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CONSTRUCTION OF BHASKARA PAIRS

RICHARD J. MATHAR

Abstract. We construct integer solutions {a, b} to the coupled system of
diophantine quadratic-cubic equations a2 + b2 = x3 and a3 + b3 = y2 for fixed
ratios a/b.

1. Pair of Coupled Nonlinear Diophantine Equations

1.1. Scope. Following a nomenclature of Gupta we define [4, §4.4]:

Definition 1. (Bhaskara pair) A Bhaskara pair is a pair {a, b} of integers that
solve the system of two nonlinear Diophantine equations of Fermat type:

(1) a2 + b2 = x3 ∧ a3 + b3 = y2

for some pair {x, y}.

Remark 1. Lists of a and b are gathered in the Online Encyclopedia of Integer
Sequences [14, A106319,A106320].

The symmetry swapping a and b in the equations indicates that without loss of
information we can assume 0 ≤ a ≤ b, denoting the larger member of the pair by b.

We will not look into solutions where a or b are rational integers (fractional
Bhaskara pairs).

The two equations can be solved individually [1, 5, 2].

Algorithm 1. Given any solution {a, b}, further solutions {as6, bs6} are derived
by multiplying both a and b by a sixth power of a common integer s, multiplying at
the same time on the right hand sides x by s4 and y by s9.

Definition 2. (Fundamental Bhaskara Pair) A fundamental Bhaskara pair is a
Bhaskara pair {a, b} where a and b have no common divisor which is 6-full—
meaning there is no prime p such that p6 | a and p6 | b.

Although fundamental solutions are pairs that do not have a common divisor
that is a non-trivial sixth power, individually a or b of a fundamental pair may
contain sixth or higher (prime) powers.

Example 1. The following is a fundamental Bhaskara pair with 26 | a, 26 ∤ b:
a = 26 × 54 × 313 × 613, b = 54 × 313 × 613 × 83, x = 53 × 13 × 312 × 612, and
y = 3× 56 × 7× 315 × 615.
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2. Trivial Solutions

2.1. Primitive Solutions. A first family of solutions is found by setting a = 0.
This reduces the equations to

(2) b2 = x3 ∧ b3 = y2.

x3 must be a perfect cube, so in the canonical prime power factorization of x3 all
exponents of the primes must be multiples of three. Also in the canonical prime
power factorization of b2 all exponents must be even. So the first equation demands
that the exponents on both sides must be multiples of [2, 3] = 6.

Definition 3. Square brackets [., .] denote the least common multiple. Parenthesis
(., .) denote the greatest common divisor.

In consequence all b must be perfect cubes. Likewise the second equation de-
mands that the exponents of b3 and of y2 are multiples of 6. In consequence all
b must be perfect squares. Uniting both requirements, all b must be perfect sixth
powers. And this requirement is obviously also sufficient: perfect sixth powers [14,
A001014] generate Bhaskara pairs:

Theorem 1. All integer pairs {0, n6}, n ∈ Z0, are Bhaskara pairs. The associated
right hand sides are x = n4, y = n9.

2.2. Bhaskara Twins.

Definition 4. (Bhaskara Twins) Bhaskara twins are a Bhaskara pair where a = b.

According to Definition 1 the Bhaskara twins [14, A106318] solve

(3) 2a2 = x3 ∧ 2a3 = y2.

Working modulo 2 in the two equations requires that x3 and y2 are even, so x and
y must be even, say x = 2α, y = 2β. So

(4) a2 = 4α3 ∧ a3 = 2β2.

The first equation requires by the right hand side that in the canonical prime power
factorization of both sides the exponents of the odd primes are multiples of 3 and
that the exponent of the prime 2 is ≡ 2 (mod 3). By the left hand side of the
first equation it requires that all exponents are even. So the exponents of the odd
primes are multiples of 6, and the exponent of 2 is ≡ 2 (mod 6). So from the first
equation a = 21+3×33×53× · · · , which means a is twice a third power.

Definition 5. The notation 3× in the exponents means “any multiple of 3.”

