Nonexistence of Efficient Dominating Sets in the Cayley Graphs Generated by Transposition Trees of Diameter 3

Italo. J. Dejter and Oscar Tomaiconza
University of Puerto Rico
Rio Piedras, PR 00936-8377
e-mail: italo.dejter@gmail.com

Abstract

Let d, n be positive integers such that $d<n$, and let X_{n}^{d} be a Cayley graph generated by a transposition tree of diameter d. It is known that every X_{n}^{d} with $d<3$ splits into efficient dominating sets. The main result of this paper is that X_{n}^{3} does not have efficient dominating sets.

Keywords: Cayley graph, efficient dominating set, sphere packing.
2010 Mathematics Subject Classification: 05C69; 05C70; 05C12.

1. INTRODUCTION AND PRELIMINARIES

Cayley graphs are very important for their useful applications (cf. [10]), including to automata theory (cf. [11, [12]), interconnection networks (cf. [1, 2, 4, [5, 6]) and coding theory (cf. [3, 4]).

Let $0<d<n$ in \mathbb{Z}, and let X_{n}^{d} be a Cayley graph generated by a transposition tree of diameter d. In [4], it was shown that every X_{n}^{d} with $d<3$ splits into efficient dominating sets. In the present work, the following result is proved.
Theorem 1.1. Let $3<n$. Then no X_{n}^{3} has efficient dominating sets.
The rest of this section is devoted to some preliminaries. Let $0<n \in \mathbb{Z}$ and let $I_{n}=\{1,2, \ldots, n\}$. Let S_{n} be the group of permutations $\sigma=\binom{1 \cdots \cdots n}{\sigma_{1} \cdots \sigma_{n}}: I_{n} \rightarrow I_{n}$ with $\sigma(i)=\sigma_{i}$, for every $i \in I_{n}$, where $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}=I_{n}$. Any such σ will simply be denoted $\sigma=\sigma_{1} \cdots \sigma_{n}$. Let $e=12 \cdots n$ stand for the identity of S_{n}. Let $\mathcal{C} \subseteq S_{n} \backslash\{e\}$ be such that $\sigma \in \mathcal{C} \Leftrightarrow \sigma^{-1} \in \mathcal{C}$. The Cayley graph $X=X\left(S_{n}, \mathcal{C}\right)$ of S_{n} with connection set \mathcal{C} is the graph $X=\left(S_{n}, E\right)$, where $g h \in E \Leftrightarrow h=\sigma g$ with $\sigma=h g^{-1} \in \mathcal{C}$. If one such σ equals σ^{-1}, then we say that $g h \in E$ has color σ and write $\sigma=(g h)$, that is the cycle notation of transposition $(g h)$.

Note that X is connected if and only if \mathcal{C} is a generating set for S_{n} [7] Lemma 3.7.4. Note also that a set of transpositions $(g h)$ from S_{n} generates S_{n} if and only if the graph with edges $g h$ is connected [7] Lemma 3.10.1.

1.1. Transpositions, Domination and Packing.

Let τ be a connected graph with vertex set I_{n} and let $\mathcal{C}=\mathcal{C}_{\tau}$ be composed by the transpositions $\sigma=(g h)$, where $g h$ runs over the edges of τ. Then $\sigma=\sigma^{-1}$ for each $\sigma \in \mathcal{C}_{\tau}$. This yields $X\left(S_{n}, \tau\right)=X\left(S_{n}, \mathcal{C}_{\tau}\right)$ as an edge-colored graph via the color set \mathcal{C}_{τ} with a 1-factorization into the 1-factors $F_{g h}$ of σ-colored edges. Now, τ is called the transposition graph of $X\left(S_{n}, \tau\right)$ [5, 6].

For domination and packing in Cayley graphs, the terminology of 8 is used. A stable subset $J \subseteq S_{n}$ (i.e. a set of nonadjacent vertices) with each vertex of $S_{n} \backslash J$ adjacent in the Cayley graph X to just one vertex of J is an efficient dominating set (or E-set) of X. The 1 -sphere with center $g \in S_{n}$ is the subset $\left\{h \in S_{n} \mid \delta(g, h) \leq 1\right\}$, where δ is the graph distance of X. Every E-set in X is the set of centers of the 1 -spheres in a perfect sphere packing (as in [9], page 109) of X. Let X^{\prime} be a proper subgraph of $X\left(X^{\prime}\right.$ specified in Subsection 1.4). Let \mathcal{S} be a perfect 1 -sphere packing of X^{\prime}. Then an \mathcal{S}-sphere is the union of a 1 -sphere of \mathcal{S} with its neighbors in $S_{n} \backslash V\left(X^{\prime}\right)$. The union of two 1-spheres centered at adjacent vertices is said to be a double-sphere in X. A collection of pairwise disjoint 1 -spheres (resp., \mathcal{S}-spheres and double-spheres) in X is said to be a 1-sphere packing of X (resp., a special packing of X, to be used in Section (7). It may happen that X has a packing \mathcal{T} by the \mathcal{S}-spheres, see Figure 1 below.

Given a packing \mathcal{S} of 1 -spheres in X whose union has cardinality $\alpha\left|S_{n}\right|=\alpha n$!, $(0<\alpha \leq 1)$, we say that the set J of centers of the 1 -spheres of \mathcal{S} is an α-efficient dominating set (or α-E-set) of X, in which case we may denote (by abuse of notation) the induced subgraph $X[J]$ by J. Note that a 1-E-set is an E-set, and viceversa.
1.2. Transposition Trees of Diameter less than 3.
[7] Theorem 3.10.2 implies \mathcal{C}_{τ} is a minimal generating set for $S_{n} \Leftrightarrow \tau$ is a tree. We take $\tau=\tau^{d}$ to be a diameter- d tree and denote $X_{n}^{d}=X\left(S_{n}, \tau^{d}\right)$. Let $\tau^{d_{1}}=\tau^{0}=\left(I_{1}, \emptyset\right)$. Let $\tau^{d_{n}}=K_{1, n-1}$ with $d_{n}=2$ if $n>2$ and $d_{n}=1$ if $n=2$. Let $n>0$. By assuming $1 \in I_{n}=V\left(\tau^{d_{n}}\right)$ of degree $n-1$, it is seen that $S_{n}=V\left(X_{n}^{d_{n}}\right)$ splits into E-sets $\xi_{i}^{1},\left(i \in I_{n}\right)$, formed by those $\sigma \in S_{n}$ with $\sigma_{1}=i$ [2]. In this terms [4] showed that if $n>1$ then for each $i \in I_{n}$, it holds that $X_{n}^{d_{n}}-\xi_{i}^{1}$ is the disjoint union of $n-1$ copies ξ_{i}^{j} of $X_{n-1}^{d_{n-1}}$, where ξ_{i}^{j} is induced by all $\sigma \in S_{n}$ with $\sigma_{j}=i$ and $j \in I_{n} \backslash\{1\}$. Using this, we prove below that no X_{n}^{3} has E-sets, with related developments.

1.3. Transposition Trees of Diameter 3.

A diameter-3 tree τ^{3} has two vertices of degrees r, t larger than 1 and joined by an edge ϵ. Then $n=r+t$. We write $\tau^{3}=\tau_{r, t}^{3}$ and take: (i) r and $r^{*}=r+1$
as the vertices of $\tau_{r, t}^{3}$ of degrees r and t so that $\epsilon=r r^{*}$; (ii) $1, \ldots, r-1$ (resp., $r^{*}+1, \ldots, n$) as the neighbors of r (resp., r^{*}) in $\tau_{r, t}^{3}$. (This vertex numbering is modified from Section 8 on). Edge pairs in $\tau_{r, t}^{3}$ induce copies of both: (A) the disjoint union $2 K_{2}=2 P_{2}$ of two paths of length 1 ; (B) the path P_{3} of length 2. Using two-color alternation in $X_{r, t}^{3}=X\left(S_{n}, \tau_{r, t}^{3}\right)$, the edge pairs (A) (resp., (B)) determine 4 -cycles (resp., 6 -cycles). The subgraphs of $X_{r, t}^{3}$ induced by the $\binom{n}{r}$ cosets of $S_{r} \times S_{t}$ in S_{n} are the components of the subgraph $X_{r, t}^{3} \backslash F_{\epsilon}$ of $X_{r, t}^{3}$, see Subsection 1.1. These components are copies of a cartesian product $\Pi_{r}^{t}=X_{r}^{d_{r}} \square X_{t}^{d_{t}}$ with: (a) $d_{r}=d_{t}=2$, if $\min (r, t)>2$; (b) $d_{r}=2=d_{t}+1$, if $r>t=2$; (c) $d_{r}=d_{t}=1$, if $r=t=2$.

If an α-E-set J of $X_{r, t}^{3}$ is equivalent in all copies of Π_{r}^{t} in $X_{r, t}^{3}$, both J and its associated 1 -sphere packing are said to be uniform. There is no uniform α-E-set in $X_{2,2}^{3}$, see Figure 1 below. Theorem 6.1 will show that if $4<n=r+t$, then uniform α-E-sets of $X_{r, t}^{3}$ have $\alpha \leq \frac{n}{r t}<1$. Theorems 10.110 .2 and Corollary 10.3 certify that such an upper bound $\frac{n}{r t}$ can only be attained by uniform α-E-sets that intersects each copy of Π_{r}^{t} in a product $J^{\prime} \times J^{\prime \prime}$ of E-sets $J^{\prime} \subset X_{r}^{d_{r}}, J^{\prime \prime} \subset X_{t}^{d_{t}}$. These results will establish Theorem 1.1 as all α-E-sets in the graphs $X_{r, t}^{3}$ happen with $\alpha<1$. Our plan for this task is sketched after the following example.

Figure 1. Representations of a (5/6)- and a (2/3)-E-set of $X_{2,2}^{3}$
Every α-E-set in $X_{2,2}^{3}$ avoids at least one of the six copies of Π_{2}^{2} in $X_{2,2}^{3}$. See the two instances of α-E-sets in $X_{2,2}^{3}$ in Figure 1, with each avoided copy of Π_{2}^{2} bounding a solid-gray square. On the left, the edges incident to a (5/6)-E-set are in thick trace. (In expressing n-tuples in S_{n} commas and parentheses are ignored). On the right, (to be compared with the construction in Section 7 and initiating the inductive construction of Section [8), a 1-sphere packing \mathcal{S} of $X_{2,2}^{3}$ is shown that covers $16=(2 / 3) 4$! vertices, with underlined black 1 -sphere centers. The 1 -spheres of \mathcal{S}, forming a (2/3)-E-set, induce the edges in thick black
trace. Of the other edges, those colored $(23)=(\epsilon)$, induced by the \mathcal{S}-spheres, forming a \mathcal{T} as in Subsection 1.1, are in thick light-gray. The eight vertices in the \mathcal{S}-spheres of \mathcal{T} not in the 1 -spheres of \mathcal{S} are light-gray (in contrast with the remaining vertices, in black) and span two 4 -cycles bounding solid gray squares as cited above.

1.4. A Subgraph of the Cayley Graph

In proving Theorems 10.110.2, we use that if $r=t>1$ then in each copy of Π_{r}^{t} (see Subsection (1.3)) a partition of $S_{r}=V\left(X_{r}^{2}\right)$ into E-sets (see Subsection (1.2) can be combined by concatenation with a corresponding partition of $A_{t}=V\left(X_{t}^{2}\left[A_{t}\right]\right)$, where A_{t} has index 2 in S_{t}. Then connected subgraph $X^{\prime}=X_{r, r}^{\prime}$ induced by 2^{r} of the $\binom{n}{r}$ copies of Π_{r}^{r} in $X_{r, r}^{3}$ has an E-set J, where X^{\prime} is the largest subgraph of $X_{r, r}^{3}$ with a perfect 1 -sphere packing. Also, $V\left(X^{\prime}\right)$ is a subgroup of S_{n} containing the E-set J as a subgroup. Theorem 10.1 implies that J, whose associated 1sphere packing has locally maximum density, cannot be extended to an E-set of $X_{r, r}^{3}$. If $r=t>2$, then J extends to a maximum nonuniform α-E-set of $X_{r, r}^{3}$ with a largest $\alpha>\frac{n}{r^{2}}$ such that $\alpha<1$. Corollary 10.3 allows to extend this case of $X_{r, r}^{3}$ to the case of $X_{r, t}^{3}(r>t>2)$, via puncturing restriction. This allows the completion of the proof of Theorem 6.1.

