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Abstract. 

We give an overview of known results about Hilbert matrices from the point of view of 
orthogonal polynomials and compute  Hankel determinants of harmonic numbers and related 
topics. 

Introduction 

We consider harmonic numbers 
1

1n

n
k

H
k

  and more generally polynomials
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kn

n
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st
H t s

k s


   for some 0.s    Our aim is the computation of the Hankel determinants 

 
, 0

det ( , ) .
n

i j i j
H t s 

  In order to make the paper self-contained we also derive some well-

known  facts about Hilbert matrices 
, 0

1

1

n

i j
i j 

 
   

 from the point of view of orthogonal 

polynomials. 

I want to thank Tewodros Amdeberhan and Fedor Petrov for providing answers to my 
questions on MathOverflow, Carsten Schneider for showing me how to use his summation 
package Sigma,  Christian Krattenthaler for alternative proofs  of (2.14) and (4.1) and Helmut 
Prodinger for reference [10]. 

 

1. Some background material 

Let me begin with some well-known background material connected with the approach to 
Hankel determinants via orthogonal polynomials (cf. e.g. [3],[5],[6],[7]). 

Let   0
( )

n
a n

  be a sequence of real numbers with (0) 1.a    

If no Hankel determinant , 0det( ( )) ,n
i ja i j  ,n    vanishes, then the monic polynomials  
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are orthogonal with respect to the linear functional F  defined by  

 ( ) ( ).nF x a n  (1.2) 

This means that  ( , ) ( , ) 0F p n x p m x   if m n  and  2( , ) 0.F p n x    

Note that  ( , ) 0kF p n x x   for 0 ,k n    because this leads to two identical columns in 

(1.1). 

In particular for 0m  we get 

  ( , ) [ 0].F p n x n   (1.3) 

The identities (1.3) also characterize the linear functional .F  

By Favard's theorem about orthogonal polynomials there exist numbers ( ), ( )s n t n  such that 

 ( , ) ( ( 1)) ( 1, ) ( 2) ( 2, ).p n x x s n p n x t n p n x        (1.4) 
  
If  on the other hand for given  sequences ( )s n  and ( )t n  we  define numbers ( , )a n j  by 

 

(0, ) [ 0]

( , 0) (0) ( 1,0) (0) ( 1,1)

( , ) ( 1, 1) ( ) ( 1, ) ( ) ( 1, 1)

a j j

a n s a n t a n

a n j a n j s j a n j t j a n j

 
   
       

 (1.5) 

then  the Hankel determinant   , 0
det ( , 0)

n

i j
a i j


  is given by 

  
1

, 0
1 0

det ( ) ( ).
n i

n

i j
i j

a i j t j



 

   (1.6) 

Thus the Hankel determinant   , 0
det ( , 0)

n

i j
a i j


  only depends on the sequence  ( ) .t n  

In order to prove this we show first that for all ,m n    
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( , ) ( , ) ( ) ( ,0).
kn

k j

a n k a m k t j a m n


 

     (1.7) 

We prove this by induction. Since it is true for 0n   and arbitrary m  we assume that it 
holds for 1n  and arbitrary .m  Then we get 
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Consider now the lower triangular matrix   , 0
( , )

n

n i j
A a i j


  whose diagonal elements are 

( , ) 1a n n   and the diagonal matrix 
1

0 , 0

[ ] ( ) .
ni

n
k i j

D i j t k


 

 
  
 

   

Then (1.7) is equivalent with  

   , 0
( , 0)

n T
n n ni j

a i j A D A


    (1.8) 

which implies (1.6). 

Thus if we start with  ( )a n  and  guess all ( ), ( )s n t n  and ( , ),a n j  then our guesses give 

correct results  if (1.5) holds with ( , 0) ( ).a n a n   In this case we also have  

 
0

( , ) ( , ) .
n

n

k

a n k p k x x


  (1.9) 

 

The polynomials ( , )p n x  are orthogonal and satisfy  

   2
( , ) (0) (1) ( 1).F p n x t t t n    (1.10) 

This follows by induction because 

       
     

2 1

21

( , ) ( , ) ( , )

( 1, ) ( ) ( , ) ( 1) ( 1, ) ( 1) ( 1, ) .

n n

n

F p n x F x p n x F x xp n x

F x p n x s n p n x t n p n x t n F p n x





 

        
  

Let us also compute the inverse of the Hankel matrices   , 0
( , 0) .

n

i j
a i j


  A simple proof has 

been given in [3], which I recall in another notation. 

