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Abstract
The wavelet tree (Grossi et al. [SODA, 2003]) and wavelet matrix (Claude et al. [Inf. Syst., 47:15–
32, 2015]) are compact indices for texts over an alphabet [0, σ) that support rank, select and access
queries in O(lg σ) time. We first present new practical sequential and parallel algorithms for wave-
let matrix construction. Their unifying characteristics is that they construct the wavelet matrix
bottom-up, i.e., they compute the last level first. We also show that this bottom-up construction
can easily be adapted to wavelet trees. In practice, our best sequential algorithm is up to twice as
fast as the currently fastest sequential construction algorithm (serialWT), simultaneously saving
a factor of 2 in space. On 4 cores, our best parallel algorithm is at least twice as fast as the
currently fastest parallel algorithm (recWT), while also using less space. This scales up to 32
cores, where we are about equally fast as recWT, but still use only about 75% of the space. An
additional theoretical result shows how to adapt any wavelet tree construction algorithm to the
wavelet matrix in the same (asymptotic) time, using only little extra space.
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1 Introduction

The wavelet tree (WT), introduced in 2003 by Grossi et al. [7], is a space-efficient data
structure that can answer access, rank, and select queries for a text over an alphabet
Σ = [0, σ) in O(lg σ) time, requiring O(n lg σ) bits space and additional rank and select data
structures on bit vectors. WTs are often utilized for compression [8, 12]. A detailed overview
of the history of wavelet trees and many of their applications (not only for text indexing) are
given in detail by Ferragina et al. [4] and Navarro [14].

A variant of the WT, the wavelet matrix (WM), was introduced in 2011 by Claude and
Navarro [2] and is also a compact index for texts that supports the access, rank and select
queries. Asymptotically it requires the same space and it has the same query times – O(lg σ)
– for access, rank and select queries as a WT. But in practice the WM is often faster than a
WT for rank and select queries [2], as it saves one call to a binary rank/select data structure
per query.
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23:2 Fast and Simple Parallel Wavelet Tree and Matrix Construction

Related Work There exists lots of theoretical work when it comes to WT construction.
One task is reducing the construction time of WTs below O(n lg σ). Babenko et al. [1] and
Munro et al. [13] independently obtained a construction time of O

(
ndlg σ/

√
lgne

)
. Recently,

Shun [18] has parallelized the word packing approach by Babenko et al. [1] to decrease the
time for parallel WT construction to O(σ + lgn) requiring O(ndlg σ/ lgne) work. Another
important ratio is the additional space required. Claude et al. [3] and Tischler [19] showed
how to reduce the additional space required during the construction of the wavelet tree.

Due to the ubiquity of multi-core processors, there is a need for shared memory parallel
construction algorithms for WTs and WMs. Fuentes-Sepúlveda et al. [5] described the first
practical parallel WT-construction algorithm, requiring O(n) time and O(n lg σ) work. Faster
practical approaches have been presented by Shun [17] and Labeit et al. [9], both requiring
O(lgn lg σ) time and O(n lg σ) work. When it comes to WMs, there is not much work directly
dedicated to it. Sometimes, when a WT-construction algorithm is presented, it is mentioned
that the algorithm can also be adopted to compute the WM, e.g., [17, 18], but there are
no dedicated (practical) parallel WM-construction algorithms. The only (sequential and
semi-external) implementation of a wavelet matrix construction algorithm can be found in
the SDSL (succinct data structure library) [6].

Our Contribution First, we present two sequential and parallel WM-construction algorithms,
which can also easily be adapted to compute the WT. This results in the fastest sequential
WM- and WT-construction algorithms (psWM and psWT) that are up to twice as fast as
serialWT [17], the previously fastest implementation, while requiring only half as much space.
Next, we parallelize our algorithms and obtain the fastest parallel WM- and WT-construction
algorithms for up to 32 cores. Utilizing more than 32 cores, recWT [9] (the fastest parallel
WT-construction algorithm) remains faster. Last, we show that the WT and the WM are
equivalent, in the sense that every algorithm that can compute the former can also compute
the latter in the same time with only n+ σ + 2σdlgne+ o(n+ σ) bits of additional space.

2 Preliminaries

Let T= T[0] . . .T[n− 1] be a text of length n over an alphabet Σ = [0, σ). Each character
T[i] can be represented using dlg σe bits. In this paper, the most significant bit (MSB) is the
leftmost bit and the least significant bit (LSB) is the rightmost bit. We denote this binary
representation of a character α ∈ Σ as bits(α), e.g. bits(3) = (011)2. Whenever we write a
binary representation of a value, we indicate it by a subscript two. The k-th bit (from MSB to
LSB) of a character α is denoted by bit(k, α) for all 0 ≤ k < dlg σe. Given α ∈ Σ, the bit prefix
of size k of α are the k most significant bits, i.e., prefix(k, α) = (bit(0, α) . . . bit(k − 1, α))2.
Reversing the significance of the bits is denoted by reverse, e.g. reverse((001)2) = (100)2.
We interpret sequences of bits as integer values.

The bit-reversal permutation1 of length k (denoted by ρk) is a permutation of [0, 2k)
with ρk(i) = (reverse(bits(i)))2. For example, ρ4 = (0, 2, 1, 3) = ((00)2, (10)2, (01)2, (11)2).
ρk and ρk+1 can be computed from another, as ρk+1 = (2ρk(0), . . . , 2ρk(2k − 1), 2ρk(0) +
1, . . . , 2ρk(2k − 1) + 1) and ρk = (ρk+1(0)/2, . . . , ρk+1(2k − 1)/2), where we can realize the
division by a single bit shift.

