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Abstract. We investigate the entanglement properties of an infinite class of excited

states in the quantum Lifshitz model (QLM). The presence of a conformal quantum

critical point in the QLM makes it unusually tractable for a model above one spatial

dimension, enabling the ground state entanglement entropy for an arbitrary domain to

be expressed in terms of geometrical and topological quantities. Here we extend this

result to excited states and find that the entanglement can be naturally written in terms

of quantities which we dub “entanglement propagator amplitudes” (EPAs). EPAs are

geometrical probabilities that we explicitly calculate and interpret. A comparison of

lattice and continuum results demonstrates that EPAs are universal. This work shows

that the QLM is an example of a 2+1d field theory where the universal behavior of

excited-state entanglement may be computed analytically.
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1. Introduction

The tools of quantum information theory have proven increasingly useful in recent years

to understand and characterize many-body quantum systems [1, 2]. A prime example is

the use of entanglement entropy to determine if a groundstate wave function is critical or

topologically ordered. Remarkably, the entanglement structure of many-body quantum

groundstates of systems with local interactions is quite special, and is quite different

from that of random states. This result is known as the “area law” [3, 4]: in the ground

state of a model, the entanglement between two subsystems is usually proportional to

the surface area between them, whereas in highly excited states or for a random state

in the Hilbert space it usually becomes proportional to the volume [3, 5, 6]. These are

robust results that are not model-dependent, and they also have crucial implications

for numerical techniques as they explain the success of variational matrix-product state

algorithms such as the density matrix renormalization group [7, 8, 9, 10].

Defining the entanglement entropy requires an ultraviolet cutoff (lattice spacing)

and is therefore not completely universal, but the entanglement often contains universal

pieces that are characteristic of a model independently of how it is written. Many

examples of this are now known. In a 1+1d conformal field theory, for instance, the

entanglement entropy scales logarithmically with the size of the entanglement interval

times a coefficient proportional to the central charge of the theory [11, 12, 13, 14].

In topological systems, the number of topological degrees of freedom is reflected in

a constant term in the entanglement [15, 16]. Even strongly disordered systems can

sometimes show universal logarithmic corrections to the area law in one dimension [17,

18]. One can therefore read off many physically interesting quantities and understand

a good deal of the structure of the theory by knowing the entanglement.

Although most results are restricted to low-energy equilibrium settings, the scaling

of entanglement in highly excited states or after a global quantum quench has attracted

a lot of attention in the past few years [19, 20, 21]. In particular, it was realized that

entanglement is a key tool to understand how isolated many-body quantum systems self-

thermalize (or fail to do so) under their own unitary dynamics [22, 23, 24]. For example,

in many-body localized systems, the area law is preserved even in highly excited states,

a fact closely related to the non-ergodic behavior of those systems [25, 26]. Some results

in one dimensional systems also indicate that the entanglement entropy of low-lying

excited states may have universal contributions [27, 28].

Unfortunately the promise of using entanglement to understand condensed matter

systems is mitigated by the difficulty of computing it. The best “playground” for

entanglement is 1+1 dimensional conformal field theories, where a field theory replica

technique pioneered by Cardy and Calabrese [13, 14] provides a practical computational

framework for the ground states, at finite temperature [13], and for dynamics [21].

These ideas have been extended to free field theories in higher dimensions [29] and to

specialized interacting theories using the AdS/CFT correspondence [30, 31]. There are

especially few results concerning the entanglement of excited states in dimensions larger
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than one, both in highly excited states where entanglement should be a prime tool to

study questions related to thermalization, and in low-energy excited states that may

show interesting universal contributions to the entanglement.

As a step towards this goal, this paper will describe the entanglement properties

in excited states of the 2+1d quantum Lifshitz Model (QLM). This model arose as a

continuum limit of the venerable quantum dimer model [32, 33, 34], which began as

model for the resonating-valence-bond theory of high temperature superconductivity

with a quantum critical point known as the RK point [32]. (See [35] for a review).

The QLM also provides an example of a deconfining critical point [36, 37]. The

quantum Lifshitz model is a continuum limit of the dimer model at the RK point

via a height function [38, 39]. It is an example of a conformal quantum critical point,

whose wavefunctional has 2d conformal invariance, so that techniques of conformal field

theory (CFT) are applicable. This special property simplifies the entanglement of the

theory and makes analytic progress possible. It was argued in [40] (and subsequently

confirmed in [41, 42, 43, 44, 45, 46] with slight corrections) that the entanglement entropy

in arbitrary geometries may be expressed in terms of the free energy F of the associated

CFT. One can hope that the understanding of entanglement in excited states of the

QLM will inform excited-state studies in standard (z = 1) quantum critical points with

conformal invariance in d + 1 dimensions, similarly to how the corner contributions to

entanglement in the QLM can be compared to the corner contributions in the z = 1

case, where much has been learned even in the absence of a closed form [47].

Let us quickly recall the results of [40]. Suppose the QLM is defined on a 2d

spatial manifold M , with a partition A ∪ B = M . Fradkin and one of us showed that

the entanglement entropy can be expressed in terms of free energies of the 2d CFT

describing the ground state wavefunctional (in most physically relevant cases, a free

boson)

SA = FA + FB − FA∪B +O(1)topological. (1)

The scaling of the entanglement entropy then follows from a standard results of Cardy

and Peschel [48] that states that if region A is finite, simply connected with a smooth

boundary, then the free energy scales as

FA = fb |A|+ fsL−
cχ

6
lnL+O(1) (2)

where fb and fs are non-universal bulk and surface contributions, |A| is the area, c is

the central charge of the CFT (c = 1 in our case), L is the perimeter of A, and χ is the

Euler characteristic of A, χ = 2 − 2g − b where g is the genus and b is the number of

boundaries. The |A| terms cancel in the entropy, yielding a logarithmic correction to

the area law determined purely by the geometry and topology:

SA = 2fsL−
c

6

(
χA + χB − χA∪B

)
lnL+O(1). (3)

Inspired by this concise and general result, this paper explores what may be said

about entanglement in excited states of the quantum Lifshitz model. We find that
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the entanglement of an infinite class of eigenstates is given is given in terms of simple

geometrical numbers that have a natural probabilistic interpretation, which we dub

“entanglement propagator amplitudes” (EPAs) for convenience. The remainder of this

paper is organized as follows. Section 2 describes the QLM in the wavefunctional

picture and computes its excited states. Section 3 introduces the EPAs and shows

that arbitrary Rényi entropies are expressed naturally in terms of EPAs through a

combinatorial formula. To understand the significance and universality of EPAs, as well

as to form an intuitive picture of them, it is necessary to work on the lattice. Section

4 derives the result (3) on the lattice via a new method employing the renormalization

group and provides numerical checks in tetromino geometries. Section 5 extends

this to excited states, and discusses the lattice versions of EPAs and their cancelling

divergences. Section 6 returns to the continuum to compute EPAs in explicit geometries.

A comparison of lattice and continuum results shows that EPAs are numerically equal

in both settings — strong evidence for universality. The appearance of such universal

quantities is evidence that studying entanglement of excited states in higher dimensions

reveals novel physical quantities of interest.

2. The Quantum Lifshitz Model

The quantum Lifshitz model (QLM) is a 2+1d field theory which may be defined on

a general 2d spatial manifold M . Let ϕ be a compact scalar field (i.e. a field whose

target is the circle with radius 2πR) with Dirichlet boundary conditions on M . Then

define [49]

H =
1

2

∫

M

d2x
[
Π2 + κ2 (∆ϕ)2] . (4)

Here Π(x) is the cannonical conjugate momenta, ∆ is the Laplacian on M , and κ is a

real parameter. The value of κ = (8π)−1 is often used to match correlation functions at

the RK point of the quantum dimer model. The QLM (with different choices of R and

κ) is also the continuum limit of various interacting generalizations of the dimer model,

as well as the quantum six- and eight-vertex models [43].

The QLM is a Gaussian field theory and thus we expect it to be exactly solvable

as an infinite collection of harmonic oscillators. It is convenient to use the Schrödinger

picture to find the wavefunctionals Ψ[ϕ] = 〈[ϕ]|Ψ〉, which are complex-valued functionals

on the space of field configurations, whose eigenfunctionals satisfy HΨ[ϕ] = EΨ[ϕ]. This

treatment expands the ideas of Ardonne et al. [50], and a pedagogical treatment can

be found in Fradkin’s textbook [49]. In this picture, the conjugate momentum becomes

a functional derivative Π(x) = −iδ/δϕ(x). We can then take the “square root” of the

Hamiltonian by defining

Q†(x) =
1√
2

(
− δ

δϕ(x)
+ κ∆ϕ

)
, (5)

which satisfies [Q†(x), Q(y)] = −κ∆δ(x − y). Then the normal-ordered Hamiltonian

becomes H =
∫
d2x Q†(x)Q(x).
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To find the ground state wavefunctional, note H is positive semi-definite, so any

non-trivial eigenfunctional with eigenvalue zero must be the ground state. We thus seek

a functional Ψ0[ϕ] in the kernel of Q: Q(x)Ψ0[ϕ] = 0 for all x. This is a first-order

functional differential equation whose solution is

Ψ0[ϕ] = 〈[ϕ]|Ψ0〉 =
1√
Z
e−

1
2
S[ϕ] where Z =

∫
Dϕ e−S[ϕ], and S[ϕ] =

∫

M

d2x κ (∇ϕ)2 .

(6)

This is the action for a compact boson CFT (up to normalization). The QLM is thus

an example of a conformal quantum critical point, whose wavefunctional has the form

of the free 2d boson (even though the 2+1d theory (4) has dynamical exponent z = 2

and is not conformally invariant), so one may employ the results of 2d conformal field

theory when working with the wavefunctional [50].

