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We present a multiloop flow equation for the four-point vertex in the functional renormalization
group (fRG) framework. The multiloop flow consists of successive one-loop calculations and sums up
all parquet diagrams to arbitrary order. This provides substantial improvement of fRG computations
for the four-point vertex and, consequently, the self-energy. Using the X-ray-edge singularity as
an example, we show that solving the multiloop fRG flow is equivalent to solving the (first-order)
parquet equations and illustrate this with numerical results.

Introduction.—Two-particle correlations play a funda-
mental role in the theory of strongly correlated electron
systems. Most response functions measured in condensed-
matter experiments are two-particle quantities such as
optical or magnetic susceptibilities. The behavior of the
two-particle (or four-point) vertex has even been used to
distinguish “weakly” and “strongly” correlated regions
in the phase diagram of the Hubbard model [1]. More-
over, the four-point vertex is a crucial ingredient for a
large number of theoretical methods to study strongly
correlated electron systems, such as nonlocal extensions
of the dynamical mean-field theory [2], particularly via
dual fermions [3–5] or the dynamical vertex approxima-
tion [6–8], the functional renormalization group [9, 10],
TRILEX [11, 12] and QUADRILEX [13] approaches, and
the parquet formalism [14, 15].

The parquet equations provide an exact set of self-
consistent equations for vertex functions at the two-
particle level and are thus able to treat particle and
collective excitations on equal footing. In the first-order
[14] (or so-called parquet [15]) approximation, they con-
stitute a viable many-body tool [15, 16] and, in loga-
rithmically divergent perturbation theories, allow for an
exact summation of all leading logarithmic diagrams of
the four-point vertex (parquet diagrams [14]). It is a com-
mon belief [17] that results of the parquet approximation
are equivalent to those of the one-loop renormalization
group (RG). However, there is hardly any evidence of
this statement going beyond the level of (static) flowing
coupling constants [18–20].

Recently, the question has been raised [21] whether
it is possible to sum up all parquet diagrams using the
functional renormalization group (fRG), a widely-used
realization of a quantum field-theoretical RG framework
[9, 10]. The parquet result for the X-ray-edge singularity
(XES) [14, 22–24] was indeed obtained [21], but using
arguments that work only for this specific problem and do
not apply generally [25]. In fact, the common truncation
of the vertex-expanded fRG flow neglects contributions
starting at third order in the interaction, rendering the
fRG flow generically perturbative. Schemes have been
proposed for including some contributions from the six-
point vertex [26, 27]. However, it is not known how to do

this in a way that captures all parquet diagrams.
In this work, we present a multiloop fRG (mfRG)

scheme, which sums up all parquet diagrams to arbi-
trary order in the interaction. We apply it to the XES,
a prototypical fermionic problem with a logarithmically
divergent perturbation theory [28]. The XES allows us
to focus on two-particle quantities, as these are solely
responsible for the leading logrithmic divergence [14, 22],
and exhibits greatly simplified diagrammatics. In fact, it
contains the minimal structure to study the complicated
interplay between different two-particle channels. We
demonstrate how increasing the number of loops in mfRG
improves the numerical results w.r.t. to the known solu-
tion of the parquet equations [14, 22, 23]. We establish
the equivalence of the mfRG flow to the parquet approxi-
mation by showing that both schemes generate the same
number of diagrams order for order in the interaction [29].

Model.—The minimal model for the XES is defined by
the Hamiltonian

H =
∑

ε

εc†εcε + εdd
†d+ Uc†cd†d, U > 0. (1)

Here, d and cε respectively annihilate an electron from a lo-
calized, deep core level (εd < 0) or a half-filled conduction
band with constant density of states ρ, half-bandwidth ξ0,
and chemical potential µ = 0, while c =

∑
ε cε annihilates

a band electron at the core-level site. In order to de-
scribe optical properties of the system, one examines the
particle-hole susceptibility iΠ(t) = 〈T d†(t)c(t)c†(0)d(0)〉.

Interested in absorption, we consider a previously
(t < 0) filled core level, such that the corresponding
propagator Gd(t) = 〈T d(t)d†〉 is purely advanced and
Π(t) retarded. The particle-hole susceptibility exhibits a
power-law divergence for frequencies close to the absorp-
tion threshold, as found both by the solution of parquet
equations [14, 22] and by an exact one-body approach
[23]. In the Matsubara formalism, the bare level propa-
gator reads Gdω = 1/(iω − εd), and, focusing on infrared
properties, we approximate the local band propagator as
Gcω = −iπρ sgn(ω)Θ(ξ0 − |ω|). The particle-hole suscepti-
bility takes the form (at a temperature 1/β � |εd|)

Πω̄ =
ρ

α(u)

[
1−

( iω̄ + εd
−ξ0

)−α(u)
]
, u = ρU, (2)
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(a) γa = + + + . . .

(b) R = + + + . . .

FIG. 1. Low-order diagrams for (a) the vertex reducible in
antiparallel lines, γa, and (b) the totally irreducible vertex R.
Solid (dashed) lines denote Gc (Gd), and a dot the bare vertex
−U . The first-order or so-called parquet approximation only
retains the bare vertex for R.

where α(u) = 2u + O(u2) and εd is considered as a
renormalized threshold. The corresponding retarded
correlation function is obtained by analytic continua-
tion iω̄ → w + i0+, in which case the summands lead-
ing to the power-law are logarithmically divergent as
un lnn+1(ξ0/|w + εd|). For imaginary frequencies, how-
ever, the perturbative parameter is finite, with a maximal
value of u ln(ξ0/|εd|) ≈ 0.9, for our choice of parameters.
Our goal will be to reproduce Eq. (2) using fRG.

Parquet formalism.—The particle-hole susceptibility
is fully determined by the one-particle-irreducible (1PI)
four-point vertex via the following relation (using the

shorthand notation Γ
(4)
ω,ν,ω̄ = βΓd̄cc̄dω,ω̄+ω,ω̄+ν,ν):

Πω̄ =
1

β

∑

ω

GdωG
c
ω̄+ω +

1

β2

∑

ω,ν

GdωG
c
ω̄+ωΓ

(4)
ω,ν,ω̄G

d
νG

c
ω̄+ν .

