice paths are known to be enumerated by Baxter numbers, see [7]
for instance).

4.1 Baxter numbers and restricted permutations

Baxter permutations (see [17] among others) are usually defined as permutations avoiding the two
vincular patterns 2 41 3 and 3 14 2. Denoting Bn the number of Baxter permutations of size n, the
sequence (Bn) is known as the sequence of Baxter numbers. It is identified as sequence A001181
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in [20] and its first terms are 1, 2, 6, 22, 92, 422, 2074, 10754, . . . . Since [14], an explicit formula for
Bn has been known:

for all n ≥ 1, Bn =
2

n(n+ 1)2

n∑
j=1

(
n+ 1

j − 1

)(
n+ 1

j

)(
n+ 1

j + 1

)
.

In [8], M. Bousquet-Mélou investigates further properties of Baxter numbers. The above formula
can also be found in [8, Theorem 1]. Moreover, using the succession rule reviewed in Proposi-
tion 29 below, [8] characterizes the generating function of Baxter numbers as the solution of a
bivariate functional equation. It is then solved with the obstinate kernel method, implying that
the generating function for Baxter numbers is D-finite [8, Theorem 4]. Although technical details
differ, it is the same approach than the one we used in Section 3. In the light of our recurrence
for semi-Baxter numbers (see Proposition 13), it is also interesting to note that Baxter numbers
satisfy a similar recurrence, attributed to R. Stanley and reported by M. Somos in [20], namely

B0 = 0, B1 = 1, and for n ≥ 2, Bn =
7n2 + 7n− 2

(n+ 3)(n+ 2)
Bn−1 +

8(n− 2)(n− 1)

(n+ 3)(n+ 2)
Bn−2.

In addition to Baxter permutations, several combinatorial families are enumerated by Baxter
numbers. See for instance [15] which collects some of them and provides links between them. We
will be specifically interested in a second family of restricted permutations which is also enumerated
by Baxter numbers, namely the twisted Baxter permutations, defined by the avoidance of 2 41 3
and 3 41 2 [24, 26].

4.2 Succession rules for Baxter and twisted Baxter permutations

It is clear from their definition in terms of pattern-avoidance that the families of Baxter and
twisted Baxter permutations are subsets of the family of semi-Baxter permutations. Therefore,
the growth of semi-Baxter permutations provided in Subsection 3.2 can be restricted to each of
these families, producing a succession rule for Baxter numbers. In the following, we present these
two restrictions, which happen to be (variants of) well-known succession rules for Baxter numbers.
This reinforces our conviction that the generalization of Baxter numbers to semi-Baxter numbers
is natural.

Let us first consider Baxter permutations. To that effect, recall that a LTR (left-to-right)
maximum of a permutation π is an element πi such that πi > πj for all j < i. Similarly, a
RTL maximum (resp. RTL minimum) of π is an element πi such that πi > πj (resp. πi < πj)
for all j > i. Following [8, Section 2.1] we can make Baxter permutations grow by adding new
maximal elements to them, which may be inserted either immediately before a LTR maximum or
immediately after a RTL maximum. Giving to any Baxter permutation the label (h, k) where h
(resp. k) is the number of its RTL (resp. LTR) maxima, this gives the most classical succession
rule for Baxter numbers.

Proposition 29 ([8], Lemma 2). Baxter permutations grow according to

ΩBax =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h+ 1, 1), . . . , (h+ 1, k).

But note that Baxter permutations are invariant under the 8 symmetries of the square. Con-
sequently, up to a 90◦ rotation, inserting a new maximum element in a Baxter permutation can
be easily regarded as inserting a new element on the right of a Baxter permutation (as we did for
semi-Baxter permutations). Those are then inserted immediately below a RTL minimum or imme-
diately above a RTL maximum. Note that, in a semi-Baxter permutation, these are always active
sites, so the generating tree associated with ΩBax is a subtree of the generating tree associated
with Ωsemi. Through the rotation, the interpretation of the label (h, k) of a Baxter permutation
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is modified as follows: h (resp. k) is the number of its RTL minima (resp. RTL maxima), that is
to say of active sites below (resp. above) the last element of the permutation. As expected, this
coincides with the interpretation of labels in the growth of semi-Baxter permutations according
to Ωsemi.

Turning to twisted Baxter permutations, specializing the growth of semi-Baxter permutations,
we obtain the following.