The full spectum of (4) now follows from properties of the Laplace operator on an

arbitrary conected 2d manifold. The collection of all eigenfunctions (or ‘modes’) {Lλ}
of the Laplace operator on M ,

∆Lλ(x) + λLλ(x) = 0, (7)

have positive eigenvalues λ > 0 and together form a complete, orthonormal basis for

(L2) functions on M [51]. For each mode λ,† define a raising operator

A†λ(x) =
1√
κλ

∫

M

d2x Lλ(x)Q†(x). (8)

By using the above commutation relation for the Q’s, one may show that that, if λ and

µ are two eigenvalues, [Aλ, A
†
µ] = δλµ, [A†λ, A

†
µ] = [Aλ, Aµ] = 0, and [H,A†λ] = κλA†λ, and

thus a general energy eigenstate is indexed by the number of quanta nλ in each mode λ

of the Laplace operator. We may then rewrite the Hamiltonian for the wavefunctionals

as

H =
∑

λ

κλA†λAλ. (9)

It is now clear that the wavefunctional of arbitrary excited states is directly analogous

to the quantum harmonic oscillator:

〈[ϕ]|(nλ1 , nλ2 , · · · )〉 =
∏

λ

(Z 2nλnλ!)
−1/2Hnλ

(√
κλϕλ

)
e−

1
2
S[ϕ]. (10)

where Hn is the nth Hermite polynomial and ϕλ =
∫
M
d2x Lλ(x)ϕ(x).

3. Rényi Entropy in Excited States

Now equipped with the excited states of the model, we can look to understand their

entanglement. For definiteness, let us work in the state with one quantum in the λth

† Here λ or µ will be used as an index for modes even though finitely many modes may have the same

eigenvalue.
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mode, whose wavefunctional is therefore

Ψλ[ϕ] = 〈[ϕ]|Ψλ〉 = Z−1/2
√

2κλ ϕλe−
1
2
S[ϕ]. (11)

This is an artificial restriction to make the calculations easier and the exposition

clearer; the method below works for any wavefunctional. However, the combinatorics is

prohibitively difficult to make exact statements for arbitrary states.

To set notation, let us say that M = A∪B and let ∂ be the border between A and

B — see Figure 1. Then we may write a field-configuration as ϕ = ϕA ⊕ ϕB, the sum

of fields with support on A and B respectively. The density matrix ρ = |Ψλ〉 〈Ψλ| has a

partial trace with matrix elements

〈[ϕA1 ]|ρA|[ϕA2 ]〉 =

∫
DϕB 〈[ϕA1 ⊕ ϕB]|ρ|[ϕA2 ⊕ ϕB]〉 . (12)

The path integral is over all possible field configurations on the B side of the manifold.

To find an arbitrary Rényi entropy S
(n)
A = 1

1−n ln Tr ρnA we must compute

Tr ρnA =

∫ ∏

a∈Zn

DϕAaDϕBa 〈[ϕAa ⊕ ϕBa ]|ρ|[ϕAa+1 ⊕ ϕBa ]〉 =

∫

Sn

Dϕa 〈[ϕAa ⊕ ϕBa ]|ρ|[ϕAa+1 ⊕ ϕBa ]〉 ,

(13)

where
∫
Sn is the path integral over all field configurations on M with the constraint that

each of the ϕa’s are equal on ∂ [40]. This comes from the fact that a discontinuity of

the fields across the boundary gives an infinite contribution to the action, so the fields

must agree at the boundary [40]. Henceforth, the product over a ∈ Zn will be implicit.

One may consider this as a path integral over an n-sheeted surface Sn made of n

copies of M , which are pinned together along ∂. This is quite different than the Riemann

surfaces that often show up in 1+1d CFT calculations of entanglement [13]; the surface

Sn is not a manifold (since it is not homeomorphic to a neighborhood of R2 near ∂) and

may have the cut anywhere, not just along a spatial axis. Unfortunately, this precludes

the possibility of a conformal mapping to a standard geometry.

∂

A B

M

1A 1B

2A

2BnA

nB

3A

3B
· · ·

· · ·

∂

Figure 1. (Left) An example of the geometry of M . (Right) A side-on schematic of

the n-sheeted surface Sn.

Define the surface expectation to be

〈O(x1)O(x2) · · ·〉Sn = Z−n
∫

Sn
Dϕa

(
O(x1)O(x2) · · ·

)
e−

∑n
a=1 S[ϕa]. (14)
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The problem of finding the Rényi entropies can therefore be rephrased as computing

the expectation value

Tr ρnA = (2κλ)n
〈
ϕλ11ϕ

λ
21ϕ

λ
22 · · ·ϕλnnϕλ1n

〉
Sn

(15)

where

ϕab =

{
ϕa(x) x ∈ A
ϕb(x) x ∈ B

and ϕλab =

∫

M

d2x Lλ(x)ϕab(x). (16)

3.1. The Sides and the Boundary

The task is now to evaluate the correlation functions in (15). By linearity of expectation,

Tr ρnA = (2κλ)n
∫

M

2n∏

i=1

d2xi Lλ(xi) 〈ϕ11(x1)ϕ21(x2) · · ·〉Sn , (17)

so all that is necessary is to evaluate spatial 2n-point functions on Sn. Appendix A

derives Wick’s theorem — suitably modified for this geometry — by applying a series of

coordinate transformations first developed in the Appendix of [45] and simplified in [46].

If the ϕai(xi)’s are fields on sheets ai, then the result is

〈ϕa1(x1)ϕa2(x2) · · ·ϕa2n(x2n)〉Sn
Tr ρnA(GS)

= (2κ)−n
∑

“pairs”

n∏

i=1

(
δaciadiG

D(xci , xdi) +
1

n

[
GM(xci , xdi)−GD(xci , xdi)

])
+ Har

(18)

where

“pairs” = {C = (c1, c2, . . . , cn), D = (d1, d2, . . . , dn) ⊂ Z2n : C ∪D = Z2n} , (19)

i.e. all possible partitions of 2n elements into pairs. The notation GM (resp. A, B) is

the Green’s function for the Laplacian on M (A, B) with Dirichlet boundary conditions,

and

GD(x, y) =





GA(x, y) x, y ∈ A
GB(x, y) x, y ∈ B
0 else.

(20)

“Har” means this is only true up to an arbitrary harmonic function; this is irrelevant

because we are always integrating against eigenfunctions of the Laplacian, so we can

remove it with an integration by parts. Lastly, the prefactor is exactly the ground state

Rényi entropy

Tr ρnA(GS) = T
(
ZD
ZM

)n−1

, (21)

a familar result from, e.g. [40, 45, 46], where T represents the O(1) topological terms,

and the partition functions are the free energy of the “quantum drum” [40]. Our

generalized Wick’s Theorem is therefore the normal Wick’s theorem on each side A

and B of each sheet, plus a contribution GM −GD which communicates between sides

and between sheets, but is suppressed by 1/n.
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3.2. Entanglement Propagator Amplitudes

Combining (17) and (18) then tells us

Tr ρnA(Ψλ)

Tr ρnA(GS)
=
∑

“pairs”

n∏

i=1

λ

∫
d2xcid

2xdiLλ(xi)Lλ(yi)

×
(
δaciadi (xcixdi)G

D(xci , xdi) +
1

n

[
GM(xci , xdi)−GD(xci , xdi)

])
,

(22)

where δaciadi (xci , xdi) is unity only if the fields are on the same sheet. For instance,

for the pair of fields ϕ11(x1)ϕ21(x2), it is unity only when x1, x2 ∈ B. Equation

(22) is a polynomial in three quantities, which we dub the “Entanglement Propagator

Amplitudes” (EPAs),

α = λ

∫

M

d2x d2y Lλ(x)GA(x, y)Lλ(x), (23a)

β = λ

∫

M

d2x d2y Lλ(x)GB(x, y)Lλ(x), (23b)

γ = λ

∫

M

d2x d2y Lλ(x)
[
GM(x, y)−GD(x, y)

]
Lλ(x). (23c)

Here α and β are intra-sheet terms that have support on A or B respectively. On the

other hand, γ is an inter-sheet term, connecting A to B. These are dimensionless and

should be interpreted as probabilities since 0 ≤ α, β, γ ≤ 1 and α + β + γ = 1. We will

return to the interpretation and evaluation of the EPAs presently.

Applying a dash of combinatorics,

Tr ρnA(Ψλ)

Tr ρnA(GS)
=
∑

“pairs”
C,D

n∏

i=1

γ

n
+





α if ci + 1 ≡ di (mod n) and ci even

β if ci + 1 ≡ di (mod n) and ci odd

0 otherwise




. (24)

This allows us to compute arbitrary Rényi entropies for excited states with one quantum

in an arbitrary mode. Such a restriction is artificial; the Rényi entropy of an excited

state with multiple quanta could be computed with more complex combinatorics and

three EPAs for each pair of modes involved. For example if we had two modes λ and µ,

then the Rényi entropies would involve quantities such as

αλµ =
√
λµ

∫

M

d2x d2y Lλ(x)GA(x, y)Lµ(x). (25)

To find the entanglement entropy, one must analytically continue (24) to arbitrary

n, in practice by finding a closed form equation for it [13], a non-trivial problem.
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Explicitly, the first several traces are

Tr ρ1
A(Ψλ)

Tr ρ1
A(GS)

= 1, (26a)

Tr ρ2
A(Ψλ)

Tr ρ2
A(GS)

= a2 + b2 + g2, (26b)

Tr ρ3
A(Ψλ)

Tr ρ3
A(GS)

= a3 + 3abg + 3ag2 + b3 + 3bg2 + 4g3, (26c)

Tr ρ4
A(Ψλ)

Tr ρ4
A(GS)

= a4 + 4a2bg + 8a2g2 + 4ab2g + 8abg2 + 20ag3 + b4 + 8b2g2 + 20bg3 + 31g4,

(26d)

where a = α+ d, b = β+ d, and g = γ/n. One can translate the problem of computing

the Rényi entropies into a weighted perfect matching problem. Consider the complete

graph on 2n vertices, with weights a and b alternating around the outside, and weight g

for edges through the middle. The nth Rényi entropy is the sum of all weighted perfect

matchings. (Amusingly, this is equivalent to finding the partition function of a classical

dimer problem on a non-planar graph.)