Given a bit vector BV of size n, the operation rank0(BV, i) returns the number of 0’s
in BV up to position i whereas select0(BV, i) asks for the position of the i-th 0 in BV. The

1 http://oeis.org/A030109, last accessed 14.02.2017.
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operations rank1(BV, i) and select1(BV, i) work analogously. We omit to name the bit vector
if it is clear where the operation is executed.

Given an array A of n integers and an associative operator + (we only use addition), the
zero based prefix sum for A returns an array B with B[0] = 0 and B[i] = A[i− 1] + B[i− 1] for
all i ∈ [1, n).2 In parallel, the prefix sum can be computed in O(lgn) time and O(n) work.

2.1 Wavelet Trees
Given a text T of length n over an alphabet Σ = [0, σ), the wavelet tree (WT) of T is a
complete balanced binary tree. Each node of WT represents characters in [`, r) ⊆ [0, σ). The
root of WT represents characters in [0, σ), i.e., all characters. The left and right child of a node
that represents characters in [`, r) represent the characters in [`, (`+ r)/2) and [(`+ r)/2, r),
resp. A node is a leaf if

∣∣T[`,r)
∣∣ ≤ 2, with T[`,r)= {T[i] : 0 ≤ i < n and T[i] ∈ [`, r)}. The

characters in [`, r) at a node v are represented using a bit vector BV′v such that the i-th bit
in BV′v is bit

(
h(v),T[`,r)[i]

)
, where h(v) is the height of v in WT, i.e., the length of the path

from the root to v.
There are two variants of the WT: the pointer-based and the level-wise WT. The pointer-

based WT utilizes pointers to represent the tree structure. In addition, each node v stores
a pointer to the bit vector BV′v, see Figure 1a. In the level-wise WT, we concatenate the
bit vectors of all nodes with the same height in a pointer-based WT. Therefore, we store
only a single bit vector BV′` for each level ` ∈ [0, dlg σe), see Figure 1b. This retains the
functionality from the pointer-based WT [10, 11]. Characters represented by one node of the
pointer-based WT form a continuous interval in BV′` for each level `. Furthermore, given such
an interval [a, b] in BV′k where the characters in [`, r) ⊆ Σ are represented, the intervals where
the characters in [`, (`+ r)/2) and [(`+ r)/2, r) are represented in BV′k+1 are subintervals of
[a, b]. The interval of a WT at which a character is represented at level ` is encoded by its
bit prefix of length `.
I Observation 1 (Fuentes-Sepulveda et al. [5]). Given a character T[i] for i ∈ [0, n) and a
level ` ∈ [1, dlg σe) of the WT, the interval pertinent to T[i] in BV′` can be computed by
prefix(`,T[i]).

The wavelet tree (both variants) can be used to generalize the operations access, rank
and select to alphabets of size σ. Answering these queries requires O(lg σ) time. To do so,
the bit vectors are augmented by a rank and select data structure. We point to [2] for a
detailed description of the operations. In the following, we work with the level-wise WT.

2.2 Wavelet Matrices
The wavelet matrix (WM) [2] works similar to a level-wise WT. However, we discard the
tree structure, i.e., the parent-child relation and thus the condition that each character is
represented in an interval that is covered by the character’s interval in the previous level.
Again, we have a bit vector BV` for each level ` ∈ [0, dlg σe). In addition to the bit vectors,
we store the number of zeros for each level ` (denoted by Z[`]). BV0 contains the MSBs of
each character in T in text order (it is the same as the first level of a WT). Our new WM-
algorithms are based on the following observation, similar to Observation 1: If a character α
is represented at position i in BV`, then the position of its (`+ 1)-th MSB in BV`+1 depends
on BV`[i]. Namely, if BV`[i] = 0, bit(`+ 1, α) is stored at position rank0(BV`, i); otherwise

2 If not zero based, B is usually defined as B[0] = A[0] and B[i] = A[i− 1] + B[i− 1] for all i ∈ [1, n).

CVIT 2016
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Σr = [0, 8)
0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

Σ0 = [0, 4)
0 1 1 2 3

0 0 0 1 1

Σ1 = [4, 8)
6 7 5 4 6

1 1 0 0 1

Σ00 = [0, 2)

0 1 1

0 1 1
Σ01 = [2, 4)

2 3

0 1
Σ10 = [4, 6)

5 4

1 0
Σ11 = [6, 8)

6 7 6

0 1 0

T = 0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0
0 0 1 1 0 0 0 1 1 1
0 1 0 1 1 1 0 0 0 1

(a) The text T and its binary representation on the left-hand side and the pointer-based WT of T
on the right-hand side. Σα for α ∈ {r, 0, 1, 00, 01, 10, 11} denotes the characters that are represented
by the bit vector.

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0
0 1 1 2 3 6 7 5 4 6

0 0 0 1 1 1 1 0 0 1
0 1 1 2 3 5 4 6 7 6

0 1 1 0 1 1 0 0 1 0

BV′0

BV′1

BV′2
Z[0] = 5 Z[1] = 5 Z[2] = 5

(b) The level-wise WT of T. Thick lines are bor-
ders of the intervals corresponding to the nodes.

