
CONVEX NEURAL CODES IN DIMENSION 1

ZVI ROSEN, UNIVERSITY OF PENNSYLVANIA, PA
YAN X ZHANG, SAN JOSE STATE UNIVERSITY, CA

Abstract. Neural codes are collections of binary strings motivated by patterns of neural
activity. In this paper, we study algorithmic and enumerative aspects of convex neural codes
in dimension 1 (i.e. on a line or a circle). We use the theory of consecutive-ones matrices
to obtain some structural and algorithmic results; we use generating functions to obtain
enumerative results.
Key words: Neural coding, interval arrangements, PC- & PQ-tree algorithm, convexity,
consecutive-ones matrices, generating functions.

1. Introduction

1.1. Motivation. The 2014 Nobel Prize in Medicine was awarded in part for the discovery
of neurons called place cells [11, 19, 20]. In experiments, each place cell fires when a rat
occupies a specific region in its physical environment; the regions that trigger this response
are called place fields. Experimental data indicates that place fields are roughly convex. In
practice, place fields are not strictly convex; still, convexity is useful as an abstraction to
describe the essence of the empirical phenomena. Binary strings called codewords capture the
intersection patterns of convex sets in Rd detected by “sensors” in space; we call the set of all
detected codewords the (convex neural) code. Seen in this light, neural activity patterns are
translated into algebraic-combinatorial objects, and a whole new toolbox becomes relevant
to their analysis. This research program was initiated quite recently [5, 6], and has already
inspired a large body of research, e.g. [1, 3, 4, 8–10,17]. Our manuscript aims to supplement
this literature with the 1-d case, using tools from the study of consecutive-ones matrices and
algebraic combinatorics.

Example 1.1. The top image in Figure 1 describes the arrangement of place fields in the
rat’s environment. The lower image is the corresponding interval arrangement in R1. The
binary strings below indicate the corresponding codewords.

The 1-dimensional case (1-d) is a natural stepping stone to higher dimensions. In this work,
we explore the combinatorial properties of neural codes in 1 dimension from various angles
such as consecutive-ones matrices and generating functions.

1.2. Mathematical Setup. Consider some ambient space X (usually X = Rd, but we are
also interested in S1 for this paper). Let U = {U1, . . . , Un} be a set of open convex subsets
of X. For a point p ∈ X, let the corresponding codeword be the image of p under the map

1

ar
X

iv
:1

70
2.

06
90

7v
1

 [
m

at
h.

C
O

]
 2

2
Fe

b
20

17

1000 1100 0100 0110 0111 0011 0001

Figure 1. A rat on a linear track with 4 place fields (convex regions) detected
by neurons. For each area (space between dotted lines), a sensor in the area
would give the corresponding codeword on the bottom when detecting which
regions cover it.

c : X → Fn2 , where:

c(p) = (c1(p), . . . , cn(p)), where ci(p) =

{
1 p ∈ Ui.
0 p /∈ Ui.

For a set of sensors S ⊆ X (intuitively, one can imagine a sensor as a device placed at a
point which can detect if each place field covers it), we call the image of S under c() the
convex neural code C(U , S). We call convex neural codes simply codes for the remainder of
this paper.

We say that a code C is realizable in dimension d if X is locally d-dimensional and there exists
U with Ui ⊆ X such that C = C(U , X) (equivalently, all possible codewords are detected)
in which case we say U realizes C. There are various partial results for the dimension of
realizability of codes; one of the authors’ joint work [4] shows that if a code contains the
all-1’s codeword, it is realizable in 2-d.

In this work, we tackle the following questions:

Problem 1.2 (Reconstruction). Given a code C, detect if there exists a set of convex regions
realizing the code, and try to construct one if there is.

Problem 1.3 (Algebraic Signatures). Find an algebraic-combinatorial signature of the code
C that indicates whether or not it is realizable under specific parameters.

Problem 1.4 (Enumeration). With n sensors, classify/enumerate the possible codes, mul-
tiset of codes, etc.

We already see nontrivial mathematics in 1-d, even though convex regions are simply intervals
along a line. We call a set of intervals in R (or S1) an interval arrangement. We now discuss
some nuances in our setup.

2

(1) First, we vary the topological constraints. It is easy to get carried away by
minutiae, but different real-world scenarios may warrant different constraints. For
example, we may have so many sensors in S as to guarantee that we would pick up all
possible codewords for an arrangement. On the other end, we may only have a few
sensors in our sensor set S and miss potential codewords. We refer to these regimes
as being sensor-dense (i.e. C(U , S) = C(U ,R)) and sensor-sparse (i.e. S is any finite
set of points) respectively.

A different line of inquiry about 1-d topology is the following: suppose we pick up
all possible codewords in an arrangement. What would happen if place fields must
be open convex intervals? What would happen if place fields can be convex intervals
with any boundary type? The first directly corresponds to our sensor-dense regime.
Interestingly, the second is equivalent to the sensor-sparse regime for 1-d, despite the
question being differently motivated. We explore the precise nature of the equivalence
in Appendix A.

(2) Second, we can vary the geometry of our ambient set. The image in Figure 1 depicts
a linear track. However, one could translate the setup to a circular track, where each
Ui is a segment of S1 homeomorphic to an interval. Strictly speaking, most subsets
of S1 (including S1 itself!) are not convex as subsets of Euclidean space. However,
arcs on S1 are a reasonable analogue of intervals in R1 as “convex” sets. One can
see elsewhere, e.g. [14], for similar treatments. From an applied perspective, we were
inspired to include the circular case by [13], where rats running around a circular
track have place fields corresponding to arcs on the track. We say we are in the
linear case if we have k intervals and n sensors on a line and in the circular case if
we have k arcs and n sensors on a circle.

(3) Finally, the reconstruction problem can be also stated for multisets. In the defi-
nition of the code, we considered the set of codewords without multiplicity. When
we take a finite number of sensors (points at which the codeword function is evalu-
ated), the result is a multiset of codewords, which contains additional information
for consideration.

Problem 1.2 may be of interest to experimentalists doing a posteriori analysis using the code
set as an invariant; we discuss reconstruction in Sections 3.1, 3.2, and 4. Problem 1.3 may
help resesarchers looking to reject faulty codes; we give a result for the sensor-sparse variation
in Section 3.1. We study Problem 1.4 in Section 5.1 and 5.2 obtaining some asymptotic
information and interesting bijections involving subspaces of Fn+1

2 with full support and
labeled graded (3)-avoiding posets. In Section 6, we give some general remarks for future
work.

1.3. Main Results. Here is an illuminating idea, first pointed out by Anne Shiu:

Proposition 1.5. Codes realizable in dimension 1 are exponentially small relative to the full
set of codes on n neurons.