Remark 1.2. A conjecture in [4] says that no E-set of X_{n}^{d} exists if $d>2$. Remark 1 [3] says that a proof of this conjecture in Theorem 5 4], fails. This can be corrected for $d>2$ by restricting to either $n=4$ or n a prime $n>4$, proved in [3] for path graphs τ^{d}. It can be proved for any tree τ^{d} by 4 Lemma 6 , that generalizes the decomposition of $X_{r, t}^{3} \backslash F_{\epsilon}$ in Subsection 1.3,

2. JOHNSON GRAPHS

Let $2<r<n-1$ in \mathbb{Z}. Let $\Gamma_{n}^{r}=(V, E)$ be the edge-colored graph with $V=\left\{r\right.$-subsets of $\left.I_{n}\right\}$ and $t u \in E \Leftrightarrow t \cap u$ is an $(r-1)$-subset, said to be the color of $t u$. Note that Γ_{n}^{r} is the Johnson graph $J(n, r, r-1)$ [7]. A subgraph Ψ of Γ_{n}^{r} is tight if each two of its edges incident to a common vertex have the $(r-1)$-subsets representing their colors sharing exactly $r-2$ elements of I_{n}. A tight subgraph of Γ_{n}^{r} is exact if the vertices u, v, w of each $P_{3}=u v w$ in Ψ involve $r+2$ elements of I_{n}, that is: $|u \cup v \cup w|=r+2$. Exact spanning subgraphs Φ_{n}^{r} in Γ_{n}^{r} are applied in Sections 06 to packing 1 -spheres into $X_{r, t}^{3}$.

An exact cycle in Γ_{5}^{3} is $\psi_{5}=(345,234,123,512,451)$ (or in reverse, $\psi_{5}^{-1}=$ $(321,432,543,154,215))$, where each triple $a_{0} a_{1} a_{2}$ acquires the element a_{0} among those absent in the preceding triple and loses the element a_{2} among those present in the following triple, with 3 -strings taken cyclically mod 5 . This is also expressed as a condensed cycle (or $C C$) of triples $\psi_{5}=(12345)$, (resp., $\psi_{5}^{-1}=(54321)$),
whose successive composing triples yield corresponding successive terms of the original form of ψ_{5}, (resp., ψ_{5}^{-1}). We can take an exact $\Phi_{5}^{3} \in\left\{\left\{\psi_{5}, \psi_{5}^{\prime}\right\},\left\{\psi_{5}^{-1}\right.\right.$, $\left.\left.\psi_{5}^{\prime-1}\right\},\left\{\psi_{5}, \psi_{5}^{\prime-1}\right\},\left\{\psi_{5}^{-1}, \psi_{5}^{\prime}\right\}\right\}$, where

$$
\begin{align*}
& \psi_{5}=(345,234,123,512,451)=(12345), \psi_{5}^{\prime}=(135,413,241,524,352)=(13524) \tag{1}\\
& \psi_{5}^{-1}=(321,432,543,154,215)=(54321), \psi_{5}^{\prime-1}=(142,314,531,253,425)=(53142)
\end{align*}
$$

are expressed as cycles of triples in Γ_{5}^{3} and as their respective CCs.
If 3 divides n, some r-subsets do not form part of any cycle of a tight 2 factor Φ_{n}^{3}. For example, the triples 246 and 135 are in no such a cycle (of length necessarily at least 4), in particular in any tight Φ_{6}^{3}. This is solved via the treatment of Section 3, or by defining Φ_{6}^{3} to be constituted by a Hamilton cycle ψ_{6} of Γ_{6}^{3} expressed as follows. If $w=a_{0} a_{1} a_{2}$ and u are two contiguous triples in ψ_{6} with w preceding u, then a_{0} and a_{1} coincide with the last two elements of u. We append to w a subindex 1 or 2 according to whether a_{0} and a_{1} have their order reversed or preserved in u, respectively, with a_{0} as the sole element absent in the triple preceding w in ψ_{6}. One such ψ_{6} is expressible as:

$$
\begin{array}{r}
\psi_{6}=\left(321_{2}, 432_{2}, 543_{2}, 654_{2}, 165_{2}, 216_{1}, 412_{1}, 314_{2}, 531_{1}, 235_{1},\right. \\
\left.632_{2}, 163_{2}, 416_{2}, 541_{1}, 245_{1}, 642_{2}, 364_{1}, 563_{2}, 256_{2}, 125_{1}\right) \\
= \\
=(321,432,543,654,165,261,421,314,513,253 \tag{3}\\
\\
632,163,416,541,245,642,346,563,256,125)
\end{array}
$$

where display (3) is as display (2) but without the subindices 1 or 2 .
Now, tight 2-factors Φ_{7}^{3} and Φ_{8}^{3} in terms of CCs can be expressed respectively:

$$
\begin{align*}
& \{(1234567),(1357246),(1473625),(12457134672356)\} \tag{4}\\
& \{(12345678),(1357)(2468),(14725836),(1245782356813467),(1256)(2367)(3478)(1458)\},
\end{align*}
$$

both exemplifying the definition of bipermutation, in Section 3 below, the first being exact, the second not, because of the presence of non-exact 4 -cycles; thus, this Φ_{8}^{3} needs to be modified into an exact Φ_{8}^{3}, see Theorem [3.1,

3. CONDENSED NOTATION

In CC notation, if $3 \not \backslash n$ then a tight 2 -factor Φ_{n}^{3} of Γ_{n}^{3} can be seen as a collection of objects each of which is either: (a) a permutation ϕ_{i} of I_{n} written in cycle notation with empty fixed-point set, where $i \in I_{n}$ with $\left\lceil\frac{n-2}{2}\right\rceil \geq i$ is a constant increment $\bmod n(\equiv 0)$ from each entry of ϕ_{i} to the subsequent one, or (b) a generalization $\phi_{i, j}$ of ϕ_{i} that we call a bipermutation, where $i, j \in I_{n}$ with $\left\lfloor\frac{n-2}{2}\right\rfloor \geq j>i$ are alternate increments mod n in the composing CCs, with each element of I_{n} in such $\phi_{i, j}$ present twice (as noncontiguous entries).

Each permutation or bipermutation as in (a) or (b) above is said to be a μ-permutation (or $\mu \mathrm{P}$) of respective multiplicity $\mu=1$ or $\mu=2$. Thus, a tight 2 -factor Φ_{n}^{3} of Γ_{n}^{3} can be considered as a family of $\mu \mathrm{Ps}$. In these, for each $i \in I_{n}$
the triples of contiguous entries one of which is i are the classes of a partition \mathcal{P}_{i} of the set of vertices of Γ_{n}^{3} that as triples contain i. (For example, Φ_{5}^{3} below yields $\left.\mathcal{P}_{1}=\{\{451,512,123\},\{241,413,135\}\}, \mathcal{P}_{2}, \mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)$. Any such ϕ_{i} (resp., $\phi_{i, j}$) is formed by $\operatorname{gcd}(i, n)$ (resp., $\operatorname{gcd}(i+j, n)$) CCs of length $n / \operatorname{gcd}(i, n)$ (resp., $2 n / \operatorname{gcd}(i+j, n)$). Examples of Φ_{n}^{3} (or auxiliary Ψ_{n}^{3}) are:

$$
\begin{aligned}
\Phi_{5}^{3}= & \left\{\phi_{1}=(12345), \phi_{2}=(13524)\right\},(\mu=1,1) ; \\
\Psi_{6}^{3}= & \left\{\phi_{1}=(123456), \phi_{2}=(135)(246), \phi_{1,2}=(1245)(2356)(3461)\right\},(\mu=1,1,2) ; \\
\Phi_{7}^{3}= & \left\{\phi_{1}=(1234567), \phi_{2}=(1357246), \phi_{3}=(1473625), \phi_{1,2}=(12457134672356)\right\},(\mu=1,1,1,2) ; \\
\Phi_{8}^{3}= & \left\{\phi_{1}=(12345678), \phi_{2}=(1357)(2468), \phi_{3}=(14725836), \phi_{1,2}=(1245782356813467),\right. \\
& \left.\phi_{1,3}=(1256)(2367)(3478)(4581)\right\},(\mu=1,1,1,2,2) ; \\
\Psi_{9}^{3}= & \left\{\phi_{1}=(123456789), \phi_{2}=(135792468), \phi_{3}=(147)(258)(369), \phi_{4}=(159483726),\right. \\
& \phi_{1,2}=(124578)(235689)(346791), \phi_{1,3}=(125691458934782367), \\
& \left.\phi_{2,3}=(136824793581469257)\right\},(\mu=1,1,1,2,2,2) .
\end{aligned}
$$

For each integer $i>0$, let $A(i)=\left(A_{i, j} \mid j \in I_{\ell}\right)$ be the sequence of length $\ell=\left\lfloor\frac{i+2}{3}\right\rfloor$ defined as shown here (vertically, to produce columns $\left(B_{1}^{1}\right),\left(B_{2}^{1}, B_{2}^{2}\right)$, $\left.\left(B_{3}^{1}, B_{3}^{2}, B_{3}^{3}\right),\left(B_{4}^{1}, B_{4}^{2}, B_{4}^{3}, B_{4}^{4}\right), \ldots\right)$ and then horizontally):

$$
\begin{array}{llllll}
A(1)=(1), & A(4)=(2,2), & A(7)=(4,3,3), & A(10)=(5,5,4,4), & A(13)=(7,6,6,5,5), & A(16)=(8,8,7,7,6,6), \\
A(2)=(1), & A(5)=(3,2), & A(8)=(4,4,3), & A(11)=(6,5,5,4), & A(14)=(7,7,6,6,5), & A(17)=(9,8,8,7,7,6), \\
A(3)=(2), & A(6)=(3,3), & A(9)=(5,4,4), & A(12)=(6,6,5,5), & A(15)=(8,7,7,6,6), & A(18)=(9,9,8,8,7,7),
\end{array}
$$

for $i=1,2, \ldots, 18$, and then via $\left(B_{\ell}^{k}\right)^{T}=\left(A_{3 \ell-2, k}, A_{3 \ell-1, k}, A_{3 \ell, k}\right)$, where $1<\ell$ and $k \in I_{\ell}$, by starting with B_{ℓ}^{ℓ}, (e.g. $B_{6}^{6}=(6,6,7)$), then continuing with $B_{\ell}^{\ell-1}$ (e.g. $\left.B_{6}^{5}=(6,7,7)\right)$ and so on, by descending induction:

$$
\begin{aligned}
& B_{\ell}^{\ell}=\quad(\ell, \ell \quad, \ell+1) ; \\
& B_{\ell}^{\ell-1}= \\
& B_{\ell}^{k-2}=B_{\ell}^{k}+(1, \quad 1, \quad 1), \text { for } k=\ell, \ell-1, \ldots, 4,3 .
\end{aligned}
$$

If $n=i+2$, then these $A(i)$ provide CCs in tight 2-factors Φ_{n}^{3} (or in auxiliary families Ψ_{n}^{3} if 3 divides n) as follows. By letting $\phi_{0, j}=\phi_{j}$ for $j=1, \ldots A_{i, 1}$, it is seen that $A(i)$ encodes (via CCs) $A_{i, k}-k+1 \mu \mathrm{Ps}$, namely $\phi_{k-1, k}, \ldots, \phi_{k-1, A_{i, k}}$ of multiplicity $\mu=1$ if $k=1$ and $\mu=2$ otherwise, unless $k=1$ and $3 \mid n$, in which case $A(i)$ encodes $A_{i, 1}-1$ permutations, namely $\phi_{1}, \ldots, \phi_{\frac{n}{3}-1}, \phi_{\frac{n}{3}+1}, \ldots, \phi_{A_{i, 1}}$, since now $\phi_{\frac{n}{3}}$ is composed by $\frac{n}{3}$ isolated triples. Thus, the $\left|V\left(\Gamma_{n}^{3}\right)\right|$ triples do not form a tight 2 -factor Φ_{n}^{3} if and only if $n=3 \kappa$ with $\kappa \in \mathbb{Z}$, because then ϕ_{κ} has κ isolated triples. This is fixed as follows, (where we also write $\phi_{j, j}=\phi_{j}$ when applicable). If $\kappa>1$, then ϕ_{κ} and $\phi_{1, \kappa-1}$ are modified into a tight cycle ϕ^{\prime} in Γ_{n}^{3}, shown for $\kappa=2\left(\right.$ where $\left.\phi_{1, \kappa-1}=\phi_{1,1}=\phi_{1}\right)$ as $([135], 156,654,543,432,[246], 612,123)=$ ([135], 156432, [246], 6123), with bracketed isolated triples and the rest in CC notation. For $\kappa>2$, the following concatenating rows are given by ascending induction via the alternate increments 1 and $k-1$, from the second to the last
row, while the first row is descending, yielding a tight cycle:

$$
\begin{aligned}
& ([1(\kappa+1)(2 \kappa+1)], 1(2 \kappa+2)(2 \kappa+1)(\kappa+2)(\kappa+1) 21(2 \kappa+2), \\
& {[2(\kappa+2)(2 \kappa+2)], 23(\kappa+2)(\kappa+3)(2 \kappa+2)(2 \kappa+3) 23, \cdots} \\
& i(\kappa+i)(2 \kappa+i)], i(i+1)(\kappa+i)((\kappa+i+1)(2 \kappa+i)(2 \kappa+i+1) i(i+1), \ldots \\
& [\kappa(2 \kappa)(3 \kappa)], \kappa(\kappa+1)(2 \kappa)(2 \kappa+1)(3 \kappa) 1 \kappa(\kappa+1)) .
\end{aligned}
$$

Theorem 3.1. If $5 \leq n \in \mathbb{Z}$ is odd then the Johnson graph $\Gamma_{n}^{3}=J(n, 3)$ has an exact 2-factor Φ_{n}^{3} the length of whose cycles is at least 5 .

