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Abstract

A permutiple is a number which is an integer multiple of some permutation of its
digits. A well-known example is 9801 since it is an integer multiple of its reversal,
1089. In this paper, we consider the permutiple problem in an entirely different set-
ting: continued fractions. We pose the question of when the simple continued fraction
representation of a rational number is an integer multiple of a permutation of its partial
quotients (or digits, as we shall call them). We develop some general results and apply
them to finding new examples. In doing so, we attempt to classify all 2, 3, and 4-digit
continued fraction permutiples in terms of basic permutiple types which we discover
along the way. We also generate new examples from old by finding conditions which
guarantee that digit-string concatenation yields other permutiples.

1 Introduction

Representations of numbers are a topic of fascination for both amateur and professional
mathematicians alike. A well-known case in point is the following puzzle: find digits A, B, C,
and D such that 4 ·ABCD = DCBA. This problem, along with its solution, 4 ·2178 = 8712,
has appeared in its fair share of puzzle books and columns. In his oft quoted essay, A
Mathematician’s Apology, G. H. Hardy uses such numbers (known as both reverse multiples
[8, 12, 13] and palintiples [4, 5, 6]) to illustrate an uninteresting theorem; 2178 and 1089 are
the only four-digit numbers whose reversal yields an integer multiple of itself. He goes on to
tell his readers that such a result is “suitable for puzzle columns,” but “not capable of any
significant generalization.” As many have been quick to point out [4, 8, 11, 13], this article
being no exception, Hardy was perhaps mistaken in his latter assessment; the problem, as
demonstrated by the papers cited thus far, generalizes quite naturally and has led to other
areas of research including the notion of Young graphs [8, 12] which describe the digit-carry
structure of these numbers.

Other digit permutation problems have received professional attention too. Cyclic digit
permutations such as 5 · 142857 = 714285 are also well-studied [2, 7], and, at least in
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comparison to reverse multiples, are well-understood. We note that we are aware of only one
work [6] which addresses general digit permutations. The reason for such lack of generality
is that even for a particular permutation, solving the problem can be far from trivial. We
take reverse multiples as an example; only a small number of reverse multiple types, as
determined by Young graph isomorphism, are well understood, leaving a multitude of others
as yet unexplored [5, 8, 9].

In this paper, we shift the setting from radix representations of integers to continued
fractions; we ask when the continued fraction representation of a rational number is an integer
multiple of a continued fraction with the same partial quotients (which for the duration of
this paper we shall refer to as digits). We first consider some general properties of these
new permutiples, and with our results, generate new examples. Along the way, we discover
several fundamental permutiple types and attempt to classify all permutiples of 4 digits or
less in terms of these types. We then consider methods for obtaining new permutiples from
old. In particular, we focus on the problem of when digit-string concatenation yields new
permutiples. In our conclusion, we briefly consider the infinite case and survey analogous
ideas which carry over from finite permutiples. We shall only consider simple continued
fractions leaving more general representations to the ambitious reader.

2 Problem formulation and basic results

Definition 1. Using the notation [a0; a1, . . . , an] to represent the finite simple continued
fraction

a0 +
1

a1 + 1

...+ 1
an

,

we let k > 1 be a natural number and σ be a permutation on n + 1 symbols. Then the
number [a0; a1, . . . , an] is a continued fraction (σ, k)-permutiple provided

[a0; a1, . . . , an] = k[aσ(0); aσ(1), . . . , aσ(n)].

Since there will be no possibility for confusion between permutiples in continued frac-
tion and radix representation settings, we shall, for the sake of cleaner exposition, refer to
continued fraction (σ, k)-permutiples as simply (σ, k)-permutiples. In this same spirit, using
terminology similar to Young [13], Sloane [12], and Kendrick [8], we shall refer to continued
fraction (σ, k)-permutiples for which σ is the reversal permutation as k-reverse multiples.

Example 2. The continued fraction [7; 1, 3] is a 2-reverse multiple since [7; 1, 3] = 2 · [3; 1, 7].

We shall also keep in mind a sequence related to the digits of our continued fraction
expansion; defining G : [0,∞) → [0, 1) by G(0) = 0 and G(x) = 1

x
− b 1

x
c when x > 0 (left

shift operator), we find the continued fraction expansion, [a0; a1, a2, . . .], of a real number r by
first generating the orbit of γ0 = r−brc under G. We then obtain the digits of our continued
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fraction from the orbit {γ0, γ1, . . .} according to the rule a0 = brc, and aj+1 = b 1
γj
c. We

shall be particularly interested in how (σ, k)-permutiples relate to their corresponding orbits
under G.

For the remainder of this paper, we shall take
pj
qj

and
p′j
q′j

to be the jth convergents of

r = [a0; a1, . . . , an] and r′ = [aσ(0); aσ(1), . . . , aσ(n)], respectively. We also take {γ0, γ1, γ2, . . .}
and {γ′0, γ′1, γ′2, . . .} to be the orbits of γ0 = r−brc and γ′0 = r′−br′c under G, respectively.
We shall refer to these sequences as the tails of r and r′, respectively. Finally, so that finite
continued fraction representations are unique, we shall assume that every finite continued
fraction is in canonical form.

