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Abstract

Under binary matrices we mean matrices whose entries take one of two values. In this
paper, explicit formulae for calculating the determinant of some type of binary Toeplitz
matrices are obtained. Examples of the application of the determinant of binary Toeplitz
matrices for the enumeration of even and odd permutations of different types are given.

Introduction

Under binary matrices we will mean matrices whose elements can take only two values.
Matrices of this kind arise in different mathematical questions. For example, this type
includes such popular objects in mathematics and its applications as matrices over the
field GF (2) [1]. The Hadamard’s problem of finding the maximal determinant of (−1, 1)-
matrices, i.e. matrices consisting from 1 and −1, is well known [2]. Further, (0, 1)-matrices
are one of the favorite objects of the enumerative combinatorics [3–6]. Also one can use
binary (1, x)-matrices for enumerative problems [6]. These examples can be extended.

One of the basic notion of the matrix theory is the notion of determinant. There exist
effective algorithms for the determinant calculation, for example, the modified method of
Gaussian elimination, which run in polynomial time. Nevertheless, in cases of some kinds
of matrices it is possible to obtain good explicit formulae for the determinant expression.
On the one hand, these formulae allow to draw certain conclusions about properties of
matrices. On the other hand, they give even greater gain in the speed of the determinant
calculation. Such formulae are known only for very limited class of matrices.

Our paper is motivated to some extent by the recent work [7] in which the explicit
formula for the determinant of some binary circulant matrices has been obtained. In the
present paper we get explicit formulae for determinants of some kinds of binary Toeplitz
matrices. Considered matrices are close in their structure to band matrices, therefore we
call them generalized band matrices. For our purposes we use quite elementary methods.
Applying the Laplace expansion we obtain recurrent formulae leading to required result.

The paper is organized as follows. In the second section we give and prove the formulae,
which allow to efficiently calculate determinants of generalized binary band matrices in
an explicit form. In the third section we give a few examples of the application of the
determinant of such binary matrices for the enumeration of even and odd permutations
of different types.

∗The study is supported by Program of UD RAS, project 15-16-1-3
†email: defimov@dm.komisc.ru
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1 The main part

Let n, k, l be integers, 1 ≤ l ≤ k ≤ n. Consider a binary Toeplitz matrix A = (aij) of
order n with the following elements:

aij =

{
b, if − l < j − i < k;
a, otherwise,

where a and b (a 6= b) belong to a commutative associative ring with a unit. In the
case a = 0 we get a so-called band matrix ([8], p.16). So we can say that we consider
generalized binary band matrices. Our purpose is to get explicit formulae for calculating
the determinant of the matrix A. We will divide this problem into two cases.

Case 1. Let l = 1. In other words, let the first row of the matrix A have the form:

[

k
︷ ︸︸ ︷

b . . . b a . . . a
︸ ︷︷ ︸

n

],

and the (i + 1)-st row is obtained from the first row by the removal of i elements on the
right and addition of i elements a on the left:

A =















b . . . b

b . . . b a

b . . . b
. . .

. . .
. . .

b . . . b

a
. . .

...
b















. (1)

Theorem 1.1. Let n ≡ p (mod k), where 0 < p ≤ k. Then the determinant of the matrix
(1) is equal to:

detA = (b− a)n−1

(

b+
n− p

k
a

)

. (2)

For the proof of Theorem 1.1 one can apply the method given in [7] for the proof
of explicit formulae of the determinants of circulant matrices (using the formula of the
determinant of a 2 × 2 block matrix). But in this case another method will be more
convenient. First let us formulate some auxiliary statements. Consider a square matrix
of order n of the form:

















b . . . b a

b . . . b a a

b . . . b a
. . .

. . .
. . .

...
b . . . b a

a
. . .

...
...

b a

a a a . . . a . . . a a

















. (3)

The given matrix is obtained from the matrix (1) of order (n−1) by addition of one more
(the last) row and one more (the last) column, consisting entirely of elements a. Let fn
denote the determinant of such matrix.

Lemma 1.1. The determinant of the matrix (3) is equal to:

fn = (b− a)n−1a. (4)
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Proof. Subtracting the penultimate row from the last row and expanding the determinant
along the last row, we get that fn = (b − a)fn−1. Using the given formula consecutively
to fn−1, fn−2 and so on, we get (4). �

Suppose that k = n, i.e. consider the matrix of order n of the form:










b b b . . . b

b b . . . b

b . . . b

a
. . .

...
b










. (5)

By gn denote the determinant of such matrix.

Lemma 1.2. One can calculate the determinant of the matrix (5) by the formula:

gn = (b− a)n−1b. (6)

Proof. Similarly to the proof of the previous lemma. �

Consider the matrix (1) of order n with k < n. Let dn denote the determinant of such
matrix.