Proposition 30. Twisted Baxter permutations grow according to

ΩTBax =

 (1, 1)
(h, k) (1, k), . . . , (h− 1, k), (h, k + 1)

(h+ k, 1), . . . , (h+ 1, k).

Proof. As in the proof of Proposition 7, we let twisted Baxter permutations grow by performing
local expansions on the right, as illustrated in Figure 8. (This is possible since removing the last
element in a twisted Baxter permutation produces a twisted Baxter permutation.)

Let π be a twisted Baxter permutation of size n. By definition an active site s of π is an
element a such that π · a avoids the two forbidden patterns. Then, we assign to π a label (h, k),
where h (resp. k) is the number of active sites smaller than or equal to (resp. greater than) πn.
As in the proof of Proposition 7, the permutation 1 has label (1, 1) and now we describe the labels
of the permutations π · a when a runs over all the active sites of π.

If a < πn, then π · a ends with a non-empty descent and, as in the proof of Proposition 7, all
sites of π in the range (a+ 1, πn + 1] become non-active in π · a (due to the avoidance of 2 41 3).
Moreover, due to the avoidance of 3 41 2, the site immediately above a in π · a also becomes non-
active. All other active sites of π remain active in π ·a, hence giving the labels (i, k), for 1 ≤ i < h,
in the productions of ΩTBax ((i, k) corresponds to the case where a is the ith active site from the
bottom).

If a = πn, no sites of π become non-active, giving the label (h, k + 1).
If a > πn, then π ·a ends with an ascent and no site of π become non-active. Hence, we obtain

the missing labels in the production of ΩTBax: (h+k+1−i, i), for 1 ≤ i ≤ k (label (h+k+1−i, i)
corresponds to a being the ith active site from the top).

(3,1)(2,2)(1,1)(2,1)

Figure 8: The growth of twisted Baxter permutations (with notation as in Figure 5).

We remark that although ΩTBax is not precisely the succession rule presented in [13] for
twisted Baxter permutations, it is an obvious variant of it: indeed, starting from the rule of [13],
it is enough to replace every label (q, r) by (r + 1, q − 1) to recover ΩTBax.

It follows immediately from the proof of Proposition 30 that ΩTBax is a specialization of Ωsemi.
With ΩBax, we therefore obtain two such specializations. In addition, we can observe that the
productions of ΩTBax on second line are the same as in Ωsemi, whereas the productions on the
first line of ΩBax are the same as Ωsemi. This means that the restrictions imposed by these two
specializations are “independent”. We will combine them in Section 5, obtaining a succession rule
which consists of the first line of ΩTBax and the second line of ΩBax.
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4.3 Baxter paths

Recall that semi-Baxter paths defined in Subsection 3.5 grow according to Ωsemi. Since ΩBax is a
restriction of Ωsemi, this allows to define a family of labeled Dyck paths (our Baxter paths) which
grow according to ΩBax, and therefore are enumerated by the Baxter numbers.

Note that this is in theory also possible considering the restriction ΩTBax of Ωsemi; however,
we have not been able to translate this restriction into a nice characterization on the allowed labels
on the free up steps, unlike in the case of ΩBax which we now present.

Definition 31. A Baxter path is a factorial path where the labels of the free up steps satisfy the
following additional constraint: for every pair of free up steps (U ′, U ′′) with U ′ occurring before
U ′′ and no free up step between them, the label of U ′′ is in the range [1, h], where h ≥ 1 is the sum
of the label of U ′ with the number of DU factors between U ′ and U ′′.

Comparing with Definition 21, it is obvious that the set of Baxter paths is included in that of
semi-Baxter paths. Examples of a Baxter path and of a non-Baxter path are shown in Figure 9.

1

53

21

1

43

21

Figure 9: A Baxter path (left) and a semi-Baxter path which is not a Baxter path (right).

Proposition 32. Baxter paths grow according to the rule ΩBax.

Proof. As usual, we make Baxter paths grow by insertion of a peak in the last descent, as shown
in Figure 10. To any Baxter path b, denoting e the label of its rightmost free up step U , we assign
the label (h, k), where h is equal to e plus the number of DU factors occurring after U and k is
the number of steps of the last descent of b. As shown below, with this labeling, the growth of
Baxter paths is encoded by ΩBax.