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0
0 1 1 2 3 6 7 5 4 6

0 0 0 1 1 1 1 0 0 1
0 1 1 5 4 2 3 6 7 6

0 1 1 1 0 0 1 0 1 0

Z[0] = 5 Z[1] = 5 Z[2] = 5

BV0

BV1

BV2

(c) The WM of T. The thick lines highlight the
number of zeros at each level.

Figure 1 The pointer-based, level-wise WT, and the WM for T= 0167154263 over Σ = [0, 8).
The light gray (�) arrays contain the characters represented at the position and are not part of the
WT and WM.

(BV`[i] = 1), it is stored at position Z[`]+rank1(BV`, i). In other words, BV`[i] = bit(`,T′[i]),
i.e., the `-th MSB of the i-th character of T′ in text order, where T′ is T stably sorted using
the reversed bit prefixes of length ` of the characters as key. Similar to the intervals in BV′`
of the WT, characters of T form intervals in BV` of the WM. Again, the intervals at level `
correspond to bit prefixes of size ` but due to the construction of the WM we consider the
reversed bit prefixes.
I Observation 2. Given a character T[i] for i ∈ [0, n) and a level ` ∈ [1, dlg σe) of the WM,
the interval pertinent to T[i] in BV` can be computed by reverse(prefix(`,T[i])).

As with WTs, if the bit vectors are augmented by (binary) rank and select data structures,
the WM can be used to answer access, rank and select queries in O(lg σ) time. We refer
to [2] for a detailed description of these queries. For an example of a WT see Figure 1c.

3 New Wavelet Matrix Construction Algorithms

Throughout this section, let T be a text of length n over an alphabet Σ = [0, σ). As shown
in Observation 2, each level ` of the WM contains disjunct intervals corresponding to the
reversed length-` bit prefixes of the characters in T. This enables us to start on the last level
dlg σe − 1, and then iteratively work through the other levels in a bottom-up manner until
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Algorithm 1: Sequential WM Construction with Prefix Counting (pcWM)
1 function pcWM(text T, size n, size of alphabet σ)
2 for i = 0 to n− 1 do
3 Hist[T[i]]++ // Compute histogram of the characters in T and
4 BV0[i] = Bit(0,T[i]) // fill the first level of the WM.
5 for i = 0 to 2dlgσe−1 − 1 do
6 Z[dlg σe − 1] = Z[dlg σe − 1] + Hist[2i] // Number of 0s in the last level.
7 for ` = dlg σe − 1 to 1 do
8 for i = 0 to 2` − 1 do
9 Hist[i] = Hist[2i] + Hist[2i+ 1] // Update the histogram for the next level.

10 for i = 1 to 2` − 1 do
11 SPos[ρ`(i)] = SPos[ρ`(i− 1)] + Hist[ρ`(i− 1)] // Compute new starting positions.
12 Z[`− 1] = SPos[1] // Number of 0s is the position of the first 1.
13 for i = 0 to n− 1 do
14 pos = SPos[prefix(`,T[i])]++ // Get starting position for the bit prefix,
15 BV`[pos] = bit(`,T[i]) // update it, and set the bit in the bit vector.

the matrix is fully constructed. To get this process started, we need to know the borders
of the intervals on the last level, for which we must first compute the histogram of the text
characters (as in the first phase of counting sort). On subsequent levels ` < dlg σe we utilize
the fact that we can quickly compute the histograms of the considered bit prefixes of size `
from the histogram of bit prefixes of size `+ 1, without rescanning the text. This and the
fact that we never actually sort the input text T is the main distinguishing feature of our
new algorithms from the previous ones. We assume that arrays are initialized with 0s.

3.1 Sequential Wavelet Matrix Construction Algorithms
Our first WM-construction algorithm (pcWM, see Algorithm 1) starts with the computation
of the number of occurrences of each character in T to fill the initial histogram Hist[0, σ),
see line 3. In addition, the first level of the WM is computed, as it contains the MSBs of
all characters in text order (line 4). This requires O(n) time and σdlgne bits space for the
histogram. Later on we require additional σdlgne bits to store the starting positions of the
intervals (see SPos in Algorithm 1). Using the histogram, we can also compute the number
of 0s in the last level of the WM, i.e., total number of characters with a 0 as LSB (line 6).
Since the histogram contains σ entries this requires O(σ) time and no additional space.

Next, we compute the bit vectors and number of zeros for each other level, starting with
the last one (see loop starting at line 7). Initially, we have a histogram for all characters in
T. During each iteration (each time we want to compute level `) we require the histogram
for all bit prefixes of size `− 1 of the characters in T. Therefore, if we have the histogram of
bit prefixes of size `, we can simply compute the histogram of the bit prefixes of size `− 1 by
ignoring the last bit of the current prefix, e.g., the amount of characters with bit prefix (01)2
is the total number of characters with bit prefixes (010)2 and (011)2. We can do so in O(σ)
time requiring no additional space, as we already stored the histogram for σ characters and
can reuse the space, see line 9.

Using the updated histogram, we compute the starting positions of the intervals of the

CVIT 2016
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characters that can by identified by their bit prefix of size ` − 1 for level `. The starting
position of the interval representing characters with bit prefix 0 is always 0, therefore we
only compute the starting positions for all other bit prefixes, see line 10. To be able to access
them by their bit prefix, we need to compute the prefix sum in bit-reversal permutation
order, see line 11. Again, this requires O(σ) time and no additional space, as we already
have considered the space to save the starting positions of the intervals. Using the starting
positions of the intervals, i.e., the prefix sum over the histogram, we can easily get the number
of zeros in the level above by looking at the number of even bit prefixes, see line 12.

