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Abstract. The Kolakoski sequence is the unique infinite sequence with values in {1, 2} and first
term 1 which equals the sequence of run-lengths of itself; we call this K(1, 2). We define K(m,n)
similarly for m + n odd. A well-known conjecture is that the limiting density of K(1, 2) is one-
half. We state a natural generalization, the “generalized uniformness conjecture” (GUC). The GUC
seems intractable, but we prove a partial result: the GUC implies that members of a certain family
of directed graphs Gm,n,k are all strongly connected. We prove this unconditionally.

For d > 0, let cf(m,n, d) be the density of indices i such that K(m,n)i = K(m,n)i+d. Essen-
tially, cf(m,n, d) is the autocorrelation function of a stationary stochastic process with random
variables {Xt}t∈Z whereby a sample of a finite window of this process is formed by copying as
many consecutive terms of K(m,n) starting from a “uniformly random index” i ∈ Z+. Assuming
the GUC, we prove that we can compute cf(m,n, d) exactly for quite large d by constructing a
periodic sequence S of period around 108.5 such that for d not too large, the correlation frequency
at distance d in K(m,n) equals that in S. We efficiently compute correlations in S using polynomial
multiplication via FFT.

We plot our estimates cf(m,n, d) for several small values of (m,n) and d ≤ 105 or 106. We
note many suggested patterns. For example, for the three pairs (m,n) ∈ {(1, 2), (2, 3), (3, 4)}, the
function cf(m,n, d) behaves very differently as we restrict d to the m + n residue classes mod
m + n. The plots of the three functions cf(1, 2, d), cf(2, 3, d), and cf(3, 4, d) resemble waves which
have common nodes. We consider this very unusual behavior for an autocorrelation function. The
pairs (m,n) ∈ {(1, 4), (1, 6), (2, 5)} show wave-like patterns with much more noise.

1. Introduction

The Kolakoski sequence is the unique infinite sequence with values in {1, 2} and first two terms
1, 2, . . . which equals the sequence of run-lengths in the run-length encoding of itself. See [?] for
our definition of run-length encoding. The existence and uniqueness is relatively easy to prove.
The Kolakoski sequence begins 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, . . . . Similarly, for distinct positive
integers m,n, we define K(m,n) to be the unique infinite sequence with values in {m,n} and first
term m.

The sequences K(m,n) in which m+ n is even are less interesting. The main reason is that the
infinite sequence K(m,n) is a fixed point of a finite set of substitution rules. We define even-length
finite sequences Ki recursively as follows. Let K0 be the sequence m,m if m > 1 or m,n or m = 1.
For i ≥ 0, partition Ki into blocks of length 2. Replace m,m with mmnm, or the term m repeated
m times followed by the term n repeated m times. In order, Replace blocks which are m,n with
mmnn. Replace n, n with mnnn. One can show that the block n,m does not occur. Let Ki+1 be
the new sequence. Note that since m+n is even, the substitution rules turns one block into a finite
number of blocks.

For example, if m = 1, n = 3, then K0 = 1, 3. K1 = 1, 3, 3, 3. K2 = 1, 3, 3, 3, 1, 1, 1, 3, 3, 3.
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One can show that Ki agrees with the first |Ki| terms of Ki+1 and also the first |Ki| terms of
Km,n. In this sense, Km,n is the coherent union of the Ki. As such, the density of m and n is readily
calculated using linear algebra, and general density questions should also be straightforward. There
appears to be no analog at all for the odd m+ n case.

There are many open problems associated with the Kolakoski sequence. Perhaps the most famous
conjecture is that the limiting density of “1” in the Kolakoski sequence equals one-half. In this
paper, “density” refers to the asymptotic density [3] of a certain set of indices as a subset of Z+,
in this case, the indices of terms which are 1. There are various density-type conjectures that one
can formulate about the Kolakoski sequence. The density-type conjectures dealing with fixed-
distance observations can be naturally generalized into one “generalized uniformness conjecture,”
(GUC) which we formulate. In order to formulate the GUC, we need to define functions Em,n, Cm,n

which are naturally encountered when studying iterated run-length encoding or expansion as in the
Kolakoski sequence. We will be using the same definitions and conventions as in Shen[1].

The GUC is far out of reach, but we prove a partial result. For m,n, k > 0 with m+ n odd, we
define Gm,n,k to be a directed graph (or multigraph for k = 1). Its vertex set is {m,n}k. It has

directed edges from t to Cm,n(m, t) and from t to Cm,n(n, t) for all t in {m,n}k. The GUC easily
implies that the graph Gm,n,k is strongly connected, meaning that there are directed paths between
all ordered pairs of vertices. We prove that these graphs are indeed connected. We think that
this result is conceptually important because if we replace the Kolakoski sequence with a “random
sequence expanded k times,” then the GUC is satisfied in expectation. In particular, in the directed
graphs Gm,n,k, all vertices have in-degree and out-degree equal to 2, so the nullspace of the directed
graph laplacian is given by the uniform-weight vectors.

The rest of this paper discusses “correlations” between terms of the sequence K(m,n) which
are d terms apart. For d > 0, we define cf(m,n, d) to be the density of indices i such that
K(m,n)i = K(m,n)i+d, if it exists. Naturally, all of these quantities are unknown. However, under
the assumption of the GUC, these quantities can be computed. We define tf(m,n, d) to be the
theoretical value of cf(m,n, d) assuming the GUC.

Here is an alternative interpretation. We can define stochastic processes Pm,n for m+n odd. Each
process Pm,n is a collection of random variables {Xt}t∈Z with values in {m,n}, and it is stationary,
meaning that for all d > 0, k, k′ ∈ Z the marginal joint distribution of (Xk, Xk+1 . . . , Xk+d) is
exactly equal to the marginal joint distribution of (Xk′ , Xk′+1, . . . , Xk′+d). We specify Pm,n by
specifying its marginal joint distributions on all finite consecutive sets; specifically, the probability
that

(Xk, Xk+1, . . . , Xk+d) = (a0, . . . , ad) ∈ {m,n}d+1

is equal to the asymptotic density of indices i ∈ Z+ such that K(m,n)i+j = aj for all 0 ≤ j ≤ d
assuming the GUC. In other words, this is the asymptotic frequency of (a0, . . . , ad) as a consecutive
subsequence of K(m,n). For example, assuming the GUC, the sequence 1, 1, 2, 2 has asymptotic
frequency 1/18 in K(1, 2). Consequently, for all k, the stochastic process P1,2 satisfies

Pr[(Xk, . . . , Xk+3) = (1, 1, 2, 2)] = 1/18.

Under this interpretation, tf(m,n, d) is the series of autocorrelations of the stationary stochastic
process Pm,n.

We will explain how to compute these frequencies assuming the GUC. Note that the stochastic
processes Pm,n exist without assuming the GUC. The statement that depends on the GUC is that
these stochastic processes reflect the generalized Kolakoski sequences.

We compute our algorithms for computing many exact and estimated values of tf(m,n, d). We
show many plots of these estimated values for d ≤ 105 and note many compelling patterns. We
think that the series tf(m,n, d) exhibit patterns that are very unusual for autocorrelation functions.