(3)

In principle, Gc and Gd are full propagators. However,
for the XES, electronic self-energies do not contribute to
the leading logarithmic divergence [14, 22], and we can
restrict ourselves to bare propagators.

Diagrams for the four-point vertex are exactly classified
by the central parquet equation

Γ(4) = R+ γa + γp, Ia = R+ γp, Ip = R+ γa. (4)

Due to the advanced nature of Gd, the XES vertex has
only two two-particle channels: γa [cf. Fig. 1(a)] and γp
contain diagrams reducible by cutting two antiparallel
or parallel lines, respectively, whereas Ia and Ip contain
diagrams irreducible in the respective channel. The to-
tally irreducible vertex R [cf. Fig. 1(b)] is the only input
to the parquet equations, as the reducible vertices are
determined self-consistently via Bethe-Salpeter equations
[cf. Fig. 2(a)]. Similarly as for the self-energy, terms of R
beyond the bare interaction only contribute subleadingly
to the XES and can hence be neglected [14, 22].

In this (parquet) approximation, Eq. (4) together
with the Bethe-Salpeter equations for reducible vertices
[Fig. 2(a)] form a closed set and can be solved. The ana-
lytic solution, employing logarithmic accuracy, provides
the leading term of the exponent in Eq. (2). Our numeric
solution, to which we compare all following results, agrees
with this result: It reproduces the power-law behavior for

(a) γa = Ia γp = Ip

(b) = + +

FIG. 2. (a) Bethe-Salpeter equations in the antiparallel (a)
and parallel (p) channels. A full square denotes the full vertex

Γ(4). (b) Exact fRG flow equation relating ∂ΛΓ(4) to Γ(4) and

Γ(6). The conventional approximation is to set Γ(6) = 0.

small frequencies [cf. Fig. 4(c)] and includes subleading
corrections to the exponent α(u) [cf. Fig. 4(d)].

Multiloop fRG flow.—The functional renormalization
group (fRG) provides an exact flow equation for the
four-point vertex as a function of an RG scale param-
eter Λ, serving as infrared cutoff. Introducing Λ only in
the bare d propagator, it takes the form illustrated in
Fig. 2(b), where the dashed arrow symbolizes the single-
scale propagator SdΛ. Since the self-energy vanishes, we
have SdΛ = ∂ΛG

d
Λ, and ∂ΛΓ(4) only depends on Γ(4) and

Γ(6). The boundary conditions GdΛi
= 0 and GdΛf

= Gd

imply Γ
(4)
Λi

= −U and Γ
(6)
Λi

= 0.
For almost all purposes, it is unfeasible to treat the

six-point vertex exactly. Approximations of Γ(6) thus
render the fRG flow approximate. The conventional ap-
proximation is to set Γ(6) and all higher-point vertices to
zero, arguing that they are at least of third order in the
interaction. This affects the resulting four-point vertex
starting at third order and neglects terms that contribute
to parquet diagrams [25]. Since, however, the parquet
approximation involves only four-point vertices, it should
be possible to encode the influence of six- and higher-point
vertices during the RG flow by four-point contributions
and, still, fully capture all parquet graphs.

In the following, we show how this can be accomplished
using mfRG. The first observation is that all the diagram-
matic content of the truncated fRG (i.e. without Γ(6))
is two-particle reducible, due to the bubble structure in
the flow equation [first two summands of Fig. 2(b)], very
similar to the Bethe-Salpeter equations [Fig. 2(a)]. The
only irreducible contribution is the initial condition of the

vertex, Γ
(4)
Λi

= −U . Hence, diagrams generated by the
flow are always of the parquet type. It is then natural to
express Γ(4) as follows, using the channel classification of
the parquet equations:

Γ(4) = −U + γa + γp, ∂Λγr =
∑
`≥1γ̇

(`)
r . (5)

Here, r stands for a or p, and γ̇
(`)
r stands for diagrams

involing ` loops connecting full vertices. We will show

show that γ̇
(`)
r can be constructed iteratively from lower-

loop contributions.
The conventional (or one-loop) fRG flow in channel r is

formulated in Fig. 3(a), where full vertices are connected
by an r “single-scale” bubble, i.e., either antiparallel or
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(a) γ̇(1)
r

r r
=

r r r
(b) γ̇(2)

r

r r
= γ̇

(1)
r̄

r
r r

+
rr

γ̇
(1)
r̄

r

(c) γ̇(̀ +2)
r

r r
= γ̇

(̀ +1)
r̄

r
r r

︸ ︷︷ ︸
γ̇
(̀ +2)
r̄,L

+
rr

γ̇
(̀ )
r̄

r r

︸ ︷︷ ︸
γ̇
(̀ +2)
r̄,C

+
rr

γ̇
(̀ +1)
r̄

r

︸ ︷︷ ︸
γ̇
(̀ +2)
r̄,R

(d) γ̇
(̀ +2)
r,C

r r
= γ̇

(̀ +1)
r,R

r
r r

=
rr

γ̇
(̀ +1)
r,L

r

FIG. 3. Multiloop fRG flow equations, ∂Λγr =
∑
`≥1 γ̇

(`)
r , for the four-point vertex reducible in channel r, with r = a or p, and

r̄ = p or a. The subscript r in the diagrams further symbolizes antiparallel or parallel c-d lines, respectively. (a) One-loop,

(b) two-loop, (c) three- and higher-loop flows. (d) One-loop calculation of γ̇
(`+2)
r,C , using the previously computed γ̇

(`+1)
r,R or γ̇

(`+1)
r,L .