In the special case α = β, the Rényi entropies are polynomials in a single variable

γ. We conjecture that

Tr ρnA(Ψλ, α = β)

Tr ρnA(GS)
= 2n−1

(
1 +

∞∑

k=2

(
n

k

)
(k − 1) pk(n)γk

)
, (27)

where

pk(n) =
k−2∑

r=0

Ak−r−2,rn
r, (28)

wherein the coefficients Ai,j are the diagonals of OEIS sequence A112486 [52] and may

be recursively defined by

Ai,j =





0 j = −1 or i < j

1 i = j = 0

(i+ j)Ai−1,j + (i+ j − 1)ai−1,j−1 otherwise.

(29)

We have confirmed Equation (27) explicitly through n = 11 via computer.

To find the entanglement in general it would be convenient if one of a, b or g could

be treated as a small expansion parameter. The behavior of (24) to lowest order in

g = γ/n is particularly simple:

Tr ρnA(Ψλ)

Tr ρnA(GS)
= an + bn +O (γ) , (30)

It is therefore quite tempting to hope that γ vanishes, which would make (27) trivial.

Superficially, it looks like γ might vanish; we may integrate by parts to get ∆GM−∆GD,
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which would give a delta function on M minus delta functions on both A and B. It

would appear that the inter-sheet EPA therefore vanishes, since the integral kernel is

identically zero except on the co-dimension one boundary ∂. In this case, α+β = 1 and

α would be the integral of the wavefunction over A, i.e. the probability the excitation is

on the A side, and similarly for B. The analytic continuation of (30) would be trivial,

and the entanglement entropy would be that of the ground state plus the entropy of an

effective qubit for each quanta with density matrix ρeff
A = diag(α, β). However we will

demonstrate below that, contrary to this naive expectation, γ is generically non-zero

and is not small in any common physical limit. The reasoning of the above paragraph

therefore does not apply, though important aspects of it survive, and it is a good first

start for intuition.

To see why γ is non-zero and what its interpretation is in the continuum involves

regularization and subtle arguments. Therefore, we will explore a explicit lattice

regularization of the problem, providing a point of view complementary to the field

theory picture, but without divergences. Section 4 will reproduce the entanglement

entropy in the ground state from the lattice, and Section 5 will examine lattice excited

states, showing γ is generically non-zero. With this analysis in hand, Section 6 will reveal

how this is realized in the continuum. We will conclude that the EPAs α, β, and γ are

universal and completely geometric quantities which fully determine the entanglement

entropy of excited states of the theory. For states with one quantum, it therefore follows

that the difference in entanglement with the ground state is O(1) and universal.

4. Building the Quantum Drum from Scaffolding

Let us make the following assumptions:

(i) The only difference in the entanglement between the compact and non-compact

theories is an O(1) topological term. We saw in Section 4 that this holds for the

ground state and Appendix A suggests it holds for excites states as well. Therefore

we will examine the non-compact lattice theory.

(ii) Regularizing the original Hamiltonian (4), is the same as regularizing the emergent

free-boson Lagrangian (6).

We will work on the square lattice of length a. To make calculations concrete, we

adopt the explicit geometry of Figure 2: a rectangle of size K × L where the A side is

` × L. Though a specific geometry has been adopted, the Riemann mapping theorem

implies these results hold for any geometry where A and B are simply connected. With

a variable ϕpq ∈ R at each lattice site, the action becomes (factors of a cancel out)

S̃[ϕpq] = κ

K∑

p=1

L∑

q=1

[
4ϕp,q − ϕp,q (ϕp+1,q + ϕp−1,q + ϕp,q+1 + ϕp,q+1)

]
. (31)

Tilde’s will be used to denote the lattice versions of quantities (except for fields) for easy

comparison with the continuum equations. Dirichlet boundary conditions are imposed

by setting “out-of-bounds” variables such as ϕ0,3 to zero in the action.



Entanglement Entropy in Excited States of the Quantum Lifshitz Model 11

L

`

K

A B
∂∂

1A

2A

2B

1B

nB

`

`+ 1

Figure 2. (Left) The lattice geometry we adopt. The column of A next to the

boundary is denoted ∂ and the column of B next to the boundary is ∂. (Right) A side

view of the discretized n-sheeted surface Sn. The dashed lines represent half-strength

bonds between the A and B sides.

From the definition of the partial trace, the nth Rényi entropy breaks the “bonds”

on the boundary between A and B on each sheet and reinstates them with half the

weight going to the same sheet and the other half going to the next sheet (see Figure

2). Therefore the lattice Rényi entropies involve the traces†

Tr ρ̃nA =
1

Z̃n
M

∫
Dϕc exp

(
−κ

∑

c∈Zn

ϕcA∆̃AAϕcA + ϕcB∆̃BBϕcB +
1

2
ϕc∂∆̃

∂∂ϕc
∂

+
1

2
ϕc∂∆̃

∂∂ϕc+1

∂

)
.

(32)

To prevent a plethora of indices, A, B, ∂, ∂ and M are used as multi-indices to refer to

all the lattice sites in those domains, as labelled in Figure (2). So ϕM∆̃MMϕM should be

interpreted as
∑

(pq),(rs)∈M ϕpq∆̃
pqrsϕrs, etc. Here ∆̃ is the discrete Laplacian restricted

to the appropriate domain. Due to the coupling between sheets, the Gaussian integrals

here are non-trivial to evaluate explicitly. However, by applying a Fourier transform we

may decouple the sheets. The action may be rewritten in terms of the circulant matrix

T =




1
2

1
4

0 · · · 0 1
4

1
4

1
2

1
4
· · · 0 0

0 1
4

1
2

. . . 0 0
...

...
. . . . . . . . . 0

0 0 0
. . . 1

2
1
4

1
4

0 0 · · · 1
4

1
2




, (33)

† Here the path integral
∫
Dϕc is just shorthand notation for

∏
pq

∫
R dϕpq to show the analogy with

the continuum case and not an actual path integral.
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1

cos(2π/n)

cos(2π(n− 1)/n)

1A

2A

nA

2B

1B

nB

` `+ 1

Figure 3. The lattice geometry after the decoupling coordinate transformation. The

A and B sides are held together with bonds with strength 0 ≤ cos (2πk/n) ≤ 1. After

the RG flow, all the dotted lines are removed, i.e. have strength 0.

as

Tr ρ̃nA =
1

Z̃n
M

∫
Dϕc exp

(
−κ

∑

c∈Zn

ϕcA∆̃AAϕcA + ϕcB∆̃BBϕcB − κ
∑

c,d∈Zn

ϕc∂T
cd∆̃∂∂ϕd

∂

)
.

(34)

We can perform a discrete Fourier transform by the unitary change of variables

ψd = V d
c ϕ

c withthe Vandemonde matrix

V c
d =

1√
n
ζcdn (35)

where ζn = e−2πi/n is an nth root of unity. Since T is a circulant matrix, it is diagonalized

by this coordinate transformation, giving

V †TV = diag

(
1, cos

(
2π

n

)
, cos

(
2

2π

n

)
, . . . , cos

(
(n− 1)

2π

n

))
. (36)

The result of this transformation is that the n-sheeted partition function is now

decoupled into n single-sheet partition functions where, at the boundary between A and

B, the strength of the bonds between the two sides is between zero and one. Therefore,

we find Tr ρ̃nA =
∏n−1

k=0
Z̃k
Z̃M

with

Z̃k =

∫
Dϕc exp

(
−κ

n∑

c=1

ϕcA∆̃AAϕcA + ϕcB∆̃BBϕcB + cos

(
k

2π

n

)
ϕc∂∆̃

∂∂ϕc
∂

)
. (37)

In particular, Z̃0 = Z̃M since the bond between the two sides is “full strength”, and all

the rest have weaker-than-normal bonds across the boundary. (See Figure 3.)

We are thus left with the evaluation of the partition function of decoupled free

bosons with “weak links” along the entanglement cut ∂. This is similar in spirit to

the problem considered by Kane and Fisher who argued that a weak potential scatterer
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(“weak link”) in one dimensional systems of interacting fermions (Luttinger liquids)

with repulsive interactions is a relevant perturbation in the renormalization group (RG)

sense, so that it effectively cuts the 1D chain at low energy [53]. We emphasize however

that a weak link for the fermions does not correspond to a weak link in the (free

boson) Luttinger liquid theory, but rather takes the form of a boundary sine-Gordon

perturbation after bosonization. Nevertheless, we expect a similar picture to hold in

our case: the weak links with strength 0 < λ = cos
(
k 2π
n

)
< 1 should flow under

renormalization to conformally invariant boundary conditions, either λ = 0 (decoupled

systems) or λ = 1 (‘healed’ uniform system). To determine which way the RG flow

goes, we can study the perturbative stability of these two fixed points. From the lattice

analysis above, the perturbation to the homogeneous free boson action is

V = cos

(
k

2π

n

)
ϕc∂∆̃

∂∂ϕc
∂

= λ
∑

q

ϕ`,qϕ`+1,q, (38)

with q the coordinate along the cut, which in the continuum limit becomes

V =

∫

∂

dy
[
λ1ϕ(x = 0, y)2+λ2ϕ(x = 0, y)∂xϕ(x = 0, y)+λ3(∂xϕ(x = 0, y))2+· · ·

]
(39)

with y the coordinate along the entanglement cut. (Recall we are working with a non-

compact boson here.) Starting from an homogenous system with λ = 1, we see that

weakly weakening links along the cut is a strongly relevant perturbation that acts as

a local mass term pinning down the field to ϕ(x = 0, y) = 0 along the cut ∂ at low

energy. This indicates that the homogeneous fixed point with λ = 1 is unstable, and

flows under renormalization to the free boson theory that vanishes (satisfying Dirichlet

boundary conditions) along the cut (corresponding to λ = 0).

