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Abstract The linear congruence a1x1 + · · · + anxn ≡ 0 (mod m) for un-
known non-negative integers x1, . . . , xn is easily reduced to the stan-
dard congruence 1 ·x1+ · · ·+(m−1) ·xm−1 ≡ 0 (mod m). This article
gives a tight new geometric bound for the minimal non-zero solutions
of this standard congruence and derives bounds for their number.

Among the topics of additive number theory linear Diophantine problems
play a prominent role. Here are two typical problems, for simplicity each
one restricted to the case of a single equation or congruence:

The homogeneous equation: Given a coefficient vector a = (a1, . . . , an) ∈
Zn, determine (some or all) x = (x1, . . . , xn) ∈ Nn with

(E) a1x1+· · ·+anxn = 0.

The linear congruence: Given m ∈ N2 and a ∈ Zn, determine x ∈ Nn
with

(A) a1x1+· · ·+anxn ≡ 0 (mod m).

(Without loss of generality we may assume that 0 ≤ ai < m for all i.)

Note that in this article N stands for the numbers {0, 1, 2, . . .},
and Nk for {k, k + 1, . . .}. Think of 0 as being the most natural
number.

In general it’s trivial to find lots of single solutions, and there are several
algorithms that produce all indecomposable solutions, see [4] for the equa-
tion (E) and [11] for the congruence (A). But it seems difficult to get an
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overview over the complete solution set, in particular to estimate the num-
bers of indecomposable solutions. For m ≤ 38 the sequence A096337 of
OEIS [9] indicates the number of indecomposable solutions of what we call
the standard linear congruence (Cm). In [5] these numbers (+1) are even
listed for m up to 60. The paper [2] gives a weak asymptotic lower bound.

This article derives some new results on the linear congruence, in par-
ticular a geometric bound for the coordinates of indecomposable solutions,
and bounds for their number. A following one will treat the linear equation
in a similar way.

Both the linear congruence and the linear equation have direct applica-
tions to invariant theory, my motivation to consider them, see [7].

1 Indecomposable Solutions

For both problems (E) and (A) the solution set is the kernel of a homo-
morphism, hence a sub-semigroup H ≤ Nn with the property

x, y ∈ H, x− y ∈ Nn =⇒ x− y ∈ H.

The semigroup Nn has the (partial) order x ≤ y :⇐⇒ x− y ∈ Nn. Consider
the set B of minimal elements > 0 of H. From Dickson’s lemma [1] we get
that B is finite, consists of the indecomposable elements of H, and generates
H. Therefore H has a canonical minimal system of generators that is finite.

Thus solving the linear equation (E) or the linear congruence (A) boils
down to determining the indecomposable solutions. Meaningful partial tasks
are:

(I) Find bounds for the coordinates of the indecomposable solutions that are
as strong as possible.

(II) Find algorithms that construct all indecomposable solutions, and ana-
lyze their efficiency.

(III) Determine the number of indecomposable solutions, at least give good
estimates of this number.

We expect an exponential dependency of the number of indecomposable
solutions from the relevant parameters such as the number of variables or
the size of the coefficients. In particular an algorithm as in (II) must have
exponential complexity and cannot be efficient in the proper sense.

The case n = 1 of the linear congruence (A) is trivial. Here is the result:
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Proposition 1 Let m ∈ N2 and a ∈ N1. Then the only indecomposable
solution of the congruence ax ≡ 0 (mod m) is the minimal integer x > 0
with m|ax. If m and a are coprime, x = m.

The results for the case n = 2 are considerably more complex but known,
see [12].

2 A Naive Algorithm

Let n ∈ N1, a = (a1, . . . , an) ∈ Nn. An obvious algorithm for finding the
indecomposable solutions x ∈ Nn of the linear congruence (A) works as
follows:

1. Given a finite subset D ⊆ Nn that is guaranteed to contain all inde-
composable solutions, enumerate all vectors > 0 in D.