Proof. The proof arises from the previous arguments.
Clearly, Theorem 3.1 holds for n odd. The 4-cycles of Φ_{n}^{3}, appearing just for n even, can be modified altogether in order to yield exact cycles of length at least 5. The tool we use is adequate for the applications of Section 4. If $n=2 m$ with $m \in \mathbb{Z}$, then a tight 2-factor Φ_{n}^{3} of Γ_{n}^{3} has $\binom{m}{2} 4$-cycles. They participate of those $\phi_{i, m-i}$ for which $0<i \leq \frac{m}{2}$. We would like to modify those $\phi_{i, m-i}$ for which $0<i<\frac{m}{2}$ towards an exact 2 -factor Φ_{n}^{3} by replacing it by cycles that continue the following top and bottom patterns:
$\ldots[j(j+i)(j+m), \quad(j+i)(j+m)(j+m+i)],[(j+i)(j+2 i)(j+i+m), \quad(j+2 i)(j+i+m)(j+2 i+m)] \ldots$
$\ldots[(j+i)(j+m)(j+m+i),(j+m)(j+m+i) j], \quad[(j+2 i)(j+i+m)(j+2 i+m),(j+i+m)(j+2 i+m)(j+i)], \ldots$
where $1 \leq j \leq n$. For example, $\phi_{1,2}$ for Φ_{6}^{3} can be modified into

$$
\left.\begin{array}{lll}
([124,245],[235,356],[346,461]) & \text { or condensed } & ([1245],[2356],[3461]) \\
([451,512],[562,623],[613,134]) & \text { in CC as: } & ([4512],[5623],[6134]),
\end{array} \quad \text { (where square brackets surround }\right) \text { vertices in a common 4-cycle). }
$$

If $i=\frac{m}{2} \in \mathbb{Z}$, we would like to modify $\phi_{i, i}$ and $\phi_{\left\lfloor\frac{i}{2}\right\rfloor,\left\lceil\frac{i}{2}\right\rceil}$ together towards an exact 2 -factor Φ_{n}^{3}. Here, we have two cases, the second one set between parentheses, where $m=2 i=2 p: x=\frac{p}{2} \in \mathbb{Z}$ (resp., $x \in\left\{\left\lfloor\frac{p}{2}\right\rfloor,\left\lceil\frac{p}{2}\right\rceil\right\} \cap 2 \mathbb{Z}$, otherwise). In the first case, Φ_{n}^{3} can be modified towards an exact 2 -factor by replacing $\phi_{p, p}$ and $\phi_{x, x}$ by one or more cycles that continue the following pattern, where $1 \leq j \leq p$

$$
\begin{array}{ll}
\ldots([j(j+p)(j+3 p)(j+2 p)], & (j+3 p)(j+5 x)(j+2 p)(j+3 x), \\
\quad[(j+5 x)(j+7 x)(j+3 x)(j+x)], & (j+7 x) j(j+x)(j+2 x)(j+3 x), \ldots
\end{array} .
$$

For example, $\phi_{2,2}$ and $\phi_{1,1}$ for Φ_{8}^{3} are modified into ([1375], 7654, [6842], 8123) ([3517], 1876, [8624], 2345). Of the remaining case, $x \in\left\{\left\lfloor\frac{p}{2}\right\rfloor,\left\lceil\frac{p}{2}\right\rceil\right\} \cap 2 \mathbb{Z}$, we offer example (C) in Section 5. using $\phi_{3,3}$ and $\phi_{1,2}$ for Φ_{12}^{3}.

4. APPLICATION TO SPHERE PACKING

The exact 2-factors above combine with the decomposition of $X_{r, t}^{3} \backslash F_{\epsilon}$ into copies of Π_{r}^{t} in Subsection 1.3. In preparation for Theorem6.1, we provide two examples.

First, $X_{3,2}^{3} \backslash F_{\epsilon}$, (where (34) $=(\epsilon)$), splits into ten copies of $\Pi_{3}^{2}=X_{3}^{2} \square X_{2}^{1}$. Each 2×6 array in Figure 2 shows one such copy, composed by: (i) two copies of X_{3}^{2} (shown as contiguous rows), i.e. two 6 -cycles (obtained in the upper-left corner, by concatenating 45 or 54 to each entry of $\left(312, \xi_{3}^{1}, 321, \xi_{2}^{2}, 123, \xi_{1}^{1}, 132, \xi_{3}^{2}\right.$,
$31245321451234513245 \underline{23145} 21345$
312543215412354132542315421354
342513245142351432512345124351
342153241542315432152341524315
345123541245312435125341254312 345213542145321435215342154321

145231542345123415235142354123 145321543245132415325143254132

125341523425134215345123452134 125431524325143215435124352143

153421354253142513423154235142
153241352453124513243152435124
143251342543125413253142534125
143521345243152413523145234152
$1425312453421534125321453 \underline{24153}$ $1423512435 \overline{42135} 4123521435 \mathbf{2 4 1 3 5}$

542315243142531452312543124531
542135241342513452132541324513
532145231432514352142531423514
532415234132541352412534123541

Figure 2. A uniform (5/6)-E-set in $X_{3,2}^{3}$ via an exact Φ_{5}^{3}

TABLE I

$X(123) \square X(456)$	321456	123546	$X(236) \square X(145)$	632145	236514
$X(234) \square X(156)$	432516	324156	$X(136) \square X(245)$	163425	631245
$X(345) \square X(126)$	543612	435216	$X(146) \square X(235)$	416523	164325
$X(456) \square X(123)$	654123	546312	$X(145) \square X(236)$	541236	415623
$X(156) \square X(234)$	165234	651423	$X(245) \square X(136)$	245613	542136
$X(126) \square X(345)$	216435	162534	$X(246) \square X(135)$	642315	246513
$X(124) \square X(356)$	412356	214635	$X(346) \square X(125)$	364512	643215
$X(134) \square X(256)$	314526	413256	$X(356) \square X(124)$	563214	365412
$X(135) \square X(246)$	531246	315426	$X(256) \square X(134)$	256134	562314
$X(235) \square X(146)$	235614	532146	$X(125) \square X(346)$	125346	251634

$231, \xi_{2}^{1}, 213, \xi_{1}^{2}$), with edges represented by the copies ξ_{j}^{i} of X_{2}^{1}, using Subsection 1.2); (ii) six column-wise copies of X_{2}^{1}; (iii) six 4-cycles given by contiguous columns. The five copies of Π_{3}^{2} on the left of the figure are in ordered correspondence with the terms of the 5-cycle $\psi_{5}^{-1}=(321,432,543,154,215)$ in display (11): the black vertices in each of the five copies of Π_{3}^{2} determine two 1-spheres with the two dark-gray vertices in the subsequent copy of Π_{3}^{2}, where: (a) the top copy of Π_{3}^{2} is taken to be subsequent to the bottom copy; (b) the center of each such 1 -sphere is underlined; (c) one of the two underlined vertices in each copy of Π_{3}^{2} starts with the triple given by a corresponding term in ψ_{5}; and (d) the remaining vertices are light-gray. For example, a 1 -sphere here is given by the underlined-black vertex 32145 (forming part of the product $J=\xi_{1}^{3} \times \xi_{4}^{4}$ of E-sets in $\Pi_{3}^{2}=X_{3}^{2} \square X_{2}^{1}$) in the top copy of Π_{3}^{2}, its black neighbors 12345 , 31245 and 32154 and the dark-gray vertex 32415 in the subsequent copy of Π_{3}^{2}. Similarly, the five copies of Π_{3}^{2} on the right of Figure 2 are linked to the 5 -cycle

Figure 3. A uniform (2/3)-E-set in $X_{3,3}^{3}$ via an exact Φ_{6}^{3}
$\psi_{5}^{\prime}=(135,413,241,524,352)$. As a result, the underlined vertices yield a (2/3)-E-set.

Second, $X_{3,3}^{3}$ admits a $(2 / 3)$-E-set, for instance by means of the Hamilton cycle ψ_{6} in displays (2)-(3), illustrated in Figure 3 where each 6×6 array stands for the disposition of vertices in an embedding of a copy of Π_{3}^{3} in a torus. There are $20=\binom{6}{3}=\binom{n}{r}$ such copies. They are in ordered correspondence with the terms of ψ_{6} (clarified below) starting with the ten 6×6 arrays on the left of the figure followed by the remaining ten to their right. In each of these twenty arrays, (call it Y), we select a product $J=J^{\prime} \times J^{\prime \prime}$ of E-sets J^{\prime} and $J^{\prime \prime}$ of X_{3}^{2}, with the four degree- 5 vertices of J underlined, two of them starting with the triple of a corresponding term in ψ_{6}. The members of the (graph-theoretical) open neighborhoods they define are shown as 16 black vertices in Y and four dark-gray vertices in the 6×6 array Y^{\prime} that follows Y. Remaining vertices are light-gray. For example, the product J in the upper-left 6×6 array Y in Figure 3 (with $J^{\prime}=\xi_{1}^{3}$ and $J^{\prime \prime}=\xi_{4}^{4}$, using Subsection (1.2) is given by the underlinedblack vertices 321456 , 231456, 321465 and 231465 , and their corresponding black neighbors together with the four dark-gray vertices in Y^{\prime}.

Figure 3 is encoded in Table I, having each copy of Π_{3}^{3} denoted on the left as $X(Y) \square X(Z)$, where Y and Z are respectively the common initial and terminal triples of the composing vertices, followed by one of the underlined-black vertices and then by one of its dark-gray vertices.

5. CYCLIC ORDERED PARTITIONS

No exact 2-factor Φ_{6}^{4} exists. This is remedied in example (D) below. On the other hand, an exact 2 -factor Φ_{7}^{4} is given by the CCs $\phi_{1}, \phi_{2}, \phi_{3}$, that we equalize to the respective cyclic ordered partitions (or COPs) $1114=\phi_{1}, 2221=\phi_{2}, 1213=\phi_{3}$ of the integer 7 (associated with the successive difference triples 111, 222, 333 of quadruples) and by alternating the quadruples in the COPs

$$
1123=\{1235,2346,3457,4561,5672,6713,7124\}, \quad 2113=\{1345,2456,3567,4671,5712,6123,7234\}
$$

into the exact CC (1235, 1345, 4561, 4671, 7124, 7234, 3457, 3567, 6713, 6123, 2346, $2456,5672,5712)$. On the other hand, Γ_{7}^{5} has COPs $11113=\phi_{1}, 11122=\phi_{2}$ and $11212=\phi_{3}$, yielding easily an exact 2 -factor Φ_{7}^{5}.

To be resolved in example (E) below, the COPs for Γ_{8}^{4} are: $1115=\phi_{1}$, $2222=\phi_{2}, 2123=\phi_{3}, 1313,1124,1133,1214,1223,2114,2213$. In detail:

[^0]We obtain the following exact cycles (apart from ϕ_{1} and ϕ_{3}) by alternating the COP pairs $\{1124,1133\},\{1214,1223\}$ and $\{2114,2213\}$:
$(1235,1236,2346,2347,3457,3458,4568,4561,5671,5672,6782,6783,7813,7814,8124,8125)$,
$(1245,1246,6712,6713,3467,3468,8134,8135,5681,5682,2356,2357,7823,7824,4578,4571)$,
$(1345,1356,3567,3578,5781,5712,7123,7134)(2456,2467,4678,4681,6812,6823,8234,8245)$.

A uniform E-set in $X_{4,4}^{3}$ is obtained from this in example(E) below.
Exact spanning subgraphs of largest degree 3 in Γ_{n}^{r} whose components are unicyclic caterpillars, (i.e. graphs for which the removal of its pendant vertices makes them cyclic) will be called nests. Then, a nest leads to a uniform α-E-set with $\alpha=\frac{n}{r t}$. For example: (A), the nest of Γ_{5}^{3} formed by the CC (12345) plus the edges $(132,135),(423,421),(354,352),(415,413)$ and $(251,254)$ leads to a uniform (5/6)-E-set; (B) by modifying Ψ_{6}^{3} deleting the isolated triples 135 and 246 and adding to the $\mathrm{CC}(123456)$ the edges $(123,135)$ and $(456,246)$, again a $(2 / 3)$-E-set in $X_{3,3}^{3}$ is obtained; (C) In Γ_{12}^{3}, we modify $\phi_{3,3}$ and $\phi_{1,2}$ by inserting into the following three 8 -cycles of $\phi_{1,2}$ the edge quadruples following them in the following display:
$(134679 a c),(134,147),(467,47 a),(79 a, 7 a 1),(a c 1, a 14) ;$
$(24578 a b 1),(245,258),(578,58 b),(8 a b, 8 b 2),(b 12, b 25) ;$
$(35689 b c 2),(356,369),(689,69 c),(9 b c, 9 c 3),(c 23, c 36) ;$
the resulting nest yields a (4/9)-E-set in $X_{3,9}^{3}$; (D) In Γ_{6}^{4}, the COPs 1113 and 1122 alternate into the exact 12 -cycle ($1234,1235,2345,2346,3456,3451,4561$, $4562,5612,5613,6123,6124)$; a nest is obtained by attaching edges with pendant vertices in the COP $1212=\{1245,2356,3461\}$, say edges $(1235,1245)$, $(3451,3461)$ and $(5613,2356)$; this leads to a uniform $(1 / 4)$-E-set in $X_{4,2}^{3}$; an alternate nest of Γ_{6}^{4} is formed by the 5 -cycles

$$
\begin{aligned}
(12345) \mid 6 & =(1236,2346,3456,4516,5126) \\
(62413) \mid 5 & =(6245,2415,4135,1365,3625)
\end{aligned}
$$

plus the edges $(6245,1246),(2415,1234),(4135,5234),(1365,1346),(3625,5123)$; (E) the exact cycles in Γ_{8}^{4} cited above are taken into a nest by adding to them the following edges ending in the COPs 1313 and 2222: (1245,1256), (6712,2367), $(3467,3478),(8134,4581),(8135,1357),(5682,2468)$; this leads to a $(1 / 2)$-E-set in $X_{4,4}^{3} ;(\mathbf{F})$ In a likewise fashion, we obtain a nest of Γ_{10} formed by two 10 cycles for each of COPs 1117 and 3331 , six unicyclic caterpillars (two over a 20 -cycle and four over a 10 -cycle) for COP pairs $\{1126,1135\},\{1216,1315\},\{1252,1522\}$, $\{1324,1342\}$ with pendant edges to the respective COP pairs $\{1162,1432\},\{1234$, $1225\},\{1243,1153\},\{1144,2233\}$, and five unicyclic caterpillar over a 4 -cycle obtained by alternating the COPs 2323 and 1414 with the COP 1423, together
with opposing pendant edges to the COP 2226; this leads to a $(2 / 5)$-E-set in $X_{5,5}^{3}$.