One can then self-consistently check that this fixed point with φ(x =

0, y) = 0 is stable, as the perturbation V around this fixed point V3 =∫
∂
dy (λ3(∂xϕ(x = 0, y))2 + . . . ) has scaling dimension ∆ = 2 > 1 and is indeed irrelevant

as boundary perturbation. For large systems, we may thus treat the n− 1 sheets with

weak links as if they had no link across the boundary, i.e. Dirichlet boundary conditions

on ∂, consistent with the result of Fradkin and Moore,

Tr ρ̃nA =

(
Z̃AZ̃B

Z̃M

)n−1

. (40)

Applying the replica trick, the entanglement entropy is

S̃A = − lim
n→1

∂

∂n
Tr ρ̃nA = F̃A + F̃B − F̃M . (41)

This is, of course, precisely the same as the continuum result (1) up to the topological

term. One can again apply the result (2), whose logarithmic term is universal, to

conjecture that entropy takes the same form as in the continuum:

S̃A = 2fsL−
c

6

(
χA + χB − χA∪B

)
lnL+O(1). (42)
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The appearence of the Euler characteristic comes from an application of the Gauss-

Bonnet Theorem in the context of a manifold with smooth boundary. In the case of a

shape with straight edges and sharp corners, like the rectangle of Figure 2, there is an

extra contribution that depends on the angles of the corners [48]

∆F̃ (γ) =
γ

24π

(
1− π2

γ2

)
lnL. (43)

Conical singularities on the boundary give a slightly different contribution. When

writing the entanglement entropy, if the boundary ∂ between A and B has a corner

of angle γ, we must include the contribution from both the angle γ and 2π−γ. Corners

on the boundary of M are cancelled out and do not contribute.

This can be explicitly confirmed in special cases with asymptotics on the lattice.

David and Duplantier showed [54] that on a square lattice of size (K − 1)× (L− 1),

ln det ∆̃

=
4G

π
KL− (K + L) ln

(√
2 + 1

)
− 1

4
ln (KL) + ln

(
η(e−2πζ)ζ1/4

)
+

5

4
ln 2 +O

(
1

KL

)
.

(44)

For the rectangular geometry of Figure (2), this implies that the logarithmic term in

the entanglement has coefficient −1/4, which is consistent with (43) with 4 angles of

π/2. The result (44) was extended by Kenyon to any simply connected planar shape

by mapping the problem to counting states of the classical dimer model [55]. This

connection is suggestive that perhaps this lattice regularization is closely linked to the

quantum dimer model but beyond the scope of this paper.

4.1. Numerical Confirmation

The discrete setting here gives us a chance to confirm (43). To numerically extract the

sub-leading logarithmic behavior, it is necessary to peel back the linear term of (42).

One way to do this is by considering the difference in entanglement between two regions

A1, A2 ⊂ M with the same area and the same perimeter, but a different number of

corners. A set of shapes with exactly this property are the tetrominos, shown in Figure

4. (This is conceptually similar to methods to detect topological order in a ground state

wavefunction [15, 16].) To do this, the entanglement entropy for the tetrominos shown

in Figure 4 was calculated by explicitly computing F̃ = 1
2

ln det ∆̃ on the lattice.

This was done for four tetrominos with area area of 4L2 and a perimeter of 10L.

Each entropy was evaluated via numerical determinants with the shape centered in a

12L×12L grid for 1 ≤ L ≤ 20. Differences in the entropies of pairs are shown in Figure

4. These are fit to

Si(L)− Sj(L) = c1 lnL+
c2

L
+ c3, (45)

using linear least squares. There are finite size effects at small L, so fits only used

L ≥ 5. All fits had R2 > 0.99. The results confirm (42) to precision of ∼ 10−4. From
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1 2 5 10 20

L

−0.1

0.0

0.1

0.2

0.3

∆
S

S(b) - S(a)

S(c) - S(a)

S(d) - S(a)

S(c) - S(b)

S(d) - S(b)

S(d) - S(c)

(a)

(b)

(c)

(d)

(e)

Figure 4. (a) – (d) The four tetrominos. (e) Differences in entropy between

tetrominos. Some differences have the same leading coefficient and are thus essentially

superimposed. Fits for L ≥ 5 (dashed lines) are described in the table below.

this demonstration and the above RG argument, we may conclude that the entanglement

entropy in the ground state of the QLM model has the same form on the lattice as in

the continuum.

Si − Sj Prediction c1 Fit c1 Fit c2 Fit c3 c1 Error

S2 − S1
1
9

0.111146 0.105768 −0.0610243 0.35× 10−4

S3 − S1
1
18

0.055652 0.056490 −0.0303294 0.97× 10−4

S4 − S1
1
9

0.111045 0.105610 −0.0630068 −0.66× 10−4

S3 − S2 − 1
18

−0.055497 −0.049279 0.0306949 0.62× 10−4

S4 − S2 0 −0.000101 −0.000158 −0.0019825 −1.01× 10−4

S4 − S3
1
18

0.055393 0.049120 −0.0326775 −1.63× 10−4

5. Lattice Excited State Entanglement

It is reasonable to expect that this exact correspondence between the lattice and

continuum carries over to excited states as well. Indeed this is the case, and the analogy

is so close that many of the details are repetitive and are given in Appendix B. Here,

however, all definitions can be made precise and all quantities are explicitly divergence-

free.
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Consider the excited lattice wavefunctional

Ψ̃λ[{ϕpq}] = Z̃
1/2
M

√
2κλ̃ϕλpqe

− 1
2
S̃[ϕpq ] = Z̃

1/2
M

√
2κλ̃

∑

(pq)∈M

L̃λpqϕpqe
− 1

2
S̃[ϕpq ], (46)

the direct analogue of (10) on the lattice. Here L̃λ is the eigenvector of the lattice

Laplacian on M with eigenvalue λ̃.

Unlike the ground state, where the A and B sides contributed independently to

the entanglement, here the two sides are explicitly linked. This can be seen already by

examining the reduced density matrix. By definition, for the state Ψ̃λ it is

〈ϕ1
A|ρ̃A

(
Ψ̃λ

)
|ϕ2
A〉

=

∫
Dϕ1

B

(∑

M

L̃λMϕ
11
M

)(∑

M

L̃λMϕ
21
M

)
exp

(
−κ

2

∑

M

ϕ11
M∆̃Mϕ11

M + ϕ21
M∆̃Mϕ21

M

)
,

(47)

where ϕ21 takes the values of ϕ2 on A and ϕ1 on B, and similarly for ϕ11. As in the

previous section, the path integral is a notational shortcut for the integrals of ϕpq over

all lattice sites and not a literal path integral. After computing the Gaussian integrals

one finds

〈ϕ1
A|ρA|ϕ2

A〉 (48)

=
[
ϕ1
Aϕ

2
A +

1

2

(
ϕ1
A + ϕ2

A + 2
)

(ϕ1
A + ϕ2

A)∆̃∂∂G̃BBL̃λB + L̃λBG̃
BBL̃λB

]
(49)

× ZB exp

(
1

2
ϕ1
A∆̃AAϕ1

A +
1

2
ϕ2
A∆̃AAϕ2

A +
1

8

(
ϕ1
A + ϕ2

A

)
∆̃∂∂G̃BB∆̃∂∂

(
ϕ1
A + ϕ2

A

))

(50)

where G̃BB is the inverse of the discrete Laplacian on B, and as above ∆̃∂∂ is the

restriction of the discrete Laplacian to the boundary, which acts as a “tunneling” matrix

between the right-most column of A and the left-most column of B. The first and last

terms of (49) depend purely on the A side or the B side and will become the analogues

of α and β in the Rényi entropy. The second term involves tunneling from one side to

the other and will manifest as the inter -sheet term γ. It is therefore not sufficient to

consider separately the density matrix restricted to the A and B sides, but rather one

must consider the behavior on and across the boundary as well. Indeed, the boundary

behavior is crucial in what follows. This is in contrast to the behavior in the ground

state, where the two sides contributed to the entanglement independently.

The Rényi entropies for excited states on the lattice involve

Tr ρ̃nA =
1

Z̃M

∫
D[ϕc]

∏

c∈Zn

(∑

M

L̃λMϕ
cc
M

)(∑

M

L̃λMϕ
(c+1)c
M

)
e−S̃[ϕcM ]. (51)

It is again sufficient to compute 2-point functions on the n-sheeted geometry, then apply

Wick’s theorem and integrate against the eigenvectors of the Laplacian. This is carried
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out explicitly in Appendix B. The upshot is one can write all the Rényi entropies of Ψ̃λ

in terms of lattice EPAs

α̃ = λ̃a2
∑

(pq),(rs)∈A

L̃λpqG̃
A
pqrsL̃

λ
rs, (52a)

β̃ = λ̃a2
∑

(pq),(rs)∈B

L̃λpqG̃
B
pqrsL̃

λ
rs, (52b)

γ̃ = λ̃a2
∑

(pq),(rs)∈M

L̃λpq

[
G̃M
pqrs − G̃D

pqrs

]
L̃λrs. (52c)

These are the direct analogues of (23a) – (23c). Since L̃λ has dimensions of inverse

length, the factors of a2 is necessary to preserve dimensions.

Let us interpret these physically by simplifying them. By definition, ∆̃L̃λ = −λ̃L̃λ
and ∆̃MG̃M = IdM . What one would like to do is use the factors of L̃λ to produce extra

Laplacians, to get

γ̃ =
a2

λ̃

∑

M

L̃λ
(

∆̃MG̃M∆̃M − ∆̃MG̃D∆̃M
)
L̃λ, (53)

then reduce the Green’s functions to Kronecker deltas. Unfortunately, this is not possible

because the action of the Laplacian does not commute with restricting the domain, so

∆̃MG̃A 6= IdA (resp. B and D). Nevertheless, one can do this away from the boundary.