2. Test each vector whether it satisfies (A) to get the list of all solutions
> 0 in D.

3. Eliminate all vectors from the list that are not minimal.

Since subtracting m from a coordinate > m of a solution yields another
solution, indecomposable solutions have all their coordinates ≤ m. Thus
the first natural candidate for D is the “hypercube”

D0 = {0, . . . ,m}n.

The following theorem (from [13]) gives a bound on the set of indecompos-
able solutions of (A) that improves the trivial bound xi ≤ m (and thereby
reduces the search space from a hypercube to a simplex, or the bound for
the maximum norm ‖ • ‖∞ to a bound for the sum norm ‖ • ‖1).

Theorem 1 (Tinsley) Let x ∈ Nn be an indecomposable solution of (A).
Then

x1 + · · ·+ xn ≤ m.

Proof. Let x be a solution of (A) with x1 + · · ·+ xn ≥ m+ 1. Claim: x is
decomposable.

There is a u ∈ Nn with 0 ≤ ui ≤ xi and u1 + · · · + un = m. Let
e1 = (1, 0, . . . , 0), . . . , en be the canonical unit vectors. The elements of the
linearly ordered set M consisting of

0, e1, . . . , u1e1, u1e1 + e2, . . . , u1e1 + u2e2,
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. . . , u1e1 + · · ·+ unen = u

are different in Nn. Since their number is m + 1 we find two of them that
map to the same residue class modm under the homomorphism

h : Zn −→ Z/mZ, x 7→ a1x1 + · · ·+ anxn mod m.

Their difference in any order is in the kernel of h, and one of the two differ-
ences, v, is positive since M is linearly ordered. This v yields a solution of
(A) with 0 < v < x. 3

Remark 1 In an analoguous way we get: Let Ω ⊆ Zn be a lattice of index
≤ m. Let Q = [0, r] ⊆ Rn be a closed rectangular parallelepiped with
r1, . . . , rn ∈ N, r1 + · · ·+ rn = m. Then Q contains a lattice point 6= 0
of Ω. To apply the reasoning of Theorem 1 observe that Ω is the kernel
of the natural homomorphism

h : Zn −→ Zn/Ω where #(Zn/Ω) ≤ m.

Remark 2 There is another simple but less elementary proof of Theorem 1:
The indecomposable solutions x of (A) are the exponents of a min-
imal generating system of the invariants of the cyclic group of order
m operating on the polynomial algebra C[T1, . . . , Tn] by Tj 7→ εajTj
where ε = e2πi/m is a primitive m-th root of unity. Noether’s bound
for the invariants of finite groups [8] implies x1 + · · ·+ xn ≤ m.

Let Nm(a) be the number of indecomposable solutions of (A) for a ∈ Nn.
The trivial bound xi ≤ m for indecomposable solutions bounds their number
by the cardinality of D0 = {0, . . . ,m}n, that is by (m+ 1)n.

The theorem improves this bound to the number
(
n+m
m

)
of integer points

in the simplex
D1 = {x ∈ Rn | x ≥ 0, ‖x‖1 ≤ m}.

Note that this bound, although considerably smaller, asymptotically doesn’t
behave much better than mn. There is a marginally tighter bound:

Corollary 1 The number of indecomposable solutions of (A) is bounded by

Nm(a) ≤
(
n+m− 1

m

)
.

For certain choices of a this bound is attained.
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Proof. For given x1, . . . , xn−1 there is at most one xn such that
(x1, . . . , xn−1, xn) is an indecomposable solution of (A), and then necessarily
x1 + · · · + xn−1 ≤ m by the theorem. Thus the number of indecomposable
solutions is limited by the number of choices for x1, . . . , xn−1 with x1 + · · ·+
xn−1 ≤ m, that is

(
n+m−1

m

)
.