This paper uses the same conventions as Shen[1] as well as the definitions of Em,n and Cm,n.
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1.1. Outline. In section 2, we formulate the GUC and prove that certain related directed graphs
are strongly connected. In section 3, we prove a theorem that allows one to compute the frequency
of any finite sequence as a consecutive subsequence of K(m,n), assuming the GUC. In turn, this
allows one to compute cf(m,n, d) assuming the GUC. In section 4, we describe our algorithms for
somewhat efficiently computing cf(m,n, d), especially for m+n ≤ 7. In section 5, we provide many
plots of computed values of cf(m,n, d) and discuss many striking patterns.

2. The Generalized Uniformness Conjecture

This section makes extensive use of the functions Em,n and Cm,n. Both of these are functions
which map pairs of sequences to pairs of sequences. We also use the fact that Cm,n(s, t) always has
the same length as t. We recommend reading section 2 of Shen[1].

We first discuss another way to write K(m,n) which naturally follows from the fact that
K(m,n) = E(K(m,n),m). By induction, we have for all k > 0 that K(m,n) = E(K(m,n),mk).
In turn,

K(m,n) = E(K(m,n)1K(m,n)2K(m,n)3 . . . ,m
k),

where we tautologically regard K(m,n) on the right hand side as an infinite concatenation of
length-one sequences.

By identity (1) in [1], we can expand the right hand side as

K(m,n) = E(K(m,n),mk) = E(K(m,n)1, t
(1))E(K(m,n)2, t

(2))E(K(m,n)3t
(3)) · · · ,

where we inductively define t(1) = mk and for i > 0, t(i+1) = C(K(m,n)i, t
(i)). Since Cm,n(s, t)

has the same length as t, all of the sequences t(i) have length k, so there are only 2k+1 possible
values. In addition, K(m,n)i is a sequence of length one, so there are a total of 2k+1 possible

values of the pair (K(m,n)i, t
(i)). In this sense, we have expressed the infinite sequence K(m,n)

as a concatenation of 2k+1 types atomic sequences. Perhaps a natural conjecture to ask is the
following: the generalized uniformness conjecture.

Conjecture 2.1 (Generalized Uniformness Conjecture (GUC)). Let m,n > 0, k ≥ 0 with m + n

odd. Define the sequences t(i) for i ≥ 1 recursively by t(1) = mk and t(i+1) = C(K(m,n)i, t
(i)).

Let x be in {m,n}, and let t be in {m,n}k. Let S be the subset of N of all i such that K(m,n)i = x

and t(i) = t. Then the asymptotic density of S equals 2−k−1.

For k = 0,m = 1, n = 2 this conjecture reduces to the classical conjecture that the limiting
density of 1 in the Kolakoski sequence equals 1/2.

We now present a rather small partial result for the GUC. Recall that for i > 0, t(i+1) =
C(K(m,n)i, t

(i)). There are only two possible values for t(i+1) given t(i). It is natural to define
a directed graph whose edges are the two possible choices. This is formalized in the following
definition.

Definition 2.2. Form,n, k > 0 withm+n odd, we defineGm,n,k to be a directed graph (multigraph

if k = 1). Its vertex set is {m,n}k. For all t in {m,n}k, the graph has an edge from t to Cm,n(m, t)
and Cm,n(n, t), and these are all of the edges.

For fixed m,n, k, the sequence t(1), t(2), . . . is an infinite walk on the directed graph Gm,n,k. The

GUC implies that the density of any fixed t in {m,n}k among this infintie sequence is 2−k. In
particular, this implies that Gm,n,k is strongly connected, meaning that there are directed paths
from any starting vertex to any ending vertex. We now prove this fact unconditionally.

Theorem 2.3. The directed graph Gm,n,k is strongly connected.
3



Proof. Fix m,n with m+ n odd. We now suppress the subscripts on Cm,n and Em,n. We proceed
by induction on k. The base case, k = 1, is trivial. Gm,n,k is a multigraph with two vertices and
two edges in each direction..

Now assume that k ≥ 1 and Gm,n,k is strongly connected. To show that Gm,n,k+1, it suffices to

show that for fixed t, u in {m,n}k+1, there is a directed path from t to u. Let t′ be the sequence t
without its first term, and define u′ similarly. Then t = t1t

′, and u = u1u
′.

We are looking for a directed path in Gm,n,k+1 from t to u. A directed path is the same as
applying either C(m,−) or C(n,−) repeatedly. By identity (3), this is equivalent to finding a finite
sequence p with values in {m,n} such that u = C(p, t), where p gives exactly the sequence of
functions C(m/n,−) applied.

By identity (4) in Shen[1], the statement u = C(s, t) is equivalent to the following

u1u
′ = C(s, t1t

′)

u1u
′ = C(s, t1)C(E(s, t1), t

′)

u1 = C(s, t1) ∧ u′ = C(E(s, t1), t
′).

Instead, suppose that we were looking for the sequence E(s, t1). More formally, suppose that r
is a finite sequence with values in {m,n} such that R(r) (the run-length encoding of r) has values
in {m,n}, r1 = t1, r|r| 6= u1, and u′ = C(r, t′). Then defining s := R(r), we have r = E(s, t1),
u′ = C(E(s, t1), t

′), and C(s, t1) is the complement of the last term of E(s, t1) = r, or u1 by
construction. We now construct r.

The condition that R(r) has values in {m,n} is the hardest, so we ignore that for now. Given
u′, t′ in V (Gm,n,k), there exists a vertex v such that u′ = C(m+n−u1, v). (Note that m+n−u1 is
the complement of u1.) This is because by Proposition 3.1 of Shen[1], the functions C(m,−) and
C(n,−) are length-preserving bijections. On the other end, C(t1, t

′) is a vertex in Gm,n,k. By the
inductive hypothesis, there exists a directed graph from C(t1, t

′) to v. In other words, there is a
directed path from t′ to u′ such that the resulting sequence of “labels,” p, satisfies u′ = C(p, t′),
p1 = t1, and p|p| 6= u1. The sequence p satisfies all of the conditions that we want r to satisfy except
that we require R(r) to have values in {m,n}. (The sequence of run-lengths of p is arbitrary as far
as we know.) We now adjust p carefully.

WLOG, n > m. (This is because Gm,n,k is symmetric with respect to m,n.) In Shen[1], we also

show that for any finite sequence s, C(s,−) is a bijection on {m,n}k; moreover, all of the orbit
lengths are powers of two. Therefore, raising C(s,−) to the power of 2k yields the identity map on
{m,n}k. Let K := 2k. Then C(sK ,−) is a bijection on {m,n}k. Observe that K is a power of 2,
and n−m is odd, so gcd(K,n−m) = 1. Therefore, we can insert finitely many copies of mK or nK

in between consecutive terms of p to yield a sequence p′ such that all run-lengths in p′ are multiples
of n−m. We do not indernt mK or nK at the beginning or end. For example, if n−m = 3, K = 4,
and p = n,m,m,m,m, n, n, one choice is p′ = n nK nK mmmm mK mK nK nn.