Proof Idea. Suppose the arrangement of intervals {Iα} realizes the code C. We read the
appearing codewords from left to right; each new codeword appears only when an interval
appears or when an interval disappears. This implies that there are a maximum of 2n + 1

3

distinct codewords in C, where n is the number of neurons, i.e. the length of each codeword.
This is an exponentially tiny proportion of codes as n grows. �

The insight that led to this observation turns out to be powerful – in particular, a realization
of a code C amounts to an ordering of the codewords satisfying a discrete version of convexity,
namely that the 1’s must occur contiguously in the ordering for each neuron. To be precise,
let the sensor matrix of k intervals and n sensors in the linear case be a k × n matrix M
where Mi,j = 1 if the j-th sensor detects the i-th interval, and Mi,j = 0 otherwise (note that
the set of column vectors in M is just C).
Call a length n 0-1-vector with a single contiguous block of 1’s a discrete interval. Note
that the row vectors of the sensor matrix M are discrete intervals; for example, reading the
second coordinate in Figure 1 gives the discrete interval 0111100. In the circular case, we
can think of the sensor matrix M as an equivalence class of k × n 0-1 matrices where two
matrices are equivalent up to cyclically permuting the columns, and each row becomes a
discrete interval under some rotation.

This combinatorial characterization connects the question of 1-d realizable codes to the
well-studied problem of consecutive-ones matrices, and we can use its technology (namely,
PQ- and PC-trees) to tackle the reconstruction problem for most of our cases; sensor-dense
reconstruction in S1 is subtly difficult.

Theorem 1.6 (Sensor-sparse). Any code realizable in R1 can be transformed into a sensor-
sparse linear realization via the PQ-tree algorithm. Any code realizable in S1 can be trans-
formed into a sensor-sparse linear realization via the PC-tree algorithm.

In the sensor-dense version, we need an openness condition not required by general consecutive-
ones matrices, so the next connection requires some work to prove:

Theorem 1.7 (Sensor-dense). Any code realizable in R1 can be transformed into a sensor-
dense linear realization via the PQ-tree algorithm.

The corresponding statement for realizations in S1 is not obviously true. We present an
example to demonstrate this difficulty later. Regarding the multiset variation on the problem,
we find the following result:

Theorem 1.8. Let C be a code, and m : C → N be a multiplicity for the appearance of
each codeword. In the sensor-sparse regime, on the line and the circle, if there exists {Ui}
realizing the code, it is also possible to realize the code with the desired multiplicity. In the
sensor-dense case, if a code is realizable, then it is realizable with any multiplicity greater
than or equal to some minimal multiplicity m′.

For the algebraic signature problem, we found a nice signature for the linear sensor-sparse
case from the consecutive-ones literature:

Proposition 1.9. A code C is sensor-sparse realizable in R1 if and only if an associated
graph I(C) is bipartite.

Finally, we obtain some enumerative results in Table 1; instead of enumerating codes directly,
we count a closely related object called discrete interval sets, which still give a grasp on the
number of such codes but are easier to count.

4

Topological Regime Geometry Number of discrete interval sets

Sparse Line
((n+1

2)
k

)
Sparse Circle

(
n2−n+1

k

)
Dense Line Coefficient of xnyk in

∑∞
m=0

xm

(1−a1x)(1−a2x)···(1−am+1x)

Dense Circle Coefficient of xnyk in 1 +
∑∞

m=1
2xm

(1−amx)m+1

Table 1. Our enumerative results. We define ai = (1 + y)i − 1 for all i .

2. The Consecutive-Ones Property

Recall that we have two regimes: sensor-sparse and sensor-dense. We now translate these
intuitive notions into formalism, starting with the linear case, where we borrow terminology
from [2]. We say that a 0-1 matrix M has the consecutive-ones property (equivalently, we
say M is CO) if each row is a discrete interval. These matrices will correspond to the
sensor-sparse regime. Luckily for us, the problems in this regime correspond naturally to the
problems that come up in the consecutive-ones property literature.

We now add a twist to our definition. We say that a 0-1 matrix has two
inharmonious columns x and y if, with some two rows, they induce one of
the 2×2 submatrices (a) or (b) on the right. If such a matrix has no pair of
inharmonious columns, we say the matrix is harmonious. We remark that
(x, y) is harmonious if and only if x, y are comparable in the boolean lattice
structure on {0, 1}k. We say that a 0-1 CO matrix M is inharmonious
if some two adjacent columns are inharmonious. Otherwise, we say M
is harmonious (equivalently, we say M is HCO). These matrices will
correspond to the sensor-dense regime.

[
0 1
1 0

] [
1 0
0 1

]
(a) (b)

For the 1-dimensional circular case, we extend the notion of CO to the circular analogue
circular consecutive-ones (CCO) where we allow the discrete interval of 1’s to “wrap around,”
i.e. counting going from the last column to the first column as contiguous. Equivalently, we
allow each row to have only one contiguous block of 1’s or only one contiguous block of 0’s.
As an example, the following matrix is CCO but not CO:1 1 0 0 1

0 1 1 0 0
0 0 1 1 1

As in the linear case we have sensor-sparse and sensor-dense regimes, corresponding to CCO
matrices with no further restriction and CCO matrices with no two consecutive (here the first
and last column vectors are also consecutive) inharmonious columns, which we call HCCO.

We now make the correspondence between the regimes and these matrices explicit.

Proposition 2.1. The following are true of a code C:
5

1. C is sensor-sparse realizable in R1 if and only if it is the column set of a CO matrix.
2. C is sensor-dense realizable in R1 if and only if it is the column set of an HCO matrix.
3. C is sensor-sparse realizable in S1 if and only if it is the column set of a CCO matrix.
4. C is sensor-dense realizable in S1 if and only if it is the column set of an HCCO matrix.

Proof. For the “only if” direction, it is sufficient to provide an ordering of the codewords so
that the resulting matrix has the desired property. Begin with a realization of the code as
an arrangment of open intervals in R1 or S1. In R1, begin at −∞ and read codewords at
the set of sensors, sorted from left to right. In S1 begin at any sensor s on the circle, and go
in either direction (say clockwise), stopping before the original point s is reached.

The (possibly circular) consecutive-ones property is guaranteed by convexity of the code:
once a sensor detects an interval (corresponding to a 1) and stops detecting the interval
(corresponding to a 0), it can no longer detect the interval again. This precisely corresponds
to having a discrete interval of 1’s in the corresponding row.

In the sensor-dense regime, suppose an inharmonious pair of adjacent columns (corresponding
to sensors at k followed by l) exist in the corresponding matrix for rows i and j. Without
loss of generality, this means that there are some two open intervals (corresponding to i and
j) that at two sensors k, i is detected but not j, and at l, we stop detecting i but detect
j. However, two open intervals on R or S1 must either intersect or have a point strictly
between them. So either a sensor between them would have picked up both intervals or
neither, contradicting the fact that these columns were adjacent.

To go in the reverse direction, pick an 0.5 > ε > 0 and create a sensor for each column of the
matrix spaced 1 unit apart. Each row of the matrix corresponds to some discrete interval
i, i + 1, . . . , j (possibly wrapping around for the circuluar case), except for two degenerate
cases where the entire row is 0 or 1. For the non-degenerate cases, create an open interval
(i− ε, j + ε). For the degenerate cases, create the empty set and the entire set (R or S1) for
the 0- and 1-row cases respectively. It is easy to check the resulting arrangement satisfies
the definitions. �

3. The Reconstruction and Signature Problems

Using the language of consecutive-ones / CO and Proposition 2.1, the reconstruction problem
is the following: given a set of n codewords L, decide if there exists a CO matrix (with at
least n columns) such that the set of columns is L, and if so, try to produce the matrix.
The sensor-sparse regime (for both linear and circular cases) is quickly understood after
translating to the language of the consecutive-ones property. We also supply a solution for
the linear (but not circular) case of the sensor-dense regime.