The bound
(
n+m−1

m

)
for N(a) is attained if a1 = . . . = an = 1: Since

x1 + · · ·+ xn ≡ 0 (mod m) and x1 + · · ·+ xn ≤ m imply x1 + · · ·+ xn = m,
in this case we count the partitions of m into n parts. 3

3 Reduction to Normal Form

Consider the congruence (A). For r = 0, . . . ,m− 1 let

Ir := {i = 1, . . . , n | ai ≡ r (mod m)}

be the set of all indices where the coefficient is congruent to r. Hence

{1, . . . , n} = I0 ∪ · · · ∪ Im−1.

Note that some of the sets Ir may be empty.

First Reduction

Every solution x ∈ Nn directly decomposes into two parts:

(xi)i∈I0 ∈ N#I0 arbitrary,

and a solution of the remaining congruence∑
i∈I1∪···∪Im−1

aixi ≡ 0 (mod m) .

Therefore without loss of generality we may assume that all coefficients ai
are non-zero.

Second Reduction

Let L′m be the set of indecomposable solutions y = (y0, . . . , ym−1) ∈ Nm of
the special congruence

(C′m) 0·y0+1·y1+· · ·+(m−1)·ym−1 ≡ 0 (mod m).
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For each y ∈ L′m choose arbitrary x1, . . . , xn ∈ N with∑
i∈Ir

xi = yr for r = 0, . . . ,m− 1.

Clearly then x ∈ Nn − 0 is minimal among the solutions of (A), and each
minimal solution x is obtained this way. Therefore without loss of generality
we (often) may assume that all coefficients ai are different.

In summary the congruence (A) is reduced to the special case where all
coefficients ai are different and non-zero.

Applying the first reduction to (C′m) we conclude that each y ∈ L′m has
one of the forms

• y0 = 1, y1 = · · · = ym−1 = 0,

• y0 = 0, and (y1, . . . , ym−1) ∈ Nm−1 an indecomposable solution of the
congruence

(Cm) 1·y1+· · ·+(m−1)·ym−1 ≡ 0 (mod m).

Normal Forms

For the general case of (A) consider the set J of indices r > 0 where Ir 6= ∅.
Then solving (A) is reduced to the congruence

(Cm(J))
∑
r∈J

r·yr ≡ 0 (mod m) .

Call the congruences (Cm(J)) for all subsets J ⊆ {1, . . . ,m − 1} the nor-
mal forms of linear congruences. Let Lm(J) be the set of indecomposable
solutions of (Cm(J)). Then we have shown:

Proposition 2 All indecomposable solutions x of (A) arise in one of the
two following ways:

(i) For i ∈ I0 set xi = 1, and xj = 0 for j 6= i.

(ii) For each y = (yr)r∈J ∈ Lm(J) choose xi ∈ N for i ∈ I1 ∪ · · · ∪ Im−1
with ∑

i∈Ir

xi = yr for r = 1, . . . ,m− 1.

Proposition 2 implies a formula for the number of indecomposable solu-
tions.
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Corollary 1 Let Nm(a) be the number of indecomposable solutions of (A)
for a ∈ Nn. Then

Nm(a) = n0 +
∑

y∈Lm(J)

(
m−1∏
r=1

(
nr + yr − 1

yr

))

with nr = #Ir.

Proof. There are
(
nr+yr−1

yr

)
possibilities for splitting yr into xi with

∑
i∈Ir xi =

yr. 3

However the use of this formula to estimate the number of indecom-
posable solutions is rather limited since it presupposes knowledge of all the
indecomposable solutions of (Cm(J)).

Problem Find methods for estimating the number of indecomposable so-
lutions for the general case (A) that use at most analoguous estimates
for (Cm(J)) but not explicit knowledge of the solutions.

The Standard Linear Congruence

For a subset J ⊆ {1, . . . ,m− 1} consider the embedding

τ : NJ −→ Nm−1, (xj)j∈J 7→ x̄,

that consists of filling up the positions different from J with zeros, that is

x̄ = (x̄1, . . . , x̄m−1) where x̄i =

{
xi for i ∈ J,
0 otherwise.