Let  
1

0

1
( )

( )
k

j

T k
t j








 and  

0

( , ) ( ) ( , ) ( , )
n

n
k

K x y T k p k x p k y


  be the so-called kernel polynomial. 

Then 
,

( , ) ( , ) i j
n n

i j

K x y b i j x y  for some numbers ( , )nb i j   which satisfy ( , ) ( , ).n nb i j b j i   

   
0

( , ) ( ) ( , ) ( , )
n

k k
nF x K x y T k F x p x p y






    is a polynomial of degree k  in y  because 

orthogonality implies   ( , ) 0kF x p i x   for .i k   

On the other hand we have 

 
, 0 0

( , ) ( , ) ( , ) ( ) .
n n

k i k j j
n n n

i j j i

F x K x y F b i j x y b i j a i j y

 

 
   

 
    

Therefore we get  
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0

( , ) ( ) 0
n

n
i

b i j a i j


   for .j k   

For j k  we see that 
0

( , ) ( )
n

n
i

b i k a i k


  is the coefficient of ky  in 

 
0

( ) ( , ) ( , )
n

kT k F x p x p y




   and is therefore equal to  

  2
( ) ( ( , )) ( ) ( , ) 1.kT k F x p k x T k F p k x    

Therefore we get     1, 0 , 0
( , ) ( ) ,

n n

n ni j i j
b i j a i j I  

  where 1nI   denotes the identity matrix.  

 Since ( , ) ( , )n nb i j b j i  we get  

Proposition 1.1 

Let  
0 ,

( , ) ( , )
( , ) .

(0) (1) ( 1)

n
i j

n
k i j

p k x p k y
b i j x y

t t t k


 

 Then the inverse of the Hankel matrix 

  , 0
( )

n

i j
a i j


   is the matrix  

     
1

, 0 , 0
( ) ( , ) .

n n

ni j i j
a i j b i j



 
    (1.11) 

 

 

2. Hilbert matrices 

Let ( )
1

nt
a n

n



 for some 0.t   Then  ( ) na n F x  for the linear functional F  on the 

polynomials  defined by  
0

1
( ) ( ) .

t

F p x p x dx
t

    

For 1t   the corresponding Hankel matrix 
, 0

1

1

n

n

i j

M
i j 

 
    

 is the well known Hilbert 

matrix (cf. e.g. [3],[4]), whose determinant can be directly computed and is given by 

 2

1

1
det .

2
(2 1)

n
n

j

M
j

j
j


 

  
 


  (2.1) 

  

Let us sketch the above mentioned approach for the special case   ( ) .
1

n
n t

F x a n
n

 


  

Using (1.1) it is easy to guess that ( )
2

t
s n   and 

2 2( 1)
( ) .

4(2 1)(2 3)

n t
t n

n n
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The first terms of the numbers ( , )a n k  defined in (1.5) are 

 

This suggests that 

 
(2 1)! !

( , ) .
! ( 1)!

n kn k n
a n k t

k k n k
  

     
  (2.2) 

It is now easy to verify that 

2 2( 1)
( , ) ( 1, 1) ( 1, ) ( 1, 1)

2 4(2 1)(2 3)

t k t
a n k a n k a n k a n k

k k


       

 
  

and ( ,0) .
1

nt
a n

n



 Therefore all our guesses are correct. 

Since  
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   (2.3) 

we see by (1.6)  that   
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  (2.4)  

 

  

 

Let us illustrate the representation (1.8) for 3n  : 



6 
 

 

The orthogonal polynomials  
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 satisfy 

 
2 2

1 2

( 1)
( , ) ( , ) ( , ).