It turns out that we need two cases.
Case 1: t1 = u1. Then the first and last terms of p are not equal, and likewise for p′. Let q = p′.

Let ` be the first term of q. Partition q into consecutive blocks of length n −m. By construction,
each block is either all m or all n. Define r to be the sequence formed by inserting, between any
two consecutive blocks (but not the beginning or end), a copy of

(`m(m+ n− `)m)K .

We claim that r satisfies the desired conditions. We still have r1 = t1, r|r| 6= u1 because we have
not added to the beginning nor the end of p to form r. We still have that r has values in {m,n}. We
still have C(r, u′) = t′ because originally, C(p, u′) = t′, and we have only inserted blocks that are
the identity permutation on {m,n}k. Finally, consider the sequence of run lengths of r. The first
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and last run lengths are n because the first term of q is `, and the last term of q is not `. Most of
the other run lengths are m. The possible deviations are among the interior blocks of q. However,
each interior block of q forms a complete run with either the `m succeeding it or the (m+ n− `)m
preceding it, for a total length of n. Therefore, R(r) has values in {m,n}, as desired.

Here is an example. Suppose that n = 3,m = 2,K = 2, q = 2, 2, 3, 2, 3. We insert (2232)2 between
consecutive “blocks” of q (the blocks have length 1), and we get

r = 2 22332233 2 22332233 3 22332233 2 22332233 3.

Case 2: t1 6= u1. The first and last terms of p are equal. From the example, it is clear that we
need a slightly different adjustment.

Let ` be the last term of p, which equals the last term of p′, and form the sequence q by inserting
a few more copies of `K before the last term of p′ so that the last run length of q is congruent to
m (mod n−m) and also at least m. Partition q into blocks such that the last block has length m,
and all other blocks have length n −m. Again, each block is either all m or all n. Define r to be
the sequence formed by inserting, betwee, any two consecutive blocks, a copy of

(`m(m+ n− `)m)K .

It is easy to see that r has the desired properties.
Here is an example. Suppose that n = 3,m = 2,K = 2, q = 2, 2, 3, 2, 2, 2. We get

r = 2 22332233 2 22332233 3 22332233 2 22332233 22.

In either case, the sequence s := r satisfies C(s, t) = u. �

3. Computing frequencies of subsequences in K(m,n) assuming the GUC

Let m,n, d be positive integers with m 6= n. We define cf(m,n, d), or the correlation frequency
in K(m,n) at distance d, to be the asymptotic density of the set of indices i such that K(m,n)i =
K(m,n)i+d, if this limit exists. If cf(m,n, d) exists, it lies in [0, 1].

Given that when m+n is even, K(m,n) is described by substitution rules, we expect cf(m,n, d)
for m + n to be less interesting and possibly nonexistent. Therefore, we restrict our attention to
the case when m+ n is odd. When m+ n is odd, the author’s intuition is that K(m,n) is chaotic
and that cf(m,n, d) should exist. A priori, this correlation frequency function is not particularly
interesting: we expect it to decay to 1/2 somewhat but not too regularly. However, empirical
computations suggest that this function is quite interesting.

The values cf(m,n, d) are unknown, but they can be calculate assuming Conjecture 2.1. As an
intermediate step, we calculate the density of all possible finite consecutive subsequences. For exam-
ple, the density of m,n, n as a consecutive subsequence in K(m,n) is by definition the asymptotic
density of the set {i ∈ Z+ : K(m,n)i = m,K(m,n)i+1 = n,K(m,n)i+2 = n}.

Proposition 3.1. Let m 6= n. Assume Conjecture 2.1. Let s be a finite nonempty sequence with
values in {m,n}. Let t = R(s), the sequence of run lengths of s. Assume that |t| ≥ 2. (If |t| = 1,
then this proposition doesn’t apply.)

If the first or last values of t are greater than max(m,n), then the density of s in K(m,n) is 0.
If some term of t besides the first or last is not in {m,n}, then the density of s is 0.

If neither of these is the case, then construct the sequence u as follows. Start with t. If the first
value is at most min(m,n) then remove it. Otherwise, replace the first value with max(m,n). If the
last value is at most min(m,n) then remove it. Otherwise, replace the last value with max(m,n).
Let u be the resulting sequence, which is possibly the empty sequence. Then the density of s equals
the density of u times (m+ n)−1, where the density of the empty sequence is 1.

5



Proof. (Sketch). The second paragraph is straightforward: recall that R(K(m,n)) = K(m,n). If s
is a subsequence of K(m,n), then we know for sure that C(s) excluding the first and last terms of
C(s) is a subsequence of K(m,n). Moreover, there exists some sequence v which is almost equal
to C(s) except the first and last terms of v may be greater than the respective terms in C(s) such
that v is a subsequence of K(m,n).

Now assume that t does not satisfy the hypotheses in the second paragraph. Using the identity
K(m,n) = E(K(m,n),m), we have a natural bijection between terms of K(m,n) on the right
hand side and full runs of K(m,n) on the left hand side. For example, with K := K(1, 2) =
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, . . . , the term K6 = 2 corresponds to the full run K8,K9. The term K7 =
1 corresponds to the full run K10. We also have a bijection between subsequences on the right
and subsequences of full runs on the left. Note that K7,K8 is a subsequence of runs, but not a
subsequence of full runs.

We can’t apply this directly to s since s is not a subsequence of full runs: it may have partial
runs on the beginning/end. However, almost every occurrence of s in K(m,n) can be associated
bijectively with an occurrence of s′, where s′ is a sequence of full runs. We form s′ as follows. Start
with the sequence s. If the first run of s has length at most min(m,n), then remove it. Otherwise,
replace the first run with a run of length max(m,n) of the same value. If the last run of s has length
at most min(m,n), then remove it. Otherwise, replace the last run with a run of length max(m,n)
of the same value. Let s′ be the resulting sequence. Note that by construction, R(s′) = u.

We claim that there is an almost-bijection between occurrences of s in K(m,n) and occurrences
of s′ in K(m,n) in which we require s′ to be a sequence of full runs. (There is possibly one unpaired
occurrence. This discrepancy disappears in the limit.) The idea is that if v is any sequence of full
runs in K(m,n), such as 1, 2, 2, 1, 2, 2 in K(1, 2), then we know that usually, v is bookended by
runs of length min(m,n) after ”flipping the value” appropriate value, so 1, 2, 2, 1, 2, 2 would become
2, 1, 2, 2, 1, 2, 2, 1. The possible exception is when v is at the beginning of K(m,n). Note that v
cannot be contained in 1, 1, 2, 2, 1, 2, 2, 1 because by assumption, v is a sequence of full runs. This
step uses the assumption that |t| ≥ 2. We omit the details.

Next, observe that there is a bijection between occurrences of s′ or the complement of s′ in
K(m,n), both required to be subsequences of full runs, and occurrences of u as a subsequence
in K(m,n). Using Conjecture 2.1, one can show that the density of s′ and the density of the
complement of s′, both as subsequences of full runs, are equal. Lastly, we must take into account
that index i in K(m,n) ”on the right” does not correspond to index i in K(m,n) ”on the left,”
but rather to index i(m+ n)/2 + o(i) as i→∞. �

We now have a prescription for computing cf(m,n, d) assuming Conjecture 2.1. To avoid confu-
sion, we will define tf(m,n, d) to denote the theoretical correlation frequency assuming Conjecture
2.1. We define the uniform frequency of a finite sequence in K(m,n) to be the density assuming
Conjecture 2.1. As opposed to frequencies, uniform frequencies can be calculated exactly according
to Proposition 3.1 and with the appropriate base cases.