As previously, let ∆̃∂∂ be the Laplace operator restricted to the links between A and B,

i.e. the tunneling operator between ∂, the sites on A closest to B and ∂, the sites on B

closest to A (see Figure 2). Then

∆̃MG̃D =
(

∆̃D + ∆̃∂∂
)
G̃D = IdM + ∆̃∂∂G̃D, (54)

∆̃MG̃D∆̃M = ∆̃M + ∆̃∂∂ + ∆̃∂∂G̃D∆̃∂∂. (55)

Combining these and (53),

γ̃ =
a2

λ̃

∑

∂,∂

[
L̃λ∂ L̃λ

∂

] [∆̃∂∂G̃B
∂∂

∆̃∂∂ ∆̃∂∂

∆̃∂∂ ∆̃∂∂G̃A
∂∂∆̃

∂∂

][
L̃λ∂

L̃λ
∂

]
. (56)

As a concrete example, consider the K × L rectangular geometry where A is an

`×L rectangle, as shown in Figure 2. Numerically, ∆̃∂∂ is minus the identity matrix on

L elements, which gives

γ̃ =
a2

λ̃

L∑

q,s=1

[
L̃λ`,q L̃λ`+1,q

] [G̃B
`+1,q,`+1,s −δqs
−δqs G̃A

`,q,`,s

][
L̃λ`,s
L̃λ`+1,s

]
. (57)

One may interpret each of the entries of the matrix as a physical process. The upper

right, −δqs represents tunneling from the `th row to the ` + 1th row and the lower left

represents tunneling back (Figure 5 (a)). The upper left, G̃B
`+1,q,`+1,s, represents starting
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L
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0.12

−1.0

−0.5

0.0

0.5

1.0

∑
L̃λG̃

BL̃λ
∑
L̃λ(−δ)L̃λ

Sum

(a) (d)

(b)

(c) (e)

Figure 5. Lattice scattering processes. (a) “Tunneling” across the boundary.

(b) Tunneling across the boundary, scattering on the B side, and tunneling back.

(c) A tadpole-like contribution contributing to the divergences. (d) The contributions

due to processes (a) and (b) and their sum. Data is for the mode kx = 4, ky = 3 as

described in Appendix C.3. (e) Their sum is O(1) and quickly converges as L→∞.

on the `th row, tunneling across, scattering around anywhere in B, and tunneling back

across the boundary (Figure 5 (b)). Taken together, this can be thought of as a “current”

flowing across the boundary. It is the scattering L̃λ on M minus the scatter within A

and within B, which leaves the scattering across ∂.

A key observation is that both the diagonal and off-diagonal terms of the above

matrix — examined separately — scale as the number of lattice sites along the boundary,

i.e. they diverge as Θ(L). For the off-diagonals, this is simple dimensional analysis. For

the diagonals, this divergence is because the Green’s function has a (lattice-regulated)

logarithmic divergence, so each of the “tadpoles” (Figure 5 (c)) give a constant, positive,

contribution. In the thermodynamic limit, however, the divergences precisely cancel and

γ̃ is a constant. This is shown numerically for the rectangular geometry in Figure 5 (d).

Thus we may conclude that the inter-sheet EPA γ̃ is generically non-zero and comparable

in magnitude to α̃ and β̃. By applying conformal mappings, this holds whenever A and

B are simply connected and it is reasonable that the same conclusions extend to more

general domains.

6. Continuum Redux

As with the ground state, the lattice and continuum results are closely analogous.

The same structure of cancelling divergences also appears in the continuum and thus

necessitates careful regularization of any integrals involved, which may be quite subtle.

One can think of the lattice results as a guide for interpreting the continuum quantities.
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A key tool to do this is Green’s second identity, which we recall here for convenience:

suppose f : U ⊂ R2 → R and GU is the Green’s function on U with Dirichlet boundary

conditions (so ∆UGU = IdU), then for w ∈ U ,

∫

U

d2z ∆U
z f(z)GU(z, w) =

∫

U

d2z f(z)∆U
xG

D(z, w)

+

∫

∂U

dSz G
U(z, w)

∂

∂nz
f(z)− f(z)

∂

∂nz
GU(z, w), (58)

where ∂
∂nz

= n̂ · ∇z is the outwards-pointing normal derivative with respect to z.

For our case, GU(z, w) = 0 identically when w ∈ ∂U , so this reduces to

∫

U

d2z ∆U
z f(z)GU(z, w) = fU(w)−

∫

∂U

dSz f(w)
∂

∂nz
GU(z, w), (59)

where fU(w) = f(w) if w ∈ U \ ∂U and 0 if w ∈ ∂U . The crucial point here is that if

f(w) does not vanish on the boundary, then the values of f on the boundary are not

preserved by IdU , which only acts as the identity for functions which vanish on ∂U ; the

information on the boundary is lost.

Let us apply this to α. Since ∆MLλ + λLλ = 0,

α = λ

∫

M

d2z

∫

M

d2wLλ(z)GA(z, w)Lλ(y) =
1

λ

∫

A

d2z∆zLλ(z)

∫

A

d2w∆wLλ(w)GA(w, z).

(60)

Applying (59) for both z and w yields, after a calculation,

α =

∫

A

d2z Lλ(z)

−1

λ

∫

∂

dSz Lλ(z)
∂

∂nz
LAλ (z) +

1

λ

∫

∂

dSz

∫

∂

dSw Lλ(z)
∂

∂nz

∂

∂nw
GA(z, w)Lλ(w)

︸ ︷︷ ︸
=−dA

.
(61)

Let dB be the same as dA with A↔ B, so

α =

∫

A

d2z L2
λ(z)− dA, β =

∫

B

d2z L2
λ(z)− dB, γ = dA + dB. (62)

Then α+β+γ =
∫
A
d2z L2

λ(z) +
∫
B
d2z L2

λ(z) = 1 due to the fact that Lλ is normalized.

The interpretation of
∫
A
d2z L2

λ(z) and (and A ↔ B) is clear, but dA and dB are

strange expressions: they involve the normal derivatives of LAλ at the boundary of A

where LAλ is discontinuous. The double normal derivative of the Green’s function on the

boundary is subtle because the Green’s function vanishes at the boundary except when

z = w where it is singular. This hypersingular integral kernel arises in several other

places, such as in the engineering literature of fracture analysis and always requires

careful regularization [56].
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From the lattice, we are motivated to interpret these quantities as

∂

∂nz
LAλ = lim

ε→0

LAλ (z)− LAλ (z − εn̂)

ε
= lim

ε→0
−L

A
λ (z − ε)
ε

(63)

∂

∂nz

∂

∂nw
GA(z, w) = lim

ε→0

GA(z − ε, w − ε)
ε2

. (64)

Here n̂ is the outwards pointing unit normal, z, w ∈ ∂, and z − ε is a point ε inside the

boundary. So our regulated version is

dA =
1

λ
lim
ε→0

(∫

∂

dSzLλ(z)

[
Lλ(z − ε)

ε

]
+

∫

∂

dSz

∫

∂

dSw Lλ(z)

[
GA(z − ε, w − ε)

ε2

]
Lλ(w)

)
.

(65)

Both terms of this are, of course, superficially divergent quantities. But just as on the

lattice, the divergences cancel to leave a finite quantity. Roughly this is because the

normal derivative of the Green’s function restricted to the boundary is a delta function,

so
G(z − ε, w − ε)

ε2
∼ −δ(z − w)

ε
+O(1). (66)

A more precise version of this is shown in Appendix C. Because of the minus sign, the

O(ε−1) terms cancel

dA ∼
1

λ
lim
ε→0

(∫

∂

dSzLλ(z)

[
Lλ(z − ε)

ε

]

+

∫

∂

dSz

∫

∂

dSw Lλ(z)

[
−δ(z − w)

ε
+O(1)

]
Lλ(w)

)
= O(1).

(67)

This regulation scheme means α, β, and γ are well-defined and finite for any choice

of geometry. In principle they can be calculated whenever the Green’s function is known.

In practice, this requires either an explicit equation for the Green’s function on both A

and B. When the boundary is smooth, there is a general form for the O(1) in (66) in

terms of Hadamard regularized integrals. Just as in Cardy and Peschel’s expression for

the free energy [48], there appear to be special cases for corners, which generalize (43)

in some sense.

As an example, consider the rectangle of side lengths Lx and Ly with an

entanglement cut at x = `x. The modes of the Laplacian are precisely Fourier modes in

this geometry,

Lkx,ky(x, y) =
2

LxLy
sin

πkxx

Lx
sin

πkyy

Ly
, (68)

with λ =
(
πkx
Lx

)2

+
(
πky
Ly

)2

. In Appendix C, it is shown that

α =
`x
Lx
− 1

2πkx
sin

(
2πkx

`x
Lx

)
− drect, (69)

β =
Lx − `x
Lx

+
1

2πkx
sin

(
2πkx

`x
Lx

)
− drect, (70)

γ = 2drect, (71)
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where, for Lx = Ly = L,

drect ≈ 8

π3

2πkyS(2πky)− πkyS(πky)− (−1)ky + 1

k2
x + k2

y

sin

(
πkx

`x
L

)2

. (72)

Here S(x) =
∫ x

0
sin t
t
dt is the sin integral. The approximations made, described in

Appendix C, are accurate for large ky. Figure 6 shows the comparison between numerical

calculations of γ on the lattice and (72), where good agreement can be seen for large ky.

One can also consider an artificial half-plane geometry with no corners, in which case

the agreement is essentially perfect, shown in Figure 7. This is described in detail in

Appendix C. This is strong evidence that EPAs are numerically equal in the continuum

and on the lattice, and are hence universal.
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Figure 6. Comparison of the EPAs on the lattice (points and dashed fits) and in the

continuum (solid lines) in the rectangular geometry. Details of the geometry and fits are

given in Appendix C.3. The agreement is only good for large ky due to approximations

made in the continuum calculation of γ.