2 4(2 3)(2 1)n n n

t n t
p x t x p x t p x t

n n 

       
  (2.6) 

 

The first terms are 

  

It is easy to verify that  (0, ) ( 1) .
2

n
n

n

t
p t

n

n

 
 
 
 

 Therefore we introduce the polynomials 

 
2

( , ) ( , ).n n

n
P x t p x t

n

 
  
 

  (2.7) 

The first terms are  

 

 

The coefficients can be found in OEIS [8], A063007, which suggests that 

 
0
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n

n j j
n

j

n n j
P x t t x
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   (2.8) 

and therefore 
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0

( , ) ( ) .
2

n
n j j

n
j

n n j

j j
p x t t x

n

n





  
  
   

 
 
 

   (2.9) 

 These formulae can easily be verified by induction. 

The polynomials ( ,1)nP x  are also known as shifted Legendre polynomials. 

From (2.6) we conclude that ( , )nP x t  satisfies 

 2
2 1( 2) ( , ) (2 )(2 3) ( , ) ( 1) ( , ) 0n n nn P x t x t n P x t t n P x t          (2.10) 

 

with initial values 0 ( , ) 1P x t   and 1( , ) 2 .P x t x t    

For later use let us mention that (2.10) implies 

 (1,1) 1.nP    (2.11) 

Let us also note that  

    
0

2
( ) ( , ) ( , ) 0

1

jn
n j

n n
j

n n j nt
t F P x t F p x t

j j nj




    
           

   (2.12) 

 

for 0n  ,  because orthogonality implies    0( , ) ( , ) ( , ) 0.n nF p x t F p x t p x t     

 

Finally we follow Christian Berg [3] to prove the well-known  

 

Theorem 2.1 

The inverse matrix of the Hilbert matrix 
, 0

1

1

n

n

i j

M
i j 

 
    

 has integer coefficients. 

More precisely  

 
2

1

, 0

1 1
( 1) ( 1) .

n

i j
n

i j

n i n j i j
M i j

n j n i i
 



        
              

  (2.13) 
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Proof  

By (1.11) we know that  1

, 0
( , )

n

n n i j
M b i j


   with 

2

, 0

0 0 ,

2
( , ) (2 1) ( ) ( )

(2 1) ( ) ( ) (2 1) ( 1) .

n
i j

n k k
i j k

n n
i j i j

k k
k k i j

k
b i j x y k p x p y

k

k k k i k j
k P x P y k x y

i j i j





 

 
   

 
     

         
    

 

  
 

 This implies that 1
nM   has integer coefficients. 

 As in [3] we show that 

 
max( , )

(2 1) ( , , )
n

k i j

k k k i k j
k S n i j

i j i j

     
     

    
   (2.14) 

with 

2
1 1

( , , ) ( 1)
n i n j i j

S n i j i j
n j n i i

       
          

 

by induction in .n  We can assume that .i j   

 For n k i   both sides are equal. 

We now have 

2 2

2

2 2 1 1
( 1, , ) ( , , ) ( 1) ( 1)

1 1

1 1 2 2
( 1) 1

1 1

( 1)

n i n j i j n i n j i j
S n i j S n i j i j i j

n j n i i n j n i i

n i n j i j n i n j
i j

n j n i i n j n i

i j

                
                          

            
                  

  
2

1 1 ( 1)(2 3)

( 1 )( 1 )

n i n j i j i j n

n j n i i n j n i

          
           

 

 It remains to show that the last term equals 
1 1 1 1

(2 3),
n n n i n j

n
i j i j

         
    

    
  

which is easy to verify. 

Remark 2.2 

Christian Krattenthaler has observed that (2.14) is a special case of the very well-poised 
hypergeometric summation formula (Lucy Joan Slater [12], Appendix (III.12)) 

       
       5 4

,  1,  ,  ,  
1 1 1 12 ;1 .
1 1 1 1

,  1 ,  1 ,  1
2

a
a b c d

a b a c a d a b c d
F

a a a b c a b d a c d
a b a c a d
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Changing k n k   in (2.14) gives 

   

( ) ( ) ( ) ( )

5 42 2

1
1 2 ,  ,  ,  ,  1

(1 2 )(1 ) (1 ) (1 ) (1 ) 2( , , ) ;1 ,
1! ! ,  ,  ,  2
2

i j i j n n i n j n
n n n n i n j

S n i j F
i j n i n j n i n

            
  

         
 

  

where  ( ) ( 1) ( 1)jx x x x j     denotes a rising factorial. If  we set 

0

( ) ( ) !
lim ( 1)

( ) ( ) !
m nn n m

m m n








    
  

    
 for , ,m n  we get again (2.14).  