Definition 3.2. For m,n, d > 0 with m+ n odd, tf(m,n, d) is the correlation frequency of terms
with indices d apart in K(m,n) assuming Conjecture 2.1. For finite sequences u, the uniform
frequency of u is its frequency as a consecutive subsequence in K(m,n) assuming Conjecture 2.1.

We compute the uniform density of finite sequences s with values in {m,n} recursively based
on the length of s. Our base cases are |s| = 0 and |R(s)| = 1. To deal with this case |R(s)| = 1,
we observe that by Conjecture 2.1, K(m,n) is composed of runs, of which one fourth are each
mm,mn, nm, and nn. For the purposes of computing the density of s with |R(s)| = 1, we may
assume that K(m,n) is mmnmmnnn repeated. Our recursive step is Proposition 3.1. Finally, we
define tf(m,n, d) to be the sum over all length d + 1 sequences with equal first and last term of
their uniform frequencies.

6



Propositon 3.1 provides an efficient way to compute the uniform frequency of one sequence,
but we now present a more efficient way to compute tf(m,n, d) by describing an infinite, periodic
sequence which approximates the Kolakoski sequence. Basically, for each (m,n), we will construct a

family of periodic sequences S(i). We will show that there exists an exponentially growing sequence
of integers Di such that for all i and all sequences u of length less than Di, the frequency of u in
S(i) equals the uniform frequency of u. First, we will define a sequence Di. We do not claim that
these Di are tight bounds.

Definition 3.3. Assume thatm,n are fixed withm < n. (This loses no generality since tf(m,n, d) =
tf(n,m, d).) We define the sequence (Di)i∈Z+ as follows. For each i > 0, Di is defined as the shortest
length of a sequence which can be obtained in the following process.

Pick t(1), t(2), . . . t(i) ∈ {m,n} arbitrarily. Let s(0) be the empty sequence. For j ≥ 0, define

s(j+1) = E(s(j)m, t(j+1)), where the first argument has m appended to s(j). The term Di is defined

to be the minimum possible length of s(i) over the finite set of choices.

Remark. For any single set of choices, |s(j+1)| ≥ m + m|s(j)|. Therefore, Di > mi. One can also
show an exponential lower bound on Di if m = 1, which we omit. Intuitively, as i becomes large,
expanding a sequence s by a single letter t multiplies its length by approximately (m+n)/2 rather
than m, provided that the sequence s itself is the result of several iterated expansions. (If s is
arbitrary, then E(mmmm. . . ,m) provides a counterexample.) Of course, knowing this for sure is
essentially as hard as proving that the density of m in K(m,n) equals 1/2, which is to say, very
hard. However, heuristically, we expect Di to grow nearly and possibly as fast as ((m+ n)/2)i.

Lemma 3.4. Let m < n with m + n odd. Fix t be in {m,n}k. Let y be an infinite sequence with
values in {m,n}. Define Di as in Definition 3.3. Then the first Di terms of E(y, t) are independent
of y.

Proof. For 1 ≤ j ≤ i, let t(j) = tj . Define s(0), . . . , s(i) as in Definition 3.3. We prove by induction

on j that for 0 ≤ j ≤ i, the first |s(j)| terms of infinite sequence E(y, t1t2 · · · tj) agree with s(j).
The base case, j = 0, is vacuously true. Suppose that this is true for j. We have

E(y, t1t2 · · · tjtj+1) = E(E(y, t1t2 · · · tj), tj+1).

By the inductive hypothesis, the first |s(j) terms of E(y, t1t2 · · · tj) agree with s(j). Therefore, the

infinite sequence E(y, t1t2 · · · tj) has the form s(j)a1a2a3 · · · , where a1, . . . are arbitrary elements
of {m,n} The expansion by tj+1 has the form

E(s(j), tj+1)E(a1, C(s(j), tj+1)) · · · .

In particular, no matter what ai is, the sequence E(a1, C(s(j), tj+1)) begins with m copies of the

term C(s(j), tj+1) (since m < n). Equivalently, the initial segment of the sequence E(y, t1t2 · · · tj+1)

agrees with E(s(j)m, tj+1), which equals s(j+1), as desired. �

Proposition 3.5. Let m 6= n. k > 0, and s be a finite sequence. Define the sequences t(i) such that
t(1) is in {m,n}k and for 1 ≤ i ≤ |s|, t(i+1) = C(si, t

(i)). Assume that t(|s|+1) = t(1). Also assume
that for all x in {m,n} and t in {m,n}k, exactly 2−k−1 of the elements i in {1, . . . , s} satisfy si = x

and t(i) = t.
Then for all sequences u with values in {m,n} and length at most Di + 1, the frequency of u

in the infinite sequence E(ssss · · · , t(1)) equals the uniform frequency of u, where Di is defined in
Definition 3.3.

Corollary 3.5.1. Let s, t(1) satisfy the conditions of Proposition 3.5. Let d < Di − 1. Then
tf(m,n, d) equals the correlation of terms d apart in E(sss · · · , t(1)); equivalently, the correlation
frequency of terms d apart in the finite sequence E(s, t) with indices taken cyclically.

7



Proof. For all d, tf(m,n, d) equals the sum over all u in {m,n}d+1 with equal first and last terms
of the uniform frequency of u. Let d < Di − 1. By Proposition 3.5, the uniform frequency of u
equals the frequency of u in E(sss · · · , t(1)). Therefore, tf(m,n, d) equals the correlation frequency

of terms d apart in E(sss · · · , t(1)). �

Proof of Proposition 3.5. WLOG, n > m. This is because K(n,m) and K(m,n) have the same

uniform frequencies. By identity (1) in Shen[1], we can expand E(s, t(1)) as

E(s1, t
(1))E(s2, t

(2)) · · ·E(s|s|, t
(|s|)).

By assumption, C(s|s|, t
(|s|)) = t(1). Therefore, we can expand E(sss · · · t(1)) as an infinite repetition

of the above sequence.
Let u be a finite sequence. Assuming the GUC, the uniform frequency of u can be thought of as

follows. First, we choose a “uniformly random index” of K(m,n), described in the next paragraph.
Then, we compare u to K(m,n) for the next |u| terms. The uniform frequency of u equals the
probability that all |u| elements agree.

Consider all 2k+1 terms of the form E(x, v), where x ∈ {m,n}, v ∈ {m,n}k. These sequences
have a total length Nk. (By induction, one can show Nk = 2 · (m + n)k+1. ) We can now choose
one random term of one of the sequences such that all terms in the 2k+1 sequences have a N−1k
probability of being chosen. Intuitively, this random process matches the process of choosing a
random index according to the notion of asymptotic density. We omit the details. At this point,
we have that the uniform frequency of u equals∑

x∈{m,n},t∈{m,n}k,j∈{1,...,|E(x,t)|}

N−1k Pr[match given (x,t,j)].