The second equation in (4) demands by the right hand side that the exponents
of the odd primes are even and that the exponent of 2 is ≡ 1 (mod 2). Furthermore
by the left hand side all exponents are multiples of 3. This means all exponents
of the odd primes are multiples of 6, and the exponent of the prime 2 is ≡ 3
(mod 6) So from the second equation a = 21+2×32×52× · · · , which means a must
be twice a perfect square. Uniting both requirements, a must be twice a sixth
power. Obviously that requirement is also sufficient to generate solutions:

Theorem 2. The Bhaskara Twins are the integer pairs {2n6, 2n6}, n ∈ Z0. The
associated free variables are x = 2n4, y = 4n6.
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k 1 + k2 1 + k3 k
1 2 2 1
2 5 32 2
3 2× 5 22 × 7 3
4 17 5× 13 22

5 2× 13 2× 32 × 7 5
6 37 7× 31 2× 3

Table 1. Prime factorizations of 1 + k2, 1 + k3 and k

3. Rational Ratios of the two Members

3.1. Prime Factorization. The general solution to (1) is characterized by some
ratio a/b = u/k ≤ 1 with some coprime pair of integers (k, u) = 1. Cases where
u and k are not coprime are not dealt with because they do not generate new
solutions.

If k were not a divisor of b, a = ub/k would require that k is a divisor of u to let
a be integer, contradicting the requirement that u and k are coprime.

Algorithm 2. We only admit the denominators k | b.
Theorem 1 and 2 cover the solutions of the special cases u = 0 or u = 1.

Introducing the notation into (1) yields

(5) (1 + u2/k2)b2 = x3 ∧ (1 + u3/k3)b3 = y2;

(6) (u2 + k2)b2 = k2x3 ∧ (u3 + k3)b3 = k3y2.

Define prime power exponents ci, di, bi, xi and yi as follows by prime power
factorizations, where pi is the i-th prime:

u2 + k2 =
∏

i

pcii ,(7)

u3 + k3 =
∏

i

pdi

i ,(8)

b =
∏

i

pbii ,(9)

k =
∏

i

pki

i ,(10)

x =
∏

i

pxi

i ,(11)

y =
∏

i

pyi

i .(12)

In (7), u2 + k2 is the sum of two squares [14, A000404]. Because u and k are
coprime, these u2+k2 are 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41,. . . , numbers whose
prime divisors are all p ≡ 1 (mod 4) with the exception of a single factor of 2 [14,
A008784][12, Thm. 2.5][9, Thm. 3]:

Lemma 1.

(13) c1 ∈ {0, 1}.
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(14) pi ≡ 1 (mod 4), if ci > 0 ∧ pi ≥ 3.

Example 2. If u = 26, k = 83 as in Example 1, u2 + k2 = 5 × 133, so c3 = 1,
c6 = 3, and u3 + k3 = 32 × 72 × 31× 61, so d2 = 2, d4 = 2, d11 = 1, d18 = 1.

The uniqueness of the prime power representations in (6) requires for all i ≥ 1

ci + 2bi = 2ki + 3xi,(15a)

di + 3bi = 3ki + 2yi,(15b)

for unknown sets of bi, xi, yi and known ci, di, ki (if u/k is fixed and known). For
some i—including all i larger than the index of the largest prime factor of [u2 +
k2, u3 + k3, k] once u/k is fixed—we have ci = di = ki = 0. For these

2bi = 3xi(16a)

3bi = 2yi(16b)

The first equation requires 2 | xi and 3 | bi. The second equation requires 3 | yi
and 2 | bi. The combination requires 6 | bi. The absence of the i-th prime allows to
multiply b by a sixth (or 12th or 18th. . . ) power of the i-th prime. These factors
are of no interest to the construction of fundamental Bhaskara pairs.

In practice we use the Chinese Remainder Theorem (CRT) for all i, whether the
ci or di are zero or not [13, 7]. Multiply (15a) by 3 and (15b) by 2,

(17) 3ci + 6bi = 6ki + 9xi ∧ 2di + 6bi = 6ki + 4yi

such that the two factors in front of the bi are the same, and work modulo 9 in the
first equation and modulo 4 in the second:

6bi ≡ 6ki − 3ci (mod 9);(18a)

6bi ≡ 6ki − 2di (mod 4).(18b)

Because 9 and 4 are relatively prime, the CRT guarantees that an integer 6ai exists.
Furthermore the result will always be a multiple of 6 (hence ai an integer), because
from (18a) the equations read modulo 3 we deduce that 6ai is a multiple of 3, and
from (18b) read modulo 2 that 6ai is a multiple of 2:

Algorithm 3. For each ratio a/b = u/k, the prime power decompositions of u2+k2

and u3 + k3 generate a unique exponent bi of the prime power pbii of a conjectured
solution b.