 

3. Hankel determinants of  harmonic numbers 

Let 
1

( ) ( ,1)
kn

n n
k

t
H t H t

k

    and consider the Hankel determinants  
, 0

( , ) : det ( .
n

i j i j
D n t H t 

  

Since 0 ( ) 0H t   the above construction does not work. But by elementary operations we get 

  

1

2

1

2 3 1

, 0
2

1 2 1

1 0
2

( )
2 3 1

det ( ) ( ) det .
( )

3 4 2

( )
1 2 2

n

n
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n
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n

t t t
H t

n
H t t t t t

H t
n

t t t
H t

n n n




 

 

 
 
 
 
  

   
  
 
 
 

  







 



  (3.1) 

   

Comparing with (1.1) we see that 

 
0

( , ) ( ) ( 1, ) ( ) ( ).
2

n
n n j

j
j

n n j

j j
D n t t d n t t H t

n

n





  
  
     

 
 
 

   (3.2) 

 

Therefore the computation of the Hankel determinants can be reduced to the computation of 
the polynomials 

 
0

( , ) : ( ) ( ).
n

n j
j

j

n n j
r n t t H t

j j




  
    

  
   (3.3) 
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Theorem 3.1 

Let  

 
0

( , ) ( ) ( ).
n

n j
j

j

n n j
r n t t H t

j j




  
    

  
   (3.4) 

Then 

 

  
2

2, 0 1

1

( , )
( , ) det ( ) ( 1) .

2 2
(2 1)

n
n n

i j i j n

j

t r n t
D n t H t

n j
j

n j

  



  
   

   
   


  (3.5) 

 

Thus our problem has been reduced to the study of ( , ).r n t  The summation package Sigma by 

Carsten Schneider [11] gives a computer proof of 

Lemma 3.2 

The sequence  ( , )r n t  satisfies the recurrence 

 2( , ) ( 2)(2 1) ( 1, ) ( 1) ( 2, ) 0nr n t t n r n t t n r n t          (3.6) 
 

with initial values (0, ) 0r t   and (1, ) 2 .r t t    

Proof 

For the polynomials ( , , ) ( ) ( )n j
j

n n j
f n j t t H t

j j
   

    
  

 Sigma provides another set of  

polynomials 

2 2
2

1

( 1) (4 6)
( )

( , , )
1 ( 1)( 2) ( 2)

j
n j n j

j

n n j tn t j
j j j j jn t

g n j t
n j n n n j

                 
      

 
 




   

such that 

2( , , ) : ( 1) ( , , ) (2 3)( 2) ( 1, , ) ( 2) ( 2, , ) ( , , ) ( , 1, )w n j t n t f n j t n t f n j t n f n j t g n j t g n j t              

for 0 j n    and  

 
 

2( , , ) : ( 1) ( , , ) (2 3)( 2) ( 1, , ) ( 1, 1, )

( 2) ( 2, , ) ( 2, 1, ) ( 2, 2, ) ( , , ) ( ,0, ).

w n n t n t f n n t n t f n n t f n n t

n f n n t f n n t f n n t g n n t g n t

        

          
 

By summing over all 0 j n   we get  
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2

0

( 2) ( 2, ) ( 2)(2 3) ( 1, ) ( 1) ( , ) ( , )

( ,0, ) ( ,1, ) ( ,1, ) ( , 2, ) ( , , ) ( ,0, ) 0.

n

j

n r n t t n r n t t n r n t w n j

g n t g n t g n t g n t g n n t g n t



        

       




  

Although these results have automatically been found they can be verified by hand. 