Suppose that we have chosen term j of E(x, v). This E(x, v) represents a subsequence of K(m,n).
We want to compare the next |u| terms of K(m,n) to u. If j is an index that is not one of the last
|u| − 1 indices of E(x, v), then the proposition that the next |u| terms of K(m,n) agrees with u
only depends on E(x, v) and j.

However, j might be one of the last |u|−1 indices of E(x, v). In this case, the proposition depends
on the terms of K(m,n) after E(x, v); up to |u| − 1 terms to be precise. The rest of K(m,n) after
E(x, v) looks like E(y, C(x, v)), where y is an infinite sequence with values in {m,n}. We also have
the identity

E(x, v)E(y, C(x, v)) = E(xy, v).

A priori, it is unknown if u agrees with E(xy, v) (starting with term j of the latter). The key
observation is that E(y, C(x, v)) has a certain number of terms which are independent of y.

For example, if m = 1, n = 2, k = 2, C(x, v) = 22, then we claim that E(y, 22) has a certain
number of terms which are independent of y. Indeed, E(y, 2) must begin 2, . . . , and E((2, . . .), 2)
must begin 2, 2, 1. Also suppose that |u| = 4 and j is the last index of E(x, v). We want to know if
the next 4 terms of K(m,n) agree with u. We have just shown that the three terms after E(x, v) are
always 2, 2, 1. Therefore, we know this fact for sure. On the other hand, if |u| = 5, then the “next
5 terms of K(m,n)” would involve the first four terms of E(y, 22). The first four terms could be
either (2, 2, 1, 2) or (2, 2, 1, 1); indeed, these two cases both have a probability in (0, 1) of happening.

By Lemma 3.4, the first Di terms of E(y, C(x, v)) are independent of y. The sequence u has
length at most Di + 1. Therefore, the proposition that the first |u| terms of K(m,n) agrees with u
only depends on x, v, and j. In other words, we have replaced the expression Pr[match given (x,t,j)]
with a deterministic function of (x, t, j) to {0, 1}.

Importantly, this statement is false for long sequences u. For long sequences u, the event of being
a match given x, v, j depends also on the terms of y, so the probability is not in {0, 1}.
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On the other hand, we can repeat this analysis for finding the frequency of u in E(ssss · · · , t(1)).
It is now more straightforward to choose a uniformly random index. We choose term j of E(si, t

(i))

with probability |E(s, t(1))|−1.
Thus the frequency of u in E(ssss · · · , t(1)) equals∑

1≤i≤|s|,1≤j≤|E(si,t(i))|

|E(s, t(1))|−1Pr[match . . .].

By assumption, an arbitrary pair (x, t) equals (si, t
(i)) exactly 2−k−1 of the time. Therefore, the

frequency of u equals ∑
x∈{m,n},t∈{m,n}k,j∈{1,...,|E(x,t)|}

N−1k Pr[match . . .].

A priori, the probability of a match has horrible dependencies on the order of the pairs (si, t
(i))

because we can no longer treat them as random in any sense. Fortunately, for u which are short
enough, the event of being a match only depends on x, t, j. Therefore, we arrive at the same
summation as before, and the frequency of u in E(ssss · · · , t(1)) equals its uniform frequency. �

3.1. Interpretation as the autocorrelation function of a stochastic process. For m,n > 0
with m + n odd, we construct a stochastic process Pm,n as follows. This stochastic process is an
infinite collection of random variables {Xt}t∈Z with values in {m,n}. The author is not familiar
with probability distributions on infinite-dimensional objects, but marginal distributions of any
finite collection are easier to grasp. We define Pm,n by explaining how to draw a joint sample
out of any finite consecutive subsequence or “window”. Each process is “stationary,” meaning
that for all d > 0, k, k′ ∈ Z the marginal joint distribution of (Xk, Xk+1 . . . , Xk+d) is exactly
equal to the marginal joint distribution of (Xk′ , Xk′+1, . . . , Xk′+d). To draw a joint sample of d+ 1
consecutive Xk, we output the sequence (a0, . . . , ad) ∈ {m,n}d+1 with probability equal to the
uniform frequency of (a0, . . . , ad) in K(m,n) assuming the GUC. For convenience, we define Qm,n

to be the same process, except we replace output values of Xk which are n by +1 and m by −1.
The autocorrelation function of a stationary stochastic process indexed by the integers is defined

to be a function from d ∈ Z+ that gives the correlation of two elements which are d apart. This is a
map from Z+ → [−1, 1]. In out specific example, the autorrelation of Pm,n at distance d is exactly
tf(m,n, d). Thus a plot of tf(m,n, d) versus d is a plot of the autocorrelation function.

Examples. If the stochastic process is periodic with period p (meaning any finite sample is
periodic with period p), then the autocorrelation function will also be periodic with period d. If the
stochastic process has fully independent Xi (at least on all finite windows), then all autocorrelations
are zero. If the stochastic process is a Markov process that stabilizes, then the autocorrelation
function tends to exponentially decrease to zero, but not necessarily smoothly.

The plots in the last section show that the autocorrelation function is quite remarkable for the
three pairs (m,n) ∈ {(1, 2), (2, 3), (3, 4)}. The author is not aware of the significance of such a
remarkable-looking autocorrelation function, but it seems very unusual.

4. Algorithmicaly computing and estimating tf(m,n, d)

All algorithms were implemented in C + +.
We computed the exact uniform frequencies for K(1, 2) only. Our main method is to find a

periodic sequence according to Proposition 3.5 and efficiently compute correlations in this periodic
sequence. In particular, we used k = 18 with a period of length 2 · 318. Theoretically, we only
have a guarantee that for d less than about 1400, tf(m,n, d) will equal the correlation within the
periodic sequence, and for much larger d, we will only have an approximation. We mitigated this
by running two trials for k = 18.
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For k = 18, it is easy to see that we want a finite directed walk on Gm,n,k which may repeat edges
but must be closed and use all edges the same number of times. The most straightforward way to do
this is to use an Eulerian cycle. In Theorem 2.3, we proved that the graph must be connected. Also,
Proposition 3.1 of Shen [1] implies that all vertices have in- and out-degree equal to 2. Therefore,
an Eulerian cycle must exist. The time to find a cycle is dominated by the rest of the algorithm.
We incorporated many random choices into our algorithm to see if the resulting estimations for
1400 ≤ d ≤ 105 changed much. Suppose that this cycle is represented by the sequence s and the
starting point t. We next expanded E(s, t) into a vector<unsigned int>, which is straightforward.
Note that the length is 2 · 318. Let N := 2 · 318.

Now, we want to compute correlations in E(s, t) for all distances, or at least for d ≤ 100000.
With a naive implementation, we loop, for all d, through the entire sequence E(s, t). The total
number of comparisons is 105 ·N ≈ 7.7 · 1013, which is too many.2 Instead, we use discrete fourier
transforms to compute the coefficients. We follow the conventions in Sutherland[2], section 3.4.3.
Suppose that f, g are polynomials defined by

f(x) =
N∑
i=1

(2E(s, t)i − 3)x(i−1), g(x) = (2E(s, t)1 − 3) +

N−1∑
i=1

(2E(s, t)N+1−i − 3)xi.(1)

For example, if k = 1, then one choice for E(s, t) is 1, 2, 1, 1, 2, 2. Then

f(x) = −1 + x− x2 − x3 + x4 + x5, g(x) = −1 + x+ x2 − x3 − x4 + x5.