Denoting the nth continuant as Kn(x0, x1, . . . , xn−1), we may restate the problem as
finding natural numbers a0, a1, . . . an, and a permutation σ such that

pn
qn

=
Kn+1(a0, a1, . . . , an)

Kn(a1, . . . , an)
= k

Kn+1(aσ(0), aσ(1), . . . , aσ(n))

Kn(aσ(1), . . . , aσ(n))
= k

p′n
q′n

(1)

for some natural number k > 1. In the coming pages, the reader shall see that the next
definition will be of central importance to our effort.

Definition 3. We say that a (σ, k)-permutiple [a0; a1, . . . , an] is continuant-preserving if

Kn+1(a0, a1, . . . , an) = Kn+1(aσ(0), aσ(1), . . . , aσ(n)).

Remark 4. Since the reversal permutation preserves continuant polynomials in general, all
k-reverse multiples are continuant-preserving.

Theorem 5. If r = [a0; a1, . . . , an] is a (σ, k)-permutiple, then the following are equivalent:

1. r is continuant-preserving,

2. Kn(aσ(1), . . . , aσ(n)) = kKn(a1, . . . , an),

3. γ0γ1 · · · γn−1 = kγ′0γ
′
1 · · · γ′n−1.

Proof. Equation 1 makes obvious the equivalence of items 1 and 2 above. We shall prove
(2 )⇐⇒ (3 ). By induction we have γ0γ1 · · · γj = 1

qj/γj+qj−1
for j < n. Hence, γ0γ1 · · · γn−1 =

1
anqn−1+qn−2

= 1
qn

. Similarly, γ′0γ
′
1 · · · γ′n−1 = 1

q′n
.

Theorem 6. If r = [a0; a1, . . . , an] is a (σ, k)-permutiple such that pn
p′n

< 2, then r is
continuant-preserving.

Proof. Since gcd(pn, qn) = 1 and gcd(p′n, q
′
n) = 1, we have that p′n divides pn. Hence, since

pn
p′n
< 2 by assumption, p′n = pn so that Kn+1(a0, a1, . . . , an) = Kn+1(aσ(0), aσ(1), . . . , aσ(n)).
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3 Permutiples of two and three digits

We now find all permutiples of 3 digits or less. A trivial calculation shows that the form of
any 2-digit permutiple is [a0; a1] = [ks, s], where s is an integer parameter greater than 1.

Suppose that n + 1 = 3. Since a2 > 1 by assumption, and since a0 > aσ(0) ≥ 1 for any
(σ, k)-permutiple, we see that

p2
p′2

=
a0(a1a2 + 1) + a2

aσ(0)(aσ(1)aσ(2) + 1) + aσ(2)
=

1 + 1
a1a2

+ 1
a0a1

1 +
aσ(0)
a0a1a2

+
aσ(2)
a0a1a2

< 1 +
1

2a1
+

1

2a1
≤ 2.

Hence, p2
p′2
< 2 so that by Theorem and 6, any 3-digit permutiple is continuant-preserving.

Thus,
a0 + a2 = aσ(0) + aσ(2). (2)

We now use Equation 2 to narrow down which permutations are possible. Now, σ(0) cannot
be 0 since a0 > aσ(0) for any permutiple. Suppose then that σ(0) = 1. By Equation 2, we
have a0+a2 = a1+aσ(2). If σ(2) = 2, then a0 = a1, which is impossible since this would imply
that a0 > aσ(0) = a1 = a0. Hence, the only possibility left is σ(2) = 0 so that a1 = a2. Under
this assumption we have that r = [a0; a1, a2] = k[a1; a2, a0] = k[a2; a1, a0], and thus, in this
case, r must be a k-reverse multiple. If we assume that σ(0) = 2, then a similar argument
demonstrates that our permutiple must again be a k-reverse multiple. Hence, every 3-digit
permutiple is a k-reverse multiple.

Now, using Theorem 5, the continued fraction [a0; a1, a2] is a k-reverse multiple if and
only if K2(a1, a0) = kK2(a1, a2), or

a0a1 + 1 = k(a1a2 + 1). (3)

Therefore, a0a1 ≡ −1 (mod k). If we suppose that k divides a0a1 + 1 with quotient q, then
a1a2 ≡ −1 (mod q). Now, a0 must be greater than ka2. For if we assume that a0 ≤ ka2,
then by Equation 3, k ≤ 1, which is a contradiction of our initial assumption. It then follows
by Equation 3 that a1 ≤ k − 1. Finally, since a2a1 + 1 = q, we have a2 < q.

We now have the following method for finding all 3-digit k-reverse multiples: choose an
a0 > k and relatively prime to k. Next, find the multiplicative inverse, α, of a0 modulo k.
Then a1 = k − α. Finally, find the multiplicative inverse 0 < β < q of a1 modulo q where
q = a0a1+1

k
. (A solution exists since a1 and q are relatively prime.) Then a2 = q − β.