Last, we need to compute the bit vector for the current level `. To do so, we simply scan
T once from left to right and consider the bit prefix of length `− 1 of each character. Since
we have computed the position in the bit vector where the `-th MSB of the characters needs
to be stored, we can simply put it there and increase the position for characters with the
same bit prefix by one, see lines 14 and 15. This requires O(n) time and no additional space.

Since we need to compute O(lg σ) levels and also store the bit-reversal permutation which
requires another σdlgne bits of additional space, this results in the following lemma.

I Lemma 1. Algorithm pcWM computes the WM of a text of length n over an alphabet of
size σ in O(n lg σ) time using 3σdlgne bits of space in addition to the input and output.

3.2 Parallel Wavelet Matrix Construction Algorithms
The naïve way to parallelize the pcWM algorithm is to parallelize it such that each processor
is responsible for the construction of one level of the WM. To this end, each processor needs
to first compute the corresponding histogram of the level, and then the resulting starting
positions of the intervals. This results in the following Lemma.

I Lemma 2. The WM can be constructed in O(n) time with O(n lg σ) work requiring 6σdlgne
bits of space in addition to the input and output.

The disadvantage of this naïve parallelization is that we cannot efficiently utilize more
than dlg σe processors. To use more processors, instead of parallelizing level-wise, we do
the following. Each processor (we denote the number of processors by p) gets a slice of
the text of size Θ(np ) and computes the corresponding slices of the bit vectors on all levels.
On level `, each processor c first computes its local histogram Histc[0, σ) according to the
length-` bit-prefixes of the input characters. Using a parallel prefix sum operation, these
local histograms are then combined such that in the end each processor knows where to write
its bits (arrays SPosc[0, σ) for 0 ≤ c < p). As in the sequential algorithm, the final writing is
then accomplished by scanning the local slice of the text from left to right, writing the bits
to their correct places in BV`, and incrementing the corresponding value in SPosc.

This approach works, but it comes with the problem that two or more processors may
want to concurrently write bits to the same computer word, resulting in race conditions. To
avoid these race conditions, one would have to implement mechanisms for exclusive writes,
which would result in unacceptably slow running times.

Instead, we do the following. Having computed the arrays of starting positions SPosc on
level `, we use this array to globally sort the input text stably in parallel according to its
length-` bit prefixes. The resulting sorted text Tsorted is then again split into slices of size
Θ(np ). Then each processor scans its local slice from left to right and writes the corresponding
bits to the bit-vector BV`. To avoid all race conditions, we further make sure that the size of
each slice of the text is a multiple of w, where w is the number of bits in a computer word
(w = 64 in our implementation).
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Algorithm 2: Parallel WM Construction with Prefix Sorting (psWM)
1 function psWM(Text T, size n, size of alphabet σ)
2 parfor c = 0 to p− 1 do
3 for i = cnp to (c+ 1)np do
4 Histc[T[i]]++ // Compute histogram of the characters in T and
5 BV0[i] = bit(0,T[i]) // fill the first level of the WM.

6 Perform parallel prefix sum with respect to ρdlgσe to compute SPosc
7 Z[dlg σe − 1] = SPos0[1]
8 for ` = dlg σe − 1 to 1 do
9 parfor c = 0 to p− 1 do

10 for i = 0 to 2` − 1 do
11 Histc[i] = Histc[2i] + Histc[2i+ 1] // Update the histogram for the next level.

12 Perform parallel prefix sum with respect to ρ` to compute SPosc
13 Z[`] = SPos0[1]
14 Tsorted = ParallelCountingSort(T, SPos) // Sort T with respect to bit prefixes and ρ`.
15 parfor c = 0 to p− 1 do
16 for i = cnp to (c+ 1)np do
17 BV`[i] = bit(`,Tsorted[i]) // Set the bit in the bit vector.

The resulting algorithm is shown in Algorithm 2. First, each of the p processors computes
the local histogram (Histc for c ∈ [0, p)) of its slice and, at the same time, fills BV0 ( lines 4 and
5). Next, we compute the local starting positions (SPosc for c ∈ [0, p)), i.e., the prefix sum
of [SPos0[0],SPos1[0], . . . ,SPosp−1[0], . . . . . . ,SPos0[σ − 1],SPos1[σ − 1], . . . ,SPosp−1[σ − 1]],
with respect to ρdlgσe, see line 6. All this requires O(lg p+ σ) time, O(n+ pσ) work and
3pσdlgne bits of space using p processors. In line 6 “respect to ρdlgσe” means that character
ρdlgσe(i) follows character ρdlgσe(i− 1) for all i ∈ [1, dlg σe). We obtain the number of zeros
at the last level during this step, i.e., the position of the first one at the first processor.

Using the information (Hist and SPos), we can compute the corresponding values for all
sizes ` ∈ [0, dlg σe) of bit prefixes. For each level (see loop starting at line 8) the time and
work required are the same as during the first step. There is no additional space required
since we can reuse the space used during the previous iteration.

We use the local starting positions to sort the text, see line 14. Each processor knows the
starting positions for its local text. We require additional ndlg σe bits of space (which can
be reused at each level) to store the sorted text Tsorted. After this sorting, each processor
can simply insert its bits at the corresponding position in BV` (last line of Algorithm 2).