Motivated by these six examples, we conjecture that every Γ_{n}^{r} contains a nest Φ_{n}^{r} whose subgraph resulting from the removal of its pendant vertices is the disjoint union of n - and $2 n$-cycles. This would yield a uniform α-E-set in $X_{r, t}^{3}$ with $\alpha=\frac{n}{r t}$. At the moment, we just know that if $1<t, 2<r$ and $n=r+t$, then $\frac{n}{r t}$ is an upper bound of those α for which there is a uniform α-E-set. This will be used in Theorem 6.1 below.

For $n>4$, exact non-spanning subgraphs of Γ_{n}^{r} yield $\alpha<\frac{n}{r t}$. To exemplify this, we reselect the centers of disjoint 1 -spheres in Figures 2 and 3 by taking all vertices in a copy of Π_{r}^{t} as dark-gray and its neighbors via F_{ϵ} underlined-black, then setting as dark-gray enough vertices at distance 2 from underlined-black vertices, traversing F_{ϵ} to set underlined-black vertices in all copies of Π_{r}^{t}. One can select more than one copy of Π_{r}^{t} to be completely dark-gray, e.g. those copies containing vertices 123456 and 654321 in $X_{3,3}^{3}$ and proceed as above until the twenty copies of Π_{r}^{t} have underlined-black vertices, but the value of α in such cases is still less than $\frac{n}{r t}$.

6. UNIFORM SPHERE PACKING

Assume $4<n=r+t$, where $r, t \in \mathbb{Z}$. Then each copy Π^{\prime} of $\Pi_{r}^{t}=X_{r}^{d_{r}} \square X_{t}^{d_{t}}$ in $X_{r, t}^{3}$, where $d_{r}, d_{t} \in\{1,2\}$, has $r!t!$ vertices. In view of Sections 810 below (showing that covering one Π^{\prime} with 1 -spheres of a perfect sphere packing \mathcal{S} of $X_{r, t}^{3}$ prevents the E-set associated to \mathcal{S} for being uniform), it arises from Sections $4 \sqrt{5}$ that uniform α-E-sets J in $X_{r, t}^{3}$ must have $\alpha \leq \frac{n}{r t}$, since their intersection with each Π^{\prime} is contained at most in a product of E-sets. If $\alpha=\frac{n}{r t}$ then each $\Pi^{\prime} \cap J$ equals $J^{\prime} \times J^{\prime \prime}$. Here, J^{\prime} and $J^{\prime \prime}$ are E-sets in $X_{r}^{d_{r}}$ and $X_{t}^{d_{t}}$ of the forms ξ_{i}^{r} $(1 \leq i<r)$ and $\xi_{j}^{r^{*}}\left(r^{*}<j \leq n\right)$ respectively, (instead of ξ_{i}^{1} with $1<i \leq n$, as in Subsection (1.2). Let $N\left[J^{\prime} \times J^{\prime \prime}\right]$ be the union of the 1 -spheres centered at the vertices of $J^{\prime} \times J^{\prime \prime}$. Then $\Pi^{\prime}-N\left[J^{\prime} \times J^{\prime \prime}\right]$ is the disjoint union of $(r-1)(t-1)$ copies of Π_{r-1}^{t-1}. Also, each Π^{\prime} intersects J in $(r-1)!(t-1)$! vertices. These are the centers of pairwise disjoint 1 -spheres, yielding a total of $(r-1)!(t-1)!n$ vertices in all those spheres. This way, $\frac{n}{r t} n$! vertices of $X_{r, t}^{3}$ become covered by pairwise disjoint 1-spheres in $X_{r, t}^{3}$. This together with the outcome of the penultimate paragraph of Section 1 yields a maximal imperfect uniform 1-sphere packing of $X_{r, t}^{3}$. Such a packing ensures the nonexistence of E-sets of $X_{r, t}^{3}$ via the arguments of Theorems 10.110 .2 and Corollary 10.3 below.

Theorem 6.1. Let $4<n=r+t,(r, t \in \mathbb{Z})$. Then, there are at most $\frac{n}{r t} n$! vertices in the union of 1 -spheres of an imperfect uniform 1-sphere packing of $X_{r, t}^{3}$. This ensures the nonexistence of E-sets of $X_{r, t}^{3}$.

7. LOCALLY MAXIMUM PACKING DENSITY

The techniques used in this and four following sections lead to what we may call locally maximum packing density, for we will pack as many 1-spheres as possible in each copy of Π_{r}^{t} according to the decomposition of $X_{r, t}^{3} \backslash F_{\epsilon}$ in Subsection 1.3,

A 1 -sphere packing \mathcal{S} of $X_{3,3}^{3}$ is indicated in Figure 4, containing eight 6×6 arrays (in the fashion of Figure 3). In each such array in Figure 4, the black 6 -tuples represent centers of 1 -spheres in \mathcal{S}. There are two such centers in the first, (resp., third), [resp., fifth] row, namely in columns 1 and 4, (resp. 3 and 6), [resp., 5 and 2]. Each dark-gray 6-tuple stands for a vertex adjacent to one of the said 1 -sphere centers in a different copy of Π_{3}^{3} via transposition $(\epsilon)=(34)$. There are two of these dark-gray 6 -tuples in the second, (resp., fourth), [resp., sixth] row of each 6×6 array, namely in columns 2 and 5, (resp., 4 and 1), [resp., 6 and 3]. This divides the black and dark-gray 6 -tuples in each 6×6 array into three 2×2 sub-arrays obtained from the diagonal black 6 -tuples by transpositions (12) and (56) and their composition. The left of Figure 5 represents, with the same 6 -tuple colors of Figure 4, its upper-left copy of Π_{3}^{3}, namely $X(123) \square X(456)$.

TABLE II

$X(123) \square X(456)$	123456	213456	312564	132564	231645	321645
$X(214) \square X(365)$	214365	124365	421653	241653	142536	412536
$X(326) \square X(154)$	326154	236154	632541	362541	263415	623415
$X(135) \square X(246)$	135246	315246	513462	153462	351624	531624
$X(246) \square X(135)$	246135	426135	624351	264351	462513	642513
$X(154) \square X(326)$	154326	514326	415263	145263	541632	451632
$X(365) \square X(214)$	365214	635214	536142	356142	653421	563142
$X(456) \square X(123)$	456123	546123	645231	465231	564312	645312

Table II lists on its leftmost column the copies of Π_{3}^{3} of Figure 4, followed to their right by three pertaining pairs of 6 -tuples encodable as $\left(a_{i, 1}, a_{i, 2}, a_{i, 3}\right)$, where $i \in I_{8}$. For instance, $a_{1,1}=\{123456,213456\}, a_{1,2}=\{312564,132564\}$, etc. Consider the following pairs of pairs of black 6 -tuples in the main diagonals of the eight 6×6 arrays in Figure 4 related by the permutation (12)(34)(56):

$$
\begin{align*}
& \left\{a_{1,1}, a_{2,1}\right\},\left\{a_{1,2}, a_{4,1}\right\},\left\{a_{1,3}, a_{3,1}\right\},\left\{a_{2,2}, a_{5,1}\right\},\left\{a_{2,3}, a_{6,2}\right\},\left\{a_{3,2}, a_{7,1}\right\}, \\
& \left\{a_{3,3}, a_{5,2}\right\},\left\{a_{4,2}, a_{6,1}\right\},\left\{a_{4,3}, a_{7,2}\right\},\left\{a_{5,3}, a_{8,2}\right\},\left\{a_{6,3}, a_{8,1}\right\},\left\{a_{7,3}, a_{8,3}\right\} . \tag{5}
\end{align*}
$$

The eight copies of Π_{3}^{3} in Figure 4 induce a subgraph $X^{\prime}=X_{3,3}^{\prime}$ in $X_{3,3}^{3}$ (see right of Figure 5) whose vertex set admits a partition into 481 -spheres around the black 6 -tuples, with a partial total of 288 vertices. Moreover, X^{\prime} has an E-set J formed by the black 6-tuples, encoded in the pairs of display (5). Consider the vertices of the remaining twelve copies of Π_{3}^{3} in $X_{3,3}^{3}$ at distance 2 from a

123456132456231456213456312456321456 123546132546231546213546312546321546 123645132645231645213645312645321645 123465132465231465213465312465321465 123564132564231564213564312564321564 123654132654231654213654312654321654

214365241365142365124365421365412365 214635241635142635124635421635412635 214536241536142536124536421536412536 214356241356142356124356421356412356 214653241653142653124653421653412653 214563241563142563124563421563412563

326154362154263154236154632154623154 326514362514263514236514632514623514 326415362415263415236415632415623415 326145362145263145236145632145623145 326541362541263541236541632541623541 326451362451263451236451632451623451

135246153246351246315246513246531246 135426153426351426315426513426531426 135624153624351624315624513624531624 135264153264351264315264513264531264 135462153462351462315462513462531462 135642153642351642315642513642531642

246135264135462135426135624135642135 246315264315462315426315624315642315 246513264513462513426513624513642513 246153264153462153426153624153642153 246351264351462351426351624351642351 246531264531462531426531624531642531

154326145326541326514326415326451326 154236145236541236514236415236451236 154632145632541632514632415632451632 154362145362541362514362415362451362 154263145263541263514263415263451263 154623145623541623514623415623451623

365214356214653214635214536214563214 365124356124653124635124536124563124 365421356421653421635421536421563421 365241356241653241635241536241563241 365142356142653142635142536142563142 365412356412653412635412536412563412

456123465123564123546123645123654123 456213465213564213546213645213654213 456312465312564312546312645312654312 456132465132564132546132645132654132 456231465231564231546231645231654231 456321465321564321546321645321654321

Figure 4. Local maximum packing density in $X_{3,3}^{3}$

For $r=3$, the copy of the r-cube shown above is the graph obtained from $X_{r, r}^{\prime}$ by collapsing each component of $X_{r, r}^{\prime} \backslash F_{\varepsilon}$ into a corresponding vertex in the r-cube, with each edge in it representing (r-1)! edges of F_{ε}.

Figure 5. Embedding of $X(123) \square X(456)$ in a torus and a representation of $X_{3,3}^{\prime}$
center of a 1 -sphere among the cited 48 . There are 192 such vertices. Each of the remaining 240 vertices in these twelve copies is at distance 3 from the center of one of the 481 -spheres.

Table III allows to select 24 centers of pairwise disjoint 1-spheres to cover half of those 240 vertices: just choose one 1 -sphere center per pair of two 6 -tuples in each box in the table. There are 144 vertices in the selected 241 -spheres. In sum, we obtain $\frac{3}{5} 6$! vertices of $X_{3,3}^{3}$ packed into $72=48+241$-spheres.

Let us apply the definitions of double-sphere and \mathcal{S}-sphere in Subsection 1.1 with $X=X_{3,3}^{3}$ and $X^{\prime}=X_{3,3}^{\prime}$. By adding to each 1 -sphere Σ in the above packing of X^{\prime} the end-vertices of the (ϵ)-colored edges departing from Σ, where $(\epsilon)=(34)$, a corresponding \mathcal{S}-sphere Σ^{\prime} is obtained enlarging Σ. On the other hand, the 241 -spheres selected above can be extended into 24 double-spheres, which forms a double-sphere packing. A transformation of the 1 -sphere packing \mathcal{S} in Figure 3 into a perfect special packing of $X_{r, t}^{3}$ is obtained by enlarging the 481 -spheres that pack perfectly $X_{3,3}^{\prime}$ into corresponding \mathcal{S}-spheres by addition of the 192 vertices not in $X_{3,3}^{\prime}$ and at distance 2 from the centers of the 481 -spheres. The reader may compare this with the \mathcal{S}-sphere packing of $X_{2,2}^{3}$ suggested on the right of Figure 1.