The reader will also notice that this method gives all non-canonical representations as
well. For example, for k = 2, and a0 = 5, we obtain the non-canonical 2-reverse multiple
[5; 3, 1].
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4 Perfect permutiples

For any value of k > 1, we may construct an infinitude of permutiples with more than 3
digits. We observe that

kb0 +
1

b1 + 1
kb2+

1

b3+
1

...

= k

b0 +
1

kb1 + 1
b2+

1

kb3+
1

...


Thus, setting aj = kbj and aσ(j) = bj for even j, and aj = bj and aσ(j) = kbj for odd j, we
obtain the system aj = kaσ(j) for even j, and kaj = aσ(j) for odd j. This is a remarkably
easy system to solve. As an example, we choose a value of k, say 7, a permutation σ, say
(0, 1)(2, 3), and we find digits a0, a1, a2, and a3 such that a0 = 7a1, a2 = 7a3, 7a1 = a0, and
7a3 = a2. The system simplifies to a0 = 7s, a1 = s, a2 = 7t, and a3 = t, where s ≥ 1 and
t > 1 are integer parameters. Then

a0 +
1

a1 + 1
a2+

1
a3

= 7s+
1

s+ 1
7t+ 1

t

= 7

(
s+

1

7s+ 1
t+ 1

7t

)
= 7

a1 +
1

a0 + 1
a3+

1
a2

 .

Thus, for example, the reader may verify that [7, 1, 14, 2] is a ((0, 1)(2, 3), 7)-permutiple. The
above construction motivates the following definition.

Definition 7. We say a (σ, k)-permutiple [a0; a1, . . . , an] is perfect provided

k =
a0
aσ(0)

=
aσ(1)
a1

=
a2
aσ(2)

=
aσ(3)
a3

= · · · . (4)

Remark 8. Every 2-digit permutiple is a perfect reverse multiple.

As the reader is sure to have noticed when constructing the previous example, the choice
of the multiplier, k, was entirely arbitrary since any suitable value would have illustrated
our purpose. However, the choice of permutation was not arbitrary; Equation 4 puts tight
restrictions on the kind of permutation σ can be. The first, and most obvious, is that σ must
be a derangement, otherwise, it would be that k = 1.

We now represent Equation 4 in matrix form, d =


k 0 0 0 · · ·
0 1/k 0 0 · · ·
0 0 k 0 · · ·
0 0 0 1/k · · ·
...

...
...

...
. . .

Pσd, where

Pσ is the permutation matrix of σ, and d =


a0
a1
...
an

. (Note that all of these matrices are
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indexed from 0 to n). Now, we see that in the case of even j that aj must be divisible
by k with quotient sj, which we will interpret as a free integer parameter in the solution

as we did in the example at the beginning of this section. Then we have d =


ks0
s1
ks2
s3
...

 =


k 0 0 0 · · ·
0 1 0 0 · · ·
0 0 k 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .




s0
s1
s2
s3
...

 . After substitution and simplification, the above system becomes


s0
s1
s2
s3
...

 =


1 0 0 0 · · ·
0 1/k 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1/k · · ·
...

...
...

...
. . .

Pσ

k 0 0 0 · · ·
0 1 0 0 · · ·
0 0 k 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .




s0
s1
s2
s3
...

. Using the definition of matrix

multiplication, we obtain the component form of the above,

sj = k−
1
2
[(−1)j+(−1)σ(j)]sσ(j). (5)

Equation 5 and an induction argument give us sj = k−
1
2

∑m−1
`=0 [(−1)σ`(j)+(−1)σ`+1(j)]sσm(j) for

any m ≥ 1 and for all 0 ≤ j ≤ k. Thus, when m = |σ|,

|σ|−1∑
`=0

(−1)σ
`(j) = 0. (6)

An immediate consequence of Equation 6 is that |σ| must be even. Moreover, by letting 〈σ〉
act on S = {0, 1, 2, · · · , n} in the usual way, the Orbit-Stabilizer theorem tells us that the
size of every orbit equals |σ| since σ is a derangement. Thus, every orbit contains an even
number of elements. Moreover, since the orbits partition S, we have that n + 1 must also
be even and divisible by |σ| where the quotient is equal to the number of orbit classes. Our
results about allowable permutations can then be summarized by the following.

Theorem 9. If [a0; a1, . . . , an] is a perfect (σ, k)-permutiple, then the following must hold:

1. The permutation σ is a derangement of even order.

2. The order of σ divides n+ 1 with quotient equal to the number of orbit classes.

3. Any orbit of σ contains |σ| elements, half of which are odd, and half of which are even.
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The reversal permutation on an even number of symbols satisfies all three conclusions of
Theorem 9, but not all reverse multiples with an even number of digits are perfect. Therefore,
the converse of Theorem 9 does not hold in general; the 2-reverse multiple, [7; 2, 1, 3], provides
a counterexample.

Our next theorem characterizes perfect permutiples in terms of their tails.