This leads to the following lemma.

I Lemma 3. Algorithm psWM computes the WM of a text of length n over an alphabet of size
σ in O

(
lg σ

(
n
p + lg p+ σ

))
time and O(lg σ(n+ pσ)) work requiring 3pσdlgne + ndlg σe

bits of space in addition to the input and output utilizing p processors.

The algorithm can efficiently use up to p ≤ n
σ processors. Utilizing that many processors

yields optimal O(n lg σ) work with O(lg σ (σ + lgn)) time. Using more processors would only
increase the required work, without achieving a better running time than on n/σ processors.

CVIT 2016
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Name n σ source Name n σ Source

XML 2.1 · 108 96 PC jdk13c 6.97 · 107 113 LW

DNA 2.1 · 108 16 PC linux-2.4.5.tar 1.16 · 108 254 LW

ENG 2.1 · 108 224 PC rctail96 1.14 · 108 93 LW

PROT 2.1 · 108 25 PC rfc 1.16 · 108 120 LW

SRC 2.1 · 108 229 PC sprot34.dat 1.09 · 108 66 LW

chr22.dna 3.5 · 107 5 LW w3c2 1.04 · 108 254 LW

etext99 1.05 · 108 145 LW random1 1 · 108 254 RN

gcc-3.0.tar 8.76 · 107 148 LW random2 1 · 108 65534 RN

howto 3.94 · 107 195 LW words 1.4 · 108 2245405 WMT
Table 1 List of texts we used for our experiments. We obtained the texts from the following

sources: The Pizza & Chili corpus (PC)3, the lightweight corpus (LW)4, uniformly distributed
random numbers (RN), and word based alphabets computed from Russian news articles from 2011
from the Conference on Machine Translation (WMT)5.

Using sorting for the parallel construction of the WT has already been considered by
Shun [17] (sortWT). In their approach, the WT is computed from the first level to the last,
and for each level the whole text needs to be sorted using the bit prefix as key (comparison
based sorting). Our approach uses counting sort and makes use of the fact that we can
compute the intervals for the current level using the intervals of the succeeding level.

It should be noted that both algorithms (pcWM and psWM) can be adjusted to compute
the level-wise WT instead of the WM. To do so, we just have to replace ρ by the identity
permutation in Algorithms 1 and 2. Then, the resulting starting positions of the intervals
are for bit prefixes in increasing order, i.e., the starting positions of the intervals for a WT,
see Observations 1 and 2.

4 Experiments

We implemented our algorithms pcWM, psWM, pcWT and psWT using C++. Due to
space constraints we focus on the WM-construction algorithms. The running times of
the WT-construction algorithms is nearly the same, see Table 5 in the Appendix. We
compiled our code using g++ 6.2 with flags -03 and -march=native and provide a tuned
sequential implementation, as well as parallel implementations utilizing openMP 4.5. Our
implementations are available from https://github.com/kurpicz/pwm.

We compare with the implementations of Shun [17] (serialWT and levelWT ) and Labeit
et al. [9] (recWT ). Other implementations (as the WM- and WT-construction algorithms in
the SDSL) were already proved slower and/or more space consuming. The running times of
the construction algorithms implemented in the SDSL are listed in Table 4 in the Appendix.
Here, serialWT is the fastest sequential WT-construction algorithm and recWT is the fastest
parallel WT-construction algorithm. Both serialWT and recWT are parallel WT-construction
algorithms utilizing Cilk Plus for the parallelization. The code of serialWT, levelWT and
recWT has been compiled using their provided makefiles.

3 http://pizzachili.dcc.uchile.cl/texts.html, last accessed 14.02.2017.
4 http://people.unipmn.it/manzini/lightweight/corpus/, last accessed 14.02.2017.
5 http://statmt.org/wmt16/translation-task.html, last accessed 14.02.2017.

https://github.com/kurpicz/pwm
http://pizzachili.dcc.uchile.cl/texts.html
http://people.unipmn.it/manzini/lightweight/corpus/
http://statmt.org/wmt16/translation-task.html
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[This paper] Shun [17] Labeit et al. [9]
pcWM psWM serialWT levelWT recWT

Text T1 T4 T1 T4 T1 T1 T4 T1 T4

XML 2.446 0.724 2.159 0.759 3.190 4.920 2.190 5.118 1.389
DNA 1.462 0.550 1.419 0.432 2.050 2.840 1.260 3.362 0.904
ENG 2.956 0.844 2.753 0.886 4.260 6.230 2.640 6.713 1.809
PROT 1.686 0.525 1.504 0.535 3.190 4.380 1.760 5.299 1.426
SRC 2.891 0.838 2.617 0.882 4.000 5.910 2.640 6.457 1.731

chr22.dna 0.170 0.108 0.163 0.058 0.260 0.363 0.146 0.423 0.113
etext99 1.465 0.416 1.350 0.454 2.230 3.170 1.430 3.499 0.949

gcc-3.0.tar 1.208 0.355 1.099 0.370 1.610 2.460 1.060 2.568 0.684
howto 0.550 0.160 0.500 0.169 0.772 1.130 0.500 1.200 0.324
jdk13c 0.815 0.240 0.714 0.253 1.110 1.740 0.777 1.841 0.492

linux-2.4.5.tar 1.617 0.454 1.464 0.496 2.190 3.260 1.420 3.529 0.932
rctail96 1.357 0.395 1.225 0.421 1.810 2.770 1.220 2.896 0.801

rfc 1.412 0.408 1.270 0.428 2.040 2.900 1.280 3.141 0.861
sprot34.dat 1.313 0.387 1.187 0.404 1.800 2.750 1.170 2.904 0.793

w3c2 1.431 0.411 1.354 0.644 1.880 2.870 1.280 2.956 0.802
random1 1.305 0.377 1.096 0.422 3.400 4.350 1.650 5.755 1.538
random2 3.566 1.085 6.032 1.732 6.790 6.810 6.830 11.50 3.090
words 7.303 3.438 10.72 4.324 11.10 10.90 6.490 17.56 4.733