Lemma 1.3. The following equality holds:

dn =

{
(b− a)kdn−k + (b− a)n−1a, k < n

2 ;
(b− a)n−1(b+ a), k ≥ n

2 .
(7)

Proof. Let k < n
2 , i.e. the number of elements b in the first row of the matrix (1) is less

than the number of elements a. Let us subtract the penultimate row of the matrix from
the last row and expand the determinant along the last row. Performing this procedure
consecutively k times, we come to the equality:

dn = (b− a)kdn−k + (b− a)kfn−k.

Substituting here the formula (4), we get the first row of the equality (7).
Let n

2 ≤ k, i.e. the number of elements b in the first row of the matrix (1) is more or
equal to the number of elements a, but less than n. Executing the same k consecutive
expansions along the last row as in the first case, we come to the equality:

dn = (b− a)k(fn−k + gn−k).

Substituting here the formulae (4) and (6), we get the second row of (7). �

Proof. (of the Theorem 1.1). Suppose that n ≡ p (mod k), where 0 < p ≤ k, i.e.
n = km + p, where m is a non-negative integer. Assume that k < n. Then m > 0 and,
using the first row of the formula (7) recurrently m− 1 times, we obtain the equality:

dn = (b− a)n−k−pdk+p + (m− 1)(b − a)n−1a.

Since k+p
2 ≤ k, then applying the second row of the formula (7) to dk+p and performing

obvious transformations, we get (2).
If k = n, i.e. the first row of the matrix (1) entirely consists from elements b, then

p = n and the formula (2) gives us dn = (b− a)n−1b, which corresponds to the statement
of the Lemma 1.2. �
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Case 2. Let l > 1. In other words, let the i-th row of the matrix A, i = 1, . . . , l, have
the form:

[

k+i−1
︷ ︸︸ ︷

b . . . b a . . . a
︸ ︷︷ ︸

n

],

and the (l + j)-th row is obtained from the l-th one by the removal of j elements on the
right and addition of j elements a on the left:

A =















b . . . b a
...

. . .
. . .

b
. . .

. . .
. . .

. . . b
. . .

. . .
...

a b . . . b















. (8)

The matrix A is not symmetric in general, but it is persymmetric (i.e. symmetric with
respect of the secondary diagonal) like all Toeplitz matrices.

Lemma 1.4. In the matrix (8) exactly max (k + l − n, 0) rows consist entirely from ele-
ments b.

Proof. First note that each row of the matrix A contains no more than k+ l−1 elements b
by definition. Let k+ l−n ≤ 0. Hence k+ l−1 < n, i.e. there is at least one element a in
each row and there are no rows, consisting entirely from elements b. Let now k+ l−n > 0
or, alternatively, k + l− 1 ≥ n. If n = k + i− 1, 1 ≤ i ≤ l, then the number of rows, that
consist entirely from elements b, will be equal to l − i+ 1 = k + l − n. �

Theorem 1.2. Let 1 < l ≤ k ≤ n and n ≡ p (mod k + l − 1), 0 ≤ p < k + l − 1. Then
the determinant of the matrix (8) is equal to:

detA =







(−1)
(k−1)(l−1)n

k+l−1 (b− a)n−1
(

b+ n−k−l+1
k+l−1 a

)

, p = 0,

(−1)
(k−1)(l−1)(n−1)

k+l−1 (b− a)n−1
(

b+ n−1
k+l−1a

)

, p = 1,

0, otherwise.

(9)

Proof. By the theorem condition n ≥ 2. Let n ≡ p (mod k + l − 1), 0 ≤ p < k + l − 1.
This is equivalent to n = (k + l − 1)s + p, where s is a non-negative integer.

First consider the case when s = 0, i.e. when p = n and, respectively, n < k + l − 1.
By lemma 1.4 at least 2 rows of the matrix A will consist entirely from elements b in this
case, therefore the determinant of the matrix A will be equal to 0, that corresponds to
the formula (9).

Now assume that s ≥ 1. The first row of the matrix A differs from the second
one only by an element in the (k + 1)-st column. Let us subtract the first row from
the second one and expand the determinant along the second row. We will get that
detA = (−1)k−1(b − a) detA′, where A′ is a matrix, whose first and second rows differ
also only in the (k + 1)-st column. Performing this procedure l− 1 times, we obtain that
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detA = (−1)(k−1)(l−1)(b− a)l−1 detA′′, where

A′′ =






















b . . . b
. . .

...
. . . a

a b . . . b

b . . . b a
...

. . .
. . .

a b
. . .

. . .
. . .

. . . b
. . .

. . .
...

a b . . . b






















.

The part of the matrix A′′ that is located above the horizontal line consists from k rows,
and in the first row there are exactly k elements b. In the lower right corner of the matrix
A′′ there is a submatrix, which is formed by intersection of the last n− k− l+1 rows and
columns of A. The given submatrix, in turn, also has the form (8).