parallel Gc-Sd lines. [Detailed diagrams with all arrows
and their mathematical translations are given in [29],
Fig. S-2, Eq. (S-2).] If one inserts the bare vertex for Γ(4)

on the r.h.s. of such a one-loop flow equation [Fig. 3(a)],
one fully obtains the differentiated second-order vertex.
However, inserting first- and second-order vertices on
the r.h.s. will miss some diagrams of the differentiated
third-order vertex, because these invoke an r̄ single-scale

bubble that is not generated by γ̇
(1)
r (an overbar denotes

the complementary channel, ā = p, p̄ = a). An example
of such a missing third-order diagram is that obtained
by differentiating the rightmost d propagator of the third
diagram in Fig. 1(a) (cf. Fig. S-1 of [29]). All such ne-
glected contributions can be added to the r.h.s. of the
flow equation by hand (replacing bare by full vertices),
resulting in the construction in Fig. 3(b). It uses an r
“standard” bubble [(anti)parallel Gc-Gd lines] to connect
the one-loop contribution from the complementary chan-

nel, γ̇
(1)
r̄ , with the full vertex, thus generating two-loop

contributions. Double counting of diagrams does not
occur due to the unique position of the single-scale prop-
agator. These corrections have already been suggested
from slightly different approaches [26, 27].

The resulting third-order corrected flow will still miss
derivatives of parquet graphs starting at fourth order in
the interaction. These can be included via two further
additions to the flow, which have the same form for all

higher loop orders, γ̇
(`+2)
r with ` ≥ 1 [cf. Fig. 3(c)]. First,

for the flow of γ̇
(`+2)
r , an r bubble is used to attach the

previously computed (`+ 1)-loop contribution from the

complementary channel, γ̇
(`+1)
r̄ , to either side of the full

vertex, just as in the two-loop case. Second, by using two
r bubbles, we include the differentiated `-loop vertex from

the complementary channel, γ̇
(`)
r̄ , to the flow of γ̇

(`+2)
r .

Again, the unique position of the single-scale propagator
prevents double counting of diagrams. The central term
in Fig. 3(c) can be computed by a one-loop integral, too,
using the previous computations from the same channel,
as shown in Fig. 3(d). Consequently, the numerical effort
in the multiloop corrections scales linearly in `.

By its diagrammatic construction, organized by the
number of loops connecting full vertices, the mfRG flow
incorporates all differentiated diagrams of a vertex re-

ducible in channel r, built up from the bare interaction,
and thus captures all parquet graphs of the full four-
point vertex. Indeed, in [29], we prove algebraically for
the XES that the number of differentiated diagrams in
mfRG matches precisely the number of differentiated par-
quet graphs. An `-loop fRG flow generates all parquet
diagrams up to order n = ` + 1 in the interaction and,
naturally, generates an increasing number of parquet con-
tributions at arbitrarily large orders in U .

Numerical results—In Fig. 5, we show numerical results
for the XES particle-hole susceptibility. Using four differ-
ent regulators (see below), we compare the susceptibility
obtained from an `-loop fRG flow to the numeric solu-
tion of the parquet equations. We find that the one-loop
curves differ among each other and deviate strongly from
the parquet result. With increasing loop order `, the
multiloop results from all regulators oscillate around and
approach the parquet result, with very good agreement
already for ` = 4. For ` ≥ 7, the oscillations in the rel-
ative deviation (at ω̄ = 0) are damped to . 2% (insets,
solid line). A similar behavior is observed for the identity
[32] Πω̄ = lim|ω|,|ν|→∞ γa;ω,ν,ω̄/U

2 (ω̄ is the exchange fre-
quency, and ω, ν are two fermionic frequencies), which
the parquet solution is guaranteed to fulfill (cf. Eq. (S-4),
ff. of [29]) (insets, dashed line).

As regulators, we choose the Litim regulator [33], and
propagators of the type GdΛ(ω) = θ(ω/Λ−1)Gd(ω), where
θ(x) is either a sharp, smooth, or oscillating step function
(cf. Fig. 4(a,b); Eq. (S-8) of [29]). The fact that different
regulators give the same result in the mfRG flow is a
strong indication for an exact resummation of diagrams.

Let us note that the mfRG flow also increases the sta-
bility of the solution towards larger interaction. Whereas,
in the one-loop scheme, the four-point vertex diverges for
u > 0.4, higher-loop schemes converge up to larger values
of u. The reason is that the one-loop scheme contains the
full ladder series of diagrams (in any channel), but only
parts of non-ladder diagrams. Whereas the (imaginary-
frequency) pure particle-hole ladder already diverges at
u ∼ 0.3, higher-loop extensions approaching the parquet
summation are needed for the full feedback between both
channels to eliminate the divergence.

The equivalence between the mfRG flow and parquet
summation allows us to explain how the quality of fRG
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0 0.4u

3

15

|Π
ω̄
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0
/
ρ
|

(d)

numerical sol.

2u−u2−3.4u3

2u−u2

2u

0 0.5ω/ξ0

-5

1

ImGd·ξ0

0 0.5ω/ξ0

-10

30

ImSd·ξ2
0

FIG. 4. (a) Non-interacting “standard” particle-hole bubble
ΠG

0 and propagator Gd (inset) for different regulators and a
scale parameter of Λ/ξ0 = 0.2. (b) Same as (a) for the “single-
scale” bubble ΠS

0 and propagator Sd. (c) Double-logarithmic
plot for the particle-hole susceptibility Π, obtained from solv-
ing the parquet equations. (d) Πω̄=0 computed via the parquet
equations [with εd, β as in (c), but varying u] and as given in
Eq. (2) with different α(u).

results depends on the choice of regulator. Whereas
the one-loop scheme only involves a single-scale bubble
ΠS

0 =
∑
GcSd, all extensions invoke successive standard

bubbles ΠG
0 =

∑
GcGd. By minimizing the weight of

ΠG
0 compared to ΠS

0 , one minimizes the effect of the
multiloop corrections and thus the difference between low-
level mfRG and parquet. Indeed, from Fig. 4 (a,b) we see
that a regulator with small (large) weight in ΠG

0 and large
(small) weight in ΠS

0 , such as the oscillating-step (Litim)
regulator, gives comparatively good (bad) agreement with
parquet for low `. Accordingly, the sharp-step regulator
performs slightly better than its smooth counterpart.