Then clearly x is a solution of (Cm(J)) if and only if τ(x) is a solution of
(Cm), and x is an indecomposable solution of (Cm(J)) if and only if τ(x)
is an indecomposable solution of (Cm). Therefore the following procedure
gives all indecomposable solutions of (Cm(J)) under the assumption that
the complete set M of indecomposable solutions of (Cm) is known:

• Remove the vectors from M that have at least one non-zero entry at
an index not belonging to J .

• From the remaining vectors remove the (zero) components for indices
not belonging to J .
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This reduces the search for the indecomposable solutions of (A) to the spe-
cial case (Cm), and justifies calling (Cm) the standard linear congruence
for the module m.

From a theoretical standpoint the breakdown of the general case of (A)
to an instance of a well-arranged set of standard cases (Cm) might seem
interesting. But note that this reduction doesn’t make it easy to find all
indecomposable solutions nor does it help with counting them.

4 The Support of an Indecomposable Solution

For a vector x ∈ Nn let

supp(x) := {i = 1, . . . , n | xi 6= 0},

be its support and
σ(x) := # supp(x)

the cardinality of its support, called the width of x. Moreover we call

• ‖x‖1 = x1 + · · ·+xn the length (sometimes also called the degree [6]),

• ‖x‖∞ = max{x1, . . . , xn} the height,

• ‖x‖1 + σ(x) the total size (= length + width),

• α(x) := x1 + · · ·+ n · xn the weight

of x. Clearly in N

σ(x) =
∑
xi 6=0

1 ≤
∑
xi 6=0

xi = ‖x‖1 ≤
∑
xi 6=0

i · xi = α(x).

We consider the standard linear congruence

(Cm) x1+· · ·+(m−1)·xm−1 ≡ 0 mod m

By Theorem 1 each of its indecomposable solutions x ∈ Nm−1 is contained in
the simplex D1: x1 + · · ·+ xm−1 ≤ m. Here we derive a stronger restriction.
We start with a lemma.

Lemma 1 Let r and m be natural numbers with 2r ≤ m. Let t1, . . . , tr ∈
{1, . . . ,m− 1} be r distinct numbers. For any subset I ⊆ {1, . . . , r} let

SI :=
∑
i∈I

ti.

Assume that no sum SI , I 6= ∅, is divisible by m. (Note that S∅ = 0.)
Then the 2r sums SI represent at least 2r distinct classes modm.
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Proof. Induction on r. For r = 1 we have two sums, 0 and t1, that represent
two different residue classes modm.

Now assume r ≥ 2. Let N = 2r − 2. By induction the sums SI
where I ⊆ {1, ..., r − 1} represent at least N different residue classes mod m.
Adding tr to each of these sums yields another set of at least N different
residue classes. These two sets of residue classes might overlap, however the
second set contains at least one new class, that of t1 + · · ·+ tr.

Otherwise t1+· · ·+tr ≡ SI (mod m) for some subset I ⊆ {1, . . . , r − 1},
but then SJ ≡ 0 (mod m) for the complementary subset J =
{1, . . . , r} − I, contradiction.

Thus the SI represent at least N + 1 different residue classes. Assume
there are no further ones. Then the SI with r 6∈ I represent exactly
N classes 0, a1, . . . , aN−1. Let A = {a1, . . . , aN−1}. The SI with r ∈
I represent residue classes already contained in A except the new class
t1 + · · ·+ tr mod m.

The cyclic group Z/mZ acts on itself by translation. The translation by
t = tr has exactly e = gcd(m, t) orbits of length k = m/e that look like this:

a - a+ t - . . . - a+ (k − 1)t

6

For j ∈ {1, . . . , N − 1} there are two possibilities: Either (aj + t) mod m is
in A, or aj + t ≡ t1 + · · ·+ tr (mod m). Thus under translation with t the
set A has exactly one exit, t1 + · · ·+ tr−1 → t1 + · · ·+ tr.