We compute 6bi (mod 9×4) by any algorithm [11], so bi is determined (mod 6).
The values of bi − ki that result from the CRT for the three relevant values of ci

and the two relevant di establish Table 2. The rows and columns are bi-periodic for
both ci and di; the entries depend only on di (mod 2) and on ci (mod 3). The zero
at the top left entry where di is a multiple of 2 and ci a multiple of 3 means that
a prime pi is “discarded” and its associated sixth power shoved into the x3 and y2

in equation (6). That zero in the table purges the non-fundamental solutions.

Algorithm 4. For any fraction u/k of the Farey tree with (u, k) = 1, construct the
set {pi} of common prime factors of k, u2+k2 and u3+k3. Compute the exponents
ki, ci and di of their prime power factorizations. Construct for each i the exponent
bi as the sum of the entry in Table 2 plus ki, and compose b =

∏

i p
bi
i .
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ci\di 0 1
0 0 3
1 4 1
2 2 5

Table 2. Solutions bi−ki to (18) as a function of ci (mod 3) and
di (mod 2).

Remark 2. u2+k2 and u3+k3 have no common divisor larger than 2 (see Lemma
5 in the Appendix). So the only case where ci and di are both nonzero may occur
at prime index i = 1 and if u and k are both odd. For that reason Table 2 never
fathers odd prime powers p1 or p5, and the only odd prime powers in b of that form
are those contributed by the factor k =

∏

i p
ki

i .

Lemma 2. Because k has no common prime factors with either u2+k2 or u3+k3

according to Lemma 6 in the Appendix, nonzero ki appear only where ci = di = 0.

This ensures that in the construction of b all pki

i appear as factors and that k | b.
a = ub/k generated by the algorithm is always an integer.

The step from (15)—necessary and sufficient for a solution—to (18) eliminates xi

and yi by applying a modular sieve; the modular sieve reduces (18) to a necessary
condition. To show that these b are also sufficient and indeed solve the coupled
Diophantine equations, the step from (15) to (18) must be reversible, such that all
solutions of (18) also fulfill (15). Indeed we can find a multiple of 9 and add it to
the right hand side of the equivalence (18a) such that it becomes an equality, and
we can find a multiple of 4 and add it to the right hand side of the equivalence
(18b) such that it becomes an equality. Dividing the two equations by 3 and 2,
respectively, turns out to be a constructive proof that the 3xi and 2yi exist, and
that they are multiples of 3 and 2:

Theorem 3. For each given ratio a/b = u/k, the Algorithm 4 generates a unique
fundamental solution b.

Lemma 2 means that the data reduction of (6) effectively deals only with

(19) (u2 + k2)
b2

k2
= x3 ∧ (u3 + k3)

b3

k3
= y2

with three integers u2 + k2, u3 + k3 and

(20) b̄ ≡ b/k.

Can we generate more solutions by not just copying the prime factors of k over
to b but introducing higher exponents, such that bi − ki > 0? The prime power

decomposition of (19) would demand that the surplus factor p
2(bi−ki)
i divides x3

and that the surplus factor p
3(bi−ki)
i divides y2. Lemma 2 ensures that these are the

only contributions to x3
i and y2i , so effectively bi− ki must be multiples of 6. These

sixth powers are introduced at the same time to a = ub/k; so that deliberation does
not generate any other fundamental pairs. With a similar reasoning, multiplying
b by any prime power of a prime that is not a prime factor of k—but coupled to
ci (mod 3) and to di (mod 2) via (15)—admits only further exponents that are
multiples of 6, and again there is no venue for any other fundamental solutions
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i ci di ki pbii
1 1 1 0 21

Table 3. The Chinese remainder solutions for u/k = 1. Funda-
mental solution b = 2, a = 2.

i ci di ki pbii
1 0 0 1 21

2 0 2 0 30

3 1 0 0 54

Table 4. The Chinese remainder solutions for u/k = 1/2. Fun-
damental solution b = 2× 54, a = 54.

i ci di ki pbii
1 1 2 0 24

2 0 0 1 31

3 1 0 0 54

4 0 1 0 73

Table 5. The Chinese remainder solutions for u/k = 1/3. Fun-
damental solution b = 24 × 3× 54 × 73, a = 24 × 54 × 73.

from that subset of prime factors. The solutions are indeed unique as claimed by
Theorem 3.