Generalizations.—The mfRG flow can be readily ex-
tended to more general models, where one normally does
not treat two particle species separately, as done here
for c and d electrons. If three two-particle channels
(particle-particle, transverse and longitudinal particle-
hole) are involved, the higher-loop flow must incorporate
feedback from both complementary two-particle chan-
nels via γ̇`r̄ =

∑
r′ 6=r γ̇

`
r′ . The self-energy, which has an

exact fRG flow equation depending on the four-point
vertex, enters the higher-loop additions via full propa-
gators. In the one-loop flow of the four-point vertex
[Fig. 3(a)], one should follow the usual practice [9, 26]
of using the derivative of the full propagator (∂ΛGΛ) in-
stead of the single-scale propagator (SΛ = ∂ΛGΛ|Σ=const.)
which excludes any differentiated self-energy contribu-
tions. The reason is that, in the exact fRG flow equation
[Fig. 2(b)], those diagrams of ∂ΛΓ(4) that involve dif-
ferentiated self-energy contributions are encoded in the
six-point vertex. The above arguments about capturing
parquet diagrams with the multiloop fRG flow remain
valid since they only involve generic, model-independent

2
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/
ρ
|

(a) Litim (b) sharp

parquet
` = 1

2
3
4
5

0 0.2ω̄/ξ0

2
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/
ρ
|

(c) smooth

0 0.2ω̄/ξ0

(d) osc.

2 8`
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∆
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∆
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l

2 8`

-0.1

0.5

∆
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l

2 8`

-0.1

0.5

∆
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FIG. 5. Numerical solutions for the particle-hole susceptibility
Π, obtained from the parquet equations and from mfRG with
different regulators [cf. Fig. 4(a,b)], using the parameters of
Fig. 4(c). In the insets, we show the relative deviation between
parquet and mfRG results for Π (solid line) and between Π
and lim|w|,|v|→∞ γa/U

2 (dashed line), all at ω̄ = 0.

statements about the structure of two-particle diagrams.
Including the self-energy in the multiloop fRG flow is
similar in spirit to combining the parquet equations with
an exact, self-consistent Schwinger-Dyson equation for
the self-energy [15]. However, while mfRG, even if in-
cluding self-energies, has an (iterative) one-loop structure,
the Schwinger-Dyson equation involves a full two-loop
integral, which is computationally much more costly.

Conclusion.—Using the X-ray-edge singularity as an
example, we have presented multiloop fRG flow equations,
which sum up all parquet diagrams to arbitrary order,
so that solving the mfRG flow is equivalent to solving
the (first-order) parquet equations. Our numerical results
demonstrate that solutions of an `-loop flow quickly ap-
proach the parquet result with increasing `. This applies
for a variety of regulators, confirming an exact resumma-
tion of diagrams. The mfRG construction is generic and
can readily be generalized to more complex models.

The mfRG-parquet equivalence established here has
far-reaching implications. First, it disproves the common
belief [17] that a one-loop RG scheme suffices to reproduce
parquet results—for that, a multiloop scheme is needed.
Second, it implies that one-loop fRG calculations yield
results inferior to solving the parquet equations—the for-
mer miss many diagrams that are included in the latter.
From this point of view, only practical considerations
would favor one-loop fRG over a parquet solution: Solv-
ing a first-order ordinary differential equation as in fRG
is numerically more stable than solving a self-consistent
equation, and the numerical cost for the (one-loop) flow
of the self-energy is much less than for the (two-loop)
Schwinger-Dyson equation [34]. Third and most impor-
tantly, the mfRG scheme proposed here achieves, in effect,
a solution of the (first-order) parquet equations while
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retaining all treasured fRG advantages: no need to solve
self-consistent equations, purely one-loop costs, and free-
dom of choice for regulators. This elevates fRG from an
“RG-enhanced perturbation theory” to a versatile, non-
perturbative many-body solver on a par with the parquet
approximation.
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sions and acknowledge support by the Excellence Clus-
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Supplementary material

This supplement consists of four parts. First, we show
detailed equations for the mfRG flow, the identity between
susceptibility and reducible vertex, and the regulators we
used. Second, we provide the numerical details of our
computations. Third, we prove algebraically for the XES
that the mfRG flow generates all parquet diagrams at
arbitrary order, based on expanding the parquet and flow
equations in the interaction and counting diagrams. Last,
we briefly mention that many quantities appearing in
this proof happen to have an interpretation as giving the
number of special paths on a triangular grid.

S-I. DETAILED EQUATIONS

Figure S-1 illustrates how the two-loop corrections of
mfRG cure the flow of the vertex γa at third order in the
interaction. Figure S-2 shows the detailed form of the
mfRG flow equations, corresponding to Fig. 3.

The mathematical translation of the flow equations
only requires the formula for an r bubble connecting
two vertices. This is most compactly written in a
notation adapted to the respective channel: The three
independent frequencies necessary to describe a full
vertex can be chosen to include two fermionic frequencies
combined with either the bosonic exchange frequency
ω̄a, suited for the antiparallel channel, or the bosonic
pairing frequency ω̄p, suited for the parallel channel.
This is, however, merely a choice of parametrization
and does not require any properties of the vertex
itself. We choose the parametrization according to

Vω,ν,ω̄a = V d̄cc̄dω,ω̄a+ω,ω̄a+ν,ν , (S-1a)

Vω,ν,ω̄p
= V d̄cc̄dω,ω̄p−ν,ω̄p−ω,ν , (S-1b)

V
ω̄a+ω ω̄a+ν

ω ν

V
ω̄p−ν ω̄p−ω

ω ν

where the bosonic frequencies are related via
ω̄p = ω̄a + ω + ν.

In this notation, an r bubble Vr connecting the vertices
V ′

and V ′′
can be computed as follows:

Vr;ω,ν,ω̄r =
1

β

∑

ω′

V ′

ω,ω′,ω̄r
Gdω′Gcω̄r+σrω′V ′′

ω′,ν,ω̄r
, (S-2)

with σa = 1 and σp = −1.