The orbit of 0 is {0, t, . . . , (k − 1) t}. It starts at 0, outside of A. Since
t = tr ∈ A the orbit meets A in a segment t, . . . , (p− 1)t with p ≤ k− 1 and
then leaves A. The only possible exit is pt ≡ t1 + · · · + tr (mod m). After
this point the orbit never meets A again because this would require another
exit.

Besides there may exist some, say q, orbits completely contained in A,
and these have the form {aj , aj + t, ..., aj + (k − 1)t}. We conclude that

N = #A+ 1 = qk + p,

and, using kt ≡ 0 (mod m),

t1 + · · ·+ tr ≡ pt ≡ qkt+ pt = Nt (mod m).

9



The indexing of the ti does not matter, we may go through the same
reasoning with any ti instead of tr. If for some ti we find at least N + 2
different residue classes, we are done. Otherwise we conclude as for tr:

t1 + · · ·+ tr ≡ Nti (mod m) for all i = 1, . . . , r.

Now let d = gcd(N,m), and let i, j ∈ {1, . . . , r} with i 6= j. Then
N · (ti− tj) ≡ 0 (mod m), whence ti ≡ tj (mod m/d). Each class mod m/d
consists of d classes modm. Thus, if r > d, then two of the ti must agree
even modm, contradiction.

What if d ≥ r? Since d|N and d > N/2 = r − 1, necessarily d = N ,
whence N |m. Let m = cN , m/d = m/N = c, hence ti ≡ tj (mod c) for
all i and j. Thus there is an a ∈ {0, . . . , c − 1} and r different numbers
s1, . . . , sr ∈ {0, . . . , N − 1} such that ti = a + csi for i = 1, . . . , r. Assume
a = 0. Then all ti = csi,

t1 + · · ·+ tr ≡ Nti = Ncsi = msi ≡ 0 (mod m),

contradiction. Therefore a 6= 0. But then a 6≡ 2a (mod c), and

ti + tj ≡ 2a 6≡ a ≡ tk (mod c),

and a forteriori ti + tj 6≡ tk mod m, for different indices i and j, and any k.
Thus the following numbers represent 2r different residue classes modm:

(1) the empty sum 0,
(2) t1, . . . , tr,
(3) the r − 1 sums t1 + tj , j = 2, . . . , r. 3

We’ll prove that the larger the width of an indecomposable solution
x ∈ Nm−1 of (Cm) the tighter bounded is its length:

Lemma 2 Let x be an indecomposable solution of (Cm), and let s ∈ N.
Assume the width of x is σ(x) ≥ s. Then:

(i) ‖x‖1 ≤ m− s+ 1.

(ii) ‖x‖1 = m− s+ 1 can occur only for σ(x) = s.

(iii) 2s ≤ m+ 1; even 2s ≤ m except in the case m = 3 and x = (1, 1).

(iv) If ‖x‖1 = m− s+ 1, then at most one coordinate xj ≥ 2.
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Proof. We prove (i) and (ii) together by induction over s. For s = 0 we have
‖x‖1 < m+ 1 = m− s+ 1. Now assume s ≥ 1.

(i) Since a forteriori σ(x) ≥ s − 1, we already have ‖x‖1 ≤ m − s + 2
by induction from (i) for s − 1. The assumption ‖x‖1 = m − s + 2 yields
the contradiction σ(x) = s − 1 by induction from (ii) for s − 1. Hence
‖x‖1 ≤ m− s+ 1.

(ii) Let ‖x‖1 = m−s+1, and assume that σ(x) ≥ s+1. Then a forteriori

s+ 1 ≤ σ(x) ≤ ‖x‖1 = m− s+ 1

hence 2s ≤ m.
Consider an (s + 1)-element subset {i0, . . . , is} ⊆ supp(x), and let y :=

ei0 + · · · + eis , where we use the notation ei for the canonical unit vectors.
We consider an ascending chain

(1) 0 < u(1) < ... < u(s) < u(s+1) = y < . . . < u(m−s+1) = x

where ‖u(ν)‖1 = ν for 1 ≤ ν ≤ m − s + 1. In particular for 1 ≤ ν ≤ s + 1
each u(ν) results from u(ν−1) by adding a single canonical unit vector.