TABLE III

$X(162) \square X(534)$	162534	612534	162543	612543
$X(165) \square X(234)$	165234	615234	165243	615243
$X(163) \square X(425)$	163425	613425	163452	613452
$X(164) \square X(325)$	164325	614325	164352	614352
$X(256) \square X(134)$	256134	526134	256143	526143
$X(251) \square X(634)$	251634	521634	523416	521643
$X(431) \square X(652)$	431652	341652	431625	341652
$X(436) \square X(152)$	436152	346152	436125	346152
$X(432) \square X(516)$	432516	342516	432561	342561
$X(435) \square X(216)$	435216	345216	435261	345261
$X(524) \square X(613)$	524361	254361	524316	254316
$X(526) \square X(413)$	523461	523461	523416	523416

Selecting instead 24 centers of 1 -spheres to be the neighbors via the transposition (23) (or (13)) of the 24 centers allowed above by means of Table III leaves room to selecting additional 24 centers of 1 -spheres in the six still untouched copies of Π_{3}^{3}. The selection of the 24 new centers of 1 -spheres in those six copies must be done via the transposition (45) (or (46)). This yields a packing of $X_{3,3}^{3}$ by 961 -spheres comprising $576=\frac{4}{5}\left|V\left(X_{3,3}^{3}\right)\right|$ vertices. Observe that the 96 corresponding centers are obtained by modifying the original 1 -sphere centers both adjacently and alternatively, idea to be generalized in Theorems 10.2 ,

8. RENUMBERING TREE VERTICES

In generalizing the locally maximum packing density of Section 7 , we found it convenient to modify the order of vertices of the tree $\tau_{r, t}^{3}$ in the paragraph in

Section $\mathbb{1}$ containing items (i)-(ii) by letting: (i^{\prime}) 1 and $r^{*}=r+1$ denote the vertices of respective degrees r and t in $\tau_{r, t}^{3}$ so that $\epsilon=1 r^{*}$; (ii') $2, \ldots, r$ (resp., $r^{*}+1, \ldots, n$) denote the vertices adjacent to vertex 1 (resp., r^{*}) in $\tau_{r, t}^{3}$.

Assuming this modification, we pass to exemplify it via Figure 5, on whose top a representation of the copy $X(12) \square X(34)$ of Π_{2}^{2} is given that presents, before and after (symbol) \square, the copies of K_{2} forming $X(12)$ and $X(34)$, respectively. Similar representations can be given for $X(32) \square X(14), X(14) \square X(32)$ and $X(34) \square X(12)$, forming with $X(12) \square X(34)$ a subgraph $X_{2,2}^{\prime}$ of $X_{2,2}^{3}$ preceding in spirit the subgraph $X_{3,3}^{\prime}$ of $X_{3,3}^{3}$ in Section 7. The two remaining squares $X(13) \square X(24)$ and $X(24) \square X(13)$ coincide with those whose interiors are shaded in light-gray color in Figure 1 and form a second subgraph $X_{2,2}^{\prime \prime}$ of $X_{2,2}^{3}$.

Figure 6. Interpretations of $\Pi_{2}^{2}, \Pi_{3}^{3}, \Pi_{4}^{4}$ and Π_{4}^{3}
Subsequently in Figure 6, a similar representation of the cartesian product $X(123) \square X(456)$ is given that shows, before and after \square, the 6 -cycles $X(123)$ and $X(456)$, respectively, by disposing adjacent vertices contiguously: horizontally, vertically and diagonally between upper-left and lower-right. Here, the black centers of the three 1 -spheres in the main diagonal of the 6×6 array representing $X(123) \square X(456)$ as in Figure 4 (but with the vertex order assumed above in this section) are recovered by: (A) taking a partition of $V(X(123))$ into the E-sets $\xi_{1}^{1}, \xi_{2}^{1}, \xi_{3}^{1}$ (see Subsection (1.2) given by: (i) underlined-black color for $\xi_{1}^{1}=\{123,132\}$, (ii) (not underlined) black color for $\xi_{2}^{1}=\{213,231\}$ and (iii) underlined-dark-gray color for $\xi_{3}^{1}=\{312,321\}$; (B) assigning the three colors of (A) respectively to the even-parity vertices in $X(456)$ as follows: (i) $456 \in \xi_{4}^{4}$,
(ii) $564 \in \xi_{5}^{4}$ and (iii) $645 \in \xi_{6}^{4}$, while the odd-parity vertices, namely 465, 546 and 654 , shown in light-gray, do not intervene; (C) concatenating the vertices of $X(123)$ and $X(456)$ having a common color.

Now, we embed each copy of X_{4}^{2} into a torus, as in the lower-right corner of Figure 6, with its copies $\xi_{i}^{j},\left(j \in\{2,3,4\} ; i \in I_{4}\right)$, of X_{3}^{2} disposed as above into their place. This way, the previous representation of $X(123) \square X(456)$ is extended to Π_{4}^{4} as in the lower two instances of Figure 6, where the shown cartesian products can be denoted $X(1234) \square X(5678)$ and $X(1234) \square X(567)$, this one obtained by restricting, i.e. puncturing $X(1234) \square X(5678)$.

TABLE IV

$X_{3,3}^{3} \backslash F_{\epsilon}=$	$20\left(\Pi_{3}^{3}\right)$	$3 / 3=$	1	$5!/ 20$	$=6$	$3!3!/ 6=6$
$X_{4,3}^{3} \backslash F_{\epsilon}=$	$35\left(\Pi_{4}^{3}\right)$	$12 / 3=$	4	$6!/ 35$	$\notin \mathbb{Z}$	
$X_{4,4}^{3} \backslash F_{\epsilon}=$	$70\left(\Pi_{4}^{4}\right)$	$12 / 4=$	3	$7!/ 70$	$=72$	$4!4!/ 72=8$
$X_{5,3}^{3} \backslash F_{\epsilon}=$	$56\left(\Pi_{5}^{3}\right)$	$60 / 3=$	20	$7!/ 56$	$=90$	$5!3!/ 90=8$
$X_{5,4}^{3} \backslash F_{\epsilon}=$	$126\left(\Pi_{5}^{4}\right)$	$60 / 4=$	15	$8!/ 126$	$=320$	$5!4!/ 320=9$
$X_{6,3}^{3} \backslash F_{\epsilon}=$	$84\left(\Pi_{6}^{3}\right)$	$360 / 3=$	120	$8!/ 84$	$=480$	$6!3!/ 480=9$
$X_{5,5}^{3} \backslash F_{\epsilon}=$	$252\left(\Pi_{5}^{5}\right)$	$60 / 5=$	12	$9!/ 252$	$=1440$	$5!5!1 / 1440=10$
$X_{6,4}^{3} \backslash F_{\epsilon}=$	$210\left(\Pi_{6}^{4}\right)$	$360 / 4=$	90	$9!/ 210$	$=1728$	$6!4!/ 1728=10$
$X_{, 3}^{3} \backslash F_{\epsilon}=$	$120\left(\Pi_{7}^{3}\right)$	$2520 / 3=$	840	$9!/ 120$	$=3024$	$7!3!/ 3024=10$
$X_{6,5}^{3} \backslash F_{\epsilon}=$	$462\left(\Pi_{6}^{5}\right)$	$360 / 5=$	72	$10!/ 462$	$\notin \mathbb{Z}$	
$X_{,, 4}^{3} \backslash F_{\epsilon}=$	$330\left(\Pi_{7}^{4}\right)$	$2520 / 4=$	630	$10!/ 330$	$\notin \mathbb{Z}$	
$X_{8,3}^{3} \backslash F_{\epsilon}=$	$165\left(\Pi_{8}^{3}\right)$	$20160 / 3=$	13440	$10!/ 165$	$\notin \mathbb{Z}$	

In the third case of Figure 6, the coloring used for $X(123) \square X(456)$ above is extended with a fourth color: (not underlined) dark-gray. On the left of \square, the colors correspond to the E-sets ξ_{i}^{1}, where $i \in I_{4}$. On the right of \square, the evenparity 4 -tuples are given the same color i when their intersection with an E-set of the partition $\left\{\xi_{j}^{5} ; j=5,6,7,8\right\}$ starts with $j=i+4$. As mentioned, the situation for $X(1234) \square X(567)$ can be considered a restriction of that of (1234) $\square X(5678)$. We may write $X(567)=\left(567, \xi_{7}^{7}, 657, \xi_{5}^{6}, 756, \xi_{5}^{6}, 6576, \xi_{7}^{6}, 675, \xi_{5}^{7}, 765, \xi_{6}^{6}\right)$.

In a typical cartesian product $\Pi_{r}^{t}=X_{r}^{2} \square X_{t}^{2}$, where $2<t \leq r$, we notice that: (A) the subset Q of vertices of the copy $X\left(r^{*} \cdots n\right)$ of X_{t}^{2}, where $r^{*}=r+1$, which as t-tuples have the same parity as the t-tuple $r^{*} \cdots n$ has a partition into t subsets Q_{i} with the t-tuples in Q_{i} starting at $(r+i)$, for every $i \in I_{t} ;(\mathbf{B})$ the vertex set of the copy $X(1 \cdots r)$ of X_{r}^{2} has a partition into the r E-sets ξ_{j}^{1} for every $j \in I_{r} ; \mathbf{(C)}$ it eases treatment to consider the n-tuples obtained by concatenating every r-tuple in ξ_{i}^{1} with every t-tuple in Q_{i}, for every $i \in I_{t}$.

The convenience of this new vertex numbering is that to obtain a maximal number of disjoint 1 -sphere centers in the copies of Π_{r}^{t}, say $X(1 \cdots r) \square X\left(r^{*} \cdots n\right)$,
we can order both factors of these products in the same direction, resulting in transpositions between the first entry of either an initial r - or a terminal t-tuple with any of the remaining entries of that tuple, plus the transposition of both first entries. We concatenate initial r-tuples and terminal t-tuples whenever they have the same color (as in the instances of Figure 6), where the color set of the second factor in the product must coincide with, or be contained in, the color set of the first factor, considering that the second coloring here is given on the elements of the alternate subgroup $A_{t} \subset S_{t}$ while the first coloring is taken from a partition of S_{r} into E-sets.

A list of some cases of $X_{r, t}^{3}$ is considered in Table IV, that contains in each line: (a) a presentation of $X_{r, t}^{3} \backslash F_{\epsilon}$ as the union of $\binom{n}{r}$ copies of Π_{r}^{t}; (b) the number of even-parity vertices in X_{t}^{2} that start with a specific entry, i.e. the quotient of $\left|A_{t}\right|$ by the number of E-sets in a vertex partition of X_{t}^{2} into E-sets; (c) the largest possible number of centers of pairwise disjoint 1-spheres in a copy of Π_{r}^{t} as in the locally maximum packing density approach used since section 7 , obtained as the number of vertices of $X_{r, t}^{3}$ having a common initial entry divided by the number of copies of Π_{r}^{t} in $X_{r, t}^{3}$, i.e. the quotient $(n-1)!/\binom{n}{r}=\frac{r!t t!}{n}$; if this number is an integer, we proceed to fill the rightmost column; (d) a verification of the packing condition of 1 -spheres induced by an E-set in X_{n}^{3}, that is: only if n divides $r!t!$, or equivalently, only if n is non-prime larger than 4 ; we note that this verification will hold even if $d>3$.