The channel notation (S-1) is also used in the identity
bewteen particle-hole susceptibility Π and reducible vertex
γa considered in Fig. 5. If we, more generally, denote
the susceptibility in the antiparallel channel by Πa = Π
and the one in the parallel channel by Πp, the relation

γa =
n=3

+ +

=
n=3

+

+ +

γ̇(1)
p = =

n=3

γ̇(1)
p = =

n=3

FIG. S-1. First row: All third-order contributions to γa. Its
flow is described by the six diagrams obtained by differentiating
each dashed line once. In the mfRG scheme, these six diagrams

are encoded in γ̇
(1)
a (second and third rows) and γ̇

(2)
a (last two

rows), the one- and two-loop flow equations [cf. Fig. S-2] for
γa, respectively. The third-order contributions are obtained by
inserting first- and second-order diagrams for the full vertex.

between susceptibility and 1PI vertex, already used in
Eq. (3), reads

Πr;ω̄r
=

1

β

∑

ω

GdωG
c
ω̄r+σrω

(
1+

1

β

∑

ν

Γ
(4)
ω,ν,ω̄r

GdνG
c
ω̄r+σrν

)
.

(S-3)
The identity between susceptibility and reducible vertex
[32] is given by

lim
|ω|,|ν|→∞

γr;ω,ν,ω̄r
= U2Πr;ω̄r

. (S-4)

To see that a solution of the parquet equations with
any approximation for the totally irreducible vertex R is
guaranteed to fulfill Eq. (S-4), we note first that, by the
very fact that R is totally irreducible, we have

lim
|ω|→∞

Rω,ν,ω̄r
= −U. (S-5)

Regarding the reducible vertices, we can perform the limit
in the Bethe-Salpeter equations [Fig. 2(a)] and obtain

lim
|ω|→∞

γr̄;ω,ν,ω̄r
= 0, ⇒ lim

|ω|→∞
Ir;ω,ν,ω̄r

= −U, (S-6a)

lim
|ω|→∞

γr;ω,ν,ω̄r = −U
β

∑

ω′

Gdω′Gcω̄r+σrω′Γ
(4)
ω′,ν,ω̄r

. (S-6b)

By symmetry [cf. Eq. (S-11)], Eqs. (S-5), (S-6) also
hold for ω ↔ ν, and we further deduce

lim
|ν|→∞

Γ
(4)
ω′,ν,ω̄r

= lim
|ν|→∞

Rω′,ν,ω̄r
+ lim
|ν|→∞

γr;ω′,ν,ω̄r

= −U − U

β

∑

ω′′

Γ
(4)
ω′,ω′′,ω̄r

Gdω′′Gcω̄r+σrω′′ .

(S-7)
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γ̇(1)
p =

γ̇(2)
p = γ̇(1)

a + γ̇(1)
a =

γ̇(̀ +2)
p = γ̇(̀ +1)

a

︸ ︷︷ ︸
γ̇
(̀ +2)
p,L

+ γ̇ (̀ )
a

︸ ︷︷ ︸
γ̇
(̀ +2)
p,C

+ γ̇(̀ +1)
a

︸ ︷︷ ︸
γ̇
(̀ +2)
p,R

γ̇
(̀ +2)
p,C = γ̇

(̀ +1)
p,R = γ̇

(̀ +1)
p,L

(a)

(b)

(c)

(d)

γ̇(1)
a =

γ̇(2)
a = γ̇(1)

p + γ̇(1)
p =

γ̇(̀ +2)
a = γ̇(̀ +1)

p

︸ ︷︷ ︸
γ̇
(̀ +2)
a,L

+ γ̇ (̀ )
p

︸ ︷︷ ︸
γ̇
(̀ +2)
a,C

+ γ̇(̀ +1)
p

︸ ︷︷ ︸
γ̇
(̀ +2)
a,R

γ̇
(̀ +2)
a,C = γ̇

(̀ +1)
a,R = γ̇

(̀ +1)
a,L

FIG. S-2. Multiloop flow equations in the (left) antiparallel and (right) parallel channels, corresponding to Fig. 3.

Adding the limit lim|ν|→∞ to Eq. (S-6b) and using Eqs. (S-
3) and (S-7) yields the identity (S-4).

Next, we give the mathematical definition of the regu-
lators, which we have used in the numerical calculations
[Fig. 5] and already illustrated in Fig. 4(a,b):

Gd,Lω,Λ =
1

i sgn(ω) max(|ω|,Λ)− εd
, (S-8a)

Gd,sharp
ω,Λ = Θ(|ω| − Λ)

1

iω − εd
, (S-8b)

Gd,smooth
ω,Λ =

[
1− e−

(
|ω|
Λ

)a] 1

iω − εd
, a = 2, (S-8c)

Gd,osc.
ω,Λ = e−

(
Λ
|ω|

)a[
1−ib sgn(w)

]
1

iω − εd
, a = 2, b = 1,

(S-8d)

The regulator in Eq. (S-8a) is known as Litim regulator
[33]. Note that the parameters in Eqs. (S-8c) and (S-
8d), a > 0 and b, can also be chosen differently, keeping
the boundary conditions GdΛi=∞ = 0 and GdΛf=0 = Gd

fulfilled.
Finally, we remark that, in principle, the band gap is

the largest energy scale in the XES. This would require
|εd| � ξ0. However, in the choice of the Hamiltonian
[Eq. (1)], we have already restricted ourselves to an inter-
band density-density interaction, which implies individual
particle-number conservation. Furthermore, we have used
that Gd is purely advanced in the formulation of the flow
equations. As a consequence, we are free to choose any
numerical value for εd, the only exception being εd = 0,
which violates analytic properties of the (bare) suscep-
tibility [25, p. 57]. In fact, we find small values for |εd|
most suitable to visualize the power-law divergence in
the particle-hole susceptibility for imaginary frequencies
[cf. Eq. (2)].

S-II. NUMERICAL DETAILS

We have solved the self-consistent parquet equations
[Eq. (4), Fig. 2(a)] by an iterative algorithm. For that,
we use the initial values γr = 0 and an update rule that
combines the previous value and the predicted value from

the Bethe-Salpeter equations according to

γnew
r = zγpred.

r + (1− z)γprev.
r , z . 0.2. (S-9)

The mfRG flow equations are solved by an adaptive-step
Runge-Kutta algorithm.