The α(u(ν)) for 1 ≤ ν ≤ m − s + 1 are pairwise incongruent modm for
otherwise one of the differences u(µ) − u(ν) would yield a solution < x of
(Cm).

Now we fix the chain between y and x. Then the α(u(ν)) for s + 2 ≤
ν ≤ m− s+ 1 represent exactly m− 2s different residue classes. This leaves
exactly 2s different possible values of α(u) mod m for 0 ≤ u ≤ y.

Since α(ei) = i, the s+1 values t0 = α(ei0), . . . , ts = α(eis) are different.
Lemma 1 implies that the α(u) for 0 ≤ u ≤ y take at least 2s + 2 different
values. Hence at least one of these values α(u) must occur among the α(u(ν))
for s + 2 ≤ ν ≤ m − s + 1. Constructing the chain in such a way that it
contains this vector u the chain yields the same value for α mod m at two
different positions, contradiction.

Hence σ(x) = s.
(iii) By (i) we have s ≤ σ(x) ≤ ‖x‖1 ≤ m− s+ 1, hence 2s ≤ m+ 1.
If 2s = m+1, then m is odd, s = m−s+1, and thus s = σ(x) = ‖x‖1 =

m−s+1. There are s−1 pairs (i,m−i) of indices with 1 ≤ i ≤ m−1
2 = s−1.

Hence i,m − i ∈ supp(x) for at least one i. Then y = ei + em−i is a
solution ≤ x of (Cm) since α(ei + em−i) = i + m − i = m. Hence y = x,
supp(x) = {i,m− i}, s = 2, m = 3, x = (1, 1).

(iv) The statement is trivial for m = 2. For m = 3 it follows directly from
the explicit enumeration of all indecomposable solutions: (3, 0), (1, 1), (0, 3).
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So let m ≥ 4. Then 2s ≤ m by (iii), and σ(x) = s by (ii). Let

y =
∑

i∈supp(x)

ei.

If x = y we are done. Otherwise by Lemma 1 the 2s values α(u) for 0 ≤ u ≤ y
represent at least 2s different residue classes modm. In each chain

0 < u(1) < . . . < u(s) = y < u(s+1) < . . . < u(m−s+1) = x

there remain only m − 2s possible values α(u(j)) for the m − 2s indices j
with s + 1 ≤ j < m − s + 1. So if we exchange a single element of the
chain between y and x, the α-values of the old and of the new element must
coincide.

Now assume xi ≥ 2 and xj ≥ 2 with i 6= j. Then y+ ei + ej ≤ x, and for
the intermediate step between y and y+ei+ej we have the two choices y+ei
and y+ ej . Hence α(y+ ei) ≡ α(y+ ej). This implies i = α(ei) ≡ α(ej) = j,
whence i = j. 3

Here is a concise reformulation of the essential statements of Lemma 2:

Theorem 2 Let m ∈ N4, and let x be an indecomposable solution of the
standard linear congruence (Cm). Then:

(i) The width of x is bounded by σ(x) ≤ m
2 .

(ii) The total size of x is bounded by ‖x‖1 +σ(x) ≤ m+ 1, and in the case
of equality at most one coordinate xj ≥ 2.

A transfer of this result to the general congruence (A) results in a some-
what clumsy formulation. We should collect together indices where the
coefficients ai are identical modm. Therefore we replace the support by
the set

supp′(x) := {ai mod m | i = 1, . . . , n, xi 6= 0}
= {j | 1 ≤ j ≤ n and ai = j and xi 6= 0 for some i}.