The coefficients for g(x) are those of f, reversed, and shifted so that they have the constant
coefficients are both (2E(s, t)1 − 3). Now consider f(x)g(x) (mod xN − 1) i.e. with no terms
of degree more than N − 1. One can prove that the coefficient of xd in f(x)g(x) (mod xN − 1)
equals the number of times E(s, t)i = E(s, t)(i+d) (mod N) minus the number of times E(s, t)i 6=
E(s, t)(i+d) (mod N). It is then straightforward to compute the correlations in E(s, t)i from these.

Let ω be a primitive N th root of unity such that differences between powers are invertible. Recall
that in the polynomial representation for discrete fourier transforms, the discrete fourier transform
of a polynomial f with degree less than N with respect to a primitive N th root of unity, ω, such
that differences between powers are invertible is the data f(1), f(ω), . . . , f(ωN−1).

Then applying classical results of discrete fourier transforms, we find that

DFTω(fg (mod xN − 1)) = DFTω(f) ·DFTω(g),

where · denotes elementwise multiplication. Also, we have the identity

DFTω−1DFTω = N · id.

Furthermore, these results hold in any ring with the stated conditions. We used the finite field of
(prime) order equal to 5N + 1, and we use the primitive N th root of unity 32. We applied an FFT
type algorithm to compute the discrete fourier transforms quickly, outlined in the following lemma.
Theoretically, its runtime is around O(N logN) field operations (with no inverses required).

Lemma 4.1 (FFT of vectors whose length is a multiple of 3). Let f be a polynomial of degree less
than 3M. Let ω be a primite 3M th root of unity such that differences between powers are invertible.
Suppose that g, h, i are polynomials of degree less than M such that

f(x) = g(x) + xMh(x) + x2M i(x).

2The author admits to having quite limited computational resources
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Let

f1(x) := g(x) + h(x) + i(x)

f2(x) := g(xω) + ωMh(xω)ω2Mi(xω)

f3(x) := g(xω2) + ω2Mh(xω2) + ω4M i(xω2).

Suppose that the discrete fourier transforms of f1, f2, f3 are computed with respect to ω3. Then

f(ω3j) = f1(ω
3j)

f(ω3j+1) = f2(ω
3j)

f(ω3j+2) = f3(ω
3j).

Proof. This is just straightforward substitution. �

This lemma also outlines a recursive method to compute the discrete fourier transforms of a
length N sequence with respect to 32 in the field F5N+1. Fortuitously, 5N + 1 = 3874204891 < 232,
so field elements are stored as unsigned ints. We must often perform arithmetic mod 5N + 1. Of
course, multiplying unsigned integer and modding by 5N + 1 does not work. Instead, we casted
all arguments to unsigned long longs, or 64-bit positive integers. Modding by 5N + 1 was done
judiciously to avoid overflow in 64-bit integers because 5N + 1 is so close to 232. Note that modular
arithmetic calls unsigned long longs, but the data is converted to vector<unsigned int> types
to save memory. The FFT algorithm does not require inverses, and we only need 32−1 and N−1 to
invert DFT32, so we precomputed these in SageMath.

We also used the field F5N+1 for smaller k because we still have roots of unity of order 2 · 3j for
j ≤ 18, also precomputed in SageMath.

We also used DFT mod 5N + 1 for different values of (m,n). By Proposition 3.5, for different
values of (m,n), there are different periodic approximations depending on k in which one period has
the form Em,n(s, t). One can show that the period is exactly 2(m+ n)k. Thus we cannot compute
correlations using DFT in F5N+1 directly. Instead, we choose a value of k so that the period is
somewhat less than N. For example, with (m,n) = (2, 3), we have M := 2(2 + 3)12 = 488281250 <
N. We pad E2,3(s, t) with zeros to make a length N vector or degree N − 1 polynomial f, with
reverse g. We replace 3 in equation (1) above with 5 so that the coefficients of f and g are ±1. We
denote the terms of f and g, respectively, by

f = a0, a1, . . . , aM−1, 0M , 0M+1, . . . , 0N−1.

g = a0, 0N−1, 0N−2, . . . , 0M , aM1 , . . . , a1.

Here, 0j just means zero, and the indices are for bookkeeping. Note that g reversed is f. For

d < N −M, The coefficient of xd f(x)g(x) (mod xN − 1) equals

M−1−d∑
i=0

aiai+d.

We want
M−1∑
i=0

aiaMod(i+d,M),

so we are missing
∑M−1

i=M−d aiai+d−M . To compute these sums for d up to a limit D, we can define
a third polynomial h(x) by

h = a0, a1, . . . , aD−1, 0D, . . . , 0N−1.

If D < N, then the values
∑M−1

i=M−d aiai+d−M for d < D are read off the coefficients of h(x)h(x)

(mod xN − 1) in a straightforward way.
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To be concrete, for m+ n = 5, we choose k = 12, 2× 512 = 488281250, D = 106. For m+ n = 7,
we choose k = 10, 2×710 = 564950498, D = 106. In this way, we can estimate tf(m,n, d) for d < D.
Again, We can run multiple trials to see how much estimates of tf(m,n, d) differ as a function of
d to estimate the point up to which this algorithm gives near exact values.

Remark. The finite field of prime order 3 · 230 + 1 is also convenient using unsigned ints.

Remark. If one attempts to choose a higher k, then the main roadblock for the algorithm outlined
here is memory, not time. We estimate that our program uses about 7 GB and 20 minutes for
(m,n) = 1, k = 18. By k = 20, it the polynomial vectors would have size 2× 320 ≈ 7× 109, and to
multiply these with our FFT algorithm would need 64-bit integers. On the other hand, modular
arithmetic with 64-bit integers and without specialized algorithms requires at least 96-bit or 128-bit
integers, which could cause an unanticipated slowdown.

5. Plots and tables of computed values

The plots were prepared with mathematica. In all plots, the x-coordinate is proportional to d,
with different ratios in different plots. The x-coordinates can be ignored. Except in the first two
plots, some data points for small d are not within the y-range. We consider the patterns for larger
d to be more interesting.

5.1. Comments on K(1, 2). The top plot of Figure 1 is a plot of untransformed values of tf(1, 2, d).
It shows many mysterious patterns, the most obvious of which is that the sign is determined by
the remainder mod 3 for small d. The value d = 782 is the smallest d which breaks this pattern;
we hhave tf(1, 2, 782) = 2392527

314
≈ 0.500218 > 1

2 .
As previously mentioned, our estimated values for tf(1, 2, d) are not expected to be exact for

d ≥ 1400. Figure 2 plots tf(1, 2, d) for d ≤ 30000 with an arbitrary scaling factor. We differentiate
the data points d, tf(1, 2, d) based on Mod(d, 3) because this plot, we well as many smaller plots,
suggest that the series tf(1, 2, d) behaves much differently for d in the three residue classes mod
3, even for large d. Figure 3 shows only data points with d ≡ 0 (mod 3). The series resembles a
random walk which reverts to the mean more often than usual. The “time” scale of reverting to
the mean does not appear to change much as d increases, although this could be an artifact of our
estimation method. The true values of tf(1, 2, d) may show much different patterns.