3.2. Examples with u = 1. The algorithm and results will be illustrated for a
set of small 1/k and integer ratios b/a in Tables 3–8. The tables have 4 columns,
the prime index i, the exponents ci, di and ki defined by the prime factorization of
u2+k2, of u3+k3, and of ki, and the factor pbii generated by the CRT. “Spectator”
primes, the cases (rows) where ci = di = ki = 0, are not tabulated; they would be
absorbed in the sixth powers of non-fundamental solutions.

3.2.1. u/k=1. The case u = k = 1 in Table 3 reconvenes the Bashkara Twin Pairs
of Theorem 2.

3.2.2. u/k=1/2. Looking at the second line of Table 1 we have only contributions
for primes p2 = 3 and p3 = 5 in Table 4. From there all solutions of the form
{a = b/2, b} are given by the set of b = 2×54s6 with non-negative integers s, where
{x, y} = {53s4, 3× 56s9}.

3.2.3. u/k = 1/3. From the line k = 3 of Table 1 we have the contribution from
the prime factors of Table 5.

3.2.4. k ≥ 4. The primes of the line k = 4 of Table 1 generate Table 6.
Further solutions (a = b/k, b) with u/k = 1/5 . . .1/6 are gathered in Tables 7–8.

3.3. Examples with u > 1. Some cases where the numerator of u/k is u > 1 and
therefore b not an integer multiple of a are illustrated in Tables 9–13.
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i ci di ki pbii
1 0 0 2 22

3 0 1 0 53

6 0 1 0 133

7 1 0 0 174

Table 6. The Chinese remainder solutions for u/k = 1/4. Fun-
damental solution b = 22 × 53 × 133 × 174, a = 53 × 133 × 174.

i ci di ki pbii
1 1 1 0 21

2 0 2 0 30

3 0 0 1 51

4 0 1 0 73

6 1 0 0 134

Table 7. The Chinese remainder solutions for u/k = 1/5. Fun-
damental solution b = 2× 5× 73 × 134, a = 2× 73 × 134.

i ci di ki pbii
1 0 0 1 21

2 0 0 1 31

4 0 1 0 73

11 0 1 0 313

12 1 0 0 374

Table 8. The Chinese remainder solutions for u/k = 1/6. Fun-
damental solution b = 2× 3× 73 × 313 × 374, a = 73 × 313 × 374.

i ci di ki pbii
1 0 0 2 22

3 2 0 0 52

4 0 1 0 73

6 0 1 0 133

Table 9. The Chinese remainder solutions for u/k = 3/4. Fun-
damental solution b = 22 × 52 × 73 × 133, a = 3× 52 × 73 × 133.

i ci di ki pbii
1 0 0 1 21

2 0 0 1 31

5 0 1 0 113

11 0 1 0 313

18 1 0 0 614

Table 10. The Chinese remainder solutions for u/k = 5/6. Fun-
damental solution b = 2×3×113×313×614, a = 5×113×313×614.
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i ci di ki pbii
3 3 0 0 50

5 0 0 1 111

6 0 1 0 133

27 0 1 0 1033

Table 11. The Chinese remainder solutions for u/k = 2/11, u2+
k2 = 53, u3 + k3 = 13× 103. Fundamental solution b = 11× 133 ×
1033, a = 2× 133 × 1033.

i ci di ki pbii
1 1 3 0 21

2 0 2 0 30

6 2 0 0 132

7 0 0 1 171

21 0 1 0 733

Table 12. The Chinese remainder solutions for u/k = 7/17. Fun-
damental solution b = 2× 132 × 17× 733, a = 2× 7× 132 × 733.

i ci di ki pbii
2 0 2 0 30

3 1 0 0 54

4 0 2 0 70

6 3 0 0 130

11 0 1 0 313

18 0 1 0 613

23 0 0 1 831

Table 13. The Chinese remainder solutions for u/k = 26/83, Ex-
ample 1.

4. Table of Fundamental Solutions

Systematic exploration of ratios u/k sorted along increasing k generates Table
14.

The rather larger value of b for u/k = 5/6 is derived with Table 10 from the fact
that u2 + k2 have a rather large isolated prime factor (p18 = 61) which enters with
its fourth power.