Theorem 10. Let [a0; a1, . . . , an] be a (σ, k)-permutiple. Then the following are equivalent:

1. [a0; a1, . . . , an] is perfect,

2. k = γ0
γ′0

=
γ′1
γ1

= γ2
γ′2

=
γ′3
γ3

= · · · ,

3. 1
k
G(x) = G(kx) when x = γ′0, γ1, γ

′
2, γ3, . . ., and G( 1

k
x) = kG(x) when x = γ0, γ

′
1, γ2,

γ′3, . . ..

Proof. Let r = [a0; a1, . . . , an] and r′ = [aσ(0); aσ(1), . . . , aσ(n)]. We establish (1 ) =⇒ (2 ) by
induction. The first tails are γ0 = r − brc and γ′0 = r′ − br′c, and since a0 = kaσ(0) and
r = kr′ by assumption, we have γ0 = kγ′0. Hence, kγ1 = k

γ0
−kb 1

γ0
c = 1

γ′0
−ka1 = 1

γ′0
−aσ(1) =

1
γ′0
− b 1

γ′0
c = γ′1. Now suppose that j is even and that both γj = kγ′j and kγj+1 = γ′j+1.

Then γj+2 = 1
γj+1
− b 1

γj+1
c = 1

γj+1
− aj+2 = k

γ′j+1
− kaσ(j+2) = k

γ′j+1
− kb 1

γ′j+1
c = kγ′j+2 so that

kγj+3 = k
γj+2
− kb 1

γj+2
c = k

γj+2
− kaj+2 = k

γj+2
− aσ(j+2) = 1

γ′j+2
− b 1

γ′j+2
c = γ′j+3.

For (2 ) =⇒ (3 ), we suppose k = γ0
γ′0

=
γ′1
γ1

= γ2
γ′2

=
γ′3
γ3

= · · · . Then for even j we have

kγj+1 = γ′j+1. Consequently, kG(γj) = k
γj
− kb 1

γj
c = 1

γ′j
− b 1

γ′j
c = k

γj
− b k

γj
c = G(γj/k) which

implies kG(kγ′j) = kG(γj) = G(γj/k) = G(γ′j) for even j. Similarly, kG(kγj) = kG(γ′j) =
G(γ′j/k) = G(γj) when j is odd.

To prove (3 ) =⇒ (1 ), we have for even j that kG(γj) = G(γj/k). Hence, k
γj
− kb 1

γj
c =

k
γj
− b k

γj
c, or kb 1

γj
c = b k

γj
c = b 1

γ′j
c. Thus, kaj+1 = aσ(j+1). A similar argument establishes

that k =
aj
aσ(j)

for all even j.

Corollary 11. Any perfect (σ, k)-permutiple, [a0; a1, . . . , an], must have an even number of
digits. Moreover, every perfect permutiple is continuant-preserving.

Proof. Since |σ| is even and divides n + 1 by Theorem 9, the first statement holds. Thus,
n− 1 is even, so that by Theorem 10, γ0γ1 · · · γn−1 = kγ′0γ

′
1 · · · γ′n−1. Theorem 5 establishes

the result.

4.1 Perfect reverse multiples

We may now find all perfect k-reverse multiples. By Corollary 11, n + 1 is even. Thus,
Equation 5 gives us the relation sj = k−

1
2
[(−1)j+(−1)σ(j)]sσ(j) = k−

1
2
[(−1)j+(−1)n−j ]sn−j = sn−j.

Thus, any perfect k-reverse multiple must have the form

[ks0, s1, ks2, s3, . . . , k
1
2
[1+(−1)(n+1)/2]s(n+1)/2, k

− 1
2
[−1+(−1)(n+1)/2]s(n+1)/2, . . . , ks3, s2, ks1, s0].
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4.2 Perfect cyclic permutiples

Letting ψ be the (n + 1)-cycle (0, 1, 2, · · · , n), determining cyclic permutiples which are

perfect amounts to solving sj = k−
1
2
[(−1)j+(−1)ψ`(j)]sψ`(j). When ` is odd, this is easy since

sj = sψ`(j). Suppose then that ` is even. Then, since n + 1 is even, ψ`r(j) is either strictly
even or strictly odd for all 0 ≤ j ≤ n and r ≥ 0. Therefore, Equation 6 cannot be satisfied,
and so there are no perfect cyclic permutiples for which ` is even. Thus, we have found all
cyclic permutiples which are perfect.

Example 12. Every perfect, cyclic, 6-digit (ψ3, k)-permutiple has the form [ks0; s1, ks2, s0, ks1, s2].

5 Symmetric permutiples

Aside from being continuant-preserving, all of the (σ, k)-permutiples we have considered so
far have another property in common: symmetric products of digits are preserved by σ. For
example, the perfect permutiple

[a0; a1, a2, a3, a4, a5] = [3; 1, 9, 1, 3, 3] = 3 · [1; 3, 3, 3, 1, 9] = 3 · [aσ(0); aσ(1), aσ(2), aσ(3), aσ(4)]

satisfies a0a5 = 9 = aσ(0)aσ(5), a1a4 = 3 = aσ(1)aσ(4), and a2a3 = 9 = aσ(2)aσ(3). Examples
such as these are the motivation for the next definition.