9. FURTHER EXAMPLES

Two lines of Table IV are developed here into 1 -sphere packings of corresponding graphs $X_{r, r}^{3}$ in preparation for Theorems 10.110 .2 ,

For the third line in Table IV, given $z \in I_{8}$ denote $z^{\prime}=z \pm 4 \in I_{8}$ and $\left\{z, z^{\prime}\right\}=$ z. There are 16 copies of Π_{4}^{4} in $X_{4,4}^{3}$ of the form $\Pi_{4}^{4}=X(a b c d) \square X\left(a^{\prime} b^{\prime} c^{\prime} d^{\prime}\right)$, where $\mathbf{a}=\left\{a, a^{\prime}\right\}=\{1,5\}=\mathbf{1}, \mathbf{b}=\left\{b, b^{\prime}\right\}=\{2,6\}=\mathbf{2}, \mathbf{c}=\left\{c, c^{\prime}\right\}=\{3,7\}=\mathbf{3}$ and $\mathbf{d}=\left\{d, d^{\prime}\right\}=\{4,8\}=4$. The subgraph $X_{4,4}^{\prime}$ induced by these 16 copies has an E-set J, (like the J with $|J|=8 \times 6=48$, listed in Table II for $X_{3,3}^{3}$, but now with $|J|=16 \times 72=1152$). Let $H_{x y}^{z w}$ be a copy of Π_{4}^{4} in $X_{4,4}^{3}$ of the form

$$
\begin{equation*}
\Pi_{4}^{4}=X\left(x x^{\prime} z w\right) \square X\left(y y^{\prime} z^{\prime} w^{\prime}\right) \tag{6}
\end{equation*}
$$

with x, y, z, w respectively in $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$, where $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}\}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\}$. There are 48 such copies, inducing in $X_{4,4}^{3}$ a subgraph $X_{4,4}^{\prime \prime}$ disjoint from $X_{4,4}^{\prime}$. In expressing each vertex of $X_{r, r}^{3}$ we set a dot separating the two halves of its representing $2 r$-tuple. This is used in saying that J is at distance 2 from a vertex subset $W_{x y}^{z w} \subset H_{x y}^{z w}$ given by $W_{x y}^{z w}=\left\{x a b c . y d e f \mid\{a, b, c\}=\left\{x^{\prime}, z, w\right\} ;\{d, e, f\}=\right.$ $\left.\left\{y^{\prime}, z^{\prime}, w^{\prime}\right\}\right\}$. Here, $\left|W_{x y}^{z w}\right|=144$ yields a total of 6912 vertices in all 48 copies of
Π_{4}^{4}, viewed as in (6). Thus, they conform a vertex subset W with $|W|=6912$. Moreover, W induces 1728 4-cycles, each the cartesian product of two copies of K_{2} (each copy of K_{2} being a component of the graph induced by the union of two E-sets in a corresponding vertex partition). Also, $V\left(X_{4,4}^{\prime \prime}\right) \backslash W$ induces similar 4-cycles in each $H_{x y}^{z w}$. As an example, consider the induced 4-cycle

$$
\begin{equation*}
C=(2315.6748,3215.6748,3215.7648,2315.7648) \subset H_{14}^{23} \backslash W_{14}^{23} . \tag{7}
\end{equation*}
$$

At most one vertex of C can be added to J in trying to extend it to an E-set of $X_{4,4}^{3}$. Thus, there does not exist an E-set of $X_{4,4}^{3}$ both containing $X_{4,4}^{\prime}$ and covering all the vertices of $X_{4,4}^{\prime \prime}$. However, an extension $J \cup J^{\prime}$ of J exists, where J^{\prime} in $X_{4,4}^{\prime \prime}$ is composed by the centers of disjoint 1 -spheres, reaching to a maximum covering of a third of $V\left(X_{4,4}^{\prime \prime}\right)$, namely with $\left|V\left(X_{4,4}^{\prime \prime}\right)\right| / 3=48 \times 576 / 3=27648 / 3=$ 9216 vertices, leaving 18432 vertices of $V\left(X_{4,4}^{\prime \prime}\right)$ out of those 1 -spheres. Moreover, the 6912 vertices of W, being at distance 2 from J, cannot be members of any α-E-set $J \cup J^{\prime}$. Away from them (in fact at distance 3 from J) and in $X_{4,4}^{\prime \prime}$, the vertices in a product of E-sets of $X(1237) \square X(5648)$ can be arranged as in the following 6×6 array:

2137.6548	2173.6548	2317.6548	2371.6548	2731.6548	2713.6548
2137.6584	2173.6584	2317.6584	2371.6584	2731.6584	2713.6584
2137.6458	2173.6458	2317.6458	2371.6458	2731.6458	2713.6458
2137.6485	2173.6485	2317.6485	2371.6485	2731.6485	2713.6485
2137.6854	2173.6854	2317.6854	2371.6854	2731.6854	2713.6854
2137.6845	2173.6845	2317.6845	2371.6845	2731.6845	2713.6845

encodable as a concatenation product: $2(137) .6(548)$, where $2(137)=\{2137,2173$, $2317,2371,2713,2731\}$ and $6(548)=\{6548,6584,6458,6485,6854,6845\}$. In this notation, consider the following quadruples related via transpositions (13) and (14), twice each:

$$
\begin{align*}
& 15(26 ; 37,48)=\{1(237) \cdot 5(648), 5(237) \cdot 1(648), 1(637) \cdot 5(248), 5(637) \cdot 1(248)\} \text { and } \tag{9}\\
& 34(26 ; 17,18)=\{3(217) \cdot 5(648), 5(237) \cdot 4(618), 3(617) \cdot 5(248), 5(637) \cdot 4(218)\},
\end{align*}
$$

To extend the treatment of Section 7 leading to a double-sphere packing (and then to a 1-sphere packing) in $X_{3,3}^{\prime}$ a collection of double-spheres in $X_{4,4}^{\prime \prime}$ is taken whose centers are the 8 -tuples in the quadruples (as in the top row of (9)):

```
15(26;37,48), 15(37;48,26), 15(48;26,37), 26(15;48,37), 26(37;15,48), 26(48,37,15),
37(15;26,48), 37(26;48,15), 37(48;15,26), 48(15;37,26), 48(26;15,37), 48(37;26,15).
```

They complete a packing of $X_{4,4}^{\prime \prime}$ covering 12096 vertices of $X_{4,4}^{3} \backslash X_{4,4}^{\prime}$ with the set of centers of the composing 1 -spheres forming a subset J^{\prime} of $V\left(X_{4,4}^{\prime \prime}\right)$. By adjacency modifications as in the bottom row of (9) (to the data in the corresponding top row; compare Section 7, Table III), we obtain a packing of $X_{4,4}^{\prime \prime}$ by 1-spheres centered at the modified 8-tuples (forming a set again denoted J^{\prime}), namely:

```
34(26;17,18), 42(37;18,16), 23(48;16,17), 34(15;28,27), 41(37;25,28), 13(48,27,25),
24(15;36,38), 41(26;38,35), 12(48;35,36), 32(15;47,46), 21(37;46,45), 13(26;45,47).
```

This totals $\left|V\left(X_{4,4}^{\prime \prime}\right)\right| / 2=24 \times 576=13824$ vertices of $X_{4,4}^{3} \backslash X_{4,4}^{\prime}$. There are $6=70-16-48$ copies of Π_{4}^{4} in $X_{4,4}^{3}$ disjoint from J. They are of the form

$$
\begin{equation*}
\Pi_{4}^{4}=X\left(x x^{\prime} y y^{\prime}\right) \square X\left(z z^{\prime} w w^{\prime}\right) \tag{12}
\end{equation*}
$$

for example two of them reached from the vertices of C shown in (7) by traversing the (ϵ)-colored edges, where $(\epsilon)=(15)$, yielding:

$$
\begin{array}{ll}
6315.2748 \in X(1536) \square X(4827), & 6215.3748 \in X(1526) \square X(4837), \\
7215.3648 \in X(1527) \square X(4863), & 7315.2648 \in X(1537) \square X(4826),
\end{array}
$$

where the second and fourth copies of Π_{4}^{4} are as in display (12). There is a total of 4324 -cycles in $V\left(X_{4,4}^{\prime \prime}\right)$ having each two alternate vertices with their neighbors via (ϵ)-colored edges in copies as in display (12). The neighbors of J^{\prime} in $X_{4,4}^{3} \backslash\left(X_{4,4}^{\prime} \cup X_{4,4}^{\prime \prime}\right)$ corresponding to the 8-tuples in the quadruples in displays (10) and (11) are represented by the vertices in the following corresponding quadruples. First, let $(51,26 ; 37,48)$ stand for:

$$
\{5(137) \cdot 2(648), 6(237) \cdot 5(148), 5(137) \cdot 6(248), 2(637) \cdot 5(148)\}
$$

composed by two products of E-sets in each of $X(1357) \square X(2468)$ and $X(2367) \square$ $X(1458)$. With this notation, the quadruples in question are:

$$
\begin{aligned}
& (51,26 ; 37,48),(62,15,48,37),(62,37 ; 15,48),(51,48 ; 26,37),(73,15 ; 26,48),(51,37 ; 48,26) \\
& (84,37 ; 26,15),(73,48 ; 15,26),(84,15 ; 37,26),(73,26 ; 48,15),(84,26 ; 15,37),(62,48 ; 37,15)
\end{aligned}
$$

This implies that all products of E-sets in these six copies are at distance two from vertices of J^{\prime}, which does not reach to an E-set of $X_{4,4}^{3}$ larger than $J \cup J^{\prime}$. Thus, $J \cup J^{\prime}$ is a $\frac{4}{7}$-E-set of $X_{4,4}^{3}$ and this is a maximum E-set of $X_{4,4}^{3}$.

For the seventh line in Table IV, given $z \in I_{10}$ denote $z^{\prime}=z \pm 5 \in I_{10}$ and $\mathbf{z}=\left\{z, z^{\prime}\right\}$. There are 32 copies of Π_{5}^{5} of the form $\Pi_{5}^{5}=X(a b c d e) \square X\left(a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime}\right)$, where $\mathbf{a}=\left\{a, a^{\prime}\right\}=\{1,6\}=\mathbf{1}, \mathbf{b}=\left\{b, b^{\prime}\right\}=\{2,7\}=\mathbf{2}, \mathbf{c}=\left\{c, c^{\prime}\right\}=\{3,8\}=\mathbf{3}$, $\mathbf{d}=\left\{d, d^{\prime}\right\}=\{4,9\}=4$ and $\mathbf{e}=\left\{e, e^{\prime}\right\}=\{5,10\}=\mathbf{5}$. The subgraph $X_{5,5}^{\prime}$ induced by these 32 copies has an E-set J with $|J|=14400$ that also dominates the subset of vertices $y_{1} b_{2} b_{3} b_{4} b_{5} . y_{5} d_{2} d_{3} d_{4} d_{5}$ with $\left\{b_{2}, b_{3}, b_{4}, b_{5}\right\}=\left\{y_{1}^{\prime}, y_{2}, y_{3}, y_{4}\right\}$ and $\left\{d_{2}, d_{3}, d_{4}, d_{5}\right\}=\left\{y_{5}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, y_{4}^{\prime}\right\}$ in each of the 160 copies of Π_{5}^{5} of the form $\Pi_{5}^{5}=X\left(y_{1} y_{1}^{\prime} y_{2} y_{3} y_{4}\right) \square X\left(y_{5} y_{5}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4}^{\prime}\right)$ in $X_{5,5}^{3}$ with $y_{z} \in \mathbf{y}_{z}$ for $z \in I_{5}$ and $\left\{\mathbf{y}_{z} ; z \in\right.$ $\left.I_{5}\right\}=\left\{\mathbf{z} ; z \in I_{5}\right\}$. Let $H_{x y}^{z u v}$ be a copy of Π_{5}^{5} in $X_{5,5}^{3}$ of the form

$$
\begin{equation*}
\Pi_{5}^{5}=X\left(x x^{\prime} z u v\right) \square X\left(y y^{\prime} z^{\prime} u^{\prime} v^{\prime}\right) \tag{13}
\end{equation*}
$$

with x, y, z, u, v taken respectively in $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}$, where $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}\}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}$, $\mathbf{4}, \mathbf{5}\}$. There are 160 such copies, inducing in $X_{5,5}^{3}$ a subgraph $X_{5,5}^{\prime \prime}$ disjoint from $X_{5,5}^{\prime}$. Note that J is at distance 2 from a vertex subset $W_{x y}^{z u v} \subset H_{x y}^{z u v}$ given by $W_{x y}^{z u v}=\left\{x a b c d . y d e f g \mid\{a, b, c, d\}=\left\{x^{\prime}, z, u, v\right\} ;\{d, e, f, g\}=\left\{y^{\prime}, z^{\prime}, u^{\prime}, v^{\prime}\right\}\right\}$ with
$\left|W_{x y}^{z u v}\right|=2880$ that yields a total of 6912 vertices in all 160 copies of Π_{5}^{5} as in display (13), forming a vertex subset W with $|W|=460800$. Then, W induces 1152004 -cycles. Each such 4 -cycle is the cartesian product of two copies of K_{2} (each copy of K_{2} being a component of the graph induced by the union of two E-sets in a corresponding vertex partition). Also, $V\left(X_{5,5}^{\prime \prime}\right) \backslash W$ induces similar 4 -cycles in each $H_{x y}^{z u v}$. Let C be one such 4 -cycle. At most one vertex of C can be added to J in trying to extend it to an E-set of $X_{5,5}^{3}$. This means that there does not exist an E-set of $X_{5,5}^{3}$ containing $X_{5,5}^{\prime}$ and covering all the vertices of $X_{5,5}^{\prime \prime}$. In fact, the 460800 vertices of W, being at distance 2 from J, cannot be members of any E-set J^{\prime} enlarging J. With a notation similar to that in display (9), let $1(23) 45$ stand for the following octad of products of E-sets as in display (8), where $a=10$:

$$
\begin{align*}
& \{1(2349) \cdot 6(785 a), 6(2349) \cdot 1(785 a), 1(7349) \cdot 6(285 a), 6(7349) \cdot 1(285 a) \\
& 1(2849) \cdot 6(735 a), 6(2849) \cdot 1(735 a), 1(7849) \cdot 6(235 a), 6(7849) \cdot 1(235 a)\} \tag{14}
\end{align*}
$$

Let the subset J^{\prime} of $V\left(X_{5,5}^{3}\right)$ be given by the 10-tuples in the following 20 octads:

$$
\begin{aligned}
& 1(23) 45,2(34) 51,3(45) 12,4(51) 23,5(12) 34,1(45) 32,2(51) 43,3(12) 54,4(23) 15,5(34) 21 \text {, } \\
& 1(35) 24,2(41) 35,3(52) 41,4(13) 52,5(24) 13,1(24) 53,2(35) 14,3(41) 25,4(52) 31,5(13) 42 .
\end{aligned}
$$