In either case, we use a parametrization of four-point
vertices which accounts for the important high-frequency
asymptotics [32]. This parametrization [32] is adapted
to the channel in which a vertex is reducible: We ap-
proximate the frequency dependence of a vertex reducible
in channel r, using the respective channel notation from
Eq. (S-1), by

γr;ω,ν,ω̄r = Θ(Ω1 − |ω̄|)K1
ω̄r

(S-10)

+ Θ(Ω2 − |ω̄r|)Θ(Ω2 − |ω|)K2
ω̄r,ω

+ Θ(Ω2 − |ω̄r|)Θ(Ω2 − |ν|)K̄2
ω̄r,ν

+ Θ(Ω3 − |ω̄r|)Θ(Ω3 − |ω|)Θ(Ω3 − |ν|)K3
ω̄r,ω,ν .

Note that the first summand in this parametrization al-
ready incorporates the limit used in Eq. (S-4). We have
chosen the cutoffs Ωi in Eq. (S-10) such that we keep 1000,
500, and 100 positive frequencies on each axis for K1, K2

and K̄2, and K3, respectively. Using the symmetries for
vertices [32],

(Vω,ν,ω̄r )∗ = V−ω,−ν,−ω̄r , Vω,ν,ω̄r = Vν,ω,ω̄r , (S-11)

further reduces the computational effort. Note that, while

the latter symmetry holds for γ
(`)
r and γ

(`)
r,C, it does not

hold for γ
(`)
r,L and γ

(`)
r,R individually. Instead, one has

γ
(`)
r,L;ω,ν,ω̄r

= γ
(`)
r,R;ν,ω,ω̄r

.
The Matsubara summations in all our calculations are

naturally restricted to a finite frequency interval, since
we approximate the c propagator using a sharp cutoff:

Gcω = ρ

∫ ξ0

−ξ0
dε

1

iω − ε = −2iρ arctan
(ξ0
ω

)

= −iπρ sgn(w)Θ(ξ0 − |ω|) +O
(ξ0
ω

)
. (S-12)

At an inverse temperature of βξ0 = 500, this results in
∼160 summands.
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S-III. PROOF OF EQUIVALENCE

We prove below for the XES that solving the full mfRG
flow is equivalent to solving the (first-order) parquet equa-
tions. We also show that a solution of an `-loop fRG
flow sums up all parquet graphs to order n = `+ 1. The
proof proceeds in two steps: First, we argue that, by the
structure of the mfRG flow, the differentiated diagrams
are of the parquet type without any double counting. Sec-
ond, we show (without caring about the specific form of
a diagram) that the number of differentiated diagrams
in mfRG exactly matches the number of differentiated
parquet graphs order for order in the interaction.

No double counting in mfRG

The only totally irreducible contribution to the four-
point vertex contained in the multiloop (or conventionally
truncated) fRG flow is the bare interaction stemming from
the initial condition of the vertex. All further diagrams on
the r.h.s. of the flow equations are obtained by combining
vertices with parallel or antiparallel propagators. Hence,
they correspond to differentiated parquet diagrams in the
respective channel.

The fact that there is no double counting in mfRG is eas-
ily seen employing arguments of diagrammatic reducibility
and the unique position of the single-scale propagator in
differentiated diagrams. To be specific, let us consider
here the channel reducible in antiparallel lines [cf. left
side of Fig. S-2]; the arguments for the other channel are
completely analogous.

First, we note that diagrams in the one-loop term
always differ from higher-loop ones. The reason is that,
in higher-loop terms, the single-scale propagator appears
in the vertex coming from ∂Λγp. This can never contain
vertices connected by an antiparallel Gc-Sd bubble, since
such terms only originate upon differentiating γa.

Second, diagrams in the left, center, or right part of
an `-loop contribution always differ. This is because the

vertex γ
(`)
p is irreducible in antiparallel lines. The left part

is then reducible in antiparallel lines only after the single-
scale propagator appeared, the right part only before, and
the center part is reducible in this channel before and
after Sd.

Third, the same parts (say, the left parts) of different
loop contributions (` 6= `′) are always different. Assume
they agreed: As the antiparallel bubble induces the first

(leftmost) reducibility in this channel, already γ
(`)
p and

γ
(`′)
p would have to agree. For these, only the same parts

can agree, as mentioned before. The argument then
proceeds iteratively until one compares the one-loop part
to a higher-loop (|` − `′| + 1) one. These are, however,
distinct according to the first point.

To summarize: All mfRG diagrams belong to the par-

quet class and are included at most once. To show that all
differentiated parquet diagrams are included, it remains
to compare their number to the number of diagrams in
mfRG.

Counting the number of diagrams

To count the number of diagrams generated by the
parquet equations and mfRG, we expand the parquet
(Bethe-Salpeter) and flow equations in the interaction. As
we need not consider the specific form of a diagram, the
calculation is identical for both channels.

Let us denote the number of parquet diagrams of Γ(4)

at order n by P0(n) (mnemonic: P for parquet). A
Γ(4) diagram of order n contains n − 1 scale-dependent
d lines. Differentiating an n-th order diagram by Λ thus
produces n− 1 differentiated diagrams, and, in total, we
have P0(n)(n− 1) differentiated diagrams. Let us further
denote the number of differentiated diagrams at order n in
one channel, generated by mfRG at loop order `, by F`(n)
(mnemonic: F for flow). The `-loop contributions start
at order n = `+ 1 in the interaction, i.e., F`(n) = 0 for
n ≤ `. To show that all parquet diagrams are generated
by the (full) mfRG flow, we thus have to establish the
following equality:

P0(n)(n− 1) = 2

∞∑

`=1

F`(n) = 2

n−1∑

`=1

F`(n). (S-13)

In order to sum the parquet graphs up to order n, it
suffices to solve the multiloop fRG flow up to loop order
` = n− 1.