Figure 4 compares values of tf(1, 2, d) for two different random trials. (Recall that two trials
are different because we our Eulerian Cycle algorithm uses randomness.) They agree exactly for
d ≤ 5100. This suggests that our estimated values are mostly accurate for d ≤ 5100. We see there
are significant differences by d = 10000, so our values for d ≥ 10000 should be considered very
inaccurate. However, we believe that the features of non-stationarity in our plots of estimated
tf(1, 2, d) reflect the true values of tf(1, 2, d).

5.2. Comments on K(2, 3). Figure 5 shows tf(2, 3, d), and points in different residue classes
mod 5 are differentiated. The “blue” and “green” classes are very similar, as are the “red” and
“purple” classes. They are not exacty the same, as can be verified by checking a list of small values
up to d = 30. In a second trial, we found that the values were exactly the same up to d ≈ 1.2×105,
which suggests that the estimates are near exact up to this point. In Figure 6, we isolate just the
class d ≡ 0 (mod 5). The class 0 (mod 5) is the disjoint union of 5 classes (mod 25). The bottom
plot suggests that these 5 classes behave slightly differently. If the 5 classes behaved randomly
within the series for d ≡ 0 (mod 5), then we would not expect to see one color concentrate on
one “side” of the series locally, but this is what we see. We did not observe a similar pattern for
tf(1, 2, d) with d restricted to, for example, 0, 3, 6 (mod 9), possibly because we were unable to
compute exact values above d = 5000.
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There appear to be many values of d which are “nodes” of all five series. We think this is sug-
gestive of a plot of the real and imaginary parts of a complex function. Specifically, we hypothesize
that there exists a mostly smooth function f : Z+ → C such that

tf(2, 3, d) ≈ Re(f(d) · cis(2πid/5).

A more parsimonious hypothesis is that the function f actually oscillates in one real subspace
of C, which would imply that the five sub-series of tf(2, 3, d) mod 5 would have approximately
constant ratios. Figure ?? suggests that series do not have constant ratios. Therefore, we think it
is worthwhile to consider a general complex function f.

To test this hypothesis, we can compute the series

h(d) := tf(2, 3, d)− 2 cos(2π/5)tf(2, 3, d+ 1) + tf(2, 3, d+ 2).

If f changes relatively slowly and the above identity has relatively small errors, then the series h will
have relatively small magnitude. The series h(d) for d ≤ 100000 is shown in Figure 7. Indeed, the
series h(d) has amplitude approximately one-tenth that of tf(2, 3, d). Having established this, we
may want to know if the errors look like Gaussian noise or themselves have structure. Restricting
the series to one class mod 5 shows no clear pattern. However, restricting to one class mod 25
shows obvious wave-like patterns, as shown in Figure 8, although the ratio of the noise amplitide
to the wave amplitude is much larger in this figure than in the plots of the untransformed series
tf(2, 3, d).

Because the series h appears to behave differently in the different residue classes mod 25 and
because the noise ratio is higher, we plot exponential moving averages of the 25 series

gj(c) := h(25c+ j)

for j = 0, . . . , 24. By definition, the exponential moving average with decay parameter p ∈ [0, 1]
of a discrete time series j(t) is another time series m(t) such that for all t, m(t) is a mean of
j(t), j(t − 1), j(t − 2), . . . with relative weights 1, p, p2, . . .. We use p = 0.99. The exponential
moving averages of the 25 series gj are shown in Figure 9. We see a convincing pattern of wave-like
series with common nodes, although the pattern breaks down by c = 3000. This corresponds to
d = 75000. We think that these wave-like patterns are independent of and possibly orthogonal to
those in Figure 5. This is because the wave-like forms in Figure 5 show big oscillations that don’t
cross the x-axis. Again, the series appear to have predictable phase. Using rather ad-hoc estimation
methods3, we predict that

h(d) ≈ Re(f1(d) · cis(2 · 3πi/25))

for a relatively smooth function f1 : Z+ → C. In particular, our predicted phase multiplier or
“angular momentum” is 6πi/25, whereas our predicted phase for the plain function tf(2, 3, d) was
2πi/5.

We expect that the mod 5 and mod 25 patterns for (m,n) = (2, 3) have analogs for (m,n) = (1, 2)
and (3, 4). However, computing tf(1, 2, d) requires much more memory than computing tf(2, 3, d),
and we think the patterns are most suggestive in the tf(2, 3, d) data.

5.3. Comments on K(3, 4). Figure 10 shows tf(3, 4, d), and points in different residue classes
mod 7 are differentiated. A different random trial suggests that these estimates from the k = 10
estimation are accurate up to 500000, although we don’t show the whole range because the pattern
would be too compressed. We see that the seven classes contain three pairs that are quite similar.
We see that several values of d appear to be simultaneous nodes of the seven classes. Again, we
hypothesize that there exists a mostly smooth function f : Z→ C such that

tf(3, 4, d) ≈ Re(f(d) · cis(2πid/7)).

3For example, we might take a cross section at c ≈ 1000.
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5.4. Comments on K(1, 4),K(1, 6), and K(2, 5). Figures 11, 12, and 13 show plots of tf(1, 4, d),
tf(1, 6, d), and tf(2, 5, d), respectively. We expect that our computed values are very accurate
for about d ≤ 105, 105.5, 105.5, respectively.At first glance, all three series resemble “stochastic
volatility” processes, of stochastic processes of the form

tf(m,n, d) = N(d)V (d),

where N(d) are independent normal random variables, and V (d) is a relatively smooth function of
d. However, by meticulously filtering out by various moduli and zooming in, we find a few patterns.

The first plot in Figure 14 shows the series tf(1, 4, d) restricted to d ≡ 0 (mod 5) and 0 ≤ d ≤
15000. There is a clear wave-like pattern in the right half of the plot, but with significantly more
noise than the comparable tf(2, 3, d) plots; (and, as seen before, this noise doesn’t seem to vanish
for larger d). This motivates us to take exponential moving averages. The second plot in Figure
14 shows the exponential moving average with parameter p = 0.95, or a “time constant” of about
20. This constant was chosen informally to reflect the fact that the waves for tf(2, 3, d) appear to
have shorter wavelength than those in

h(d) := tf(2, 3, d)− 2 cos(2π/5)tf(2, 3, d+ 1) + tf(2, 3, d+ 2).

The third plot shows all five classes together. The five classes resemble waves that do not
have common nodes. Instead, the wavelengths seem to be comparable, but the phases seem to be
asynchronized, possibly approaching even spacing around the phase space. Also notable is that the
different classes do not obviously have the same shape, as can be seen by comparing the second
and fourth plots of Figure 14. These wave patterns extend at least until d = 100000, as long as we
take exponential moving averages. We did not find an approximate linear relation between the five
series. Even the sum of the five series shows clear wave-like patterns.