3.1. Sensor-Sparse Regime. The following result almost solves the sensor-sparse regime
problem completely for both the linear and circular cases:

Proposition 3.1. Given a set of n distinct length-k vectors L, there is a O(n+k) algorithm
that decides if there exists a CO (or CCO) matrix with exactly n columns and column set
equal to L and constructs one if it exists.

6

Proof. The algorithm uses a data type known as a PQ-tree for the linear situation; for the
circular situation the analogue is the PC-tree. For a proof, see [15]. We will include an
example in Section 3.3. �

Remark 1. As noted by Hsu and McConnell [15], much of the work on the consecutive-ones
property involves an unnecessary symmetry-breaking of the circle. Indeed, the consecutive-
ones property problems are usually subsumed by their circular counterparts and the struc-
tures obtained in the circular case (PC-trees as opposed to the linear PQ-trees) are mathe-
matically cleaner.

Corollary 3.2. Given a set of n distinct length-k vectors L, there is a O(n + k) algorithm
that decides if there exists a CO (or CCO) matrix with at least n columns such that the
column set is equal to L and constructs one if it exists.

Proof. Since removing any column from a CO matrix preserves the CO property, a CO
matrix with column set equal to L gives a CO matrix with n columns (where each column
appears exactly once) by removing duplicates, which still has the column set equal to L.
Proposition 3.1 then finishes the problem. The logic also holds for the CCO case. �

We can also import an algorithm for code rejection from the consecutive-ones literature for
realizability of a sensor-sparse code in R1.

Definition 3.3 ([18, Definition 6.1]). Let M be a binary matrix. The incompatibility graph
I(M) is the graph defined by:

V = ordered pairs of columns (a, b) signifying “a is to the left of b”.

E = incompatible pairs of relations, of the form:

(1) {(a, b), (b, a)}, and

(2) {(a, b), (b, c)}, where there is a row in which a and c have 1 while b has 0.

If a consecutive-ones ordering of M exists, then there is a set of
(
n
2

)
relations that have no

mutual incompatibility; i.e. the induced subgraph of I(M) is empty. McConnell proves that
the converse is true as well:

Theorem 3.4 ([18, Theorem 6.1]). M has a CO ordering if and only if I(M) is bipartite.
For a code C, this means C has a sensor-sparse realization in R1 if and only if I(C) is
bipartite.

Example 3.5. Consider the set of codewords given by the columns of the matrix
below right.

Using the indicated column labels, we have the follow-
ing odd cycle in I(M): {(d, a), (a, b), (b, c), (c, a), (a, c)}.
This is sufficient to demonstrate that IC(M) is not re-
alizable in 1-D.

a b c d

1 1 0 1
1 0 1 1
0 1 0 1
0 0 1 1

3.2. Sensor-Dense Regime. In this section, we extend the results from the sensor-sparse
regime to the sensor-dense regime. First we make some definitions.

7

Definition 3.6. Let L be a set of n distinct length-k column vectors. An ordering of L is a
k × n matrix where the columns form a permutation of L. A multiordering of L is a k × n′
matrix where n′ ≥ n and every column vector appears at least once.

One sign that the sensor-dense regime is more difficult is that there exist sets L for which
there exist harmonious CO multiorderings but no harmonious CO orderings; in other words,
the reconstruction would need to “know” when to duplicate certain vectors.

Example 3.7. Consider the set of vectors below left. No two of the first three column
vectors can be adjacent in a harmonious CO ordering, though we can use the fourth vector
to “pad” them, producing the harmonious CO multiordering at right.

1
0
0

 ,
0

1
0

 ,
0

0
1

 ,
0

0
0

1 0 0 0 0

0 0 1 0 0
0 0 0 0 1

 .
Clearly, any HCO multiordering can be trimmed down to a CO ordering by removing dupli-
cates, as removing vectors cannot break the CO condition. Thus, a naive approach to the
set reconstruction problem, inspired by Proposition 3.1 and Example 3.7, is to obtain a CO
ordering, then extend it to an HCO multiordering.

However, a very subtle concern is that even if L actually has some HCO multiordering,
this algorithm may start with a “bad” CO ordering that is not extendable to an HCO
multiordering. What we would need is something like the following claim, which, luckily for
us, is true:

Proposition 3.8. Suppose L has at least one HCO multiordering. Then any CO ordering
of L can also be extended into an HCO multiordering.

The remainder of this section is a detailed proof of this assertion. First, we fix some notation
and definitions.

Definition 3.9. Let R be the set of rows in a sensor matrix.

• For a set of rows S ⊂ R, we say x ∈ L is 0 (resp. 1) on S if for all rows in S, x has a 0
(resp. 1) in that row.

• For any S ⊂ R, define an undirected graph GS with vertex set L and edge set

E = {(x, y) ∃r ∈ S such that x and y are both 1 on r}.
In other words, Gs detects if two sensors “overlap” on something in S.

• Let x, y ∈ L be S-connected if they are in the same connected component of GS.

• Let x, y ∈ L and r1, r2 ∈ R be such that the restriction of x, y to the rows r1, r2 is
inharmonious. If z ∈ L is 1 on {r1, r2} then z is bound between x and y.

In the following lemma, we summarize the main structural tools we use to explore our
multiorderings.

Lemma 3.10. The following hold for any CO multiordering of L:
8

(1) If x and y ∈ L are S-connected and z ∈ L is 0 on S, then z cannot be between x and y.

(2) If z ∈ L is bound between x ∈ L and y ∈ L, then in any CO ordering of L, z must be
between x and y.

Proof. To see (1), note that z would otherwise violate convexity of the intervals labeled by
S. For (2), suppose x were to the left of y. If z were to the right of y, y would violate the
convexity of the interval containing both x and z. By symmetry, z cannot be to the left of
x. Thus, z must be between them. �

Proof of Proposition 3.8. Suppose L has the HCO multiordering A. Consider any CO or-
dering B of L. We claim we can insert columns between adjacent inharmonious columns of
B to create an HCO multiordering. The idea is to “copy and paste” them from A.

Take any inharmonious pair of columns x and y. In A, pick any pair of columns equal to
x and y and call them x and y as a slight abuse of notation. Without loss of generality,
suppose x is left of y. Consider the submatrix M formed from these two columns and all
columns between them. x and y partition the rows into four sets Rij, where i, j ∈ {0, 1} and
Rij contains rows r where Mr,x = i and Mr,y = j. Note that R10 and R01 are nontrivial since
x and y are inharmonious. Also, every vector in M is 1 on R11 (which could be trivial).

Claim: There is at least one vector v in A between x and y which is 0 on R10 ∪R01.
By Lemma 3.10, since x and y are adjacent in B, which is CO, there must not be any vectors
in L bound between x and y.

To see this, consider the rightmost vector x′ which is 0 on R01 and the leftmost vector y′

which is 0 on R10. If x′ = y′, this is the desired v. If x′ is to the right of y′, both vectors
must be 0 on R10 ∪R01, by convexity.