First, let us count the number of parquet diagrams.
From the Bethe-Salpeter equations [cf. Fig. 2(a)], one
can directly deduce the number of diagrams at order n
inherent in γ (of any channel), Pγ(n), given the number
of diagrams in I, PI , and in Γ(4), P0:

Pγ(n) =

n−1∑

m=1

PI(m)P0(n−m). (S-14)

As both I and Γ start at order 1, the order on the
l.h.s. exceeds the maximal order of a diagram on the r.h.s.
From the parquet equations, we further know

P0(1) = 1 = PI(1); P0(n) = 2Pγ(n) = 2PI(n), n ≥ 2.
(S-15)

Inserting this, we obtain a closed relation for P0:

P0(n) =

n−1∑

m=1

P0(m)P0(n−m) + P0(n− 1), n ≥ 2.

(S-16)
Let us solve this recursion by the method of generating

functions. We define the generating function p0(x) for
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V̇1 = V̇`+1 = V̇`

FIG. S-3. One-loop equations for auxiliary vertices, which can
be seen as building blocks for the multiloop flow equations
(Fig. S-2).

the sequence P0(n) by

p0(x) =

∞∑

n=1

P0(n)xn−1 (S-17)

and calculate

xp0(x)2 = x

∞∑

n,m=1

P0(n)P0(m)xn+m−2

=

∞∑

n=2

xn−1
n−1∑

m=1

P0(m)P0(n−m)

=

∞∑

n=2

P0(n)xn−1 −
∞∑

n=2

P0(n− 1)xn−1

=

∞∑

n=1

P0(n)xn−1 − 1− x
∞∑

n=1

P0(n)xn−1.

(S-18)

From this, we find the defining equation for the gener-
ating function,

xp0(x)2 + (x− 1)p0(x) + 1 = 0, (S-19)

to which the solution with positive Taylor coefficients is

p0(x) =
1− x−

√
1− 6x+ x2

2x
. (S-20)

Recognizing that (1− 2tx+ x2)−λ is the generating func-
tion for Gegenbauer polynomials Cλn−1(t) [30], we find

P0(n) = −1

2
C−1/2
n (3), n ≥ 2 (S-21)

and can read off P0(n) from a tabulated sequence:

P0 : 1, 2, 6, 22, 90, 394, 1806, 8558, . . . (S-22)

Note that P0(n) grows exponentially for large n. This
is much less than the number of all, i.e., parquet and
nonparquet diagrams of Γ(4), which grows faster than n!

The defining equation for the generating function (S-19)
can be used to find the generating function q(x) of the
related sequence P0(n)(n− 1):

q(x) =

∞∑

n=1

P0(n)(n− 1)xn−1 = xp′0(x), (S-23)

# γ̇(̀ +2)
a = c`+1# V̇`+1 +c`+1# V̇`+1

+c`# V̇`

= (2c`+1+c`)# V̇`+1 = (2c`+1+c`)# V̇`+2

FIG. S-4. Relation between the number of diagrams contained

in γ̇
(`+2)
a in V̇`+2, where # symbolizes that we count the

number of diagrams of the subsequent vertex.

Differentiating Eq. (S-19), we find the expression

0 = p0(x)2 + p0(x) + [1− x+ 2xp0(x)]p′0(x),

⇒ q(x) = xp0(x)
p0(x) + 1

1− x− 2xp0(x)
. (S-24)

Next, we count the number of differentiated diagrams
generated by mfRG. For this purpose, we consider the
auxiliary vertices in Fig. S-3, which can be seen as the
building blocks of the multiloop flow equations (Fig. S-
2). Denoting the number of diagrams of V̇` at order n
by P`(n), we find, given all parquet diagrams in the full
vertex Γ(4), similar to Eq. (S-14) the relation

P`+1(n) =

n−1∑

m=1

P`(m)P0(n−m). (S-25)

This convolution of two sequences can be expressed in
terms of the product of their generating functions, defined
by p`(x) =

∑∞
n=1 P`(n)xn−1:

xp`(x)p0(x) = x

∞∑

n,m=1

P`(n)P0(m)xn+m−2

=

∞∑

n=2

xn−1
n−1∑

m=1

P`(m)P0(n−m)

=

∞∑

n=2

P`+1(n)xn−1 = p`+1(x). (S-26)

As a direct consequence, we have

p`(x) = x`p`+1
0 (x); P`(n) = 0, ` ≥ n. (S-27)

To relate this to mfRG, note that the flow of n-th order
diagrams is only determined by lower-order diagrams,
and that the equivalence (S-13) as well as our arguments
using generating functions hold for all orders individually.
Building the series from the bare interaction, we can
therefore assume the parquet diagrams of the vertex on
the r.h.s. to be given.

At the one-loop level [Fig. 3(a)], the definitions for γ̇
(1)
a

and V̇1 are identical, hence we also have F1(n) = P1(n).

For γ̇
(2)
a [Fig. 3(b)], the one-loop contribution from the
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complementary channel, γ̇
(1)
p , is inserted on the left and

right side of the full vertex. Both of these parts have
the same number of diagrams, which is precisely the
number of diagrams in V̇2 (cf. Fig. S-3). Hence, we get

F2(n) = 2P2(n). For all higher loops, γ̇
(`+2)
a [Fig. 3(c)],

the previous term is similarly inserted on both sides of the
full vertex, however the center part is constructed with

γ̇
(`)
p from loop order `, and the proportionality relation

becomes more complicated. We use an inductive argu-
ment, starting at ` = 3, and that the number of diagrams

contributing to the lower-loop vertices, γ̇
(1)
p and γ̇

(2)
p , is

obtained by multiplying the number of diagrams of the
auxiliary vertices by a counting constant (which keeps
track of the different ways to combine vertices at fixed
loop order):

F1(n) = c1P1(n), c1 = 1; F2(n) = c2P2(n), c2 = 2.
(S-28)

Using further the equation illustrated in Fig. S-4, we
similarly obtain for all higher loops:

F`+2(n) = c`+2P`+2(n), c`+2 = 2c`+1 + c`, ` ≥ 1.
(S-29)