7. Conclusions

In this paper we studied the entanglement of excited states in the quantum Lifshitz

model. We found that there is an infinite class of excited states Ψλ (reaching arbitrarily

high energies) whose entanglement is completely specified by three geometrical, albeit

state-dependent, “entanglement propagator amplitudes” α, β, and γ as defined in

Equation (23a) – (23c). In terms of these, the second Rényi entropy is particularly

simple:

S2 (Ψλ) = − ln Tr ρ2
A = S2(GS)− ln

(
a2 + b2 + g2

)
, (73)
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Figure 7. Comparison of the EPAs on the lattice (points and dashed fits) and in the

continuum (solid lines) in the artificial half-plane geometry. Details of the geometry

and fits are given in Appendix C.3.

where a = α + γ/2, b = β + γ/2 and g = γ/2. A combinatorial formula for arbitrary

Rényi entropies is given in Eqution (24). This same procedure works for any state,

but the combinatorics is generally complex. A particularly simple case are the states

ΨKλ with K quanta in mode λ, whose second Rényi entropy has the multinomial-esque

expression

S2(ΨKλ) = S2(GS)− ln

(
K∑

k1,k2=1

[(
K

k1k2

)
ak1bk2gK−k1−k2

]2
)
. (74)

The EPAs α, β, and γ have a natural interpretation as probabilities since they are

all between zero and one and sum to unity. It is quite possible that these constants,

which can be defined purely from Green’s functions of the Laplacian, may have already

been studied in the mathematics literature under another name. The lattice results of

Section 5 suggest that one can think of γ as the total “flow” across the boundary and

as α as the “energy” on the A side, minus what flows out, and similarly for β. The

continuum results of Section 6 show that these quantities are geometric but contain

subtle cancelling divergences. Naively, since γ can be defined as a quantity within a

lattice site of the boundary, it appears to be a microscopic quantity. However, the

comparison between lattice and continuum results gives strong evidence that γ gives a

leading order universal contribution to the entanglement.

As a by-product of working on the lattice, Section 4 reconstructed the ground

state entanglement entropy on the lattice (41). Previous derivations of this fact [45, 46]

made use of careful changes of variables in path integrals, whereas the lattice derivation

relies renormalization group arguments. One can therefore consider this as independent
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confirmation of the non-topological part of the result (1).

In the special case where α = β, we may use the replica trick [13] to determine the

entanglement entropy. Starting from (27), and differentiating yields

S(Ψλ;α = β) = S(GS) + ln 2−
∞∑

k=2

(−1)k
(

Γ(k + 1,−1) + Γ(k,−1)
)

eΓ(k)
(

Γ(k) + Γ(k − 1)
) γk, (75)

where Γ is the incomplete gamma function. The infinite sum converges quickly, even

when γ = 1, and is O(1). With a sufficient application of combinatorics, it is

undoubtedly possible to extend this to α 6= β and perhaps even to more general states.

In all excited states with one quantum, the difference with the ground state entanglement

is fully determined by the EPAs and is therefore O(1) and universal.

The notion of EPAs is entirely general and, in principle, works for any state whose

wavefunctional is known. For instance, an eigenstate which populates M modes can be

written down in terms of 3
(
M+1

2

)
generalizations of α, β and γ such as (25). Of course,

more complicated wavefunctions have more complex combinatorics, making it harder to

extract information. Tne possible direction would be to find a state with a particularly

simple wavefunctional and examine the entanglement dynamics after a global or local

quench. This was studied in the special case of a local quench by a vertex operator in

[57].

Another future direction is to examine entanglement at finite temperature. Since

entanglement entropy is not a good measure of entanglement in mixed states, it is

standard in field theory to instead calculate the logarithmic negativity which is an

entanglement monotone and bounds several other common measures of entanglement

[58]. It may be computed with a modified replica trick [59] which amounts to sightly

modifying the combinatorics. At low temperature where only a few modes are populated,

it may be possible to find an analytic continuation and determine the negativity. At

high temperatures, one may be able to leverage the strong mathematical results on the

asymptotic distribution of eigenvalues of the Laplacian into an asymptotic expression

for the entanglement.
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Appendix A. A Modified Wick’s Theorem for the Many-Sheeted Geometry

This Appendix will derive Equation (18), a version of Wick’s Theorem suitably modified

for fields defined on the many-sheeted surface Sn. The first uses a series of coordinate
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transformations introduced in [45] to decouple the sheets and the second evaluates the

path integrals. The derivation has been written to be clear at the expense of concision.

Recall we are dealing with a compactified field ϕ, so ϕ ≡ ϕ+ 2πR for some R > 0.

We can therefore rewrite the “surface expectation” (14) concretely as a constrained path

integral

〈O(x1)O(x2) · · ·〉S = Z−nM

∫

con

Dϕa (O(x1)O(x2) · · · ) e−
∑n
a=1 S[ϕa]. (A.1)

where
∫

con
means that the fields obey the constraint

ϕa(x) = ϕb(x) + 2πRωab, ∀x ∈ ∂, ωab ∈ Z. (A.2)

First, let us make the change of variables ϕa = ϕαa + ϕ̃a where the first term ϕαa is

topological and encodes the zero modes and vortices, obeying ∆ϕαa = 0 with Dirichlet

boundary conditions on M . The new field ϕ̃a is non-compact. By applying Green’s first

identity, the action decouples: S[ϕa] = S[ϕαa ] + S [ϕ̃a], and

∫

con

D[ϕa] =
∑

αa

∫

con′
D[ϕ̃a] (A.3)

where the sum is over all possible zero modes and con’ is the constraint

ϕ̃a(x)− ϕ̃b(x) = ϕαa − ϕαb + 2πRωab, ∀x ∈ ∂, ωab ∈ Z,∀αa. (A.4)

Adopting a matrix notation, one may express this as Mϕ̃ = cw(x) where one may

choose (other choices are possible)

M =




−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1


 and c(x) =




ϕα1 − ϕα2 + 2πRω1

ϕα2 − ϕα3 + 2πRω2

...

ϕαn − ϕα1 + 2πRωn


 (A.5)

where wk ∈ Z and
∑

k wk = 0. Note that ∆akϕ(xk) = ∆ak (ϕαa + ϕ̃a) = ∆akϕ̃a, so a

product of ϕ’s is equal to the same product of ϕ̃’s, plus terms that are harmonic in at

least one of the variables. These additional terms will not concern us because they can

be removed with an integration by parts, and will be denoted Har. So after this first

change of coordinates, the surface expectation is

〈ϕa1(x1) · · ·ϕa2N (x2N)〉Sn
= Z−nM

∑

αa,w

e−
∑
a S[ϕαa ]

∫

{Mϕ̃=cw(x) : x∈∂}
D[ϕ̃a] ϕ̃a1(x1) · · · ϕ̃a2N (x2N)e−

∑
a S[ϕ̃a] + Har.

(A.6)

We now perform a second change of coordinates to decouple the sheets. Choose

some T ∈ O(n) such that T a1 = n−1/2,∀a ∈ Zn, and put ψ = T ϕ̃. There are many
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possible such matrices T . One explicit family [45] is

T =




1√
2

− 1√
2

1√
6

1√
6

−2√
6

1√
12

1√
12

1√
12

−3√
12

...
...

...
...

. . .
1√

n(n−1)

1√
n(n−1)

1√
n(n−1)

1√
n(n−1)

. . . −(n−1)√
n(n−1)

1√
n

1√
n

1√
n

1√
n

. . . 1√
n




. (A.7)

Since the action is quadratic in ϕ̃, S[ϕ̃a] = S[ψa], and the constraint becomes

TMT−1ψ = Tc(x). (A.8)

This has the special property that ψ1 is unconstrained, and the constraint on the other

(n− 1) fields is an invertible matrix. In particular, they are constrained by

ψa>1 =
(
TM−1c(x)

)
= c′(x)a>1, x ∈ ∂. (A.9)

Therefore

〈ϕa1(x1) · · ·ϕa2N (x2N)〉con

= Z−nM
√
n
−L/a∑

αa,w

e−
∑
a S[ϕαa ]

∫
D[ϕ̃′1]

∫

{ψa>1∂=c′a>1(x) : x∈∂}
D[ψa>1] e−

∑
a S[ψa]

×
n∑

b1,b2,··· ,b2N=1

(
T−1

)b1
a1
ψb1(x1) · · ·

(
T−1

)b2N
a2N

ψb2N (x2N) + Har

(A.10)

The factor of
√
n
−L/a

comes from the Jacobian determinant and is non-universal.

To make it possible to actually evaluate the path integrals, we make one last

coordinate transformation. For a = 2 to n, let Ca be the solution to the Dirichlet

problem Ca = c(x) on ∂, Ca = 0 on ∂M , and ∆Ca = 0 on M \ ∂. This specifies Ca(x)

uniquely on M . Then define ψ′a = ψa + Ca for a > 1 and ψ′1 = ψ1. Again note that

∆ψ′a = ∆ψa, so the integrands of the path integrals are the same up to harmonic terms,

and the actions again decouple, so

〈ϕa1(x1) · · ·ϕa2N(x2N)〉Sn

= Z−nM

(
n−L/2a

∑

αa,w

e−
∑
a S[ϕαa ]−

∑
a>1 S[Ca]

)∫

M

D[ψ′1]

∫

D

D[ψ′a]

×
n∑

b1,b2,...,b2N=1

(
T−1

)b1
a1
ψ′b1(x1) · · ·

(
T−1

)b2N
a2N

ψ′b2N (x2N)e−
∑
a S[ψ′

a] + Har,

(A.11)

where
∫
M

means there is no constraint on ∂ and
∫
D

means that the fields obey the

Dirichlet boundary condition ψ′a = 0 on ∂. At this point, the topological part, in
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parentheses, is completely separate from the path integrals. This is the end of the first

part: the sheets have been decoupled and the path integrals may now be evaluated.