The unique path of size 1 (which is UD with the U labeled with 1) has label (1, 1). Then, from
any Baxter path b with label (h, k) we perform insertions. These are of one of the two following
types.

a) We add a peak at the beginning of the last descent of b. The U step added is free, and therefore
receives a label, which is by definition in the range [1, h]. Meanwhile, the number of steps in
the last descent increases by 1, giving all labels in the first line of the production of ΩBax.

b) We add a peak immediately after any down step of the last descent of b. The added U
step following a down step, it carries no label. Therefore, if b = w · UDk (with this U
possibly labeled), the children of b are w · UDjUDDk−j for 1 ≤ j ≤ k, so they have labels
(h+ 1, k − j + 1), giving the second line of the production of ΩBax.

1

11

2

2

1

2

11

2

(3,2)

(4,2)(4,1)

(1,3) (2,3) (3,3)

321

2

2

Figure 10: The growth of a Baxter path of label (3, 2).
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5 Strong-Baxter numbers

While Section 3 was studying a sequence larger than the Baxter numbers (with a family of permu-
tations containing both the Baxter and twisted Baxter permutations), we now turn to a sequence
smaller than the Baxter numbers (associated with a family of permutations included in both fam-
ilies of Baxter and twisted Baxter permutations). We present a succession rule for this sequence,
properties of its generating function, and a family of restricted factorial paths that it enumerates.

5.1 Strong-Baxter numbers, strong-Baxter permutations, and their suc-
cession rule

Definition 33. A strong-Baxter permutation is a permutation that avoids all three vincular pat-
terns 2 41 3, 3 14 2 and 3 41 2.

Definition 34. The sequence of strong-Baxter numbers is the sequence that enumerates strong-
Baxter permutations.

We have added the sequence enumerating strong-Baxter permutations to the OEIS, where it
is now registered as [20, A281784]. It starts with:

1, 2, 6, 21, 82, 346, 1547, . . .

The pattern-avoidance definition makes it clear that the family of strong-Baxter permutations is
the intersection of the two families of Baxter and twisted Baxter permutations. In that sense,
such permutations “satisfy two Baxter conditions”, hence the name strong-Baxter.

A succession rule for strong-Baxter numbers is given by the following proposition.

Proposition 35. Strong-Baxter permutations grow according to the following succession rule:

Ωstrong =

 (1, 1)
(h, k) (1, k), . . . , (h− 1, k), (h, k + 1)

(h+ 1, 1), . . . , (h+ 1, k).

(3,1)(2,3)(1,2)(2,2) (3,2)

Figure 11: The growth of strong-Baxter permutations (with notation as in Figure 5).

Proof. As in the proof of Propositions 7 and 30, we build a generating tree for strong-Baxter
permutations performing local expansions on the right, as illustrated in Figure 11. Note that this
is possible since removing the last point from any strong-Baxter permutation gives a strong-Baxter
permutation.

Let π be a strong-Baxter permutation of size n. By definition, the active sites of π are the a’s
such that π · a is a strong-Baxter permutations. The label given to π is (h, k), where h (resp. k)
is the number of active sites that are smaller than or equal to (resp. greater than) πn. As in the
proof of Proposition 7, the permutation 1 has label (1, 1), and we now need to describe, for π of
label (h, k), the labels of the permutations π · a when a runs over all active sites of π. So, let a be
such an active site.
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If a < πn, then π · a ends with a non-empty descent. As in the proof of Proposition 7, all sites
of π · a in (a+ 1, πn + 1] become non-active (due to the avoidance of 2 41 3). Moreover, due to the
avoidance of 3 41 2, the site immediately above a in π · a also become non-active. All other active
sites of π remain active in π · a, hence giving the labels (i, k) for 1 ≤ i < h in the production of
Ωstrong (again, i is such that a is the i-th active site from the bottom).

If a = πn, no site of π becomes non-active, giving the label (h, k + 1) in the production of
Ωstrong.

Finally, if a > πn, then π · a ends with an ascent. Because of the avoidance of 3 14 2, we need
to consider the occurrences of 2 13 in π to identify which active sites of π become non-active in
π · a. It follows from a discussion similar to that in the proof of Proposition 7 that all sites of π · a
in [πn+1, a) become non-active. Hence, we obtain the missing labels in the production of Ωstrong:
(h+ 1, i) for 1 ≤ i ≤ k (where i indicates that a is the i-th active site from the top).