Suppose x′ is strictly to the left of y′. By assumption, x′ is not completely 0 on R10 while y′

is not completely 0 on R01. Note x′ cannot be adjacent to y′, since this would mean x′ and
y′ are not harmonious. Thus, there is some vector z strictly between them that has value
1 on some row r1 ∈ R10 and some r2 ∈ R01. But this means z is bound between x and y,
which gives a contradiction.

Claim: There is at least one vector v in A between x and y which is 0 on R10 ∪R01 ∪R00.
Based on the last claim, we have a nontrivial submatrix M ′ comprised of the contiguous
columns that are 0 on R10∪R01. Call its leftmost and rightmost vectors v1 and v2 respectively.
Suppose, by way of contradiction, that every column in M ′, including v1 and v2, must have
a 1 somewhere on R00. Consider the vector x′ in M directly left of v1; note that:

• x′ must have a 1 in R10 (otherwise it would have been in M ′).

• x′ must be 0 on R01 (since it is to the left of M ′).

• x′ must have at least a 1 in R00 (in fact, all the 1’s that v1 has, since x′ > v1 by the
fact that x′ has a 1 somewhere in R10 and M is harmonious). In particular, x′ 6= x.

The same argument gives a vector y′ 6= y right of v2 in M . An example of such a situation
is given in Figure 2.

The key observation is that x′ is R00-connected to y′. Because x′ > v1 and y′ > v2, it
suffices to prove that v1 is R00-connected to v2. To see this, note that on M ′ the sets of rows

9

M︷ ︸︸ ︷
M ′︷ ︸︸ ︷

x · · · x′ v1 v2 y′ · · · y

R11 1 · · · 1 1 1 1 1 · · · 1

R10
1 · · · 1 0 0 0 0 · · · 0

1 · · · 0 0 0 0 0 · · · 0

R01
0 · · · 0 0 0 0 1 · · · 1

0 · · · 0 0 0 0 0 · · · 1

R00

0 · · · 1 0 0 0 0 · · · 0

0 · · · 1 1 1 0 0 · · · 0

0 · · · 0 0 1 1 1 · · · 0

Figure 2. An example M , M ′, and Rij illustrating the proof.

R11, R10, R01 are the only places that values may change between v1 and v2. So each step
from v1 to v2 consists of adding 1’s in R00 or removing 1’s but not both. Furthermore, we can
never remove all the 1’s by our condition that all columns in M ′ must have a 1 somewhere
on R00. Therefore, x′ is R00-connected to y′.

Given this information, we claim that it is impossible for x to be adjacent to y in B. If this
were the case, y′ must appear to the right of y, because of Lemma 3.10 and the fact that y
and y′ have a 1 shared somewhere in R01 whereas x′ doesn’t. Similarly, x′ must appear to
the left of x. But x′ and y′ are R00-connected and both x and y are 0 on R00, so Lemma 3.10
gives a contradiction.

Thus, we must have had a vector z that was 0 everywhere except on R11. This means we can
just insert z between x and y to make this part of our multiordering harmonious; furthermore,
this operation does not affect harmoniousness or CO-ness anywhere else. Applying this to
all adjacent pairs in B gives an HCO multiordering B′, as desired. �

We now are able to prove our main result of this section:

Theorem 3.11. Let L be a set of n length-k codewords, in the sensor-dense regime for
R1. There is a constructive O(n + k) algorithm that produces an HCO multiordering of L;
equivalently, it outputs an interval arrangement realizing L as a code.

Proof. First, if there is an HCO multiordering of L, removing duplicate vectors gives a (not
necessarily harmonious) CO ordering. Thus, we can use Proposition 3.1 to find such a
CO ordering A and decide when it does not exist (in which case there must be no HCO
multiordering of L either). Now, Proposition 3.8 tells us that A must be extendable into a
harmonious CO multiordering, so it suffices to find such an extension.

Consider any pair of adjacent inharmonious vectors x and y in A. The coordinate-wise
product x ∗ y is the vector described in the proof of Proposition 3.8. If x ∗ y is in L, insert a

10

copy between x and y. If not, then the reasoning above implies that no HCO multiordering
exists. As the check for such an x∗y is constant time, our algorithm is still O(n+k) time. �

We do not have a solution for the circular case. The main obstacle is that Proposition 3.8,
our main tool in this section, is not true for the circular case.

Example 3.12. Consider the HCCO multiordering (in fact, an ordering) at left.
1

0
0
0

 ,
1

1
1
0

 ,
0

1
0
0

 ,
1

1
0
1

1

0
0
0

 ,
0

1
0
0

 ,
1

1
1
0

 ,
1

1
0
1

It has a CCO ordering, at right, where the first two vectors are inharmonious. However, it
is impossible to insert other vectors between the first two to create an HCCO multiordering;
in fact, the insertion of any other vector breaks the CCO property. Thus, the reconstruction
must use a different strategy.

3.3. An Example. The reader may be unfamiliar with the algorithm of PC-tree construc-
tion, so we illustrate a non-trivial example here to supplement our other references:

Suppose we are given the following code: C = {1100, 1000, 0100, 0000, 0001, 0110} or, more
succinctly, {12, 1, 2, 0, 4, 23}. We carry out the PC algorithm in Figure 3.3, which should be
read from left to right. The output is the ordering in the bottom right; note that the small
black (known as “P”) nodes can be permuted arbitrarily, whereas the white (“C”) nodes can
only be shifted with circular permutations.

1 12

23

40

2

1 12

23

40

2

1

12
23

4

0

2

1

12
23

4

0

2

1

12
23

4

0

2

1

12

23

4
0

2

1

12

23

4
0

2

1

12

23

4
0

2

1

12
23

4

0

2

1

12
23

4

0

2

1

12
23

4

0

2

1

12
23

4

0

2

Figure 3. Intermediate Stages of the PC Algorithm for C

11

Since the zero word appears in the code, any matrix coming from this PC tree is CO and
CCO. This handles the sensor-sparse case for both cases. To determine the sensor-dense case,
we fix a matrix and check for inharmonious pairs. Starting from 4 and moving clockwise,
we obtain the matrix below left. The only inharmonious pair is the first two columns. Since
their coordinate-wise product, the all-0’s word, is in the code, we can add it inbetween the
two columns to obtain the HCO and HCCO matrix below right.

0 1 1 0 0 0
0 0 1 1 1 0
0 0 0 1 0 0
1 0 0 0 0 0

 −→

0 0 1 1 0 0 0
0 0 0 1 1 1 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0

 .

4. The Multiset Reconstruction Problem

Recall that the multiset reconstruction problem is the following: given a multiset of n code-
words L, decide if there exists a CO (resp. HCO, CCO, HCCO) matrix (with exactly n
columns) such that the multiset of columns is L. As before, the sensor-sparse regime (for
both the linear and circular versions) is much easier, but similar ideas can be used to prove
the linear sensor-dense case.

Lemma 4.1. The following holds for a CO matrix M :

1. Removal of any column preserves CO.

2. Insertion of a duplicate of some column v adjacent to v preserves CO.

3. Insertion of a duplicate of some column v adjacent to v preserves HCO.

Proof. Given a row with a single interval of contiguous 1’s, removing a 1 in the row creates
another (possibly empty) interval of 1’s, and removing a 0 outside of the interval does not
change the interval. Thus, removal of any column preserves CO.