Definition 13. A (σ, k)-permutiple, [a0; a1, . . . , an], is symmetric provided ajan−j = aσ(j)aσ(n−j)
for all 0 ≤ j ≤ n.

Clearly, all reverse multiples are symmetric. Also, since any perfect permutiple must
have an even number of digits by Corollary 11, we may write

k =
a0
aσ(0)

=
aσ(1)
a1

=
a2
aσ(2)

=
aσ(3)
a3

= · · · = an−3
aσ(n−3)

=
aσ(n−2)
an−2

=
an−1
aσ(n−1)

=
aσ(n)
an

.

Hence, all perfect permutiples are also symmetric. We state these observations formally.

Theorem 14. All reverse multiples and perfect permutiples are symmetric.

However, generally speaking, symmetric permutiples are richer than only reverse multi-
ples and perfect permutiples; the permutiple [4; 2, 1, 8, 1, 2] = 3 · [1; 2, 4, 2, 1, 8] provides us
with an example of a symmetric permutiple which is neither a reverse multiple, nor perfect.

We also note that there are an abundance of examples which are not symmetric (and
therefore neither a reverse multiple nor perfect). The permutiple [9; 3, 2, 8, 2] = 4·[2; 3, 9, 2, 8]
provides us with an example which is not symmetric.
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6 Permutiples of four digits

Using the machinery we have developed thus far, we now consider the 4-digit case.

Theorem 15. Every symmetric 4-digit permutiple is continuant-preserving.

Proof. Let r = [a0; a1, a2, a3] be a symmetric (σ, k)-permutiple. In general, K4(x0,x1,x2,x3)
x0x1x2x3

=

1 + 1
x0x1

+ 1
x1x2

+ 1
x2x3

+ 1
x0x1x2x3

. Hence,

p3
p′3

=
K4(a0, a1, a2, a3)

K4(aσ(0), aσ(1), aσ(2), aσ(3))
=

1 + 1
a0a1

+ 1
a1a2

+ 1
a2a3

+ 1
a0a1a2a3

1 + 1
aσ(0)aσ(1)

+ 1
aσ(1)aσ(2)

+ 1
aσ(2)aσ(3)

+ 1
a0a1a2a3

.

But, since r is symmetric, a1a2 = aσ(1)aσ(2). Thus, we may rewrite the equation above as

p3
p′3

=
1 + 1

a0a1
+ 1

a1a2
+ 1

a2a3
+ 1

a0a1a2a3

1 + 1
a1a2

+ 1
a0a1a2a3

+ 1
aσ(0)aσ(1)

+ 1
aσ(2)aσ(3)

.

It follows that

p3
p′3
<

1 + 1
a0a1

+ 1
a1a2

+ 1
a2a3

+ 1
a0a1a2a3

1 + 1
a1a2

+ 1
a0a1a2a3

< 1 +
1

a0a1
+ 1

a2a3

1 + 1
a1a2

+ 1
a0a1a2a3

.

Now, a0 ≥ 2 since a0 > aσ(0) for any permutiple, and a3 ≥ 2 since our representation is
canonical. Therefore, p3

p′3
< 1 + 1

1+ 1
a1a2

+ 1
a0a1a2a3

< 2, and the result follows by an application

of Theorem 6.

Theorem 16. A 4-digit (σ, k)-permutiple is symmetric if and only if it is either perfect or
a reverse multiple.

Proof. The reverse implication holds for any number of digits by Theorem 14. Suppose then
that r = [a0; a1, a2, a3] is a symmetric (σ, k)-permutiple so that a0a3 = aσ(0)aσ(3). Thus, since
r is continuant-preserving by Theorem 15, it follows by definition that

a0a1 + a2a3 = aσ(0)aσ(1) + aσ(2)aσ(3). (7)

Now, if r is a reverse multiple, then we are finished. Otherwise, suppose that r is not a
reverse multiple.

If aσ(3) = a0, then by symmetry aσ(0) = a3. It would then follow that aσ(1)aσ(2) = a1a2,
but since r is not a reverse multiple, the only possibility is that aσ(1) = a1 and aσ(2) = a2.
Equation 7 would then imply that a0 = a3 and a1 = a2. In other words, the continued
fraction expansion of r is palindromic. The above facts imply that r = r′, but the only way
this could be is if k = 1. Therefore, aσ(3) 6= a0. Moreover, if aσ(3) = a3, then aσ(0) = a0
by symmetry. But this is also impossible since a0 > aσ(0) for any permutiple. Thus, either
aσ(3) = a1 or aσ(3) = a2. That is, we have shown that σ(3) 6= 0 and σ(3) 6= 3.

9



If we assume that aσ(0) = a3, then, by symmetry, it follows that aσ(3) = a0 which
contradicts the conclusion above. Therefore, aσ(0) 6= a3. Thus, again since a0 > aσ(0), we
have that aσ(0) = a1 or aσ(0) = a2. In other words, σ(0) 6= 3 and σ(0) 6= 0.