The rather small value of b at u/k = 2/11 is explained with Table 11 from
the fact that u2 + k2 is a cube, which does not contribute to b at all because the
exponent is zero for ci ≡ 0 (mod 3), di ≡ 0 (mod 2) in Table 2.
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a b u/k
2 2 1

625 1250 1/2
3430000 10290000 1/3

2449105750 3673658625 2/3
22936954625 91747818500 1/4

56517825 75357100 3/4
19592846 97964230 1/5

3327950899994 8319877249985 2/5
3437223234 5728705390 3/5

104677490484 130846863105 4/5
19150763710393 114904582262358 1/6

2745064044632305 3294076853558766 5/6
3975350 27827450 1/7

936110884878 3276388097073 2/7
26869428369750 62695332862750 3/7

4813895358057500 8424316876600625 4/7
329402537360 461163552304 5/7

54709453541096250 63827695797945625 6/7
3305810795625 26446486365000 1/8
113394176313 302384470168 3/8
689223517385 1102757627816 5/8

978549117961625 1118341849099000 7/8
274817266734250 2473355400608250 1/9

41793444127641250 188070498574385625 2/9
176590156053048868 397327851119359953 4/9
6143093188763230 11057567739773814 5/9
601306443010000 773108283870000 7/9

6758920534667005000 7603785601500380625 8/9
104372894488263401 1043728944882634010 1/10
458710390065569889 1529034633551899630 3/10

8357399286061919849 11939141837231314070 7/10
49927726291701142521 55475251435223491690 9/10

11221334146768 123434675614448 1/11
4801442438 26407933409 2/11

33528490382546250 122937798069336250 3/11
5247317639775500 14430123509382625 4/11
1712007269488880 3766415992875536 5/11

13496488877215427538 24743562941561617153 6/11
587831133723750 923734638708750 7/11

58661465201996135000 80659514652744685625 8/11
2046772976463486000 2501611415677594000 9/11
414446414697850990 455891056167636089 10/11

Table 14. The fundamental solutions for ratios a/b = u/k up to
denominator k = 11.
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Multiplications of solutions of Table 14 with common powers s6 and sorting
along increasing b leads to Table 15. Trivial solutions with a = 0 (u/k = 0) are not
listed. The fundamental solutions are flagged by s = 1 and indicate where Table
14 intersects with Table 15.

Remark 3. The list in Table 15 is not proven to be complete up to its maximum
b, because only a limited number of ratios a/b = u/k were computed.

Table 15: Bhaskara pairs with a > 0, b ≤ 3 × 1010 after scanning
the u/k ratios up to denominators k ≤ 200′000. [14, A106320]

a b u/k s
2 2 1 1

128 128 1 2
625 1250 1/2 1

1458 1458 1 3
8192 8192 1 4
31250 31250 1 5
40000 80000 1/2 2
93312 93312 1 6

235298 235298 1 7
524288 524288 1 8
455625 911250 1/2 3
1062882 1062882 1 9
2000000 2000000 1 10
3543122 3543122 1 11
2560000 5120000 1/2 4
5971968 5971968 1 12
9653618 9653618 1 13
3430000 10290000 1/3 1

15059072 15059072 1 14
9765625 19531250 1/2 5

22781250 22781250 1 15
3975350 27827450 1/7 1

33554432 33554432 1 16
48275138 48275138 1 17
28130104 52743945 8/15 1
29160000 58320000 1/2 6
68024448 68024448 1 18
56517825 75357100 3/4 1
94091762 94091762 1 19
19592846 97964230 1/5 1
128000000 128000000 1 20
73530625 147061250 1/2 7
171532242 171532242 1 21
226759808 226759808 1 22
296071778 296071778 1 23
163840000 327680000 1/2 8
382205952 382205952 1 24
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a b u/k s
488281250 488281250 1 25
617831552 617831552 1 26
219520000 658560000 1/3 2
332150625 664301250 1/2 9
774840978 774840978 1 27
963780608 963780608 1 28

1189646642 1189646642 1 29
625000000 1250000000 1/2 10

1458000000 1458000000 1 30
1775007362 1775007362 1 31
254422400 1780956800 1/7 2

2147483648 2147483648 1 32
1107225625 2214451250 1/2 11
920414222 2235291682 7/17 1