In the same sense that both ΩBax and ΩTBax specialize Ωsemi, it is easy to see that the
succession rule Ωstrong is a specialization of the rule ΩBax (for Baxter permutations) as well as
of the rule ΩTBax (for twisted Baxter permutations). In this case, the rule Ωstrong associated
with the intersection of these two families is simply obtained by taking, for each object produced,
the minimum label among the two labels given by ΩBax and ΩTBax. This appears clearly in the
following representation:

Ωsemi : (h, k) → (1, k + 1) . . . (h− 1, k + 1) (h, k + 1) (h+ k, 1) . . . (h+ 1, k)
ΩBax : (h, k) → (1, k + 1) . . . (h− 1, k + 1) (h, k + 1) (h+ 1, 1) . . . (h+ 1, k)
ΩTBax : (h, k) → (1, k) . . . (h− 1, k) (h, k + 1) (h+ k, 1) . . . (h+ 1, k)
Ωstrong : (h, k) → (1, k) . . . (h− 1, k) (h, k + 1) (h+ 1, 1) . . . (h+ 1, k).

This is easily explained. Note first that in all four cases h (resp. k) records the number of active
sites below (resp. above) the rightmost element of a permutation. Then, it is enough to remark
that among the active sites of a semi-Baxter permutation (avoiding 2 41 3), the avoidance of 3 41 2
deactivates only sites above the rightmost element of the permutation, while the avoidance of
3 14 2 deactivates only sites below it.

5.2 Generating function of strong-Baxter numbers

Let Ih,k(x) ≡ Ih,k denote the generating function for strong-Baxter permutations having label
(h, k), with h, k ≥ 1, and let I(x; y, z) ≡ I(y, z) =

∑
h,k≥1 Ih,ky

hzk. (The notation I stands for
Intersection, of the families of Baxter and twisted Baxter permutations.)

Proposition 36. The generating function I(y, z) satisfies the following functional equation:

I(y, z) = xyz +
x

1− y
(y I(1, z)− I(y, z)) + xz I(y, z) +

xyz

1− z
(I(y, 1)− I(y, z)). (13)

Proof. From the growth of strong-Baxter permutations according to Ωstrong we write:

I(y, z) = xyz + x
∑
h,k≥1

Ih,k
(
(y + y2 + · · ·+ yh−1)zk + yhzk+1 + yh+1(z + z2 + · · ·+ zk)

)
= xyz + x

∑
h,k≥1

Ih,k

(
1− yh−1

1− y
y zk + yhzk+1 +

1− zk

1− z
yh+1 z

)
= xyz +

x

1− y
(y I(1, z)− I(y, z)) + xz I(y, z) +

xyz

1− z
(I(y, 1)− I(y, z)) .

In order to study the nature of the generating function I(1, 1) for strong-Baxter numbers, we
look at the kernel of eq. (13), which is

K(y, z) = 1 + x

(
1

1− y
− z +

yz

1− z

)
. (14)
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We perform the substitutions y = 1 + a and z = 1 + b so that eq. (14) is rewritten as

K(1 + a, 1 + b) = 1− xQ(a, b) where Q(a, b) =
1

a
+

1

b
+
a

b
+ a+ 2 + b. (15)

The kernel K(1 + a, 1 + b) is not symmetric in a and b. As in the proof of Theorem 12 (see
Subsection 3.6), we look for the birational transformations Φ and Ψ in a and b that leave the
kernel unchanged, which are:

Φ : (a, b)→
(
a,

1 + a

b

)
, and Ψ : (a, b)→

(
− b

a(1 + b)
, b

)
.

One observes, using Maple for example, that the group generated by these two transformations is
not of small order. We actually suspect that it is of infinite order, preventing us from using the
obstinate kernel method to solve eq. (13).

Nevertheless, after the substitution y = 1 + a and z = 1 + b, the kernel we obtain in eq. (15)
resembles kernels of functional equations associated with the enumeration of families of walks in
the (positive) quarter plane [9].

Proposition 37. Let W (t; a, b) be the generating function for walks confined in the quarter plane
and using {(−1, 0), (0,−1), (1,−1), (1, 0), (0, 1)} as step set, where t counts the number of steps
and a (resp. b) records the x-coordinate (resp. y-coordinate) of the ending point. The function
W (t; a, b) satisfies the following functional equation:

W (t; a, b) = 1 + t

(
1

a
+

1

b
+
a

b
+ a+ b

)
W (t; a, b)− t

a
W (t; 0, b)− t (1 + a)

b
W (t; a, 0). (16)

Not only can we take inspiration from the literature on walks in the quarter plane for our
problem of solving eq. (13). Actually, modifying the step set, we can even arrange that K(1 +
a, 1 + b) is exactly the kernel arising in the functional equation for enumerating a family of walks.