Note that this is defined as a set of coefficients of (A), not as a set of indices
in Nn, and repeated coefficients are counted only once. Furthermore let

σ′(x) := # supp′(x).

In the special case (Cm) of (A) we have supp′ = supp and σ′ = σ. Then
our result reads:
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Table 1: Numbers of indecomposable solutions and their logarithms

m 2 3 4 5 6 7 8 9 10 11 12

`(m) 1 3 6 14 19 47 64 118 165 347 366
log2 `(m) 0 1.5 2.6 3.8 4.2 5.6 6.0 6.9 7.4 8.4 8.5

m 13 14 15 16 17 18 19 20 21 22 23

`(m) 826 973 1493 2134 3912 4037 7935 8246 12966 17475 29161
log2 `(m) 9.7 9.9 10.5 11.1 11.9 12.0 13.0 13.0 13.7 14.1 14.8

Corollary 1 Let m ∈ N4 and a = (a1, . . . , an) ∈ Nn. Let x ∈ Nn be an
indecomposable solution of the linear congruence (A). Then:

(i) σ′(x) ≤ m
2 .

(ii) ‖x‖1 + σ′(x) ≤ m+ 1.

Theorem 2 leads to a significant speedup of the algorithm from Section 2.
We won’t pursue this aspect since [11] has a quite fast algorithm.

5 An Upper Bound for the Number of Indecom-
posable Solutions

Let `(m) be the number of indecomposable solutions of the standard linear
congruence (Cm). From the On-line Encyclopedia of Integer Sequences [9]
we have the explicit values for small m, see Table 1. The corresponding
logarithmic plot (base 2) in Figure 1 lets us hope for a slightly sublinear
growth, or a slightly subexponential growth of ` itself. Since [2] gives a
lower bound we’ll look for an upper bound only.

By the corollary of Theorem 1 we have `(m) ≤
(
2m−2
m

)
. By Theorem 2

we even have x1 + · · · + xm−1 ≤ m − 1 for indecomposable solutions x
with at least two-element support, that is for all indecomposable solutions
except the x = mej with indices j that are coprime with m. Counting
the unit vectors ej instead of these, we get the somewhat stronger bound
`(m) ≤

(
2m−3
m−1

)
—the ej are not solutions but satisfy the stronger bound

‖x‖1 ≤ m− 1.
By standard methods we easily derive an upper bound for the growth of

`(m): We use a corollary of Stirling’s formula, see [10]:
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Figure 1: 2-logarithm of the number of indecomposable solutions

Lemma 3 (
2n

n

)
=

(2n)!

(n!)2
=

4n√
πn
· En,

where the error term En is bounded by

e−
1
6n < En < 1.

Since `(m) ≤
(
2m−3
m−1

)
= (2m−3)···(m−1)

1···(m−1) = 1
2

(
2m−2
m−1

)
we have shown:

Proposition 3 For m ≥ 2 the number `(m) of indecomposable solutions of
(Cm) satisfies

`(m) <
1

2
√
π
· 1√

m− 1
· 4m−1.

This is at most a slightly subexponential growth. We expect Theorem 2
to yield a sharper bound, however without improving the asymptotical be-
haviour in an essential way. To apply it we assume m ≥ 4. Then the
support of an indecomposable solution has at most bm2 c elements. For each

s ∈ {1, . . . , bm2 c} we have exactly
(
m−1
s

)
choices for an s-element subset

S = {i1, . . . , is} ⊆ {1, . . . ,m−1} that serves as support. Such a set S might
support three types of indecomposable solutions x:

Type 0: Call a solution flat if all of its non-zero coordinates are 1. If S
supports a flat solution, then no superset of S can support an inde-
composable solution.
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Type I: ‖x‖1 = m − s + 1. Then xi = 1 for all i ∈ S except one, say xiν ,
and necessarily xiν = (m− s+ 1)− (s− 1) = m− 2s+ 2. Thus there
are at most s indecomposable solutions of this type.