2582935938 2582935938 1 33
3089608832 3089608832 1 34
1800326656 3375612480 8/15 2
2449105750 3673658625 2/3 1
3676531250 3676531250 1 35
1866240000 3732480000 1/2 12
4353564672 4353564672 1 36
3617140800 4822854400 3/4 2
5131452818 5131452818 1 37
3437223234 5728705390 3/5 1
6021872768 6021872768 1 38
3016755625 6033511250 1/2 13
1253942144 6269710720 1/5 2
7037487522 7037487522 1 39
2500470000 7501410000 1/3 3
8192000000 8192000000 1 40
4705960000 9411920000 1/2 14
9500208482 9500208482 1 41
10978063488 10978063488 1 42
9725113750 11493316250 11/13 1
12642726098 12642726098 1 43
7119140625 14238281250 1/2 15
14512627712 14512627712 1 44
16607531250 16607531250 1 45
18948593792 18948593792 1 46
2898030150 20286211050 1/7 3
10485760000 20971520000 1/2 16
21558430658 21558430658 1 47
24461180928 24461180928 1 48
4801442438 26407933409 2/11 1
27682574402 27682574402 1 49
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5. Criteria On The Larger Member

5.1. Brute Force. Building a complete table of the b that are solutions up to some
maximum calls for an efficient method to decide whether any candidate b has an
associate a that solves the equations.

The brute force method is rather slow: one could check all individual 0 ≤ a ≤ b
whether the sum a2+ b2 is a cube and whether a3+ b3 is a square; this effort grows
∼ b. A faster brute force method considers all cubes x3 in the range b2/3 up to
(2b)2/3, derives the associates a =

√
x3 − b2 and checks these first whether they are

integer and then whether they solve the equations; this effort grows ∼ b2/3.

5.2. Removal of Non-fundamental Pairs. Reverse engineering the results of
the previous sections starts from the the prime power decomposition of b. The set
of its factors pbii has ω(b) members, where ω(.) denotes the number if distinct primes
that divide the argument [14, A001221]. For any subset of the pi where bi ≥ 6, we
can split off a set of sixth prime powers that define a factor s6 considered a part of a
non-fundamental solution, and continue to figure out whether b/s6 is a member of
a fundamental pair. For the rest of the section we only deal with this checking of b
as a member of a fundamental pair. Note that still the prime factor decomposition
of b may have prime exponents that are ≥ 6.

5.3. Congruences for Fundamental Pairs. This set of prime powers of b is
divided in an outer decision loop in 2ω(b) different ways into two disjoint subsets;
one subset defines the prime powers of k =

∏

i p
ki

i , the other the prime powers of
the conjugate b̄ = p/k, ω(b̄) = ω(b)− ω(k).

If the subset of the prime powers of k is chosen to be empty, k = u = 1, this
reduces to a trivial check whether b is a member of a Bhaskara Twin Pair of the
format of Theorem 2.

For each of these candidates k of b we wish to decide whether an associate
coprime u exists that solves (19).

• If the prime power set of b̄ contains exponents ≡ ±1 (mod 6), we reject
the k, because (see Remark 2) it is impossible to find coprime u2 + k2 and
u3 + k3 that complement them to cubes and squares. (To reject means to
book them as not fostering solutions.)

• If the prime power set of b̄ contains exponents ≥ 6 we reject the k because
the same prime power appears in a = ub̄ which violates the search criterion
for fundamental pairs.

5.3.1. The prime power set of b̄ now contains primes with exponent 2, 3 or 4.
According to Table 2 the exponent 2 enforces that the prime factor p1+3×

i appears
in u2+k2 =

∏

i p
ci
i to complement x3, the exponent 4 enforces that the prime factor

p2+3×
i appears in u2 + k2 to complement x3, and the exponent 3 enforces that the

prime factor p1+2×
i appears in u3 + k3 =

∏

i p
di

i to complement y2.

• We reject exponent sets {ci} if they violate Lemma 1.

This knowledge that some specific primes or prime powers appear in the prime
power factorization of u2+ k2 or u3+ k3 is used to narrow down the search set of u
because for these known pi and given k the quadratic and cubic residues must be

(21) u2 ≡ −k2 (mod pi), or even (mod p2i ),
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respectively

(22) u3 ≡ −k3 (mod pi).

5.3.2. The worst case of the analysis occurs if the entire set of prime powers of
b is packed into k, k = b. Then b̄ = 1 and none of the rejection criteria above
applies. We are facing the original set of equations just with the additional support
information that k is known and that u and k need to be coprime:

(23) u2 + k2 = x3 ∧ u3 + k3 = y2, (u, k) = 1

Remark 4. The solutions k for the first equation are [14, A282095]; the solutions
k for the second equation are [14, A282639]. The task is to find the values that are
in both sequences.