Lemma 38. Let W2(t; a, b) be the generating function for walks confined in the quarter plane
and using {(−1, 0), (0,−1), (1,−1), (1, 0), (0, 1), (0, 0), (0, 0)} as step (multi-)set, where t counts
the number of steps and a (resp. b) records the x-coordinate (resp. y-coordinate) of the ending
point. The difference with the step set of Proposition 37 is that we have added two copies of the
trivial step (0, 0), which are distinguished (they can be considered as counterclockwise and clockwise
loops for instance).

The generating functions W (t; a, b) and W2(t; a, b) are related by

W2(x; a, b) = W

(
x

1− 2x
; a, b

)
1

1− 2x
(17)

Moreover, writing J(x; a, b) := I(x; 1 + a, 1 + b) the generating function for strong-Baxter
permutations, it holds that

J(x; a, b) = (1 + a)(1 + b)xW2(x; a, b). (18)

Proof. First, walks counted by W2 can be described from walks counted by W as follows: a W2-
walk is a (possibly empty) sequence of trivial steps, followed by a W -walk where, after each step,
we insert a (possibly empty) sequence of trivial steps. This simple combinatorial argument shows
that W2(x; a, b) = W ( x

1−2x ; a, b) 1
1−2x .

Next, consider the kernel form of eq. (13) after substituting y = 1 + a and z = 1 + b, which is

(1− xQ(a, b))J(x; a, b) = x(1 + a)(1 + b)− x 1 + a

a
J(x; 0, b)− x (1 + a)(1 + b)

b
J(x; a, 0). (19)

Compare it to the kernel form of eq. (16):

(1− t(Q(a, b)− 2))W (t; a, b) = 1− t

a
W (t; 0, b)− t (1 + a)

b
W (t; a, 0). (20)

Substituting t with x
1−2x in eq. (20), and multiplying this equation by (1 + a)(1 + b)x, we see

that (1 + a)(1 + b)xW2(x; a, b) satisfies eq. (19), proving our claim.
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With results of [6], this easily gives the following theorem.

Theorem 39. The generating function I(1, 1) of strong-Baxter numbers is not D-finite. The same
holds for the refined generating function I(a+ 1, b+ 1).

Proof. With the notation of Lemma 38, our goal is to prove that J(x; a, b) and J(x; 0, 0) are
not D-finite. Recall from eq. (18) that J(x; a, b) = (1 + a)(1 + b)xW2(x; a, b), so J(x; 0, 0) and
W2(x; 0, 0) (resp. J(x; a, b) and W2(x; a, b)) coincide up to a factor x (resp. (1 + a)(1 + b)x).
Therefore, proving that W2(x; 0, 0) and W2(x; a, b) are non D-finite is enough.

It is proved in [6] that neither W (t; a, b) nor W (t; 0, 0) are D-finite. Consequently, since 1
1−2x

and x
1−2x are algebraic series, it follows from eq. (17) both W2(x; a, b) and W2(x; 0, 0) are not

D-finite.

Moreover, some information on the asymptotic behavior of the number of strong-Baxter per-
mutations can be derived starting from the connection to walks confined in the quarter plane.
In [6] the following proposition is presented.

Proposition 40 (Denisov and Wachtel). Let S ⊆ {0,±1}2 be a step set which is not confined to
a half-plane. Let en denote the number of S-excursions of length n confined to the quarter plane
N2 and using only steps in S. Then, there exist constants K, ρ, and α which depend only on S,
such that:

• if the walk is aperiodic, en ∼ K ρn nα,

• if the walk is periodic (then of period 2), e2n ∼ K ρ2n (2n)α, e2n+1 = 0.

From [6], the growth constant ρW associated with W (t; 0, 0) is an algebraic number whose
approximate value is 4.729031538. We show below that the growth constant of strong-Baxter
numbers is closely related to ρW .

Corollary 41. The growth constant for the strong-Baxter numbers is ρW + 2 ≈ 6.729031538.

