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Abstract

We present a variety of prime-generating constructions that are based
on sums of primes. The constructions come in all shapes and sizes, varying
in the number of dimensions and number of generated primes. Our best
result is a construction that produces 6 new primes for every starting
prime.

1 Introduction

Constructions made from primes have fascinated mathematicians for many
decades due to the beauty of their design. A number of such constructions
have been proposed, such as: prime magic squares [4, 9], prime arrays [8]
and primes in arithmetic progressions [1, 2].

In this paper we investigate some new prime-generating constructions
that are based on sums of primes. Our constructions come in two flavours:
standard and recursive. In standard constructions new primes are gener-
ated as the sum of primes used in the construction. Recursive construc-
tions generate new primes, which in turn generate further primes. The
recursion terminates when no more primes can be generated. Typically
we only use odd primes (ignore 2), forcing our sums to contain an odd
number of elements. Our overall aim is to generate constructions of the
largest size (order). If two constructions have the same order then we
typically prefer the one with smallest sum of elements (weight). To find
all the constructions we use a variant of the randomised hill-climbing algo-
rithm. For small constructions we were able to find the optimal solutions
(smallest weight) by using a brute force method.

We describe the following standard constructions: prime vectors (Sec-
tion 2), cyclic prime vectors (Section 2.1), Goldbach squares (Section 6)
and prime matrices (Section 7). We describe the following recursive con-
structions: prime tuples (Section 3), prime stairs (Section 4), prime pyra-
mids (Section 4.1) and prime cylinders (Section 5).

2 Prime Vectors

Definition 2.1. A prime vector of order n is an array of distinct primes
P = (p0, p1, . . . , pn−1), such that every sum of an odd number of consec-
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utive elements is also prime. In other words∑
0≤k≤2L

P (i + k) is prime for

∀ i such that 0 ≤ i ≤ i + 2L < n.

(1)

In the above definition, i is the index of the first prime in each sum,
while (2L + 1) is the number of terms in each sum.1 For a given n there
are b(n−1)2/4c sums. Consider a prime vector of order 5: (3, 11, 5, 7, 17).
Its every element is prime, as well as, every sum of an odd number of
consecutive elements:

3 + 11 + 5 = 19, 11 + 5 + 7 = 23,

5 + 7 + 17 = 29, 3 + 11 + 5 + 7 + 17 = 43.
(2)

We used a variant of hill-climbing to find prime vectors (see Algo-
rithm 1). We start with a random array of distinct primes and then
perform various mutations, such as swapping two primes or replacing one
prime with a new one. If the mutation improves the score then we keep
it, otherwise we revert it. The score measures the number of “incorrect”
(composite) sums that the array generates. Hence we want to minimise
this score. Using this algorithm we were able to obtain a prime vector of
order 23 that generates 121 primes2:

(239, 131, 109, 181, 83, 43, 41, 223, 53, 233, 271, 103, 269, 71, 19, 47,
241, 23, 277, 199, 281, 29, 37).

For small orders it is possible to obtain multiple solutions. In such
cases we choose the solution with the smallest weight - sum of all elements.
In fact, this allows us to define an optimal prime vector :

Definition 2.2. A prime vector is optimal if its weight is the lowest
possible.

For n ≤ 14 we were able to find the optimal prime vectors (see Table 1).
To achieve this we used a brute force algorithm. This algorithm iterates
through every permutation of n distinct odd primes whose weight is below
the best known weight. If a permutation forms a prime vector then the
best known weight is updated and the array is printed out. The algorithm
terminates when there are no more permutations whose weight is less
than the best known weight. Table 1 also shows the running time of this
algorithm.

For n > 14 we used Algorithm 1 to find the upper bounds on the min-
imal weight (see Table 2). To obtain the lower bound we used sequences
from the OEIS [7]. For odd n the weight must be a prime, so we used
sequence A068873 - smallest prime which is a sum of n distinct primes.
For even n we used sequence A071148 - sum of the first n odd primes.

2.1 Cyclic Prime Vectors

We can also introduce a cyclic prime vector and define its optimality in
a similar fashion:

1If L = 0 then we have a singleton rather than a sum.
2Prime vectors of smaller orders are sub-arrays of this array.
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Algorithm 1 : Algorithm for finding prime vectors.