Now, suppose we duplicate a column next to itself. For each row, we originally had a single
interval of contiguous 1’s. We have either added a 1 next to some 1 in this interval or added
a 0 outside the interval where there was already a 0. Thus, this operation preserves CO.

Finally, for sake of contradiction suppose the inserted column v′ creates an inharmonious
pair while the original matrix is HCO. Without loss of generality (v′, w) is inharmonious, and
v is to the left of v′. Then removing v′ creates the inharmonious pair (v, w) in the original
matrix, a contradiction. �

Lemma 4.2. Suppose a column v, appearing with multiplicity m in an HCO matrix A, has
the property that the removal of any instance introduces an inharmonious pair. Then any
HCO matrix with the same underlying set has v appearing with multiplicity at least m.

Proof. Take an instance of v with this property, and let (x, y) be an inharmonious pair. The
column v is either bound between x and y or it is the coordinate-wise product x ∗ y. If it is
bound between x and y, then by Lemma 3.10, so must any other instance of v; since removal
would result in an inharmonious pair, this means that m = 1, and the lemma is proven.

12

Therefore, the list of locations of v is between pairs (xi, yi) for i = 1, . . . ,m such that
v = xi ∗ yi for all i. By CO, the coordinates of v are 1 precisely on the rows where every xi
and yi is 1. Let Ã be the submatrix of A whose columns are greater than or equal to v, and
whose rows are precisely those where v is 0. Intuitively, this means resetting the ambient
space as X̃ =

⋂
j:vj=1 Ij, and then considering the interval arrangement {Ik}k:vk=0.

Using Definition 3.9, we claim that nonzero blocks of Ã correspond to Rv=0-connected com-
ponents of the graph. Since this graph is constructed from the underlying set (not the
multiset), it is invariant under reordering. Because these components are nonzero, we will
need exactly one zero column between adjacent blocks to preserve harmoniousness. Thus
the minimal multiplicity is fixed under any ordering. �

Proposition 4.3. Suppose we are in (either the linear or the circular case of) the sensor-
sparse regime. Given a multiset of n length-k vectors L, there is a O(n + k) algorithm that
solves the multiset reconstruction problem. Specifically, the algorithm decides if there exists
a CO (or CCO) matrix with n columns in bijection with L and constructs one if it exists.

Proof. The main observation is that if L′ is the underlying set (i.e. removing all duplicates)
of L, then there is a CO matrix with the column multiset equal to L′ if and only if there is
such a matrix with the column multiset equal to L. Using the results of Lemma 4.1, it is
enough to consider the question for L′. If a CO matrix exists for L′ then padding the matrix
appropriately gives a realization of L.

Thus, the multiset reconstruction problem for L is equivalent to the set reconstruction prob-
lem for L′ and can be resolved with Proposition 3.1. The logic used in this proof flows
identically for the CCO case as the CO case. �

Similar logic allows us to address the sensor-dense regime.

Proposition 4.4. Suppose we are in the linear case of the sensor-dense regime. Given a
multiset of n length-k vectors L, there is an O(n + k) algorithm that solves the multiset
reconstruction problem. Specifically, the algorithm decides if there exists an HCO matrix
with n columns in bijection with L and constructs one if it exists.

Proof. As before, we construct an HCO matrix on the underlying set of L using the algorithm
of Theorem 3.11. Suppose the resulting multiset of columns is L′, which is not in bijection
with L. Then L′ has, for some vector v, either more copies or fewer copies than L. We claim
that for each such v we can change M to retain an HCO matrix such that the number of
appearances of v in M (and thus in L′) matches that of L.

If L′ has fewer copies of v than L, Lemma 4.1 allows us to add in duplicates next to other
instances of v. If L′ has more copies of v than L, we remove any copy that does not leave an
innharmonious pair. By Lemma 4.2, this number will be the minimum possible achieved by
an HCO matrix. So, if this number is still greater than desired, we can decide the multiset
as being unrealizable. �

As before, the conjunction of the CCO property and harmoniousness seems mysterious, and
we do not have a solution to the multiset reconstruction problem for the circular case of the
sensor-dense regime.

13

5. The Enumeration Problem

Suppose we have k sets and n sensors in one of our regimes. We can count several related
objects, such as possible codes or possible sensor matrices. For us, counting the following
seems to be the most natural: call a set of k distinct length-n vectors a discrete interval
set if it is the set of rows for for some k × n sensor matrix in the corresponding regime.
Any sensor matrix can be constructed by taking such a set, freely duplicating rows, and
permuting the rows in some order. For each regime, let the number of discrete interval sets
of k vectors in Fn2 be cn,k. Our problem then becomes finding cn,k in some nice form, be it
closed form, generating functions, etc.

5.1. Linear Enumeration. The sensor-sparse regime is again very simple:

Proposition 5.1. For the linear case of the sensor-sparse regime, we can enumerate the

discrete interval sets via cn,k =
((n+1

2)
k

)
. For the circular case, cn,k =

(
n2−n+1

k

)
for n ≥ 2.

Proof. For the linear case, we just need each of the k rows to be a nontrivial CO row vector,
as having a row in the discrete interval set is independent of having any other row. Consider
the (n + 1) “gaps” between the n positions (counting the two “gaps” on the boundary).
There is a bijection between nontrivial CO rows and the choice of two distinct such gaps –
put 1’s in all the positions between the two gaps and 0’s elsewhere. This gives

(
n+1
2

)
possible

row vectors, of which we can arbitrarily select k.

For the circular case, we can describe a consecutive arc of 1’s that does not cover the whole
row by picking any of the n elements as the first 1, then having 1’s to its right (wrapping
around if necessary), stopping after we have a number of 1’s between 1 and (n − 1). This
gives n(n− 1) such choices, for which we need to add 1 (corresponding to having the entire
row be 1, which we forbade earlier to avoid overcounting). This gives a total of n2 − n + 1
row vectors. �

We now go to the sensor-dense regime.

Theorem 5.2. For the linear case of the sensor-dense regime, we can enumerate discrete
interval sets by computing the following generating function for the numbers cn,k:

f(x, y) =
∑
n

∑
k

cn,kx
nyk =

∞∑
m=0

xm

(1− a1x)(1− a2x) · · · (1− am+1x)
,

where ai = (1 + y)i − 1.

Proof. Consider a discrete interval set R. Note that each row r ∈ R, since it is nonzero,
must have a first occurrence and a last occurrence of 1. Index the n coordinates of r by [n].
Define f(r) to be the last index where r has value 1 and define g(r) to be 1 less than the
first index where r has value 1 (it may also be useful to think of r as a CCO row and think
of g(r) as the last index where r has value 0, wrapping around circularly if necessary). For
example, the row r = 001110 has f(r) = 5 and g(r) = 3 − 1 = 2. Note that our conditions
for R being a discrete interval set (i.e. any, equivalently all, of the matrices with rows coming
from R is HCO) is satisfied precisely when there is no pair of rows r1 and r2 in R such that
g(r1) = f(r2).

14

1 2 3 4 5 6 7 8
1 0 0 0 0 0 0 0

© © © 1 0 0 0 0
© © © © © © 1

S = {1, 4, 8}
© −→ Possible value of g(r).

Contribution of ES:
y · ((1 + y)3 − 1) · ((1 + y)6 − 1)

Figure 4. Illustrative example for Proof of Theorem 5.2.