The algorithm can be repeated s times with an obvious shift at each step in the k

rows down and in the k columns to the right. Thus in the second step we subtract the
(k+1)-st row of the matrix A′′ from the (k+2)-nd one and expand the determinant along
the (k + 2)-nd row, and repeat this procedure l − 1 times and so on. As a result we will
get that

detA = (−1)(k−1)(l−1)s(b− a)(l−1)s detA′′′, (10)

where

A′′′ =














b . . . b a
. . .

. . . a
. . . b

a
. . .

...
. . .

b . . .

a M














.

The part of the matrix A′′′ that is located above the horizontal line consists from ks rows,
and in the first row there are exactly k elements b. In the lower right corner of the matrix
A′′′ there is a submatrix M , which is formed by intersection of the last n− (k+ l−1)s = p

rows and columns of the matrix A.
It is not hard to see that if 1 < p < k + l − 1 then M contains two identical rows,

hence the matrix A′′′ also contains two identical rows, and therefore its determinant and
the determinant of the matrix A are equal to 0.

If p = 0 then the matrix A′′′ is the matrix of the form (1) of order ks. Then by
Theorem 1.1 we get:

detA′′′ = (b− a)ks−1

(

b+
ks− k

k
a

)

= (b− a)ks−1 [b+ (s− 1)a] .

Then, substituting the given formula in (10) and taking into account that n = (k+ l−1)s,
we finally obtain:

detA = (−1)(k−1)(l−1)s(b− a)(k+l−1)s−1 [b+ (s− 1)a] =

= (−1)
(k−1)(l−1)n

k+l−1 (b− a)n−1

(

b+
n− k − l + 1

k + l − 1
a

)

.

If p = 1 then the matrix A′′′ will be the matrix of the form (1) of order ks+ 1. Then
from Theorem 1.1 we get:

detA′′′ = (b− a)ks
(

b+
ks+ 1− 1

k
a

)

= (b− a)ks(b+ sa).
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Then, substituting the given formula in (10) and taking into account that n = (k + l −
1)s+ 1, we finally obtain:

detA = (−1)(k−1)(l−1)s(b− a)(k+l−1)s(b+ sa) =

= (−1)
(k−1)(l−1)(n−1)

k+l−1 (b− a)n−1

(

b+
n− 1

k + l − 1
a

)

.

�

2 The application of determinants of binary ma-

trices to the enumeration of permutations

As mentioned in the Introduction, the binary matrices are one of the favorite objects of
the enumerative combinatorics. In particular, they are applied for enumeration of permu-
tations with restricted positions. Following [6] let us describe briefly this mechanism.

Let A = (aij) be a (0, 1)-matrix of order n. Each of such matrices defines a class
B(A) of restricted permutations. Namely a permutation p belongs to B(A) if and only
if the inequality Mp ≤ A holds for its incidence matrix Mp, i.e. each element of the
matrix Mp is not more than the corresponding element of the matrix A. The matrix
A is called the characteristic matrix of the class B(A). It is not hard to see that the
number of permutations in the class B(A) is equal to the permanent of the matrix A:
|B(A)| = perA. Denote the number of even and odd permutations from the class B(A) by
EA and OA, respectively. It is obvious that EA +OA = perA. It is easy to see also that
EA−OA = detA. This implies the following formulae for calculating the total number of
even and odd permutations from the class B(A):

EA =
perA+ detA

2
, OA =

perA− detA

2
. (11)

As an example we calculate the number of even and odd permutations π ∈ Sn such
that π(i) 6= i, i + 1 for i = 1, . . . n − 1 and π(n) 6= n. The characteristic matrix of this
class of permutations is the following (0, 1)-matrix An of order n:

An =










0 0
0 0 1

. . .
. . .

1 0 0
0










.

Such matrices arise in the variation of the famous ménage problem, where not a round
table, but one side of a rectangular table is considered ([5], ch. 8).

If we denote the permanent of such matrix by pn, then the sequence of permanents
will satisfy the following recurrence relation:

(n− 1)pn = (n2 − n− 1)pn−1 + npn−2 + 2(−1)n+1, p1 = p2 = 0.

One can also calculate these permanents by the following explicit formula:

pn =

n∑

k=0

(
2n− k

k

)

(n− k)!(−1)k .

Let dn denote the determinant of the matrix An. Substituting b = 0, a = 1, k = 2 to
the formula (2), we get

dn = (−1)n−1n− p

2
, n ≡ p (mod 2), 0 < p ≤ 2.
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One can also rewrite this equality in the following form:

dn = (−1)n−1

⌊
n− 1

2

⌋

=

{
n−1
2 , if n – odd;

−n−2
2 , if n – even.