The set J^{\prime} allows only induced double-spheres in $X_{5,5}^{\prime \prime}$. For example, the left entry of a each pair in display (14) is related to the corresponding right entry by means of transposition $(\epsilon)=(16)$. A modification of the composing 10 -tuples allows a different J^{\prime} by applying transpositions (14) and (6a) alternatively to their left and right halves. This modified J^{\prime} covers just 64×14400 vertices and is maximal. There are $60=252-32-160$ copies of Π_{5}^{5} in $X_{5,5}^{3}$ disjoint from J. They are of the form $\Pi_{5}^{5}=X\left(x_{0} x_{0}^{\prime} x_{1} x_{1}^{\prime} x_{5}\right) \square X\left(x_{2} x_{2}^{\prime} x_{3} x_{3}^{\prime} x_{5}^{\prime}\right)$, two of them reached from alternate vertices of a 4 -cycle C as above by traversing (ϵ)-colored edges, where $(\epsilon)=(16)$. Let $[62,71 ; 67,21]$ stand for the octad

$$
\begin{array}{r}
\{6(1349) \cdot 2(785 a), 7(2349) \cdot 1(685 a), 6(135 a) \cdot 7(2849), 2(735 a) \cdot 1(6849) \\
6(1849) \cdot 2(735 a), 7(2849) \cdot 1(635 a), 6(185 a) \cdot 7(2349), 2(785 a) \cdot 1(6349)\}
\end{array}
$$

of products of E-sets in copies of Π_{5}^{5}. With this notation, the collection of octads $\{[62,71 ; 67,21],[63,81,68,31],[71,62 ; 76,12]$, , 73,$82 ; 78,32],[81,63 ; 86,13]$,
[82,73; 87,23]\} have their composing 10 -tuples as the elements of a subset $J^{\prime \prime}$ of $V\left(X_{5,5}^{3}\right)$ contained in the union of the 60 copies above, where $J^{\prime \prime}$ is the set of centers of disjoint 1 -spheres which also are disjoint from the 1 -spheres centered at the 10 -tuples in $J \cup J^{\prime}$. We note that $J \cup J^{\prime} \cup J^{\prime \prime}$ is a $\frac{2}{9}$-E-set of $X_{5,5}^{3}$ and that this result is best possible.

10. NONUNIFORM SPHERE PACKING

Let $r>t>1$. If $z, z^{\prime} \in I_{n}$ with $\left|z-z^{\prime}\right|=r$, we denote $\mathbf{z}=\left\{z, z^{\prime}\right\}$. There are 2^{r} copies of Π_{r}^{r} of the form $\Pi_{r}^{r}=X\left(a_{1} a_{2} \cdots a_{r}\right) \square X\left(a_{1}^{\prime} a_{2}^{\prime} \cdots a_{r}^{\prime}\right)$, where
$\mathbf{a}_{\mathbf{i}}=\left\{a_{i}, a_{i}^{\prime}\right\}=\{i, r+i\}=\mathbf{i}$, for $i \in I_{r}$. The subgraph $X_{r, r}^{\prime}$ induced by these copies has an E-set J as exemplified in Sections 77 9 that also dominates a subset $\left\{y_{1} b_{2} \cdots b_{r} y_{r} d_{2} \cdots d_{r} \mid\left\{b_{2}, \ldots, b_{r}\right\}=\left\{y_{1}^{\prime}, y_{2}, \ldots y_{r-1}\right\} ;\left\{d_{2}, \ldots, d_{r}\right\}=\right.$ $\left.\left\{y_{r}^{\prime}, y_{2}^{\prime}, \ldots, y_{r-1}^{\prime}\right\}\right\}$ in each copy of Π_{r}^{r} of the form $\Pi_{r}^{r}=X\left(y_{1} y_{1}^{\prime} y_{2} \cdots y_{r-1}\right) \square$ $\left(y_{5} y_{r}^{\prime} y_{2}^{\prime} \cdots y_{r-1}^{\prime}\right)$ in $X_{r, r}^{3}$ with $y_{z} \in \mathbf{y}_{z}$ for $z \in I_{5}$ and $\left\{\mathbf{y}_{z} \mid z \in I_{r}\right\}=\left\{\mathbf{z} \mid z \in I_{r}\right\}$. The $\binom{2 r}{r}$ copies of Π_{r}^{r} in $X_{r, r}^{3}$ are of the following types:

$$
\begin{array}{rll}
X\left(a_{1} a_{2} \cdots a_{r}\right) & \square & X\left(a_{1}^{\prime} a_{2}^{\prime} \cdots a_{r}^{\prime}\right) ; \\
X\left(a_{1} a_{1}^{\prime} a_{3} a_{4} \cdots a_{r}\right) & \square & X\left(a_{2} a_{2}^{\prime} a_{3}^{\prime} a_{4}^{\prime} \cdots a_{r}^{\prime}\right) ; \\
X\left(a_{1} a_{1}^{\prime} a_{2} a_{2}^{\prime} a_{5} a_{6} \cdots a_{r}\right) & \square & X\left(a_{3} a_{3}^{\prime} a_{4} a_{4}^{\prime} a_{5}^{\prime} a_{6}^{\prime} \cdots a_{r}^{\prime}\right) ; \tag{15}\\
\cdots\left(a_{1} a_{1}^{\prime} \cdots a_{k} a_{k}^{\prime} a_{2 k+1} a_{2 k+2} \cdots a_{r}\right) & \square & X\left(a_{k+1} a_{k+1}^{\prime} \cdots a_{2 k} a_{2 k}^{\prime} a_{2 k+1}^{\prime} a_{2 k+2} \cdots a_{r}^{\prime}\right) ;
\end{array}
$$

Let $X_{r, r}^{\prime}, X_{r, r}^{\prime \prime}, X_{r, r}^{\prime \prime \prime}, \ldots, X_{r, r}^{\left(k^{*}\right)}$ be the subgraphs induced respectively by the types in the first, second, third, ..., k^{*}-th lines of display (15), where $k^{*}=k+1$. The number of times each $X_{r, r}^{\left(k^{*}\right)}$ occurs in $X_{r, r}^{3}$ is given by the sequence A051288 [13] as a number triangle T each of whose terms $T(r, k)$, read by rows $(r \geq$ $0 ; k=0,1, \ldots,\lfloor r / 2\rfloor), T(r, k)$, is the number of paths of r upsteps U and r downsteps D with exactly k subpaths $U U D$. In fact, $T(r, k)=\binom{r}{2 k} 2^{r-2 k}\binom{2 k}{k}$. The left of Table V illustrates T, where each row of values $T(r, k)$ adds up to $\Sigma_{r}=\binom{2 r}{r}$. Note F_{ϵ} have edges only between contiguous subgraphs $X_{3,3}^{(k)}$ and $x_{3,3}^{\left(k^{*}\right)}$, for $k=0,1, \ldots,\lfloor r / 2\rfloor$.

TABLE V

$r ; k$	0	1	2	3	\cdots	Σ_{r}	$r ; k$	0	1	2	3	\cdots	Σ_{r}^{\prime}
-	4	2			--	6	2	4	0			-	4
3	8	12			\cdots	20	3	8	8			\ldots	16
4	16	48	6		\cdots	70	4	16	24	0		\ldots	40
5	32	160	60		\cdots	252	5	32	64	24		\ldots	120
6	64	480	360	20	\ldots	924	6	64	160	120	0	\ldots	344
7	128	1344	1680	280	\ldots	3432	7	128	384	480	80	\cdots	1072
\cdots					,	\cdots	\ldots		\cdots	\cdots	\ldots	\cdots	

In continuation to our approach in Sections 7 9 , the right of Table V gives the number, say $S(r, k) \leq T(r, k)$, of vertices covered at best by a maximum α-E-set J. The intersection of such J and each copy of Π_{r}^{r} in $X_{r, r}^{3}-X_{r, r}^{\prime}$ must be a product of E-sets of X_{r}^{2}. Each row in the table adds up to the sum Σ_{r}^{\prime}. To start with, we select products of E-sets in the copies of Π_{r}^{r} in $X_{r, r}^{\prime \prime}$ as in Section 9, then take the vertices of those products as centers of 1-spheres in their pertaining copies of Π_{r}^{r}. These appear in pairs of adjacent vertices in $X_{r, r}^{3}$ yielding a packing $\mathcal{S}^{\prime \prime}$ by double-spheres whose centers form a subset J^{*}. By displacing the vertices of J^{*} via alternate adjacency in the two components X_{r}^{2} of each copy of Π_{r}^{r} in $X_{r, r}^{\prime \prime}$ as in the examples in Section 9, we replace $\mathcal{S}^{\prime \prime}$ by a 1 -sphere packing \mathcal{S}^{\prime} containing $(2 r) \times((r-1)!)^{2}$ vertices of the $(r!)^{2}$ vertices of each copy of Π_{r}^{r} in
$X_{r, r}^{\prime \prime}$, a proportion of $2 / r$ of the vertices of $X_{r, r}^{\prime \prime}$. At best, the same proportion is maintained in the remaining $X^{\prime \prime \prime}, \ldots, X^{\left(k^{*}\right)}, \ldots$, starting by choosing 1 -spheres in the copies of Π_{r}^{r} in $X_{r, r}^{\prime \prime \prime}$ avoiding the neighbors (via F_{ϵ}) of the 1 -spheres in \mathcal{S}^{\prime} and then using "exact" paths in Johnson graphs as in Section 2, at most combined as in the proof of Theorem 10.2 below.

Let us see that no 1 -sphere in $X_{r, r}^{\prime \prime \prime}$ can touch $X_{r, r}^{\prime \prime}$. We can select the vertices in the product $a_{r}\left(a_{1} a_{1}^{\prime} a_{2} a_{2}^{\prime} a_{5} a_{6} \cdots a_{r-1}\right) \cdot a_{r}^{\prime}\left(a_{3} a_{3}^{\prime} a_{4} a_{4}^{\prime} a_{5}^{\prime} a_{6}^{\prime} \cdots a_{r-1}^{\prime}\right)$ of E-sets in its corresponding copy U of Π_{r}^{r} as centers of pairwise disjoint 1 -spheres in $X_{r, r}^{\prime \prime \prime}$. This amounts to $((r-1)!)^{2}$ vertices that determine $2(r-1)((r-1)!)^{2}$ vertices in U. But the transposition $\left(1 r^{*}\right)$, where $r^{*}=r+1$, still yields edges in $X_{r, r}^{\prime \prime \prime}$, a contradiction. For example, the copy $U=X(16275) \square X(3748 a)$ contains the product $5(1627) \cdot a(3849)$, which possesses vertex 51627.a3849, adjacent to 15627.a3849 in U. The edge colored with $(\epsilon)=(16)$ takes this via adjacency to vertex $a 5627.13849$, belonging to the product $a(5276) .1(3849)$ in its corresponding copy, still in $X_{r, r}^{\prime \prime \prime}$.

Theorem 10.1. If $n=2 r \geq 4$, where $r \in \mathbb{Z}$, then an α - E-set of $X_{r, r}^{3}$ intersecting a copy of Π_{r}^{r} with locally maximum packing density, that is in $\frac{1}{2}((r-1)!)^{2}$ vertices, has $\alpha<1$. Thus, no E-set exists in $X_{3,3}^{3}$.

Proof. To be maximum, the α-E-set in the statement must intersect 2^{r} copies of Π_{r}^{r} each in $\frac{1}{2}((r-1)!)^{2}$ vertices. Those copies induce the subgraph $X_{r, r}^{\prime}$. Then the argument previous to the statement leads to the claim.

Each column $k=0,1,2, \ldots$ in T yields a subsequence $a_{r}^{k}=T(r, k)$ with $a_{2 k}^{k}=$ $\binom{2 k}{k}$ and successively $a_{r^{*}}^{k}=2 a_{r}^{k} r^{*} /(r-3)$. This yields a total of $\binom{2 k}{k} 2^{r-2 k}\binom{r}{2 k}$ copies of Π_{r}^{r} in $X_{r, r}^{\prime \prime \prime}$. This total for $k=2$ is $3\left(2^{r-3}\right)\binom{r}{4}$ copies of Π_{r}^{r} in $X_{r, r}^{\prime \prime \prime}$.

The cardinality of the set $J^{\prime \prime}$ of vertices in $X_{r, r}^{\prime \prime}$ that are at distance two from J is $2^{r}\left((r!)^{2}-r!(r-1)!\right) / r 2^{r-1}=2(r-1)((r-1)!)^{2}$. Adding to this the $2^{r-1} r(r!)^{2}$ vertices in J^{\prime} yields $2(r-1)((r-1)!)^{2}+2^{r-1} r(r!)^{2}$ vertices covered by $J^{\prime} \cup J^{\prime \prime}$ in $X_{r, r}^{\prime \prime}$. These are not enough to cover all vertices of $X_{r, r}^{\prime \prime}$. Again, this shows that no perfect 1-sphere packing exists that covers $X_{r, r}^{\prime \prime}$.