Table 2 Running times of the algorithms on the PC-system in seconds. T1 denotes the running
time using one core and T4 denotes the running time using all four cores. The fastest sequential
running time is is highlighted using bold font and the fastest parallel running time is underlined.

The measurement of the memory usage of our algorithms and serialWT was done using
malloc_count.6 The memory usage of all other algorithms was measured using the function
getrusage, as malloc_count is incompatible with the Cilk Plus implementations. For our
experiments we use real-world and artificial texts, see Table 1. We provide a script to collect
and prepare all considered corpora at https://github.com/kurpicz/tcc.

We conducted our experiments on two different machines.
PC-System equipped with an Intel Core i5-4670 processor (four cores with frequency up to

3.4GHz and cache sizes: 32 kB L1, 256 kB L2 and 6144 kB L3) and 16GB RAM.
Server-System equipped with two Intel Xeon E5-2676 processor (16 cores with frequency

up to 2.4GHz and cache sizes: 384 kB L1, 3MB L2 and 30MB L3) and 256GB RAM.

Results – Construction Time First, we compare the results on the PC-System, i.e., few
cores with high base frequency. Table 2 compares the speedup of the construction algorithm
on the PC hardware. In the sequential case, psWM is the fastest construction algorithm on
all but five texts, there pcWM is faster. The difference in runtime between psWM and pcWM
is less than five percent on average. Using psWM we are up to 3.1 times faster than serialWT,
which is the previously fastest sequential construction algorithm. On average psWM is 1.59

6 https://github.com/bingmann/malloc_count, last accessed 14.02.2017.
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times faster than serialWT. In the parallel case, pcWM is the fastest construction algorithm,
psWM being on a close second place. Only on two texts psWM is faster. Those are texts
with a very small alphabet (σ = 5 and σ = 16). Again, the difference between psWM and
pcWM is around four percent. On average, pcWM is 2.12 times faster than recWT and at
least 1.04 times faster. Compared with recWM, psWM is 1.99 times faster on average.

Second, we compare the results on the Server-System where we have 32 cores with a
lower base frequency, see Table 3. In the sequential case psWM is the fastest construction
algorithm with pcWM being the second fastest. On average psWM is three percent faster
than pcWM and at most 2.6 times (1.47 times on average) faster than serialWM (the
previously fastest WT-construction algorithm). There is a different situation in the parallel
case, where the speed of psWM comes only close to the speed of recWT (the currently fastest
WT-construction algorithm). Here, psWM is 36% slower on average, as recWT scales very
good.

Results – Memory Consumption The disadvantage of psWM when it comes to scaling can
be redeemed when it comes to memory consumption. All algorithms show a similar footprint
on both systems, see Tables 6 and 7 in the Appendix. The lowest memory consumption is
archived by pcWM, which is matching our theoretical assumptions. Next, psWM requires
35% more memory than pcWM but still 27% less than recWT when both are executed in
parallel. In the sequential case, pcWM and psWM require 50% and 25% less space than
serialWT. The memory consumption of levelWT is enormous, requiring around 77% more
memory than pcWM in both cases (sequential and parallel).

5 From the Wavelet Tree to the Wavelet Matrix

The structure of a WT and a WM are very similar. If we compare the bit vectors of the WT
and the WM at level ` we see two similarities. First, both bit vectors contain the `-th MSB
of each character of T and second, the bits are grouped in intervals with respect to the bit
prefix of size ` of the corresponding character. Thus the number and sizes of the intervals is
the same. The difference is the position of the intervals within each level. At level `, the
intervals in BV′` of a WT occur in increasing order with respect to the bit prefixes of size ` of
the characters in T, i.e., the first interval corresponds to characters with bit prefix 0, the
second corresponds to characters with bit prefix 1, and so on. The intervals in BV` of a WM
occur in increasing order with respect to the ρ` of the characters in T.

We can make use of these similarities by showing that each algorithm that can compute
a WT can also compute a WM in the same asymptotic time. The computed data structures
for our running example can be found in Figure 2.

I Lemma 4. We can compute an array X and a bit vector U with rank and select data
structures in time O(n+ σ) and space n+ σ + σdlgne+ o(n+ σ) bits, such that

BV′`[i] = BV`[j] with j =
{
i , if ` ≤ 1
X[2`−1 − 2 + bp] + off , otherwise

where bp = prefix(`, rank0(U, select1(U, i+1)) and off = i−rank1(U, select0(U, bp� (dlg σe−
`))), with � k denoting a left bit shift (by k bits), i.e., affixing k zeros on the right hand side.