Applying formulae (11), we obtain sequences of the number of even (en) and odd (on)
permutations of the given type depending on the permutation order:

n 1 2 3 4 5 6 7 8 9 10 . . .

pn 0 0 1 3 16 96 675 5413 48800 488592 . . .

dn 0 0 1 −1 2 −2 3 −3 4 −4 . . .

en 0 0 1 1 9 47 339 2705 24402 244294 . . .

on 0 0 0 2 7 49 336 2708 24398 244298 . . .

As the second example, we will calculate the number of even and odd permutations
π ∈ Sn such that |π(i) − i| > 1, i = 1, . . . , n. The characteristic matrix of the given class
of permutations is the matrix of order n Bn whose main diagonal and its neighboring
diagonals are zero, and all other elements are equal to 1:

Bn =












0 0
0 0 0 1

0 0 0
. . .

. . .
. . .

1 0 0 0
0 0












.

This example is linked with another variation of the ménage problem, where a rectangular
table is considered and additional restriction on the placement of men is imposed. The
explicit formula of the total number of such permutations of order n or, alternatively, of
the value of the permanent of Bn was found by V.S. Shevelev (see the review [6]). Here
we will not give it, but indicate only that the sequence {p′n} of such numbers has the
id-number A001883 in [9]. Let d′n denote the determinant of the matrix Bn. Substituting
b = 0, a = 1, k = l = 2 to the formula (9), we get

d′n =







3−n
3 , if p = 0;

n−1
3 , if p = 1;

0, if p = 2;

where n ≡ p (mod 3). Applying formulae (11), we obtain sequences of the number of even
(e′n) and odd (o′n) permutations of the given type depending on the permutation order:

n 1 2 3 4 5 6 7 8 9 10 . . .

p′n 0 0 0 1 4 29 206 1708 15702 159737 . . .

d′n 0 0 0 1 0 −1 2 0 −2 3 . . .

e′n 0 0 0 1 2 14 104 854 7850 79870 . . .

o′n 0 0 0 0 2 15 102 854 7852 79867 . . .

Another version of the application of binary matrices to enumeration of permutations
has been described also in [6]. It consists in the following. Let us consider a binary matrix
A of order n in which some elements are equal to the variable b, and the other elements are
equal to 1. It is easy to see that the coefficient on bk in the permanent perA will be equal
to the number of permutations π ∈ Sn whose incidence matrices have exactly k units in
the positions, in which there are elements b in the matrix A. Respectively, the coefficient
on bk in the determinant detA will be equal to the difference between the number of even
and odd permutations of such type. Then calculating in expressions 1

2(detA± perA) the
coefficient on bk, we get the number of even and odd permutations of such kind.
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Let us give an example of the application of this scheme. Let π be a permutation.
Recall that a number i for which π(i) ≥ i is called a weak excedance of π ([10], p. 40).
Let us find the number of even and odd permutations of order n with exactly k weak
excedances. Consider a binary matrix of order n Cn whose elements on the main diagonal
and above it are equal to b, and other elements are equal to 1:

Cn =










b b b . . . b

b b . . . b

b . . . b

1
. . .

...
b










.

It is well known ([10], p. 39–40) that the permanent of this matrix is equal to the Eulerian
polynomial of order n, and, respectively, the coefficient on bk is equal to the Eulerian
number T (n, k) (A008292 in [9]). By the formula (2) we get that detCn = (b− 1)n−1b. It
follows that the coefficient on bk in detCn is equal to:

c(n, k) = (−1)n−k

(
n− 1

k − 1

)

.

Hence the number of even and odd permutations of order n with exactly k weak excedances
is equal to:

en,k =
1

2

(

T (n, k) + (−1)n−k

(
n− 1

k − 1

))

, on,k =
1

2

(

T (n, k)− (−1)n−k

(
n− 1

k − 1

))

.

Let, for example, k = 2. Then

en,2 =
1

2
(T (n, 2) + (−1)n(n − 1)) , on,2 =

1

2
(T (n, 2)− (−1)n(n− 1))

and we get the following table:

n 1 2 3 4 5 6 7 8 9 10 . . .

T (n, 2) 0 1 4 11 26 57 120 247 502 1013 . . .

c(n, 2) 0 1 −2 3 −4 5 −6 7 −8 9 . . .

en,2 0 1 1 7 11 31 57 127 247 511 . . .

on,2 0 0 3 4 15 26 63 120 255 502 . . .

Let us write out all permutations of order 4 with 2 weak excedances: 1423, 2143, 2413,
3124, 3142, 3412, 3421, 4132, 4213, 4312, 4321 — total 7 even and 4 odd permutations
(weak excedances are in bold, even permutations are underlined).

Acknowledgment. The author is grateful to V.S. Shevelev for useful pointers to the
literature and comments.
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