The path integrals now describe expectations of a free boson with two sets of

boundary conditions: either nothing happens at ∂, or the fields are set to zero there. As

in the above paragraph, these will be referred to as M or D respectively. Let us recall

the standard (normalized) Wick’s theorems for these geometries

〈ψ′(x1) · · ·ψ′(x2k)〉M/D

= Z−1
M/D

∫

M/D

D[ψ′] (ψ′(x1) · · ·ψ′(x2k)) e
−S[ψ′] = (2κ)−k

∑

“pairs”

GM/D(xci , xdi)

(A.12)

where ZD = ZAZB, GM is the Green’s function for the Laplacian on M with Dirichlet

boundary conditions and if GA and GB are the corresponding Green’s functions for A

and B, then

GD(x, y) =





GA(x, y) if x, y ∈ A
GB(x, y) if x, y ∈ B
0 else.

(A.13)

In the D case, the fields are constrained to zero along ∂, so correlations may not be

“transmitted” through ∂, but they can for the M case. The sum over “pairs” may be

written explicitly as the sum over the set of all possible partitions of 2k integers:

“pairs” = {C = (c1, . . . , ck), D = (d1, . . . , dk) ⊂ Z2k : C ∪D = Z2k} . (A.14)

This is necessary to keep track of the explicit indices below.

The first field ψ′1 is evaluated with the “M” Wick’s theorem, and the rest use the

“D” version. Since the fields are now decoupled, the expectation of the product of ψ′a’s

is the product of the expectations. Hence

〈ϕa1(x1) · · ·ϕa2N (x2N)〉Sn =

(
n−L/2a

∑

αa,w

e−
∑
a S[ϕαa ]−

∑
a>1 S[Ca]

)

×
n∑

b1,b2,...,b2N=1

(2κ)−N
(∏

k

(
T−1

)bk
ak

)
ZM
ZM

〈 ∏

S1={k : bk=1}

ψ′1(xk)

〉

M

× ZD
ZM

〈 ∏

S2={k : bk=2}

ψ′2(xk)

〉

D

× · · · × ZD
ZM

〈 ∏

S2={k : bk=n}

ψ′n(xk)

〉

D

+ Har,

(A.15)

This serves as a definition for Sa. The overall prefactor is the ground state Rényi entropy

Tr ρnA(GS) =

(
n−L/2a

∑

αa,w

e−
∑
a S[ϕαa ]−

∑
a>1 S[Ca]

) (
ZD
ZM

)n−1

, (A.16)
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where the first parenthetical is topological. All that remains is to rearrange terms to

simplify the combinatorics:

〈ϕa1(x1) · · ·ϕa2N (x2N)〉Sn
(2κ)−N Tr ρnA(GS)

− Har

=
n∑

b1,...,b2N=1

(
2N∏

k=1

(
T−1

)bk
ak

)〈 ∏

S1={k : bk=1}

ψ′1(xk)

〉

M

n∏

a=2

〈 ∏

Sa={k : bk=a}

ψ′a(xk)

〉

D

=
n∑

b1,...,b2N=1

(
2N∏

k=1

(
T−1

)bk
ak

)( ∑

C1∪D1=S1

(2κ)−|S
1|GD(xc11 , xd11)G

D(xc12 , xd12) · · ·

)

×
n∏

a=2

( ∑

Ca∪Da=Sa

(2κ)−|S
a|GD(xca1 , xda1 )GD(xca2 , xda2 ) · · ·

)

where the sums Ca and Da run over all possible pairing of elements of Sa. The sums of

all possible pairings for each field is the same as the sum over all possible pairings of all

the fields, restricted so that the two fields in each pair are the same

=
n∑

b1,...,b2N=1

(
2N∏

k=1

(
T−1

)bk
ak

) ∑

C∪D=Z2N

N∏

i=1

δbcibdi

{
GM(xci , xdi) if bci = bdi = 1

GD(xci , xdi) if bci = bdi 6= 1

We can now eliminate the T ’s. Since these sums are finite, everything commutes, so

=
∑

C∪D=Z2N

N∏

i=1

n∑

bci ,bdi=1

δbcibdi
(
T−1

)bci
aci

(
T−1

)bdi
adi

{
GM(xci , xdi) if bci = bdi = 1

GD(xci , xdi) if bci = bdi 6= 1

Eliminating the Kronecker delta

=
∑

C∪D=Z2N

N∏

i=1

(
n∑

b=1

(
T−1

)b
aci

(
T−1

)b
adi
GD(xci , xdi)

+
(
T−1

)1

aci

(
T−1

)1

adi

[
GM(xci , xdi)−GD(xci , xdi)

])

By definition T , T a1 = n−1/2 and T was orthogonal, so T−1 = T t. Therefore

=
∑

C∪D=Z2N

N∏

i=1

(
n∑

b=1

(T )
aci
b

(
T−1

)b
adi
GD(xci , xdi) +

1

n

[
GM(xci , xdi)−GD(xci , xdi)

]
)

=
∑

C∪D=Z2N

N∏

i=1

(
δaciadiG

D(xci , xdi) +
1

n

[
GM(xci , xdi)−GD(xci , xdi)

])
.

This implies Equation (18) for N = n.



Entanglement Entropy in Excited States of the Quantum Lifshitz Model 28

Appendix B. Arbitrary Rényi Entropies on the Lattice

In this Appendix we evaluate excited state entropies on the lattice. By definition, the

nth Rényi entropy is S̃
(n)
A = 1

1−n ln Tr ρ̃nA. We must compute

Tr ρ̃nA =
1

Z̃M

∫
D[ϕc]

∏

c

(∑

M

L̃λϕccM

)(∑

M

L̃λϕ
(c+1)c
M

)
e−S̃[ϕcM ]. (B.1)

The calculation proceeds in close analogy to the continuum case in Section 3. It is again

sufficient to compute 2-point functions on the n-sheeted geometry, then apply Wick’s

theorem and integrate against the eigenvectors of the Laplacian.

First, apply the the discrete Fourier Transform ψc = V c
d ϕ

d from (35), the n-sheets

are decoupled as described in the previous section. The RG arguments from Section

4 may now be applied, whose result is that the fields ψ2, ψ3, . . . , ψn have Dirichlet

boundary conditions at ∂, so two-point functions on those sheets can only scatter from

A to A or from B to B, each according to the Dirichlet Green’s function for A or B

respectively. Meanwhile, ψ1, the center-of-mass sheet, has nothing to distinguish ∂, so

scattering proceeds by the Green’s function on all of M . Therefore

〈ψc(x)ψd(y)〉Sn
(2κ)n Tr ρ̃nA(GS)

= δcd
[
δ1
c G̃

M(x, y) +
(

1− δ1
c )G̃

D(x, y)
)]

= δcd
[
G̃D(x, y) + δ1

c

(
G̃M(x, y)− G̃D(x, y)

)]
.

(B.2)

Here G̃M is the Dirichlet Green’s function for the lattice Laplacian on M and

G̃D(pq, rs) =





G̃A(pq, rs) (pq), (rs) ∈ A
G̃B(pq, rs) (pq), (rs) ∈ B
0 else.

(B.3)

We can thus compute the two-point function back on the original sheets

〈ϕa(x)ϕb(y)〉
(2κ)n Tr ρ̃nA(GS)

= V a
c V

b
d 〈ψcψd〉 =

(
V V †

)b
a
G̃D + V a

1 V
b

1

(
G̃M − G̃D

)
.

From the definition of V and the fact it is unitary, it follows that

〈ϕa(x)ϕb(y)〉
(2κ)n Tr ρ̃nA(GS)

= δabG̃D(x, y) +
1

n

[
G̃M(x, y)− G̃D(x, y)

]
. (B.4)

Physically, the inter-sheet term term occurs because the “center of mass” Fourier mode

connects the A side to the B side. If you start with a field on sheet c, then 1/
√
n is

part of the center of mass sheet, which may scatter to the other side, and then 1/
√
n

of that is on sheet d. Unlike in the ground state, we cannot cancel out the inter-sheet

term with the normalization, because here it is additive instead of multiplicative.
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Because this is a Gaussian theory (even on the n-sheeted surface), one may apply

Wick’s theorem and find that 2N -point functions are

〈ϕa1(x1)ϕa2(x2) · · ·ϕa2N (x2N)〉SN
(2κ)n Tr ρ̃nA(GS)

=
∑

“pairs”

N∏

i=1

(
δaciadi G̃

D(xci , xdi) +
1

n

[
G̃M(xci , xdi)− G̃D(xci , xdi)

])
.

(B.5)

One can check that this is precisely the form of Equation (18) under the replacement

G̃ ↔ G (without the topological prefactor for the ground state entropy, since we have

not compactified on the lattice). By the same reasoning as Section 3,

Tr ρ̃nA (Ψλ) = Tr ρ̃nA(GS)×
∑

“pairs”

n∏

i=1

γ̃

n
+





α̃ if ci + 1 ≡ di (mod n) and ci even

β̃ if ci + 1 ≡ di (mod n) and ci odd

0 otherwise




.