We have shown that in any case, a0a3 = aσ(0)aσ(3) = a1a2, which gives rise to four possible
cases.

Case 1: If aσ(0) = a1, aσ(1) = a0, aσ(2) = a3, and aσ(3) = a2, then a0
aσ(0)

=
aσ(1)
a1

and
a2
aσ(2)

=
aσ(3)
a3

. By symmetry, we then have a0
aσ(0)

=
aσ(1)
a1

= a2
aσ(2)

=
aσ(3)
a3

. Now, since r is

continuant-preserving, it follows by Theorem 5 that

aσ(1)aσ(2)aσ(3) + aσ(1) + aσ(3) = k(a1a2a3 + a1 + a3). (8)

Thus, a0a3a2+a0+a2 = k(a1a2a3+a1+a3). Therefore, since a0a3 = a1a2 as also shown above,
we have a1a

2
2+a0+a2 = k(a1a2a3+a1+a3), which becomes a0−ka1+(1+a1a2)(a2−ka3) = 0.

For a contradiction, suppose a0 > ka1. Then it would also have to be that a2 > ka3 since
a0a3 = a1a2. But this implies that a0 − ka1 + (1 + a1a2)(a2 − ka3) > 0 which contradicts
the previous equation. Assuming a0 < ka1 similarly leads to a contradiction. Therefore, in
order for the above equation to hold, it can only be that a0 = ka1 and a2 = ka3. Hence,
a0
aσ(0)

=
aσ(1)
a1

= a2
aσ(2)

=
aσ(3)
a3

= k, and the result holds for Case 1.

Case 2: If aσ(0) = a1, aσ(1) = a3, aσ(2) = a0, and aσ(3) = a2, then, by Equation 7,
a0a1 + a2a3 = a1a3 + a0a2. It follows that (a1− a2)(a3− a0) = 0 so that a0 = a3 and a1 = a2.
Thus, since a0a3 = a1a2 as demonstrated above, we conclude that all the digits are equal.
However, this implies that k = 1. Therefore, Case 2 is impossible.

Case 3: If aσ(0) = a2, aσ(1) = a0, aσ(2) = a3, and aσ(3) = a1, then, again by Equation 7,
a0a1 + a2a3 = a2a0 + a3a1 which leads to the same conclusion as Case 2, so that Case 3 is
also impossible.

Case 4: Finally, suppose that aσ(0) = a2, aσ(1) = a3, aσ(2) = a0, and aσ(3) = a1. Then, by

Equation 8, a3a0a1 +a3 +a1 = k(a1a2a3 +a1 +a3). It follows that a0a3 = a1a2 = (k−1)(a1+a3)
a1−ka3 .

Therefore, a1 must be strictly greater than ka3. Using Equation 8 again, and reducing
modulo a1, we see that (k − 1)a3 ≡ 0 (mod a1). Then, for some α, (k − 1)a3 = αa1. But
then a1 > ka3 implies that a1 − a3 > (k − 1)a3 = αa1. Thus, 1− a3

a1
> α, which means that

α ≤ 0. By the above, it follows that a3 ≤ 0, which is a contradiction. Case 4 is therefore
impossible.

Since Case 1 is the only possibility, the result is established.

Computer generated evidence strongly suggests that all 4-digit permutiples are symmet-
ric. We suspect that a tedious argument like the one above, and perhaps an application of
Theorem 15, may be involved. However, despite our best efforts, we have not been able to
establish this claim. We therefore leave the following conjecture.

Conjecture 17. Every 4-digit (σ, k)-permutiple is symmetric.

If the above is indeed true, we would have by Theorem 16 the following corollary.

Conjecture 18. Any 4-digit (σ, k)-permutiple is either perfect, a k-reverse multiple, or both.
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7 Concatenation

With several permutiple types and many permutiple examples in hand, we now consider
ways of constucting new permutiples from old. Let c1 and c2 be any finite simple contin-
ued fractions, [b0; b1, b2, . . . , bn] and [b′0; b

′
1, b
′
2, . . . , b

′
m], respectively. We let c1 ◦ c2 denote

the continued fraction obtained by concatenating the digit strings of c1 and c2, that is,
[b0; b1, b2, . . . , bn, b

′
0, b
′
1, b
′
2, . . . , b

′
m], and call this quantity the concatenation of c1 and c2.

For convenience, we also introduce a new notation for the continuant of a (σ, k)-permutiple,
r, with continued fraction expansion [a0; a1, . . . , an]; we define 〈r〉 to meanKn+1(a0, a1, . . . , an).
Furthermore, we define 〈−r〉 to mean Kn(a1, . . . , an), and 〈r−〉 to mean Kn(a0, a1, . . . , an−1).

Theorem 19. Let r = [a0; a1, . . . , an] be a continuant-preserving (σ, k)-permutiple with r′ =
[aσ(0); aσ(1), . . . , aσ(n)], such that qn−1 = q′n−1 and pn−1 = kp′n−1. Also, let s = [b0; b1, . . . , bm]
be any continuant-preserving (τ, k)-permutiple with s′ = [bτ(0); bτ(1), . . . , bτ(m)]. Then the
number r ◦ s is also a continuant-preserving permutiple with r ◦ s = k(r′ ◦ s′).