Proof. First, we count the number of occurrences of each character in T. This requires O(n)
time and σdlgne bits of space. We store them such that X[i] = |{j ∈ [0, n) : T[j] = i}|. Next,
we store the number of occurrences unary utilizing a bit vector, i.e., setting the first X[0]
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[This paper] Shun [17] Labeit et al. [9]
pcWM psWM serialWT levelWT recWT

Text T1 T32 T1 T32 T1 T1 T32 T1 T32

XML 3.363 0.766 3.121 0.292 4.530 6.970 0.475 7.143 0.231
DNA 2.000 0.907 2.063 0.213 2.890 3.990 0.248 4.763 0.154
ENG 4.039 0.769 3.950 0.336 6.040 8.590 0.782 9.313 0.304
PROT 2.335 0.795 2.172 0.229 4.500 6.130 0.357 7.459 0.239
SRC 3.980 0.808 3.794 0.325 5.640 8.240 0.549 9.055 0.288

chr22.dna 0.239 0.186 0.237 0.036 0.375 0.505 0.049 0.605 0.059
etext99 2.012 0.454 1.968 0.200 3.140 4.440 0.280 4.915 0.160

gcc-3.0.tar 1.666 0.339 1.606 0.157 2.280 3.350 0.222 3.581 0.116
howto 0.761 0.181 0.724 0.078 1.080 1.560 0.101 1.687 0.056
jdk13c 1.124 0.272 1.035 0.116 1.540 2.370 0.158 2.531 0.086

linux-2.4.5.tar 2.231 0.448 2.128 0.198 3.080 4.520 0.304 4.785 0.156
rctail96 1.872 0.428 1.742 0.175 2.540 3.870 0.259 4.068 0.135

rfc 1.934 0.435 1.847 0.180 2.850 4.040 0.263 4.378 0.142
sprot34.dat 1.806 0.393 1.718 0.169 2.480 3.800 0.245 4.032 0.131

w3c2 1.991 0.412 2.028 0.225 2.590 4.010 0.271 4.092 0.134
random1 1.792 0.445 1.843 0.179 4.810 6.080 0.314 8.182 0.256
random2 5.126 0.780 14.35 0.861 9.590 12.20 0.645 16.14 0.515
words 10.00 1.553 26.90 3.564 15.20 22.40 1.480 24.54 0.833

Table 3 Running times of the algorithms on the Server-system in seconds. T1 marks the running
time using one core and T32 denotes the running time using 32 cores. The fastest sequential running
time is is highlighted using bold font and the fastest parallel running time is underlined.

bits to one, followed by a single bit set to zero that is again followed by X[1] bits set to
one, followed again by a single bit set to zero, and so on. We augment the bit vector with
a rank and select data structure, resulting in n+ σ + o(n+ σ) bits of space in total. The
construction of the bit vector and rank and select data structure requires O(n+ σ) time.

Next, for each level ` ∈ [2, dlg σe) we want to compute the first position of the intervals
corresponding to the reverse bit prefixes of size ` in the WM. Since we only require bit
prefixes of size up to dlg σe − 1 we first compute the number of occurrences of these bit
prefixes, i.e., X[i] = X[2i] + X[2i+ 1] for all i ∈ [0, dσ/2e). Next, we rearrange the number of
occurrences (that are in lexicographically order) by swapping X[i] with X[reverse(i)] for all
i ∈ [0, dσ/2e). Now we have the number of occurrences in bit-reversal permutation order.
This requires O(σ) time and no additional space. Furthermore, we now have d(σ lgn)/2e
bits of unused space. Next, we compute the prefix sum of the values starting with 0 in O(σ)
time. Using these starting positions of the intervals, we can compute the starting positions
of the intervals for each level ` ∈ [2, dlg σe) in O(σ) time using the d(σ/2) lgne bits of unused
space. Last, we restore the order for the starting positions, such that the starting positions
for each level occur in increasing order with respect to their corresponding bit prefix, in time
O(σ). Thus, the preprocessing requires O(n+ σ) time and n+ σ + 2σdlgne+ o(n+ σ) bits
of space.

Now we need to answer queries asking for a position j ∈ [0, n) in BV` given a position
i ∈ [0, n) in BV′` for ` ∈ [0, dlg σe) in constant time. If ` ≤ 1 we know that j = i, because the
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Σ = {0, 1, 2, 3, 4, 5, 6, 7}

U = 10110101010101101

0 1 0
0

0
1

1
0

1
1

0 5 0 5 3 7X =

Figure 2 Example of the data structures and querying for T= 0167154263.

bit vectors of the WT and WM are the same for the first two levels. Otherwise (` > 1) we use
the bit vector to identify the bit prefix of length ` of the character responsible for setting the
bit at position i. Let pos = select1(i+ 1) be the position of the i+ 1-th one in the bit vector.
Therefore, k = rank0(pos) returns the rank of the character that corresponds to the position
pos. The bit prefix bp = prefix(`, k) of length ` can now be used to determine the starting
position of the corresponding interval in BV`, i.e., X[2` − 2 + bp] because we have reordered
the entries level-wise. Now we need to compute the offset of the position from the starting
position of the interval. To do so, we compute the smallest character contained in the interval
by padding the bit prefix with dlg σe − ` 0s giving us a value r = select0(bp � dlg σe − `).
Next, we determine the number of 1s occurring before the r-th 0 in U to compute the offset,
i.e., off = i− rank1(r).