It is unknown whether any solutions to (23)—coprime Bhaskara pairs—exist.
According to Remark 5 the parities of k and u differ, so u2 + k2 is odd. In any

case the prime factors of x are restricted by Lemma 1 and appear with exponents
that are multiples of 3; the prime factor 2 does not appear. The prime factors of k
are known, and the prime factor set of u is restricted by not intersecting the prime
factor set of k. A weak upper limit of the largest prime factor in u is k; a weak
upper limit of the largest prime factor in x is (2k2)1/3. u and x have no common
prime factor (because that would need to appear also in k and violate co-primality).
Similarly k and x have no common prime factor.

The simplest way to implement a sieve is to work in a loop over hypothetical
prime factors pi|x and discard them if −k2 are not quadratic residues as required
by (23):

(24) u2 ≡ −k2 (mod p3i ).

A support for brute force construction of all solutions to the first equation in
(23)—faster than a loop over all coprime u—is given by:

Lemma 3. [3, 5] A solution to

(25) u2 + k2 = x3, (u, k, x) = 1, u, k, x ∈ Z

satisfies

(26) {u, k, x} = {s(s2 − 3t2), t(3s2 − t2), t2 + s2}
for some s, t ∈ Z with (s, t) = 1 and st 6= 0.

Algorithm 5. Loop over all divisors t (of both signs) of k, compute the conjugate
divisor k/t = 3s2− t2. Check that s is integer, else discard t. If s is not coprime to
t, discard t. Compute u = s(s2 − 3t2) and take the absolute value. If that absolute
value is larger than k or not coprime to k, discard t, otherwise a solution of (25)
is found.

Remark 5. The parities of s and t in (26) are different. In detail: If k is

• odd, all divisors t are odd, and the conjugate 3s2 − t2 are also odd. So
3s2 are even. Therefore s2 must be even and eventually s be even. The
conjugate s2 − 3t2 are odd and u are even.

• even, and t is even: Because we request s to be coprime to t, s must be odd,
so 3s2 is odd, and the conjugate 3s2 − t2 is odd. The conjugate s2 − 3t2 is
odd, and u is odd.
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• even and t is odd, the conjugate 3s2 − t2 must be even, so 3s2 must be odd
and hence s must be odd. Its conjugate s2 − 3t2 is even, so u is even. This
violates (u, k) = 1 and does not occur.

6. Summary

We have shown that for each ratio a/b a unique smallest (fundamental) solution
of the non-linear coupled diophantine equations (1) exists, which can be constructed
by modular analysis via the Chinese Remainder Theorem. We constructed these
explicitly for a set of small ratios.
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Appendix A. Greatest Common Divisors

Lemma 4. The greatest common divisor of 1 + k and 1 + k2 is

(27) (1 + k, 1 + k2) =

{

2, 2 ∤ k;
1, 2 | k.

Proof. The Euclidean Algorithm to construct the greatest common divisor starts
with [8]

(28)
k2 + 1

k + 1
= k − 1 +

2

k + 1

and basically terminates at this step, so (1+k, 1+k2) = (1+k, 2). This is obviously
1 or 2 for even and odd k as claimed. �
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Lemma 5. The greatest common divisor of u2+k2 and u3+k3 for coprime (u, k) =
1 is

(29) (u2 + k2, u3 + k3) =

{

2, 2 | (k − u);
1, 2 ∤ (k − u).

Proof. The first step of the Euclidean Algorithm is

(30)
k3 + u3

k2 + u2
= k +

u2(k − u)

k2 + u2
,

so (u3 + k3, u2 + k2) = (u2(k − u), k2 + u2). Assume pj is one of the inquired
common prime power factors of the common divisor such that pj | (u2(k − u)) and
pj | (k2 + u2), say k2 + u2 = vpj for some j > 0, v > 0. The first requirement
induces p | u2 or p|(k − u).

• Suppose p | u2, then p | u by the uniqueness of prime factorizations, say
u = αp. Insertion of this into k2 + u2 = vpj and evaluating both sides
modulo p leads to the requirement k2 ≡ 0 (mod p), therefore p | k. This
contradicts the requirement p | u because k and u are coprime and must
not have a common factor p. In conclusion p ∤ u2.