Type II: ‖x‖1 ≤ m−s. If we choose arbitrary xi1 , . . . , xis−1 , then there is at
most one xis that complements them for an indecomposable solution.
Therefore we catch all indecomposable solutions on S with ‖x‖1 ≤ m−
s by choosing arbitrary y1, . . . , ys−1 ≥ 0 with y1 + · · ·+ys−1 ≤ m−2s,
defining xiν = yν + 1, and choosing xis appropriately, that is, minimal
such that m |α(x).

Lemma 4 Let m ∈ N4, and let s ∈ N1, s ≤ m
2 . Let S = {i1, . . . , is} ⊆

{1, . . . ,m − 1} be an s-element subset. Then S supports at most
(
m−s−1
s−1

)
indecomposable solutions of (Cm).

Proof. The assertion is true for s = 1, since
(
m−2
0

)
= 1. The assertion is also

true if S supports a flat solution since this, if indecomposable, is the only
one.

Thus we may assume that s ≥ 2 and that S doesn’t support a flat
solution. Hence all indecomposable solutions are of type I or type II.

Each solution of type II is characterized by a choice of y1, . . . , ys−1 ∈ N
with y1 + · · ·+ ys−1 ≤ m− 2s. The number of such choices is

(
m−2s+s−1

s−1
)

=(
m−s−1
s−1

)
.

But we also have up to s indecomposable solutions of type I supported
by S. To complete the proof we have to find a “gap” in our type-II-count

for each of them. We consider the s vectors z(ν) = (z
(ν)
1 , . . . , z

(ν)
m−1) for

ν = 1, . . . , s with

z
(ν)
i =


m− 2s+ 2 for i = iν ,

1 for i ∈ S otherwise,

0 for i 6∈ S.

In the case ν = s we consider y1 = . . . = ys−1 = 0, or equivalently xi1 = . . . =
xis−1 = 1, and find that for each of the (at least one) values 1, . . . ,m−2s+1
for xis we have x < z(ν). Hence if z(ν) is an indecomposable solution, x is
not a solution at all.

In the cases 1 ≤ ν ≤ s− 1 the choice yν = m− 2s, yµ = 0 otherwise, or
equivalently xiν = m− 2s+ 1, xiµ = 1 otherwise for µ = 1, . . . , s− 1, admits

only the choice xis = 1 in the domain ‖x‖1 ≤ m − s. Here again x < z(ν),
hence at most one of the two can be an indecomposable solution. 3
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Table 2: Comparing `(m) with bounds and possible bounds

m 4 5 6 7 8 9 10 11 12 13

`(m) 6 14 19 47 64 118 165 347 366 826
m · P (m) 20 35 66 105 176 270 420 616 924 1313
q(m) 6 16 45 126 357 1016 2907 8350 24068 69576
r(m) 10 36 129 471 1746 6536 24649 93539 356745 [. . . ]

m 14 15 16 17 18 19 20 21 22 23

`(m) 973 1493 2134 3912 4037 7935 8246 12966 17475 29161
m · P (m) 1890 2640 3696 5049 6930 9310 12540 16632 22044 28865
q(m) 201643 [. . . ]

We resume:

Theorem 3 The number `(m) of indecomposable solutions of (Cm), m ≥ 4,
satisfies

`(m) ≤
bm

2
c∑

s=1

(
m− 1

s

)
·
(
m− s− 1

s− 1

)
.

Table 2 shows some explicit values where q(m) is the bound from Theo-
rem 3, r(m), the bound from Proposition 3, and P , the partition function.

Problems The bounds r(m) and q(m) are quite coarse.

• Is `(m) ≤ a · eb·
√
m for certain constants a und b?

• Is `(m) ≤ cm · P (m) for m ≥ 2 for some constant c? (Note that
this would imply the previous inequality. Unfortunately `(23) >
23 · P (23), thus c > 1 if it exists at all.)

• On the other hand q(m) seems to grow much too fast, and r(m)
much much too fast.
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