Proof. Since r and s are continuant-preserving, we have 〈r〉 = 〈r′〉, 〈s〉 = 〈s′〉, 〈−r′〉 = k〈−r〉,
and 〈−s′〉 = k〈−s〉. Also, writing qn−1 = q′n−1 and pn−1 = kp′n−1 in terms of continuants,
we have 〈−r−〉 = 〈−r′−〉 and 〈r−〉 = k〈r′−〉, respectively. Using the above and properties of
continuants of concatenations [1, 3], we have 〈−r′ ◦ s′〉 = 〈−r′〉〈s′〉+ 〈−r′−〉〈−s′〉 = 〈−r′〉〈s′〉+
〈−r′−〉〈−s′〉 = k〈−r〉〈s〉+ 〈−r−〉k〈−s〉 = k〈−r ◦ s〉. Therefore, 〈r◦s〉

〈−r◦s〉 = k 〈r
′◦s′〉

〈−r′◦s′〉 so that r ◦ s is

a permutiple. Now, again using properties of continuants, 〈r′ ◦ s′〉 = 〈r′〉〈s′〉 + 〈r′−〉〈−s′〉 =
〈r〉〈s〉+ k〈r′−〉〈−s〉 = 〈r〉〈s〉+ 〈r−〉〈−s〉 = 〈r′ ◦ s′〉 so that r ◦ s is continuant-preserving.

As the reader shall presently see, permutiples which satisfy the hypothesis of Theorem
19 have other special properties, and for the sake of tidier exposition, we shall give them a
name.

Definition 20. We shall call any continuant-preserving permutiple with the property that
qn−1 = q′n−1 and pn−1 = kp′n−1 a Landess 1 permutiple.

Remark 21. Since continuants are invariant under reversal, it is not difficult to show that all
k-reverse multiples satisfy 〈−r−〉 = 〈−r′−〉 and 〈r−〉 = k〈r′−〉. Thus, all k-reverse multiples
are examples of Landess permutiples.

Theorem 22. The concatenation of any two Landess permutiples (both with multiplier k)
is again a Landess permutiple (with multiplier k).

Proof. Let r and s be two Landess permutiples, both with multiplier k. By Theorem 19, r◦s
is a continuant-preserving permutiple with multiplier k, and since s is a Landess permutiple,
the result follows.

1In honor of M. J. Landess, a great mathematics educator.
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Remark 23. Defining Lk as the collection of all Landess permutiples with multiplier k, and
appending to this collection an “empty” permutiple, we may then construct the free monoid
L∗k of k-Landess permutiples.

Corollary 24. The concatenation of any k-reverse multiple with itself is again a k-reverse
multiple.

Proof. Since every k-reverse multiple is a Landess permutiple, we may apply Theorem 22
to deduce that the concatenation is also a permutiple with multiplier k. The rest is a
straightforward argument.

From the above corollary, it follows by induction that a palindromic concatenation of
k-reverse multiples is again a k-reverse multiple. More formally we have the following.

Corollary 25. Suppose r0, r1, . . ., rm are all k-reverse multiples such that rj = rm−j for all
0 ≤ j ≤ m, then r0 ◦ r1 ◦ · · · ◦ rm is also a k-reverse multiple.

The next theorem reveals that reverse multiples are not the only examples of Landess
permutiples.

Theorem 26. Every perfect permutiple is also a Landess permutiple.

Proof. Let r = [a0; a1, . . . , an] be a perfect (σ, k)-permutiple. By Corollary 11, every perfect
permutiple is continuant-preserving. Thus, pn = p′n so that anpn−1+pn−2 = aσ(n)p

′
n−1+p′n−2.

Since r must have an even number of digits, n is odd, and since r is perfect, we have that
aσ(n) = kan. Therefore, anpn−1 + pn−2 = ankp

′
n−1 + p′n−2. Now, for any perfect permutiple,

it is a straightforward induction argument to prove directly using the recursive definition of
the continuant that pj−1 = Kj(a0, a1, . . . , aj−1) = kKj(aσ(0), aσ(1), . . . aσ(j−1)) = kp′j−1 when
j is odd, and pj = Kj+1(a0, a1, . . . , aj) = Kj+1(aσ(0), aσ(1), . . . aσ(j)) = p′j when j is even.
Therefore, pn−2 = p′n−2. Hence, by the above, we have shown that pn−1 = kp′n−1.

A similar argument proves that qn−1 = q′n−1.

Corollary 27. The concatenation of any two perfect permutiples is again a perfect permu-
tiple.

Landess permutiples are not always perfect or reverse multiples as shown by [2; 1, 5, 1, 2] =
2 · [1; 2, 2, 1, 5]. The reader will also notice that this is a non-symmetric example. Also, not
every permutiple is a Landess permutiple as the example [11; 1, 10, 2, 3] = 9 · [1; 3, 11, 10, 2]
proves.