(B.6)

where

α̃ = λ̃a2
∑

(pq),(rs)∈A

L̃λpqG̃
A
pqrsL̃

λ
rs, (B.7)

β̃ = λ̃a2
∑

(pq),(rs)∈B

L̃λpqG̃
B
pqrsL̃

λ
rs, (B.8)

γ̃ = λ̃a2
∑

(pq),(rs)∈M

L̃λpq

[
G̃M
pqrs − G̃D

pqrs

]
L̃λrs. (B.9)

Appendix C. Boundary Term in Explicit Geometry

Appendix C.1. Behavior of the Green’s function near the boundary

A key quantity to evaluate the probabilities α, β, γ is the Green’s function of the

Laplacian with Dirichlet boundary conditions very close to the boundary (entanglement

cut). Consider the Green’s function on the half-plane,

G ((x, y), (x0, y0)) =
1

4π
ln

(x− x0)2 + (y − y0)2

(x− x0)2 + (y + y0)2
. (C.1)

Denote the Green’s function a distance ε = x = x0 � 1 away from the boundary by

Gε(u), with u = |y − y0| the coordinate along the boundary,

Gε(u) =
1

4π
ln

u2

u2 + 4ε2
. (C.2)

It is easy to show that the normal derivative at the boundary is simply a delta function

∂nG = lim
ε→0

Gε(u)

ε
= −δ(u), (C.3)
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but we are actually interested in the subleading contribution to this delta function

Gε(u)

ε2
= −δ(u)

ε
+ g(u) +O(ε), (C.4)

where the divergent contribution − δ(u)
ε

will cancel out another delta function

contribution in (65). We would like to understand what g(u) is (as a distribution). Since

the logarithm is hard to deal with, it is convenient to consider the Taylor expansion of

the derivative instead 1
ε
dGε(u)
dε

= − δ(u)
ε

+ 2g(u) + O(ε), which differs from (C.4) by a

factor of 2. Let us compute this quantity explicitly. It reads:

1

ε

dGε(u)

dε
= − 2

π(u2 + 4ε2)
, (C.5)

that we conveniently rewrite as

− 2

π(u2 + 4ε2)
= − 16ε2

π(u2 + 4ε2)2
+

2

π

d

du

(
u

u2 + 4ε2

)
. (C.6)

The first piece goes to zero as ε2 if u 6= 0, and its integral is −1/ε, so it simply gives a

delta function

− 16ε2

π(u2 + 4ε2)2
= −1

ε
δ(u) +O(ε2), (C.7)

while we recognize the well-known expression of the Cauchy principal value in the second

term

lim
ε→0

u

u2 + 4ε2
= P 1

u
. (C.8)

Therefore, we find
1

ε

dGε(u)

dε
= −δ(u)

ε
− 2

π
H 1

u2
+O(ε), (C.9)

where H 1
u2

= − d
du
P 1
u

is the derivative of the principal value, also known as the

Hadamard regularization. In the following, we will denote the Hadamard regularization

of an integral by a double-dashed integral

=

∫

[a,b]

du
f(u)

(u− u0)2
≡ lim

ε→0+

(∫ u0−ε

a

du
f(u)

(u− u0)2
+

∫ b

u0+ε

du
f(u)

(u− u0)2
− 2f(u0)

ε

)
, (C.10)

with x0 ∈ [a, b]. We conclude that g(u) = −H 1
πu2

, so that

Gε(u)

ε2
= −δ(u)

ε
− 1

π
H 1

u2
+O(ε). (C.11)

This was derived explicitly for the half-plane, but conformal invariance implies this

result should be true to leading order for simply connected geometries with smooth

boundary.
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(ε, y)

Figure C1. The locations of the poles for the Green’s function on the rectangle. The

bold rectangle is the primary domain and the other rectangles are image domains.

The colored poles must be regularized and also give the largest contributions in the

integral. The dashed line is the integration path. Empty dots denote image charges

with negative charge.

Appendix C.2. Explicit calculation of the boundary term in the rectangle geometry

Let us now compute explicitly the value of γ for a rectangle Lx × Ly with the

entanglement cut in the x direction between regions of size `x ×Ly and (Lx − `x)×Ly.
Our starting point will be the formula

γ = lim
ε→0

1

λ

∫
dy Lλ(`x, y)

[
Lλ(`x − ε, y)

ε
+
Lλ(`x + ε, y)

ε

]

+
2

λ

∫
dy dy0 Lλ(`x, y)Lλ(`x, y0)

Gε(y − y0)

ε2
, (C.12)

where the factor of 2 in the second integral comes from the fact that the region A and

B add up. The modes of the Laplacian read

Lλ(x, y) =
2√
LxLy

sin
πkxx

Lx
sin

πkyy

Ly
, (C.13)

and λ = (πkx
Lx

)2 + (πky
Ly

)2. Both terms in γ look badly divergent as ε → 0, but as

explained in the main text, these divergent contributions cancel out. In principle, one

should consider the full expression of the Green’s function on the rectangle, but for

simplicity, we will use the simplified formula (C.2) which should hold far away from the

boundaries of the rectangle M . This is equivalent to only considering the red poles in

Figure C1. We do not expect this to change the answer significantly since the modes of

the Laplacian all vanish near the corners for our geometry (the leading corrections due

to these corners will be considered below). Let us expand in ε. The first term of C.12
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is easily dealt with

1

λ

∫
dy Lλ(`x, y)

[
Lλ(`x − ε, y)

ε
+
Lλ(`x + ε, y)

ε

]
=

2

λε

∫
dy L2

λ(`x, y) +O(ε). (C.14)

Note that there is no O(1) term in the integral. For the second term, we will use (C.11)

(which once again should hold away from the corners where the entanglement cut ∂

meets the boundary of M) to find

− 2

λε

∫
dy L2

λ(`x, y)− 2

πλ
=

∫
dy dy0

Lλ(`x, y)Lλ(`x, y0)

(y − y0)2
+O(ε), (C.15)

We see that in the limit ε → 0, the divergent contributions indeed cancel out, and we

get

γ = − 2

πλ
=

∫
dy dy0

Lλ(`x, y)Lλ(`x, y0)

(y − y0)2
. (C.16)

Plugging in the expression for Lλ and changing variables to u = y − y0 and v = y0 + y,

this yields

γ = − 4

LxLyπλ

(
sin

πkx`x
Lx

)2

=

∫ Ly

−Ly
du

∫ 2Ly−|u|

|u|
dv

sin πky(u+v)

2Ly
sin πky(v−u)

2Ly

u2
. (C.17)

The integrals can be computed explicitly using (C.10), and we find

γ =
8

π3

(−1)ky − 1 + kyπ
∫ kyπ

0
dt sin t

t

k2
x + k2

y

(
sin

πkx`x
L

)2

, (C.18)

where we restricted ourselves to Lx = Ly = L for simplicity.

This expression for the rectangle is approximate since we ignored the contribution

of the corners to simplify the calculation. Let us now evaluate how the corners modify

this result. We will focus on the leading correction coming from the corner at x = 0,

y = 0 (the blue poles in Figure C1) so that the Green’s function near the vertical

boundary (x = x0 = ε) reads

Gε(u = y − y0, v = y + y0) ≈ 1

4π
ln

u2

u2 + 4ε2
− 1

4π
ln

v2

v2 + 4ε2
, (C.19)

which vanishes for y = 0 or y0 = 0. The correction from the corner therefore amounts

to changing u to v and comes with a minus sign:

∆γcorner =
4

Lxπλ

(
sin

πkx`x
Lx

)2

× 1

Ly
=

∫
du dv

sin πky(u+v)

2Ly
sin πky(v−u)

2Ly

v2
. (C.20)

Evaluating the integrals for Lx = Ly = L, this yields

∆γcorner =
8

π3

1− (−1)ky + kyπ
∫ 2kyπ

0
dt sin t

t
− kyπ

∫ kyπ
0

dt sin t
t

k2
x + k2

y

(
sin

πkx`x
Lx

)2

. (C.21)

The other corner at x = 0, y = Ly gives the same contribution, so that we obtain

a modified expression taking into account the leading contributions of the corners as

γwith corners ≈ γ + 2∆γcorner, so

γwith corners =
8

π3

2kyπ
∫ 2kyπ

0
dt sin t

t
− (−1)ky + 1− kyπ

∫ kyπ
0

dt sin t
t

k2
x + k2

y

(
sin

πkx`x
L

)2

. (C.22)
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Appendix C.3. Numerical Verification

Equation (C.22) may be verified numerically by comparing it to results on the lattice.

In particular, (C.22) was compared to (57) for a rectangle with height L = 9, 18, . . . , 273

for kx = 1 and ky = 1, 2, 3, 4. To extract the asymptotic behavior, the numerical results

were fit to

γ(L) = a1 +
a2

L
+
a3

L2
, (C.23)

which is a good heuristic model for the results with R2 > 0.999 in all cases. The

coefficient a1 should match the continuum result.

ky Analytic γ Fit a1 Fit a2 Fit a3 a1 Relative Error (%)

1 0.05797 0.06478 -0.36045 0.92392 -11.7596

2 0.09521 0.09691 -0.45105 0.34208 -1.78436

3 0.11479 0.11483 -0.58654 0.33662 -0.03198

4 0.11931 0.11947 -0.72754 0.96875 -0.13306

5 0.1165 0.11653 -0.84494 1.9293 -0.02662

It can be seen in Figure 6 that the agreement is excellent for large ky.

The main source of the error comes from the approximations made to deal with the

corners. To determine this, let us consider a geometry without corners. Consider an

artificial half plane: use the half-plane Green’s functions but with a finite height L for

the boundary ∂. In the continuum, the answer is then given by (C.18). On the lattice,

we need the half-plane lattice Green’s function, which is [60]

G(x, y;x0, y0) = L(x− x0, y + y0)− L(x− x0, y − y0), (C.24)

where L is a discrete version of the logarithm

L(x, y) =
1

2π

[∫ π

0

1− cos (yλ) exp (− |x|µ)

sinhµ
dλ− ln 8 + 2γE

2

]
, (C.25)

with γE Euler’s constant, cosλ + coshµ = 2 and µ/λ → 1 as λ → 0. Using the same

fitting procedure as before, the numerical results match the analytic ones closely, as

shown in Figure 7 and the table below.

ky Analytic γ Fit a1 Fit a2 Fit a3 a1 Relative Error (%)

1 0.04346 0.04329 -0.41817 1.75342 0.38848

2 0.08621 0.08609 -0.46253 0.79546 0.1478

3 0.1067 0.10663 -0.58413 0.7134 0.06196

4 0.11339 0.11336 -0.71384 1.2392 0.0309

5 0.1117 0.11164 -0.82399 2.10472 0.04952
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