The series tf(1, 6, d) does not show clear modular structure until we take mod 21. Recall that in
all previous instances, the modulus was m+ n, but now, it is 3(m+ n). The first plot in Figure 15
shows the series tf(1, 6, d) restricted to d ≡ 0 (mod 7), d ≤ 420000, and the three collors distinguish
the three sub-classes mod 21. It is clear that these three sub-classes are different and that 7 is not
a natural modulus for splitting the series tf(1, 6, d). One can check that 3 is not either. The
second plot shows tf(1, 6, d) for 210000 ≤ d ≤ 567000 and Mod(d, 21) ∈ {0, 4, 6, 8, 12} (which
were arbitrarily chosen), after applying an exponential moving average with p = 0.99 for each class
separately. The value p = 0.99 is probably too low. In any case, we do not see a clear pattern.

When analyzing tf(2, 5, d), we are really scavenging for patterns. Restricting to one class mod
7 yields seven series whose moving exponential averages show wave-like patterns, but without the
averages, there appears to be too much noise to see a wave-like pattern. Thus, a natural hypothesis
is that restricting tf(2, 5, d) to one class modulo a multiple of 7 may split the series into series with
less noise. After restricting to d ≤ 100000 and d ≡ 0 (mod 7N) for N ∈ {1, . . . , 25}, we did not
find a series that showed a wave-like pattern before taking exponential means. In Figure 16, the
first plot shows tf(2, 5, d) restricted to 35000 ≤ d ≤ 70000. The second plot shows the exponential
moving average of the series in the first plot with p = 0.95. The third plot shows a series like the
second plot, but with d ≡ 3 (mod 7). Note that the amplitude in the second and third plots are
about one-quarter of the amplitude in the first plot, meaning that the first plot has a lot of noise.

5.5. Conclusion. Of all of the patterns that we have noted, we think two are most important.
First, when n = m + 1, the series td(m,n, d) behaves much differently as we restrict d to one
residue class mod m + n. Second, for (m,n) = (2, 3) and (3, 4) and less so for (1, 2), the (m +
n) different series resemble waves that have simultaneous nodes. More speculatively, the series
tf(2, 3, d) shows convincing patterns mod 25. This suggests that the series tf(2, 3, d) could be built
from the combination of structure mod 5, substructure mod 25, and so on. It’s possible that
these patterns will completely disintegrate beyond the range that we have estimated here. To
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know for sure, one would need a lot of memory to extend our calculations or a more memory-
efficient approach. If these patterns are transitory, it may still be interesting to ask why they are
so convincing for the range that we have estimated here.

Table 1. A table of correlation frequencies for the sequence K(1, 2), assuming the GUC.

d tf(1, 2, d)
1 2/3
2 2/3
3 2/9
4 2/3
5 2/3
6 8/27
7 16/27
8 16/27
9 2/9
10 50/81
11 50/81
12 20/81
13 2/3
14 2/3
15 22/81
16 146/243
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Figure 1. Top: A plot of exact tf(1, 2, d) for 1 ≤ d ≤ 400. The dashed
line is the line y = 1/2. Bottom: A plot of exact (tf(1, 2, d) − 1/2) ∗
(I(d ≡ 0 (mod 3)) ∗ 2− 1) d1/2 for 1 ≤ d ≤ 400, or tf(1, 2, d) − 1/2 times the ex-
pected sign times an arbitrary amplifying factor. Both plots show all data points.
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Figure 2. A plot of estimated (tf(1, 2, d)− 1/2) · d1/2 for d ≤ 30000. Green, blue,
and orange differentiate points where d is 0, 1, and 2 (mod 3), respectively.
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Figure 3. Top: A plot of estimated (tf(1, 2, d)− 1/2) · d1/2 for d ≡ 0 (mod 3), d ≤
10000. Bottom: A plot of the same function for 1 ≤ d ≤ 100000.
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Figure 4. A plot of estimated tf(1, 2, d) · d1/2 for d ≡ 0 (mod 3), d ≤ 15000 for
two separate trials. Blue is one trial, and orange is another trial. The two series
agree below x = 1700, d = 5100.

Figure 5. A plot of estimated tf(2, 3, d) for d ≤ 100000. Blue, orange, green, red,
and purple differentiate points where d is 0, 1, 2, 3, and 4 (mod 5), respectively.
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Figure 6. Top: A plot of estimated tf(2, 3, d) for d ≡ 0 (mod 5), d ≤ 100000.
Bottom: A plot of the same series, except the colors differentiate the 5 sub-residue
classes mod 25.
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Figure 7. Top: A plot of estimated h(d) := tf(2, 3, d)−2 cos(2π/5)tf(2, 3, d+1)+
tf(2, 3, d + 2) for d ≤ 100000. Bottom: The same series, except restricted to d ≡ 0
(mod 5) and extended to d ≤ 200000.
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Figure 8. Top: A plot of g(c) := tf(2, 3, 5c) − 2 cos(2π/5)tf(2, 3, 5c + 1) +
tf(2, 3, 5c + 2) for c ≤ 25000, and the five colors correspond to residue classes
mod 5. Bottom: we show just one of these classes.
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Figure 9. Top: A plot of h(d) = tf(2, 3, d)−2 cos(2π/5)tf(2, 3, d+1)+tf(2, 3, d+2)
split into residues class mod 25, and in each class, we take an exponential moving
average with time constant 100. Bottom: A plot of h(25000+d) vs d for 1 ≤ d ≤ 25.

23



Figure 10. A plot of estimated tf(3, 4, d) for d ≤ 100000. Blue, orange, green, red,
and purple, orange-red, and baby blue differentiate points where d is 0, 1, 2, 3, 4, 5
and 6 (mod 7), respectively.
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Figure 11. A plot of tf(1, 4, d) for d ≤ 100000.

Figure 12. A plot of tf(1, 6, d) for d ≤ 100000.
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Figure 13. A plot of tf(2, 5, d) for d ≤ 100000.
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Figure 14. First plot: A plot of tf(1, 4, d) restricted to d ≡ 0 (mod 5), 0 ≤ d ≤
15000. Second: The exponential mean of the first plot with time constant 20 and
2500 ≤ d ≤ 15000. Third: Like the second plot, but with all five classes mod 5.
Fourth: Like the second plot, but d ≡ 4 (mod 5).
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Figure 15. Top: A plot of tf(1, 6, d) restricted to d ≡ 0 (mod 7), 0 ≤ d ≤ 210000.
The three colors distinguish the three subclasses mod 21. Bottom: A plot of
tf(1, 6, d) restricted to 210000 ≤ d ≤ 567000 and Mod(d, 21) ∈ {0, 4, 6, 8, 12}, after
an exponential mean with time constant 100 is applied to each class separately.
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Figure 16. First plot: tf(2, 5, d) restricted to d ≡ 0 (mod 7), 0 ≤ d ≤ 100000.
Second plot: A moving exponential mean of this series with time constant 20. Third
plot: Like the second plot, but d ≡ 3 (mod 7).
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