Proof. From Lemma 38, I(x; 1, 1) = xW2(x; 0, 0) = xW ( x
1−2x ; 0, 0) 1

1−2x . And from the discussion

above, 1
ρW

is the radius of convergence of W (t; 0, 0). The radius of convergence of g(x) = x
1−2x

is 1
2 , and lim x→1/2

x<1/2

g(x) = +∞ > 1
ρW

. So, the composition W (g(x); 0, 0) is supercritical (see

[16, p. 411]), and the radius of convergence of W ( x
1−2x ; 0, 0) is g−1

(
1
ρW

)
= 1

ρW +2 . Since 1
ρW +2

is smaller than the radius of convergence 1
2 of 1

1−2x , 1
ρW +2 is also the radius of convergence of

xW ( x
1−2x ; 0, 0) 1

1−2x = I(x; 1, 1), proving our claim.

5.3 Strong-Baxter paths

Like we did for the semi-Baxter and Baxter sequences, we can provide a restriction on factorial
paths which yields the strong-Baxter sequence.

Definition 42. A strong-Baxter path is a factorial path where labels of free up steps satisfy the
following additional constraint: for every pair of free up steps (U ′, U ′′) with U ′ occurring before
U ′′ and no free up step between them, the label of U ′′ is in the range [1, k], where k ≥ 1 is the sum
of the label of U ′ with the number of UDU factors between U ′ (included) and U ′′.

It follows immediately from their definition that the family of Baxter paths (and, hence that of
semi-Baxter paths) contains strong-Baxter paths as a subfamily (see also examples in Figure 12).

As for the previously considered families of restricted factorial paths, our goal is to prove the
following.

Proposition 43. Strong-Baxter paths grow according to the rule Ωstrong.
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33

21

1
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Figure 12: A strong-Baxter path (left) and a Baxter path which is not a strong-Baxter path
(right).

As before, we will make paths grow by insertion of a peak in the last descent. There is however
a subtlety in the way this growth is encoded in the labels (h, k). First, remark that ΩBax is
completely symmetric in h and k. Therefore, interchanging our interpretation of the labels (that
it to say, taking h to be the number of steps of the last descent and k to be the label of the
rightmost free up step plus the number of DU factors after it), the same growth for Baxter paths
would also be encoded by ΩBax. This “interchanged” interpretation of labels is the appropriate
one to prove Proposition 43.

Proof of Proposition 43. As announced, we make strong-Baxter paths grow by insertion of a peak
in the last descent, as shown in Figure 13. To any strong-Baxter path s, denoting e the label of
its rightmost free up step U , we assign the label (h, k), where h is the number of steps of the last
descent of s and k is equal to e plus the number of UDU factors occurring after U (included).

The unique strong-Baxter path of size 1, UD where U is labeled with 1, has label (1, 1).
Let s be a strong-Baxter path of label (h, k). The insertions of a peak in the last descent of s

produce the following strong-Baxter paths, whose labels correspond to the production of Ωstrong.

a) We add a peak at the beginning of the last descent of s. The added U step is free, and receives
a label which is any label in the range [1, k]. Denoting i be the label assigned to U , the
produced path has label (h+ 1, i).

b) We add a peak immediately after any down step of the last descent of s. The added U step
following a down step, it carries no label. Therefore, if s = w · UDh (with this U possibly
labeled), the children of s are w ·UDjUDDh−j for 1 ≤ j ≤ h. When j = 1, one UDU factor
is created after the rightmost free up step of s, and the obtained path has label (h, k + 1).
Otherwise, no such factor is created, and the obtained paths have labels (h − j + 1, k) for
1 < j ≤ h.

(2,3)

2

1

22

1

2

1

1

2

2

1

32

(3,3)

1

(2,4)

(3,2)(3,1)

(1,3)

1

Figure 13: The growth of a strong-Baxter path of label (2, 3).
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[7] N. Bonichon, M. Bousquet-Mélou, É. Fusy, Baxter permutations and plane bipolar orienta-
tions, Sém. Lothar. Combin., 61A, article B61Ah, 2008.

[8] M. Bousquet-Mélou, Four classes of pattern-avoiding permutations under one roof: generating
trees with two labels, Electron. J. Combin., 9(2), article R19, 2003.

[9] M. Bousquet-Mélou, M. Mishna, Walks with small steps in the quarter plane, Contemp.
Math., 520:1–40, 2010.

[10] M. Bousquet-Mélou, S. Butler, Forest-like permutations, Ann. Combin., 11:335–354, 2007.

[11] M. Bousquet-Mélou, G. Xin, On partitions avoiding 3-crossings, Sém. Lothar. Combin., 54,
article B54e, 2005.

[12] M. Bouvel, V. Guerrini, S. Rinaldi, Slicings of parallelogram polyominoes, or how Baxter and
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