1 bestScore←∞
2 S∗ ← random set of n distinct primes

3

4 while True

5 S ← S∗

6 mutate(S)

7 score← score(S)

8 if score < bestScore

9 bestScore← score

10 S∗ ← S

11 print(S∗)

12 end

13 end

n Prime Vector Weight Time
1 (2) 2
2 (3, 5) 8
3 (3, 5, 11) 19
4 (3, 5, 11, 7) 26
5 (3, 11, 5, 7, 17) 43
6 (3, 11, 5, 7, 17, 13) 56
7 (3, 17, 23, 7, 11, 13, 5) 79
8 (3, 11, 17, 13, 29, 19, 5, 7) 104
9 (7, 17, 13, 23, 11, 3, 29, 5, 19) 127
10 (3, 7, 19, 11, 13, 23, 31, 5, 37, 17) 166
11 (3, 23, 41, 19, 11, 13, 17, 7, 5, 31, 53) 223 17s
12 (7, 41, 19, 11, 23, 3, 5, 29, 13, 47, 43, 17) 258 8m
13 (13, 53, 7, 23, 11, 3, 29, 5, 19, 17, 43, 47, 37) 307 73m
14 (17, 43, 47, 13, 29, 5, 3, 23, 11, 19, 41, 7, 53, 37) 348 14h

Table 1: Optimal prime vectors for n ≤ 14, their weight and the time required
to compute them. Computation times less than 1 second are not shown.

n 15 16 17 18 19 20 21 22 23
lower bound 379 438 499 566 643 710 809 872 983
upper bound 443 522 641 888 983 1430 1627 1824 3203

Table 2: Best bounds on the minimal weight of prime vectors for 15 ≤ n ≤ 23.
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Definition 2.3. A cyclic prime vector of order n is a prime vector P of
order n with the additional property that prime sums can span from the
end to the start of the array. In other words∑

0≤k≤2L

P ((i + k) mod n) is prime for

∀ i such that 0 ≤ i < n and

∀ L such that 0 ≤ 2L < n.

(3)

For a given n there are (n− 2)(2n− 1 + (−1)n)/4 sums. For example
the cyclic prime vector (5, 7, 17, 13, 11) generates the following 6 sums:

5 + 7 + 17 = 29, 7 + 17 + 13 = 37,

17 + 13 + 11 = 41, 13 + 11 + 5 = 29,

11 + 5 + 7 = 23, 5 + 7 + 17 + 13 + 11 = 53.

(4)

Cyclic prime vectors differ from normal prime vectors in a few key
ways. Every cyclic prime vector is also a normal prime vector, but the
opposite may not be the case. Unlike normal prime vectors, cyclic prime
vectors can be permuted without affecting their prime sums. Also we
cannot easily generate cyclic prime vectors as sub-arrays of larger cyclic
prime vectors. Due to the cyclic requirement, cyclic prime vectors require
more prime sums for the same order, making them significantly harder to
find.

Using the brute force algorithm described above we were able to find
the optimal cyclic prime vectors for n ≤ 10 (see Table 3). The computa-
tion for the optimal cyclic prime vector of order 11 was still running after
4 days, so it is not shown. It is interesting to note that the weight for
n = 9 is smaller than the weight for n = 8. Using an algorithm similar to
Algorithm 1 we found cyclic prime vectors up to order 14 (see Table 4).
The largest array generates 84 primes.

n Cyclic Prime Vector Weight Time
1 (2) 2
2 (3, 5) 8
3 (3, 5, 11) 19
4 (5, 7, 17, 19) 48
5 (5, 7, 17, 13, 11) 53
6 (5, 29, 7, 11, 19, 37) 108
7 (5, 7, 17, 13, 29, 31, 11) 113
8 (11, 17, 43, 47, 13, 19, 29, 31) 210
9 (7, 17, 13, 11, 19, 41, 29, 37, 23) 197 9s
10 (11, 19, 23, 47, 31, 53, 43, 67, 89, 127) 510 2m

Table 3: Optimal cyclic prime vectors for n ≤ 10, their weight and the time
required to compute them. Computation times less than 1 second are not shown.

3 Prime Tuples

Definition 3.1. A prime tuple of order n (odd) with length k is an array
of distinct odd primes (p0, p1, . . . , pk−1), such that every term after the
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n Cyclic Prime Vector Weight
11 (23, 73, 17, 13, 71, 19, 11, 193, 59, 137, 67) 683
12 (73, 47, 43, 137, 97, 59, 151, 239, 31, 163, 89, 131) 1260
13 (41, 43, 23, 73, 71, 53, 13, 173, 151, 59, 127, 263, 283) 1373
14 (73, 179, 41, 97, 43, 197, 199, 173, 379, 311, 131, 37, 29, 421) 2310

Table 4: Smallest (by weight) cyclic prime vectors found for 11 ≤ n ≤ 14.

n-th term is the sum of the previous n terms. In other words

pi =

i−1∑
q=i−n

pq, ∀i ≥ n. (5)

Note it is sufficient to use the first n terms to represent a prime tuple,
since the remaining terms can be generated via sums of previous terms.
We seek to find prime tuples of order n such that their length is greatest.
For example, here is a prime tuple of order 7 with length 25 - the longest
we have found:

(157, 379, 487, 109, 13, 7, 271, 1423, 2689, 4999, 9511, 18913,
37813, 75619, 150967, 300511, 598333, 1191667, 2373823, 4728733, 9419653,
18763687, 37376407, 74452303, 148306273).