 

4. The special cases 1t   and 2.t    

4.1 The Hankel determinants  
, 0

det
n

i j i j
H  

  

By (3.6) the sequence 
0

( ,1) ( 1)
n

n j
j

j

n n j
r n H

j j




  
    

  
  satisfies 

( ,1) (2 1) ( 1,1) ( 1) ( 2,1) 0nr n n r n n r n        

with initial values (0,1) 0r   and (1,1) 2.r    

The sequence nH  satisfies the same recurrence 

1 2(2 1) ( ) ( 1) ( ) 0,n n nnH n H t n H t        

because    1 1 21 ( 1) .n n n nn H H n H H         

The only difference are the initial values 0 0H   and 1 1.H    

Therefore  

 ( ,1) 2 .nr n H   (4.1) 

From (3.2) we deduce 

Theorem 4.1 

  
1 2, 0

1

2
( ,1) det ( 1)

2
(2 1)

.
2

n n n
i j i j n

j

H
D n H

n
j

n

j

j

  



 
  


 

 



 


  (4.2) 

  

Remark 4.2 

Perhaps it is instructive to sketch the genesis of this result. 

After computing the first terms of the sequence of Hankel determinants  
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I noticed the primes 11,137,761,7129,  in the numerators which also appear in the sequence 

 nH  whose first terms are  

0,  1,  
3

,
2

 
11

,
6

 
25

,
12

 
137

,
60

 
49

,
20

 
363

,
140

 
761

,
280

 
7129

, .
2520

   

This observation suggested that ( ,1)D n  is a multiple of .nH  The remaining sequence 
( ,1)

n

D n

H
 

contains only small primes which indicated that it is a product of factorials and binomials  

which easily could be found. Thus I had the result but no proof except its reduction to (3.2).  
Since I could  not find anything in the literature I posted my conjecture at MathOverflow, 
where Fedor Petrov [9]  gave the following cute proof of (4.1). 

Using 
1

( 1)k n k n

k k

     
    

   
 gives  

    1

0

1
( 1) ( ,1) 1 1 .

n
n nn j n

n
j

n n
P x x z z xz

j j
 



               
   

Since 
1

0

1

1

n

n

x
H dx

x




  we get 

       1 11 1

0 0

1

0

1 1 1 1( ,1) (1,1)
( 1) ( ,1) ( 1)

1 1

1 1 1
1 1 1

.
1

n n n n

n n nn n

n

n

z xz z zP x P
r n dx z dx

x x

z
xz xz z

z dx
x

               

          

 



  

Setting 
1

1

z
t

xz





 we get 

(1 )
.

1 1

dt z t t
t

dx xz x


   

 
  

Therefore the integral becomes 

1 11
1

1 1

1

1

1 1 1 1
1

1 (1 ) 1

log(1 ) (1 )
.

1

z zn
n

kn
n

k

t
dt t t dt

z t t z t

z H z

z k

 






             

   
 



 




 

Since 
1 0 0

log(1 )

1

k
n

n
k n

z x
z H z

z k  


  

   


  is the generating function of the harmonic numbers 

we get 

log(1 )
( 1) ( ,1) 2( 1)

1
n n nn

n

z H
r n z H

z

        
 

and thus (4.1).   
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After that T. Amdeberhan [1] gave another interesting proof using the Gosper - Zeilberger 

algorithm and  observing that [ ] .j

x j
H x

j

 
  

 
  

In a somewhat different terminology he considered the polynomials 

0

( ) ( 1)
n

j
n

j

n n j x j
a x

j j j

    
     

   
  which  satisfy 

0

[ ] ( ) ( 1) ( 1) ( ,1).
n

j n
n j

j

n n j
x a x H r n

j j

  
     

  
   

Zeilberger’s algorithm gives the recurrence 

2 2
2 1( 2) ( ) (2 3)(2 1) ( ) ( 1) ( ) 0.n n nn a x n x a x n a x          

Observing that [ ] 1
x j

x x
j

 
 

 
 and (0) ( 1) (0,1) ( 1)n n

n na P     this gives  

2 2 1 1 2( 1) ( 2) ( 2,1) 2(2 3)( 1) ( 1) (2 3) ( 1,1) ( 1) ( 1) ( ,1) 0.n n n nn r n n n r n n r n                  