Theorem 10.2. If $n=2 r \geq 4$, where $r \in \mathbb{Z}$, then: (a) a connected subgraph $X_{r, r}^{\prime}$ induced in $X_{r, r}^{3}$ by the disjoint union of 2^{r} copies of Π_{r}^{r} has a perfect 1-sphere packing \mathcal{S} and its associated E-set; (b) \mathcal{S} cannot be extended to a perfect 1-sphere packing of $X_{r, r}^{3}$; (c) at best, a maximum nonuniform 1-sphere packing \mathcal{S}^{\prime} of $X_{r, r}^{3}$ is obtained as an extension of \mathcal{S} that yields an α - E-set of $X_{r, r}^{3}$ with $\alpha=\Sigma_{r}^{\prime} / \Sigma_{r}=$ $\left(2^{r}+\frac{2}{r} P_{r}\right) /\binom{2 r}{r}$, where $P_{r}=\binom{2 r}{r}-2^{r}$ if r is odd and $P_{r}=\binom{2 r}{r}-2^{r}-\binom{r}{r / 2}$ if r is even. By Theorem 10.1, this value of α is an $\alpha<1$.

Proof. Items (a) and (b) arise respectively starting this section and from Theorem 10.1. Apart from the 2^{r} copies of Π_{r}^{r} in $X_{r, r}^{\prime}$ there are in $X_{r, r}^{3}$ still: $\binom{2 r}{r}-2^{r}$
copies of Π_{r}^{r} if r is odd and $\binom{2 r}{r}-2^{r}-\binom{r}{r / 2}$ copies of Π_{r}^{r} if r is even. At best, in these copies we could select products U of the form $a\left(b_{2} \cdots b_{r}\right) \cdot a^{\prime}\left(c_{2} \cdots c_{r}\right)$ formed by E-sets $a\left(b_{2} \cdots b_{r}\right)$ and $a^{\prime}\left(c_{2} \cdots c_{r}\right)$. The cardinality of each such U is $((r-1)!)^{2}$, its vertices as centers of 1 -spheres pairwise disjoint in their copies of Π_{r}^{r} with F_{ϵ} allowing perhaps the formation of pairwise disjoint double-spheres. As in the final discussion in Section 7 (presented with our initial notation, as in Table III), we could displace adjacently and alternatively the 1 -sphere centers in the first and second components X_{r}^{2} of Π_{r}^{r}. This can modify those double 1-spheres into pairwise disjoint 1 -spheres which cover at best $2 r((r-1)!)^{2}$ vertices of $X_{r, r}^{3}$. The number of times that $(r!)^{2}$ appears at most in the vertex counting of the resulting nonuniform packing of $X_{r, r}^{3}$ is $2^{r}+2 r P_{r}((r-1)!)^{2} /(r!)^{2}=2^{r}+2 r P_{r} / r^{2}=2^{r}+\frac{2}{r} P_{r}$. Thus, an α-E-set of $X_{r, r}^{3}$ has $\alpha<\left(2^{r}+\frac{2}{r} P_{r}\right) /\binom{2 r}{r}$.

As in the bottom example of Figure 6, the general case of $X_{r, t}^{3}$ with $r \geq t$ can be considered a restriction, if necessary, of the one of $X_{r, r}^{3}$ by means of the puncturing technique mentioned in Section 8. This way, we get the following.

Corollary 10.3. Let $r>t>1$. A maximum nonuniform 1-sphere packing of $X_{r, t}^{3}$ exists that yields an α-E-set of $X_{r, t}^{3}$ with $\alpha \leq \frac{\Sigma_{t}^{\prime}}{\Sigma_{r}}$, where $\Sigma_{t}^{\prime}=\left(2^{t}+\frac{2}{t} P_{t}\right)$ and $\Sigma_{r}=\binom{2 r}{r}$ with $P_{t}=\binom{2 t}{t}-2^{t}$ if t is odd and $P_{t}=\binom{2 t}{t}-2^{t}-\binom{t}{t / 2}$ if t is even.

11. FURTHER DEVELOPMENT

Consider a graph $X_{n}^{d}=X\left(S_{n}, \tau_{n}^{d}\right)$, where $d \geq 3$, with a 1-factor F_{ϵ} of X_{n}^{d} corresponding to a non-leaf edge ϵ of τ_{n}^{d}. According to Lemma 6 4], $X_{n}^{d} \backslash F_{\epsilon}$ is the disjoint union of $\binom{n}{r}$ copies of $X_{r}^{d_{r}} \square X_{t}^{d_{t}}$ (induced by the cosets of the subgroup $S_{r} \times S_{t}$). Moreover, the removal of ϵ from X_{n}^{d} yields two trees $\tau^{d_{r}}$ and $\tau^{d_{t}}$ of orders r and t, respectively, with $r+t=n$, so each such copy of $X_{r}^{d_{r}} \square X_{t}^{d_{t}}$ in X_{n}^{d} has regular degree $\delta=n-1=(r-1)+(t-1)+1$ and any 1-sphere in X_{d}^{r} contains just $\delta+1=n$ vertices in each such copy.

Theorem 11.1. Let $d \geq 3$ and let $n=4$ or n be a prime $n>4$. Then, X_{n}^{d} does not have E-sets or perfect 1-sphere packings.

Proof. Let $n>4$. An E-set in X_{n}^{d} must intersect each copy $X\left(x_{1} x_{2} \cdots x_{r}\right) \square$ $X\left(x_{r^{*}} x_{r^{*}+1} \cdots x_{n}\right)$ of $X_{r}^{d_{r}} \square X_{t}^{d_{t}}$, where $r^{*}=r+1$, in a constant number of vertices, involving: (i) all vertices of $X\left(x_{r^{*}}, x_{r^{*}+1}, \ldots, x_{n}\right)$ with a common parity (even or odd) and starting at a common entry; (ii) the partition of the vertex set of $X\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ into E-sets, the vertices of each E-set starting at a common entry. Items (i) and (ii) must be combined as exemplified in Section 8 , which allows the largest number of centers of pairwise disjoint 1 -spheres in a 1 -sphere packing of X_{n}^{d} per copy of $X_{r}^{d_{r}} \square X_{t}^{d_{t}}$. The resulting maximum must be an integer,
but if n is a prime with $n>4$, then there is not exact divisibility allowing it, as shown in the third column of Table IV. Taking into account the situations discussed for $n=4$ in relation to Figure 1, the statement follows.

Despite Theorem 3.10.2 [7, asserting that J_{τ} is a minimal generating set for $S_{n} \Leftrightarrow \tau$ is a tree, we notice that Section V in [3] insures an E-set J^{0} in $X\left(S_{5}, C_{5}\right)$. This also contrasts with our shown nonexistence of E-sets in $X\left(S_{5}, \tau^{4}\right.$ (Theorem 11.1), contained in $X\left(S_{5}, C_{5}\right)$. To compare with this situation, let the vertex set of such J^{0} be composed by the following permutations:

$a_{0}=12345 ;$	$b_{0}=13524 ;$	$c_{0}=14253 ;$	$d_{0}=15432 ;$
$a_{1}=23451 ;$	$b_{1}=35241 ;$	$c_{1}=42531 ;$	$d_{1}=54321 ;$
$a_{2}=34512 ;$	$b_{2}=52413 ;$	$c_{2}=25314 ;$	$d_{2}=43215 ;$
$a_{3}=45123 ;$	$b_{3}=24135 ;$	$c_{3}=53142 ;$	$d_{3}=32154 ;$
$a_{2}=34512 ;$	$b_{2}=52413 ;$	$c_{2}=25314 ;$	$d_{2}=43215 ;$
$a_{3}=45123 ;$	$b_{3}=24135 ;$	$c_{3}=53142 ;$	$d_{3}=32154 ;$
$a_{4}=51234 ;$	$b_{4}=41352 ;$	$c_{4}=31425 ;$	$d_{4}=21543$.

Figure 7. The ten 10 -cycles incident to a^{0} in $X\left(S_{5}, C_{5}\right)$
Each vertex x_{i} of $X\left(S_{5}, C_{5}\right)$, where $x=a, b, c, d$ and $i \in \mathbb{Z}_{5}$, is associated to a 10-cycle x^{i} of $X\left(S_{5}, C_{5}\right)$ with alternate vertices w adjacent to x_{i} so that each of the five remaining vertices w^{\prime} induces a 4 -cycle together with x_{i} and the two neighbors of x_{i} in x^{i}. Each vertex of an x^{i} here is incident to exactly one other 10 -cycle y^{j}, where $x \neq y$ in $\{a, b, c, d\}$ and $j \in \mathbb{Z}_{5}$. For example, $x^{0}=a^{0}$ can be represented as $\left(c^{3}, b^{3}, c^{0}, b^{2}, c^{2}, b^{1}, c^{4}, b^{0}, c^{1}, b^{4}\right)$, where the first and remaining odd entries represent the vertices adjacent to a_{0}, each vertex v of form either w or w^{\prime} belonging too, to the only remaining 10 -cycle incident to x^{0} at v, as shown in the two graph representations in Figure 7 to be superposed for a view of $X\left(S_{5}, C_{5}\right)$ containing a^{0} and the ten 10-cycles incident to a^{0} in $X\left(S_{5}, C_{5}\right)$.

Table VI shows the representations of the twenty x^{i} in terms of their successive incident y^{j}, each column headed by the symbol z^{-}(resp., z^{+}) with $z \in I_{5}$ representing the transposition of the edge $z(z+1)$ joining the corresponding vertex x_{i}^{\prime} (resp., y_{j}^{\prime}) in x^{i} (resp., y^{j}) to v, where 1 must take the place of $5+1$.

TABLE VI

The following facts are verified: (A) the vertex set of $X\left(S_{5}, C_{5}\right)$ admits a partition onto E-sets J^{i}, one of them being J^{0}, with remaining E-sets J^{i} obtained by successive translation along the edges colored with $i \in I_{5}$; this yields a covering $\operatorname{map} \phi_{5}: X\left(S_{5}, C_{5}\right) \rightarrow K_{6}$, where $V\left(K_{6}\right)=\{0,1,2,3,4,5\}$ and $\phi_{5}^{-1}(0)=J^{0} ;(\mathbf{B})$ the edge set of $X\left(S_{5}, C_{5}\right)$ admits a 1-factorization into the colors of I_{5}; eliminating one of these colors leaves twenty vertices (one per 10 -cycle) not dominated by J^{0}; in that case, each other J^{i} has its own twenty vertices not dominated; and this establishes a partition of S_{5} into subsets of vertices not dominated by each of the J^{i} in $X\left(S_{5}, C_{5}\right) ;(\mathbf{C})$ superposing the two parts (left and right) of Figure 7 with common $\left[a^{0} \cup a_{0}\right]$ produces a graph with 111 vertices, so that the remaining nine vertices of $X\left(S_{5}, C_{5}\right)$ are a_{i}, for $i=1,2,3,4$, and d_{j}, for $j \in \mathbb{Z}_{5}$.

References

[1] S. B. Akers and B. Krishnamurthy, A group theoretic model for symmetric interconnection networks, IEEE Trans. Comput., 38 (1989), 555-565.
[2] S. Arumugam and R. Kala, Domination Parameters of Star Graphs, Ars Combinatoria, 44 (1996) 93-96.
[3] S. Buzaglo and T. Etzion, Bounds on the size of permutation codes with the Kendall τ-metric, IEEE Trans. on Info. Theory, 61 (2015) 3241-3250.
[4] I. J. Dejter, O. Serra, Efficient dominating sets in Cayley graphs, Discrete Appl. Math., 129 (2003), 319-328.
[5] A. Ganesan, An efficient algorithm for the diameter of Cayley graphs generated by transposition trees, IJAM, 42 (2012), 214-233.
[6] A. Ganesan, Diameter of Cayley graphs of permutation groups generated by transposition trees, JCMCC, 84 (2013), 29-40.
[7] C. Godsil and G. Royle, Algebraic graph theory, Springer-Verlag, 2001.
[8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, M. Dekker Inc., 1998.
[9] G. A. Jones and J. M. Jones, Information and Coding Theory, SpringerVerlag, 2000.
[10] A. V. Kelarev, J. Ryan, J. Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math., 309 (2009), 53605369.
[11] A. V. Kelarev, Labelled Cayley graphs and minimal automata, Australasian J. Combinatorics, 30 (2004), 95-101.
[12] A. V. Kelarev, Graph Algebras and Automata, M. Dekker, New York, 2003.
[13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, oeis.org.

[^0]: $1115=\{1234,2345,3456,4567,5678,6781,7812,8123\} ; 2222=\{1357,2468\} ;$
 $2123=\{1346,2457,3568,4671,5782,6813,7124,8235\} ; 1313=\{1256,2367,3478,4581\} ;$
 $1124=\{1235,2346,3457,4568,5681,6782,7813,8124\} ; 1133=\{1236,2347,3458,4561,5672,6783,7814,8125\} ;$
 $1214=\{1245,2356,3467,4578,5681,6712,7823,8134\} ; 1223=\{1246,2357,3468,4571,5682,6713,7824,8135\} ;$
 $2114=\{1345,2456,3567,4678,5781,6812,7123,8234\} ; 2213=\{1356,2467,3578,4681,5712,6823,7134,8245\}$.