Now, for S ⊂ [n], let ES be the set of discrete interval sets where the range of f(r) over
the rows is exactly S. This creates a partition of all possible discrete interval sets. Suppose
we have S = {i1, . . . , im}, i1 < i2 < · · · < im ≤ n. We define auxilary variables i′1 ≤ i′2 ≤
· · · ≤ i′m ≤ n−m + 1, where i′j = ij − j + 1. To count ES, recall that all rows r must have
f(r) ∈ S. We claim that the contribution of ES to the [xn] coefficient of f(x, y) is exactly

((1 + y)i
′
1 − 1)((1 + y)i

′
2 − 1)((1 + y)i

′
3 − 1) · · · ((1 + y)i

′
m − 1).

To see this, first consider the rows r with f(r) = i1. This provides a (multiplicative)
contribution of (1 + y)i

′
1 − 1. This is because any of the smaller coordinates can either exist

as g(r) for some row in R (in which case we pick up a power of y) or not, giving (1 + y)i
′
1 ,

from which we must subtract 1 since we need at least one row with f(r) = i1. Now consider
the rows r with f(r) = i2; any of the smaller coordinates except i1 can be used as g(r), which
gives (1 + y)i2−1 − 1 = (1 + y)i

′
2 − 1 choices by similar logic. Repeating this argument gives

our expression above. If we denote ai = 2i− 1, then we can get the [xn] coefficient in f(x, y)
by summing over all terms ai′1ai′2 · · · ai′m , i′1 ≤ · · · ≤ i′m for all n >= i′m + m − 1. Hence, we
obtain

f(x, y) =
∑
m

∑
i′1≤i′2≤···≤i′m

ai′1ai′2 · · · ai′m
xi

′
m+m−1

1− x
.

We now rethink the [xn] coefficient in f(x, y). Our expression tells us that [xn] should get a
contribution of 1 (from the null set), any monomial of degree 1 with index at most n (from
sets of size 1), any monomial of degree 2 with highest index at most n−1, . . ., the monomials
of degree n− 1 with highest index at most 2, and finally an1 . The function in the statement
of the theorem can be rewritten as

1

1− a1x
+

x

(1− a1x)(1− a2x)
+

x2

(1− a1x)(1− a2x)(1− a3x)
+ · · · .

Here, the first term picks up an1 , the second term picks up any monomial (again of the ai’s)
of degree n− 1 with only a1 and a2, . . ., monomials of degree 1 with only a1 through an, and
finally 1. These are exactly the previously-determined contributions of the coefficient [xn] in
f(x, y) in reverse order. Thus, these generating functions are equal. �

Now suppose we substitute y = 1 (which gives ai = 2i − 1). We now obtain the function∑
cnx

n, where cn =
∑

k cn,k. Here, cn counts the number of discrete interval sets of length-n
rows. As an example, there are 3 possible nonzero rows of length 2: {a = 01, b = 10, c = 11}.
Any of the 23 = 8 subsets of these rows form a (possibly trivial) harmonious CO matrix,
except for {a, b} and {a, b, c} since a and b force inharmoniousness, so c2 = 6. The first few
elements are

1, 2, 6, 26, 158, 1330, . . .
15

which happens to be in OEIS [12] (see https://oeis.org/A135922); it is the inverse bi-
nomial transform of dn =

∑n
k=0

(
n
k

)
2
, the number of all linear subspaces of Fn2 , but with

n shifted by 1. This curious link to linear subspaces leads to the following idea: for any
subspace S ⊂ Fn2 , define its support to be the subset of coordinates in [n] which is nonzero
for at least one vector in S. A strange corollary of Theorem 5.2 follows:

Corollary 5.3. The number of discrete interval sets of length n is equal to the number of
subspaces of Fn+1

2 with support equal to [n+ 1].

Proof. We know our number cn is equal to
∑

k(−1)k
(
n+1
k

)∑k
i=0

(
k
i

)
2
. One can imagine that

this sum represents the following formal sum over subspaces of Fn+1
2 : we first pick k coordi-

nates for an embedding of Fk2 inside Fn+1
2 , find a subspace of any dimension i ≤ k of that copy

of Fk2, which induces a subspace of Fn+1
2 (by assigning 0’s to any coordinates outside of those

k used), and assigning the coefficient (−1)k formally to this subspace. Equivalently, we could
have, for any subspace S with support set K ⊂ [n + 1], summed (−1)|K

′| for all supersets
K ′ ⊃ K. This formal sum is always 0 unless K ′ = [n + 1], in which case it contributes 1.
Thus, we obtain exactly the number of subspaces of Fn+1

2 with support equal to [n+ 1]. �

Example 5.4. Recall that c2 = 6. We may check that there are indeed 6 subspaces of F 3
2

with support equal to [3] = {1, 2, 3}. These are realized by generators as 〈111〉, 〈100, 011〉,
〈010, 101〉, 〈001, 110〉, 〈100, 010, 001〉, and 〈110, 011〉 = 〈110, 101〉 = 〈011, 101〉. This is a
curious coincidence! Besides the strange shift by 1, the two objects seem very different:
discrete interval sets are defined by pairwise local restrictions (being harmonious) and linear
subspaces are defined by set-wise conditions (linear independence). A more direct bijection
may be enlightening here.

Enumerating codes directly seems to be harder than enumerating discrete interval sets. One
strategy may be to encode the problem algebraically, such as in the direction of work of
Curto et al. [4, 6], and then apply brute-force computational search. It would be helpful to
have some bounds, e.g. a minimal number of columns necessary to realize all codes on n
intervals, to use this strategy.

5.2. Circular Enumeration. Finally, we enumerate discrete interval sets for the circular
case. Interestingly, while the circular case was harder for the set reconstruction problem, it
is the easier case for the enumeration problem due to its added symmetry.

Theorem 5.5. For the circular case of the sensor-dense regime, we can enumerate discrete
interval sets by computing the following generating function for the numbers cn,k:

f(x, y) =
∑
n

∑
k

cn,kx
nyk = 1 +

∞∑
m=1

2xm

(1− amx)m+1
.

Here, ai = (1 + y)i − 1.

Proof. For this case, we exclude the consideration of the all 1’s row since it behaves differently
from other rows. This is not a problem as having the all 1’s row is harmonious with all other
rows, so it just contributes a factor of 2 at the end for n ≥ 1 (as for n = 0 there is no all 1’s
row). Let h(x, y) be the generating function for these restricted discrete interval sets where

16

https://oeis.org/A135922

the all 1’s row is not allowed. We can then obtain f(x, y) = 2h(x, y) − 1 by our argument
above.

Consider a discrete interval set R. As before, define f(r) to be the last index where r has
value 1 and define g(r) to be the last index where r has value 0, allowing wraparound. For
example, the row r = 110001 has f(r) = 2 and g(r) = 5. Note that f and g are not well-
defined when r is the all 1’s vector, which is why we excluded it. As before, our conditions
for R being a discrete interval set is satisfied precisely when there is no pair of rows r1 and
r2 in R such that g(r1) = f(r2).