By induction we can assume that ( ,1) 2 nr n H  and 1( 1,1) 2 .nr n H     Therefore we get 

2 1 1 1 2
1( 2) ( 2,1) 2(2 3)( 1) ( 1) (2 3)2 ( 1) 2( 1) 0.n n n

n nn r n n n H n H  
              

This can be simplified to give 2 2
2( 2) ( 2,1) 2( 2) nn r n n H      and thus again ( ,1) 2 .nr n H    

The Gosper- Zeilberger algorithm  reminded me that Carsten Schneider [11] has a 
Mathematica package  Sigma dealing with multiple sums. I obtained his package and a 
tutorial by him which finally led to Lemma 3.1. 

After posting the first version of this paper Christian Krattenthaler told me another trick to 
obtain (4.1). It depends on the fact that the derivative  

1 1 1 1 1

( 1) ( 1) ( 1) ( 1) 1 1

d

d n n n         
              


 

  

tends to 
!
nH

n
   for 1.    

Therefore  

0

!

( , ) : ( 1)
( )! ( 1) ( 1)

n
n j

j

n j
n

j
u n

n j n


  




 
 
  

    
  satisfies 1

( , )
( ,1).

du n
r n

d 


      

On the other hand by Chu-Vandermonde 

2 1

, 1 ( 2)( 3) ( 1)
( , ) ( 1) ( 1) .

( 1) ( 1)
n nn n n

u n F
n
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This implies 
1 1

1

2 0

( , ) ( , ) ( , )
( 1)

n n
n

i i

du n u n u n

d i i

  
  

 


 

  
    which converges to  1( 1) 2 .n

nH  

Therefore we get again ( ,1) 2 .nr n H   

Finally Helmut Prodinger in a comment to the above mentioned Mathoverflow posting 
provided a reference to his paper [10] which also contains a proof of (4.1). 
 

4.2 The Hankel determinants  det (2)i jH    

For 2t   we get from (3.6) 

 ( , 2) 4( 1) ( 2,2) 0nr n n r n      (4.3) 
 

with (0,2) 0r   and (1, 2) 4.r    

This gives (2 ,2) 0r n   and 
3 2 2 2

2

!2 (2 1)!2
(2 1,2) ( 1) ( 1) .

(2 1)!! ((2 1)!!)

n n
n nn n

r n
n n

 
    

 
 

 

Therefore we get 

Theorem 4.3 

  2

, 0
det (2) 0

n

i j i j
H  

   (4.4) 

and 

  
21 4 7 3

2 1

2 1, 0

1

( 1) 2 !
det (2) .

2 2 1
(2 1)!(2 1)!!

n n n
n

i j ni j

j

n
H

j j
n n

j j

  


 






  
    

  


  (4.5) 

 

 

Remark 4.4 

T. Amdeberhan [2] has found a direct proof of  (4.3). 

By (2.10) the polynomials 
0

( , 2) ( 2)
n

n j j
n

j

n n j
P x x

j j




  
    

  
   

satisfy     

 2 1( 2) ( , 2) 2( 1)(2 3) ( , 2) 4( 1) ( , 2) 0.n n nn P x x n P x n P x          (4.6) 

By (2.12)   

2 2 1

0 00 0

2
( , 2) ( 2) ( 2) 0.

1

jn n
n j j n j

n
j j

n n j n n j
P x dx x

j j j j j
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On the other hand we have 

2 2

00 0

0 1

( , 2) (1, 2) 1
( 2)

1 1

2
( 2) ( , 2).

jn
n jn n

j

n n
n j

j

n n jP x P x
dx dx

j jx x

n n j
r n

j j







 

   
       

  
    

  

 

 


 

 

 Dividing (4.6) by 1x   and integrating we get 

( 2) ( 2,2) 4( 1) ( , 2) 0,n r n n r n      which is (4.3). 