The first 7 terms are shown in bold. The weight of a prime tuple of
order n is the sum of its first n terms. When two tuples of the same order
have the same length, then we prefer the one with the smaller weight.

Table 5 shows the best prime tuples that we found for n ≤ 19. We
have used a brute force approach to prove that the prime tuples for n ∈
{3, 5, 9, 11} are optimal. We notice that for n mod 6 = 3 and n mod 6 =
5 the optimal prime tuples have length 2n + 1 and must contain a 3.

n Prime Tuple Length Weight
3 (3, 13, 7) 7 23

5
(17, 3, 19, 7, 13)

11 59
(17, 5, 11, 23, 3)

7 (157, 379, 487, 109, 13, 7, 271) 25 1423
9 (11, 47, 17, 23, 41, 5, 3, 13, 19) 19 179
11 (43, 7, 19, 13, 3, 17, 11, 5, 29, 41, 23) 23 211

13
(53, 137, 11, 17, 41, 227, 47,

34 1163
101, 83, 5, 149, 263, 29)

15
(29, 5, 23, 11, 41, 47, 89, 17,

31 491
71, 3, 7, 13, 37, 19, 79)

17
(5, 47, 53, 11, 17, 41, 89, 3, 61,

35 647
43, 97, 19, 13, 7, 37, 31, 73)

19
(89, 227, 29, 17, 5, 251, 269, 107, 101, 197,

43 2081
41, 191, 173, 179, 47, 53, 71, 11, 23)

Table 5: Best prime tuples found for n ≤ 19.
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4 Prime Stairs

Definition 4.1. A prime stair of order n ≥ 3 is a dn
2
e×n matrix P such

that every element P (r, c) at row r > 0 and column c is a distinct prime
and each new row is generated from the previous row as follows:

P (r, c) := P (r − 1, c− 1) + P (r − 1, c) + P (r − 1, c + 1). (6)

For a given r > 0 we must have c ∈ [r, n− r − 1]. For a given n there
are b(n− 1)2/4c sums. As a shorthand we can represent a prime stair of
order n via its first (top) row only, i.e., using an array of length n. For
example, the prime stair (13, 17, 7, 5, 11, 3, 23) looks like this:

13, 17, 7, 5, 11, 3, 23
37, 29, 23, 19, 37

89, 71, 79
239

The weight of a prime stair is defined as the sum of all elements in the
first row. We were able to find the optimal prime stairs for n ≤ 11 (see
Table 6). The computation for the optimal prime stair of order 12 was
still running after 4 days, so it is not shown. Using an algorithm similar
to Algorithm 1 we found prime stairs up to order 15 (see Table 7). The
largest stair generates 49 primes.

n Prime Stair Weight Time
3 (3, 5, 11) 19
4 (7, 5, 11, 3) 26
5 (7, 13, 11, 5, 3) 39
6 (7, 17, 13, 11, 5, 3) 56
7 (13, 17, 7, 5, 11, 3, 23) 79
8 (5, 17, 31, 11, 19, 7, 3, 13) 106
9 (29, 23, 37, 13, 11, 5, 7, 19, 17) 161 8s
10 (5, 29, 7, 17, 13, 11, 37, 23, 19, 41) 202 3m
11 (7, 17, 19, 5, 73, 11, 13, 23, 31, 29, 41) 269 2.5h

Table 6: Optimal prime stairs for n ≤ 11, their weight and the time required to
compute them. Computation times less than 1 second are not shown.

n Prime Stair Weight
12 (37, 13, 17, 23, 7, 67, 5, 59, 19, 61, 29, 11) 348
13 (29, 19, 11, 127, 89, 7, 17, 37, 5, 31, 23, 43, 41) 479
14 (53, 17, 67, 29, 13, 5, 19, 149, 31, 101, 79, 11, 7, 43) 624
15 (433, 139, 491, 97, 89, 163, 29, 7, 5, 61, 17, 79, 263, 541, 83) 2497

Table 7: Best (by weight) prime stairs found for 12 ≤ n ≤ 15.

4.1 Prime Pyramids

Similarly we can define a 3D version of the prime stair that we will call a
prime pyramid :
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Definition 4.2. A prime pyramid of order n ≥ 3 is a dn
2
e×n×n matrix

P such that every element P (k, r, c) at level k > 0, row r and column c is
a distinct prime and each new level is generated from the previous level
as follows:

P (k, r, c) :=
∑

−1≤dr≤1

∑
−1≤dc≤1

P (k − 1, r + dr, c + dc). (7)

For a given k > 0 we must have r, c ∈ [k, n−k−1]. For a given n there
are n(n − 1)(n − 2)/6 sums. As a shorthand we can represent a prime
pyramid of order n via its first (bottom) level only, i.e., using a n × n
array. For example, Table 8 shows a prime pyramid of order 5:

Level 0 Level 1 Level 2

73 11 67 71 53
101 41 43 79 83
13 3 31 7 23
17 61 37 5 29
97 89 19 59 47

383 353 457
347 307 337
367 311 257

3119

Table 8: Prime pyramid of order 5.