• Since p ∤ u2, pj |(u2(k − u)) requires pj | (k − u). Rewrite k2 + u2 =
2u2− 2u(k−u)+ (k−u)2 = vpj . Working modulo pj this becomes 2u2 ≡ 0
(mod pj). Since p does not divide u2 as shown in the previous bullet,
this requirement reduces to 2 ≡ 0 (mod pj), leaving pj = 21 as the only
common prime divisor candidate.

It is furthermore obvious that for odd k and odd u both u2 + k2 and u3 + k3 are
even, so the common prime factor 2 is indeed achieved. �

Lemma 6. If (u, k) = 1, k is coprime to u2 + k2 and coprime to u2 + k3.

Proof. In the first case the first step of the Euclidean Algorithm to compute (k2 +
u2, k) is

(31)
k2 + u2

k
= k +

u2

k
,

in the second case

(32)
k3 + u3

k
= k2 +

u3

k
.

So the greatest common divisors are (k2+u2, k) = (u2, k) and (k3+u3, k) = (u3, k).
Both expressions equal 1 because we assume that u and k are coprime. �

Appendix B. Sum of two Squares

Lemma 7. There are no solutions to 4k+1+p2 = x3 with p a prime and 4k+1 < p2.

Proof. This is obvious for the even prime where k = 0 is the only candidate. The
other primes are either of the form p = 4m+1 with 4k+1+p2 = 2(1+2k+4m+8m2)
or q = 4m+ 3 with 4k + 1+ q2 = 2(5 + 2k + 12m+ 8m2). In any case 4k + 1+ p2

is two times an odd number for odd primes p. Because (4k + 1, p) = 1, Lemma
1 applies and the 2 must appear on the right hand side either not at all or risen
to the first power. Both contradicts the request for a perfect cube x3 on the right
hand side. �
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Lemma 8. There are no solutions to

(33) u2 + p2 = x3

where p is a prime, (u, p) = 1 and 1 ≤ u ≤ p.

Proof. The case of the even prime is obvious because 1 + 22 is not a cube, and the
case of the only prime with 3 | p is also obvious because 1 + 32 and 2 + 32 are
not cubes. The proof is based on the failure to create any of the parameterizations
required by Lemma 3 considering all t|p one by one:

• t = 1 leads to the conjugate divisors p2/t = p2 = 3s2− 1. The other primes
fall into the categories p = 3m+ 1 where p2 ≡ 1 (mod 3) and q = 3m+ 2
where q2 = 1 (mod 3). This contradicts p2 ≡ −1 (mod 3) of the conjugate
required above, so there are no solutions induced by t = 1.

• t = −1 leads to a conjugate p2/t = −p2 which is negative and cannot be
equal to the (essentially) positive 3s2 − 1.

• t = p leads to the conjugate divisor p2/p = p = 3s2−p2, p+p2 = p(p+1) =
3s2. For primes of the form p = 3m+ 1 we have p(p+ 1) ≡ 2 (mod 3) and
for primes of the form q = 3m+2 we have q(q+1) ≡ 0 (mod 3). So only the
primes ≡ 2 (mod 3) generate 3s2 that are multiples of 3. If q = 3m+2 then
q(q+1) = 3(m+1)(3m+2), so we require s2 = (m+1)(3m+2). Because
m+ 1 and 3m+ 2 are coprime, their product can only be a perfect square
s2 if m + 1 and 3m + 2 are individually perfect squares, say m + 1 = α2,
3m + 2 = β2, (α, β) = 1. β2 − 3α2 = −1. This negative Pell equation
with D = 3 is not solvable [10, 6]; the parameterization does not generate
solutions.

• t = −p leads to the conjugate p2/p = −p = 3s2 − p2. p(p − 1) = 3s2

with p = 3m + 1 implies p(p − 1) ≡ 0 (mod 3). q(q − 1) = 3s2 with
q = 3m + 2 implies q(q − 1) ≡ 2 (mod 3). So only primes p = 3m + 1
remain candidates to represent 3s2, and then p(p− 1) = 3m(3m+1) = 3s2

requires s2 = m(3m+ 1) = mp. Because m and 3m+ 1 are coprime, this
requires that p | s. Because s is a divisor of u, this violates the requirement
that (u, p) = 1 and does not foster solutions.

�
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