 

5. A more general situation 

Following  Christian Berg [3] we  consider more generally the  Hankel matrices 

, 0

ni j

i j

st

i j s





 
   

 for 0.s    

Since most  proofs can be found in [3] and are a direct  generalization of the case  1s   we 
state the results without proof.  

Define a linear functional F  by 

   ( ) .
n

n st
F x a n

n s
 


  (5.1) 

We get  

 
2 22 (2 1)

( )
( 2 1)( 2 1)

n n s s
s n t

s n s n

  


   
  (5.2) 

and  

 
2 2 2

2

( 1) ( )
( ) .

( 2 )( 2 1) ( 2 2)

n n s t
t n

s n s n s n

 


    
  (5.3) 

 

With these values we compute ( , )a n k  and get 

 
0

( , )
k

n k

j

n s k j
a n k t

k s n j




   
     

   (5.4) 

with ( ,0) .
nst

a n
s n




  Therefore all guesses are correct. 

 

This implies that 
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2

2

, 0

1

det .
2 1

(2 )

ni j n n n

n
i j

j

st s t

i j s j s
j s

j

 





 
      

  
 


  (5.5) 

 

The monic orthogonal polynomials are given by 

  
0

11
( , ) .

2 1

n
n j j

n
j

n n j s
p x s t x

n s j n

n





    
         
 
 

   (5.6) 

Here we have  

   
2

2

2( , (0) ( 1)
2 1

(2 )

n

n

st
F p x s t t n

n s
n s

n

  
  

  
 

   (5.7) 

 

For the inverse matrix we get as in [3]  

 

1

, 0 , 0

1 1
( 1) .

nn

i j

i j i j

n i s n j s i j s i j ss i j s

n j n i i ji j s s





 

                                          
 

 (5.8) 
  

The entries of (5.8) can also be written as  

( 1) ( 1)
2

( 1) 1
( ) ( ) ,

( ) !

i j
n nn n

s i s j
i js s i j n


   

       
  

where ( ) ( 1) ( 1)jx x x x j     is a rising factorial. 

 

Let now   

 
1

( , )
1

kn

n
k

st
H t s

k s


    (5.9) 

and  

 
0

1
( , , ) ( ) ( , ).

n
n j

j
j

n n j s
r n t s t H t s

j n




    
    

  
   (5.10) 

 

Then we get in an analogous way as above 

  
1

, 0
, 0

( )
det ( , ) det ( , , ).

2 1

nn i j
n

i j i j
i j

t st
H t s r n t s

n s i j s

n



 


 
        
 
 

  (5.11) 
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The summation package Sigma  gives the recurrence  

 
2

2 2

( 1)( )(2 3 ) ( , , )

(2 2 ) (2 1)(2 3) 4 ( 1) 2( 1) (2 1 ) ( 1, , )

( 2)( 1 )(2 1 ) ( 2, , ) 0.

n n s n s t r n t s

n s n n s n s n t st n s r n t s

n n s n s r n t s

   

             

       

  

For 1t   this reduces to 

 2( 1)( )(2 3 ) ( ,1, ) (2 2 ) 1 4 2 (2 3) ( 1,1, )

( 2)( 1 )(2 1 ) ( 2,1, ) 0,

n n s n s r n s n s n n s n r n s

n n s n s r n s

           

       
  

for which again Sigma gives the solution 

 ( ,1, ) (1, ).n nr n s sH H s    (5.12) 

 

The first terms of ( ,1, )r n s  are 

  

 

The first terms of the sequence of Hankel determinants are 

  

 

More generally we have 

Theorem 5.1 

    1

2, 0 1

1

( 1) (1, )
det (1, ) .

2 1 2 1
(2 )

n n
n n n

i j i j n

j

s sH H s
H s

n s j s
j s

n j



  



 


      
   

   


  (5.13) 

Remark 5.2 

As for Hilbert matrices it would also be interesting to compute the inverses of the Hankel 
matrices of harmonic numbers. Computer experiments suggest that perhaps the following 
assertion might be true: 

Let 2 .n
n

n

U
H

V
   Then    1

, 0

n

n i j i j
U H



 
  is an integer-valued matrix. 
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