8 Future work and concluding remarks

By now, the reader is sure to have noticed the lack of examples of permutiples which are
not continuant-preserving. This is because, despite hours of computer search time, we have
been unsuccessful in finding one. Yet, a demonstration that none exist has so far eluded us.
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The lack of success in finding a counterexample does not necessarily cast overwhelming
doubt upon the possibility that one exists. Given the diversity of examples and permutiple
types we have already encountered, all of which occur for a relatively low number of digits,
a counterexample would not necessarily be surprising if we were to expand our search. How-
ever, with the present results we have, we are still limited to either brute force, or random
search. Consequently, either increasing the bound on the digits, or the number of digits,
incurs a very substantial increase in search time. We also mention that when comparing
expressions of the form R = [b0; b1, . . . , bn] and R′ = [bσ(0); bσ(1), . . . , bσ(n)] (not necessarily
permutiples), we can construct continued fractions which make the ratios of numerators of
nth convergents as large as we please. Large ratios typically occur when there are large
differences between digits. These considerations, combined with computational limitations
already mentioned, mean that a counterexample may very well exist beyond the bounds we
have been able to reasonably check. However, as of the writing of this paper, we have still
been unable to find one. We therefore formally pose the following question and leave it as
an open problem.

Are all permutiples continuant-preserving?

We also mention that although not every Landess permutiple is symmetric, computer-
generated evidence does suggest that every symmetric permutiple is a Landess permuti-
ple. However, to show this is the case, we must have that all symmetric permutiples are
continuant-preserving. We also leave these as open questions.

Are all symmetric permutiples also Landess permutiples?

Are all symmetric permutiples even continuant-preserving?

For the finite case, we summarize the permutiple types we have observed so far, as well as
the above conjectures, with the figure below. A dashed border indicates that it is unknown
if the pictured containment holds. In the figure we have also included examples from the
above exposition which prove strict containment given that the containment actually holds.
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In addition to the questions we have already left to the reader, there are clearly other
avenues of inquiry to pursue. In particular, we mention the permutiple problem in the
settings of both general and infinite continued fraction representations.

Examples of the latter readily come to mind; the real number 1+
√

3 is an infinite simple

continued fraction permutiple since [2; 1, 2, 1, . . .] = 1 +
√

3 = 2 ·
(

1+
√
3

2

)
= 2 · [1; 2, 1, 2, . . .].

In fact, with a little more effort, and some classical results [10], we can show that any reduced

quadratic surd r = a+
√
b

c
is an infinite permutiple precisely when b−a2

c
is an integer since the

multipler k is equal to this quantity.
The notion of perfect permutiples carries over very naturally to the infinite setting; Def-

inition 7 requires essentially no modification. Also, we only need to slightly change the
statement of Theorem 10 to accomodate the above definitions, and its proof requires no
modification. The periodic examples mentioned above are perfect.

Infinite concatenations of Landess permutiples can yield non-periodic infinite examples.
For example, the continued fraction [ks0; s0, ks1, s1, ks2, s2, . . .] is an infinite perfect (σ, k)-
permutiple where σ(j) = j + (−1)j, and each sj > 0 is a free integer parameter for all
j ≥ 0. This example is a concatenation of 2-digit perfect permutiples. Thus, for example,
[2; 1, 8, 4, 32, 16, . . .] = 2 · [1; 2, 4, 8, 16, 32, . . .] is an infinite perfect permutiple which is non-
periodic.

What it means for an infinite simple continued fraction to be continuant-preserving is
not difficult to generalize either, although it does require a little more work. Numerators
of nth convergents, for example Kn+1(2, 1, 2, 1, . . . , an) and Kn+1(1, 2, 1, 2, . . . , aσ(n)), are not
equal in all cases. What matters is that they are equal for an infinite number of cases; we
say that an infinite (σ, k)-permutiple, [a0; a1, a2 . . .], is asymptotically continuant-preserving
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if
lim inf
n→∞

∣∣Kn+1(a0, a1, . . . , an)−Kn+1(aσ(0), aσ(1), . . . , aσ(n))
∣∣ = 0.

Analogous to the finite case, the reader will notice that in the case of purely periodic per-
mutiples considered above, the numerators of the corresponding reduced quadratic surds are
equal. It is also not difficult to prove an infinite analogue to Theorem 5.

Theorem 28. For any infinite (σ, k)-permutiple, r = [a0; a1, a2, a3 . . .], the following are
equivalent:

1. r is asymptotically continuant-preserving,

2. lim inf
n→∞

|Kn(aσ(1), . . . , aσ(n))− kKn(a1, . . . , an)| = 0,

3. lim inf
n→∞

|γ0γ1 · · · γn − kγ′0γ′1 · · · γ′n| = 0.

For any perfect permutiple, item 2 of Theorem 10 gives us that γ0γ1 · · · γn = kγ′0γ
′
1 · · · γ′n

for all even n. An application of the above theorem gives us the following corollary.

Corollary 29. Every infinite perfect permutiple is asymptotically continuant-preserving.

Generalizations of other notions presented in the finite case are possible, but we shall
leave them for the reader to rediscover and develop more fully on their own.
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