Since all operations used for querying require constant time and there is only a constant
number of operations, the query can be answered in constant time. J

I Example 5. Given our running example of T= 0167154263, we compute the bit vector U
and the array X as shown in Figure 2. The first two levels of the WT and WM are the same,
hence we give an example for the last level. We want to set the i = 8-th bit in BV′2 to 0.
Now we need to compute the corresponding position j in BV2. To do so, we first identify the
position of the (i+ 1) = (8 + 1)-th 1 in U, i.e., p = select1(9) = 15. The value represented by
this position may not correspond to the value of the considered character, but it has the same
bit prefix of length 2 as the character. The bit prefix is bp = prefix(2, rank0(15)) = (11)2. To
get the first position in the interval in level 2, we need to pad the bit prefix with dlg σe− ` = 1
zeros to get the smallest value with the bit prefix bp, i.e., (110)2 = 6. Now we can compute
the offset of the position with respect to the first position of the interval. We identify the
starting position of the interval containing 6, i.e., select0(6) = 7. Then we get the number
of 1s up to that position and subtract this value from i (off = 8− 7 = 1) to get the offset.
Using the bit prefix bp and the offset off, we can get the position where we have to set the
bit using X[22 − 2 + bp] + off = 7 + 1 = 8.

6 Conclusion

We presented two sequential and parallel WM-construction algorithms that utilized the
structure of the WM to compute it bottom-up. This allows for fast sequential and parallel
WM-construction algorithms that require just a little bit more memory than the input and
output require. We then showed how to adopt these algorithms to compute the WT instead.
Our experiments have shown that the our new algorithms are up to twice as fast as the
previously known algorithms while requiring just a fraction of the memory (at most half as
much). Our algorithms do not scale as well as the competitors, therefore, when using more
than 32 processors our algorithms will be outperformed.

In addition to the practical work, we also have shown how to adopt general WT-
construction algorithms to compute a WM in the same asymptotic runtime instead.
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The presented algorithms are the first two WM-construction algorithms that are not
just adopted WT-construction algorithms. We want to investigate further in this direction
to get construction algorithms that scale better. The domain-decomposition approach by
Fuentes-Sepulveda et al. [16] may also be applicable to WM construction.
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A Additional Data from the Experiments

Gog et al. [6]
WT construction WM construction

Text in-memory semi-extern in-memory semi-extern
XML 20.69 15.93 18.20 15.43
DNA 16.22 12.38 14.56 12.20
ENG 20.26 16.41 18.65 16.56
PROT 19.91 14.94 16.91 14.95
SRC 22.58 16.35 18.25 17.01

chr22.dna 2.427 2.028 2.435 2.003
etext99 10.31 8.160 9.326 7.857

gcc-3.0.tar 9.718 6.378 7.263 6.123
howto 3.018 2.933 3.519 2.820
jdk13c 6.472 5.728 6.438 5.296

linux-2.4.5.tar 13.29 8.913 9.838 8.562
rctail96 10.85 9.013 10.74 9.009

rfc 10.88 8.836 9.820 8.440
sprot34.dat 8.383 7.332 8.269 7.495

w3c2 10.21 8.166 9.704 8.576
random1 13.21 9.970 11.76 9.894
random2 36.85 20.05 63.50 20.89
words 72.55 36.93 155.1 37.07

Table 4 Running time of the WM- and WT-construction algorithms implemented in the SDSL
on the PC-System in seconds. We used the wt_int and wm_int implementation (for the WT and
WM, resp.) and constructed the data structures using construct_im for the in-memory construction
and construct for the semi-external construction.
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[This Paper]
PC-System Server-System

pcWT psWT pcWT psWT

Text T1 T4 T1 T4 T1 T32 T1 T32

XML 2.503 0.749 2.162 0.759 3.462 0.776 3.116 0.294
DNA 1.482 0.565 1.432 0.435 2.052 0.946 2.059 0.211
ENG 3.029 0.873 2.761 0.886 4.143 0.782 3.981 0.327
PROT 1.729 0.541 1.509 0.530 2.390 0.785 2.176 0.230
SRC 2.973 0.857 2.620 0.909 4.055 0.779 3.787 0.330

chr22.dna 0.172 0.110 0.163 0.063 0.237 0.202 0.234 0.033
etext99 1.501 0.436 1.360 0.458 2.090 0.464 1.947 0.182

gcc-3.0.tar 1.249 0.358 1.103 0.399 1.694 0.369 1.572 0.157
howto 0.564 0.166 0.503 0.169 0.791 0.188 0.723 0.078
jdk13c 0.839 0.245 0.716 0.252 1.149 0.268 1.031 0.173

linux-2.4.5.tar 1.663 0.479 1.466 0.496 2.277 0.468 2.133 0.199
rctail96 1.406 0.419 1.213 0.418 1.932 0.427 1.782 0.174

rfc 1.441 0.424 1.287 0.435 2.000 0.449 1.852 0.179
sprot34.dat 1.346 0.382 1.194 0.407 1.864 0.420 1.729 0.168

w3c2 1.470 0.423 1.364 0.596 2.023 0.431 2.029 0.230
random1 1.347 0.401 1.107 0.413 1.854 0.439 1.87 0.297
random2 3.523 1.106 6.087 1.744 5.100 0.794 14.06 0.876
words 7.340 3.376 10.47 4.110 10.60 1.468 26.73 2.939

Table 5 Running time of our WT-construction algorithms in seconds.
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