Again, for S ⊂ [n], let ES be the set of discrete interval sets where the range of f(r)
over the rows is exactly S. In this case, counting |ES| is much easier. For each choice
of S = {i1, . . . , im}, there are (n − m) indices available as the codomain for g(r). The
contribution to the [xn] coefficient of f ′(x, y) from ES is just ((1 + y)n−m − 1)m, because for
any of the m values in the range of f(r), the other (n −m) indices either exist as g(r) for
some row or not, and again we subtract 1 since we need at least one such row.

As before, if we denote ai = 2i−1, then we can get the [xn] coefficient in h(x, y) by summing
this contribution for ES over all S. There are exactly

(
n
m

)
possible sets ES for every m, so

we obtain

h(x, y) =
∑
n=0

∑
m=0

(
n

m

)
amn−mx

n =
∑
n=0

∑
m=0

(
n

m

)
an−mm xn =

∑
k=0

1

amm

∑
n=0

(
n

m

)
anmx

n

=
∑
k=0

1

amm

(amx)m

(1− amx)m+1
=

∑
k=0

xm

(1− amx)m+1
.

Finally, multiplying by 2 and subtracting 1 obtains f(x, y) when we allow the all 1’s row. �

We can again substitute y = 1 to obtain the generating function for cn =
∑

k cn,k, the number
of discrete interval sets of length-n rows.

Example 5.6. As an example, we compute c3. Since the all 1’s row just gives a factor of 2,
we can again exclude it. The vectors we can use are 110, 101, 011, 001, 010, and 100. Note
that if we use any of the rows with two 1’s, the other such rows must be excluded. Suppose
we have one such vector (w.l.o.g. 110) then we cannot also have 001, but we can have at
most one of 100 and 010, giving 3 choices. By symmetry, this gives 9 discrete interval sets
with at least one vector with two 1′s. If we have no such vectors in our discrete interval set,
then we can have at most one of 100, 010, and 001, for 4 more discrete interval sets for a
total of 13. Multiplying by 2 gives 26. It is very strange that c3 for the linear case is also
26, but the two sets look nothing alike!

The first few cn are

1, 2, 6, 26, 174, 1684, . . .

While this sequence is not in the OEIS, the sequence for n > 1 with all elements halved is
[12] (see https://oeis.org/A001831). This sequence counts labeled graded (3)-avoiding
posets, or alternatively, n × n square 0-1 matrices which square to the zero matrix. Again,
a direct bijection would be enlightening.

17

https://oeis.org/A001831

6. Conclusion

We addressed the problems of set/multiset reconstruction and enumeration for 1-dimensional
(convex neural) codes, under different (sensor-sparse or sensor-dense) topological assump-
tions. The theory of consecutive-ones matrices is very helpful for the former problem and
the latter problem can be attacked with generating functions. The added requirement of
harmoniousness makes the circular case more difficult than the linear case. Along the way,
we have provided an algorithm that determines whether a code is realizable in dimension 1
and one that provides a certificate for rejection.

Linear Sparse Circular Sparse Linear Dense Circular Dense
Reconstruction

√ √ √

Enumeration*
√ √ √ √

6.1. Higher Dimensions. There are obvious generalizations of the ideas in this paper to
codes of higher dimension, especially considering that higher-dimensional convex sets project
to convex sets in lower dimension. However, it becomes trickier to consider different topo-
logical regimes. For example, the formulation of the reconstruction problem in [4] assumes
the open convex sets, but we may also want to consider closed convex sets, arbitrary convex
sets, etc. We start such a discussion with Appendix A, but there is clearly much more to be
done.

Another nontrivial aspect of this project in higher dimensions is the correct idea of convexity.
In dimension 1, the idea of a set of codewords translating into a discrete union of convex
intervals has a straightforward interpretation. However, in higher dimensions, there are
various definitions of discrete (or digital) convexity. Webster [21] believed that the right
setting for digital convexity is the abstract cell complex (ACC), first introduced by Kovalevsky
[16]. The ACC includes cubes of dimension n and then all lower-dimensional faces of those
cubes. In this setup, unlike other proposed schemes for digital convexity, straightforward
analogues of the classical results Radon’s Theorem, Helly’s Theorem, and Caratheodory’s
Theorem all hold. Unfortunately, this definition relies on the use of closed hyperplanes. The
analog of an open set would have any face automatically include all neighboring higher-
dimensional faces, which would make all these theorems fail. Indeed, the only open convex
sets under this definition whose rotations are a Helly family is the family of rectangles. Some
other versions of convexity are summarized in [7]:

(1) MP-convexity: Two lattice points x, y in a convex set S means that any lattice point
on their line segment is also in S.

(2) H-convexity: A convex set S ⊂ Zd must contain all lattice points in its convex hull
as a subset of Rd.

(3) D-convexity and DH-convexity: Different versions of digital lines are used to modify
MP-convexity.

For our purposes, coming from a sampled convex set in a real Euclidean space, H-convexity
is the most attractive. However, due to the failure of Radon, Caratheodory and Helly, proofs
may be difficult for H-convexity.

6.2. Open Problems. Some natural combinatorial questions remain:
18

• Does there exist a linear-time algorithm for determining whether a code is harmonious
circular consecutive-ones? Is there a rejection criterion?
• How to enumerate (generating function?) codes as opposed to the discrete interval

sets?
• How many intervals are necessary to realize every code on n neurons with k code-

words?
• Are there good explanations / bijections to the other combinatorial objects found on

the OEIS in Sections 5.1 and 5.2?
• Can we bound the size of the matrix necessary to realize all codes on n neurons with
k codewords? This seems especially important for applications going into higher
dimensions. For example, we may then be able to do sampling (or even search) on
the space of codes.

Acknowledgements. This project was initiated at a 2014 AMS Mathematics Research
Community, “Algebraic and Geometric Methods in Applied Discrete Mathematics,” sup-
ported by NSF DMS-1321794. Early stages of the research were enriched by insights from
Carina Curto, Elizabeth Gross, Jack Jeffries, Katie Morrison, Mohamed Omar, Anne Shiu,
and Nora Youngs. We thank Carina Curto for reviewing early drafts of the work. ZR was
supported in part by a Simons Foundation Math+X research grant for the late stages of this
research.

References

[1] R. Amzi Jeffs, M. Omar, N. Suaysom, A. Wachtel, and N. Youngs, Sparse Neural Codes and Convexity,
ArXiv e-prints (November 2015), available at 1511.00283.

[2] Kellogg S Booth and George S Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using pq-tree algorithms, Journal of Computer and System Sciences 13 (1976), no. 3,
335–379.

[3] J. Cruz, C. Giusti, V. Itskov, and B. Kronholm, On open and closed convex codes, ArXiv e-prints
(September 2016), available at 1609.03502.

[4] Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Mohamed Omar, Zvi Rosen, Anne
Shiu, and Nora Youngs, What makes a neural code convex?, arXiv preprint arXiv:1508.00150 (2015).

[5] Carina Curto, Vladimir Itskov, Katherine Morrison, Zachary Roth, and Judy L Walker, Combinatorial
neural codes from a mathematical coding theory perspective, Neural computation 25 (2013), no. 7, 1891–
1925.

[6] Carina Curto, Vladimir Itskov, Alan Veliz-Cuba, and Nora Youngs, The neural ring: an algebraic tool
for analyzing the intrinsic structure of neural codes, Bull. Math. Biol. 75 (2013), no. 9, 1571–1611.