The recursion relation for c` with the initial conditions c1
and c2 is known to define the so-called Pell numbers [31,
A000129], which are explicitly given by

c` =
(1 +

√
2)` − (1−

√
2)`

2
√

2
. (S-30)

To summarize, the number of diagrams at order n of
the full vertex, generated by mfRG at loop order `, is
given by 2F`(n), where F`(n) = c`P`(n), with generating
functions f`(x) = c`p`(x). Summing all loops, we find by
using Eqs. (S-27) and (S-30):

2

∞∑

`=1

f`(x) =
1√
2
p0(x)

∑

σ=±1

σ

∞∑

`=1

[
xp0(x)(1 + σ

√
2)
]`

=
1√
2
p0(x)

∑

σ=±1

σ

1− xp0(x)(1 + σ
√

2)

=
2xp0(x)2

1− 2xp0(x)− x2p0(x)2
= q(x), (S-31)

where the last equality follows by repeated use of Eq. (S-
19). Consequently, the sequences corresponding to q(x)
and 2

∑
`≥1 f`(x) are also equal. Using F`(n) = 0 for

` ≥ n [cf. Eq. (S-27)], this means

P0(n)(n− 1) = 2

∞∑

`=1

F`(n) = 2

n−1∑

`=1

F`(n). (S-32)

We thus have shown that the number of differentiated
diagrams produced by mfRG at any order n matches
the number of differentiated parquet diagrams at this
order, and that an `-loop fRG flow includes all parquet

2 4 6 2n 1 2 n

(a) (b)

FIG. S-5. (a) The (large) Schröder numbers count the number
of paths on a triangular grid (in the half-plane) between two
points on a line. For n = 4, these are 22. 16 of these have a
peak at the first level, 6 at the second, and only 1 at the third
level [cf. Eq. (S-38)]. (b) The Pell numbers count the number
of paths on a triangular grid (not restricted to the half-plane)
from a point to a vertical line. For n = 3, these are 5.

graphs up to order n = ` + 1. The details of the proof
rely on properties of the XES. However, generalizing
the above strategy to more general models should be
straightforward.

S-IV. RELATION TO PATHS ON A
TRIANGULAR GRID

As a mathematical curiosity, we mention that the se-
quences appearing in the previous section have a certain
meaning when counting paths on a triangular grid. We are
not aware of an underlying connection which goes beyond
coincidental properties of the recursion relations of the
sequences P`(n). Nevertheless, the details are sufficiently
intriguing that we present them here.

The sequence P0(n) of Eq. (S-22), giving the number
of parquet graphs at order n, happens to be known in
the mathematical literature by the name of the (large)
Schröder numbers. These denote the number of paths on
a half-triangular grid beginning and ending on the hori-
zontal axis [31, A006318] [cf. Fig. S-5(a)]. The sequences
P`(n) give the number of these paths with a peak at level
` [31, A006318-A006321], or the number of paths starting
from the left corner and ending at level ` on the right
triangle leg (see below). The Pell numbers [cf. Eq. (S-30)]
count the number of paths on a triangular grid (not re-
stricted to a half-plane) from a point to a vertical line
[31, A000129][cf. Fig. S-5(b)].

The interpretation for P`(n), ` ≥ 0, as paths ending
on the right triangle leg can be understood from a re-
cursion relation between P`(n) with neighboring ` and
n [cf. Eq. (S-35)]. For this purpose, let us first derive
the relation and construct P`(n) as a matrix. By using
Eq. (S-25) twice and reordering summation indices, we
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obtain for `, n ≥ 1:

P`+1(n+ 1) =

n∑

m=1

P`(m)P0(n+ 1−m)

=

n∑

m=1

m−1∑

k=1

P`−1(k)P0(m− k)P0(n+ 1−m)

=

n−1∑

m=1

P`−1(m)

n−m∑

k=1

P0(k)P0(n+ 1−m− k).

(S-33)

Via Eqs. (S-22) and (S-25), this yields

P`+1(n+ 1) =

n−1∑

m=1

P`−1(m)[P0(n+ 1−m)− P0(n−m)]

=

n−1∑

m=1

P`−1(m)P0(n+ 1−m)− P`(n)

=

n∑

m=1

P`−1(m)P0(n+ 1−m)− P`−1(n)− P`(n)

= P`(n+ 1)− P`−1(n)− P`(n). (S-34)

We can combine this recursion

P`(n+ 1) = P`−1(n) + P`(n) + P`+1(n+ 1) (S-35)

with the relation known from Eq. (S-16),

P0(n+ 1) = P0(n) + P1(n+ 1), (S-36)

and Eq. (S-27), which implies

Pn(n) = 1; P`(n) = 0, ` ≥ n. (S-37)

These equations suffice to build the following matrix,

defined as An,` = P`(n), with n ≥ 1 and ` ≥ 0:




` = 0, 1, 2, 3, 4, 5, . . .

n = 1 1 0 . . .

2 2 1 0 . . .

3 6 4 1 0 . . .

4 22 16 6 1 0 . . .

5 90 68 30 8 1 0 . . .
...

...
. . .

. . .




c` = 1, 2, 5, 12, 29 (S-38)

If one distorts the matrix slightly, e.g. by raising the `-th
column by ` times half the width between subsequent rows
and ignores all vanishing entries, one obtains a triangle
structure as in Fig. S-5. We might consider the entry A0,1

as the starting point of paths, for which the steps

n→ n+ 1, `→ `, (S-39)

n→ n+ 1, `→ `+ 1,

n→ n, `+ 1→ `

are allowed. Then, the entry An,` indeed gives the number
of such paths ending at the corresponding point on the
triangular grid.

The equality between the number of differentiated par-
quet and mfRG diagrams shown in Sec. S-III, Eq. (S-32),
translates into

An,0(n− 1) = 2

n−1∑

`=1

c`An,`. (S-40)

While many relations for the matrix A [Eq. (S-38)] are
known [31, A033877], we have not found a proof of Eq. (S-
40) in the literature.
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