[7] Ulrich Eckhardt, Digital lines and digital convexity, Digital and image geometry, 2001, pp. 209–228.
[8] R. Garcia, L. D. Garćıa Puente, R. Kruse, J. Liu, D. Miyata, E. Petersen, K. Phillipson, and A. Shiu,

Gröbner Bases of Neural Ideals, ArXiv e-prints (December 2016), available at 1612.05660.
[9] Chad Giusti and Vladimir Itskov, A no-go theorem for one-layer feedforward networks, Neural compu-

tation (2014).
[10] E. Gross, N. Kazi Obatake, and N. Youngs, Neural ideals and stimulus space visualization, ArXiv e-prints

(July 2016), available at 1607.00697.
[11] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I Moser, Microstructure

of a spatial map in the entorhinal cortex, Nature 436 (2005), no. 7052, 801–806.
[12] Paul D. Hanna, The On-Line Encyclopedia of Integer Sequences. A135922. Inverse binomial transform

of A006116.
[13] Stig A Hollup, Sturla Molden, James G Donnett, May-Britt Moser, and Edvard I Moser, Accumulation of

hippocampal place fields at the goal location in an annular watermaze task, The Journal of Neuroscience
21 (2001), no. 5, 1635–1644.

19

1511.00283
1609.03502
1612.05660
1607.00697

[14] Alfred Horn, Some generalizations of hellys theorem on convex sets, Bulletin of the American Mathe-
matical Society 55 (1949), no. 10, 923–929.

[15] Wen-Lian Hsu and Ross M. McConnell, PC trees and circular-ones arrangements, Theoret. Comput.
Sci. 296 (2003), no. 1, 99–116. Computing and combinatorics (Guilin, 2001).

[16] Vladimir A Kovalevsky, Digital geometry based on the topology of abstract cell complexes, Discrete
geometry for computer imagery, 1993, pp. p259–284.

[17] Caitlin Lienkaemper, Anne Shiu, and Zev Woodstock, Obstructions to convexity in neural codes, arXiv
preprint arXiv:1509.03328 (2015).

[18] Ross M McConnell, A certifying algorithm for the consecutive-ones property, Proceedings of the fifteenth
annual acm-siam symposium on discrete algorithms, 2004, pp. 768–777.

[19] John O’Keefe, Place units in the hippocampus of the freely moving rat, Experimental neurology 51
(1976), no. 1, 78–109.

[20] John O’Keefe and Jonathan Dostrovsky, The hippocampus as a spatial map. preliminary evidence from
unit activity in the freely-moving rat, Brain research 34 (1971), no. 1, 171–175.

[21] Julian Webster, Cell complexes and digital convexity, Digital and image geometry, 2001, pp. 272–282.

Appendix A. Topological Considerations

In this paper, we worked with open convex intervals. Two other natural choices are:

• arrangements of convex closed intervals;

• arrangements of convex arbitrary intervals (open, closed, or half-open).

In this Appendix, we discuss the relationship between these questions.

Proposition A.1. The set of codes realizable by any of the three types of constraints (open
convex, closed convex, arbitrary convex) in the sensor-sparse regime are identical.

Proof. Given an arrangement under any of the three types of constraints above, consider the
discrete set of sensors S. For an interval with an open endpoint in S, we may slightly shorten
the interval such that the endpoint is no longer in S; the code is invariant as S did not detect
the interval to begin with. Similarly, for an interval with a closed endpoint in S, we may
slightly enlarge the interval so that the endpoint is no longer in S. Therefore, for each code
we may assume our arrangement has no endpoints in S. As changing the open/closedness
of points in S does not affect our code, we can then realize our code as an arrangement in
any of the 3 types of constraints above. This shows all the constraints are identical. �

Proposition A.2. The set of codes realizable by open intervals is identical to the set of codes
realizable by closed intervals in the sensor-dense regime.

Proof. Suppose we have an arrangement of open intervals A with a corresponding code C.
It is possible to pick some ε > 0 small enough such that replacing all intervals (a, b) by
(a + ε, b − ε) keeps the code intact while ensuring that no right endpoint of any interval
equals the left endpoint of any interval. Replacing every intervals (a, b) by its closure [a, b]
now creates an arrangement of closed convex intervals where the only possible changes to the
codewords occur at endpoints of intervals. As no right endpoint of any interval equals the
left endpoint of any interval, we do not gain or lose any codewords by replacing each interval
with its closure. To get from an arrangement of closed intervals to one of open intervals, we
can reverse this process; first we enlarge all the closed intervals, then replace them by open
intervals. The logic works similarly. �

20

The above proposition is subtle; one might conjecture that the same would hold in higher
dimension, but a counterexample was identified by [17]; the code is realizable by closed sets
in dimension 2, but is not realizable in any dimension for open sets. A similar example was
identified in [3]: the code is realizable for open sets in dimension 2, but not for closed convex
sets in any dimension. Thus, this Proposition is clearly confined to dimension 1.

Proposition A.3. The set of codes realizable by arbitrary intervals in the sensor-dense
regime is identical to the set of codes realizable by open (equiv. closed or arbitrary) intervals
in the sensor-sparse regime.

Proof. Suppose we have an arrangement of arbitrary intervals in the sensor-dense regime
giving some code C. Restricting to any finite set of representative sensors that detect C gives
the same arrangement with the same code C in the sensor-sparse regime.

Now suppose we have an arrangement of open intervals with a finite set of sensors S detecting
some code C. We can replace it by an arrangement of intervals of form [a, b) with both a, b ∈ S
by rounding up both endpoints of each interval to the nearest sensor in S and then making
the left endpoint closed and the right endpoint open. This does not affect which intervals
each sensor detects, so the code is preserved. The boundary cases here are:

(1) Both endpoints of an interval are between two adjacent points in S. In this case, just
discard the interval.

(2) In the circular case where both endpoints are between two adjacent points in S in
opposite order, in which case we replace the interval with the entire ambient space
(R or S1).

In both cases the remainder of the proof goes through. An arrangement of this form has the
property that any point between two adjacent sensors S1 and S2 sees exactly what S1 sees,
which means the code of this new arrangement in the sensor-dense regime does not have any
new codewords, and must in fact be equal to C.

�

110 101 000

Figure 5. Illustration of the Proof of Proposition A.3

Among the six possibilities of sensor density and interval topology, only two distinct cases
emerge: a sensor-sparse case that “does not see” topology (and happens to be equivalent to
sensor-dense for arbitrary intervals) and a sensor-dense case where the intervals are either
all open or all closed. Thus, we reduce to two cases by fixing our intervals to be open convex
and just considering sensor density.

21

	1. Introduction
	1.1. Motivation
	1.2. Mathematical Setup
	1.3. Main Results

	2. The Consecutive-Ones Property
	3. The Reconstruction and Signature Problems
	3.1. Sensor-Sparse Regime
	3.2. Sensor-Dense Regime
	3.3. An Example

	4. The Multiset Reconstruction Problem
	5. The Enumeration Problem
	5.1. Linear Enumeration
	5.2. Circular Enumeration

	6. Conclusion
	6.1. Higher Dimensions
	6.2. Open Problems
	Acknowledgements

	References
	Appendix A. Topological Considerations