The weight of a prime pyramid is the sum of all elements in its first
level. We were able to find all the optimal prime pyramids up to order 8
(see Table 9). We also found an order 9 prime pyramid with a weight of
27325, but its optimality is not confirmed (see Table 10).
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n Prime Pyramid Weight

3

7 11 29
19 17 23
5 13 3

127

4

53 19 47 7
37 3 41 13
43 5 29 17
11 79 23 31

458

5

73 11 67 71 53
101 41 43 79 83
13 3 31 7 23
17 61 37 5 29
97 89 19 59 47

1159

6

97 43 47 149 79 3
113 103 61 151 11 37
109 53 107 19 127 67
31 23 101 29 13 7
83 5 59 71 73 157
137 139 41 89 131 17

2582

7

199 47 223 79 61 107 157
229 89 5 71 29 163 211
167 109 83 3 23 137 151
97 197 43 73 59 19 31
191 103 139 179 41 7 11
17 173 227 37 13 149 127
181 53 67 113 131 193 101

5115

8

263 229 23 167 89 61 109 79
97 149 173 67 281 211 59 47
113 163 283 197 11 7 233 227
277 19 293 223 181 251 43 241
179 139 191 239 193 71 41 103
101 107 13 83 73 137 269 37
3 127 311 271 157 307 199 53
5 17 313 131 257 151 29 31

9204

Table 9: Optimal prime pyramids for 3 ≤ n ≤ 8.
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11 79 349 461 433 859 683 587 631

367 31 593 167 331 307 277 577 743

311 67 191 151 281 47 101 619 439

389 761 613 229 173 607 13 43 271

421 563 241 557 317 337 673 751 113

73 71 127 137 163 193 661 23 181

409 571 691 61 83 251 179 233 877

467 53 227 59 89 373 401 37 149

19 547 809 521 131 41 659 503 491

Table 10: Prime pyramid of order 9 with weight 27325.

5 Prime Cylinders

Definition 5.1. A prime cylinder of order n with k layers is a n × k
matrix P of odd primes, such that for every c and r > 0: P (r, c) =
P (r − 1, c− 1) + P (r − 1, c) + P (r − 1, c + 1).

Note that the columns wrap around and hence the term ‘cylinder’. For
example here is a prime cylinder of order 4 and 6 layers - the best found
so far:

1091, 3001, 271, 257

4349, 4363, 3529, 1619

10331, 12241, 9511, 9497

32069, 32083, 31249, 29339

93491, 95401, 92671, 92657

281549, 281563, 280729, 278819

Since all the values below the first layer can be generated from previous
values, a prime cylinder can be described using its first layer only. So the
above prime cylinder would be described as (1091, 3001, 271, 257). The
weight of a prime cylinder is the sum of values in its first layer. When
multiple prime cylinders have the same order and number of layers, then
we prefer the one with the smaller weight. Prime cylinders were originally
introduced in [5], but were limited to n = 4. Here we investigate other
values of n. It turns out that prime cylinders of odd orders cannot have
more than two layers, so we focus on prime cylinders of even orders.
Table 11 shows the best prime cylinders found for n ≤ 12.

6 Goldbach Squares

The famous Goldbach conjecture states that

9



n Prime Cylinder Layers Weight

4 (1091, 3001, 257, 271) 6 4620

6 (163, 1109, 307, 1163, 109, 1307) 6 4158

8 (67, 541, 23, 137, 109, 193, 389, 431) 5 1890

10 (19, 17, 7, 107, 43, 23, 13, 71, 79, 101) 4 480

12 (11, 29, 31, 79, 53, 5, 109, 43, 47, 41, 61, 139) 4 648

Table 11: Best prime cylinders found for n ≤ 12.

Every even integer greater than 2 can be expressed as the sum of two
primes.

Although the conjecture has been verified up to 4×1018 [3], a proof still
remains elusive. Here we investigate a problem related to the Goldbach
conjecture: can we place primes into a square such that every even number
is generated as the sum of two adjacent cells? This puzzle has been
explored in [6]. More formally we have:

Definition 6.1. A Goldbach square of order n is a n × n matrix of odd
primes (not necessarily unique) such that the sum of any two adjacent
cells is one of the even numbers from 6 to 4 + 4n(n − 1) inclusive and
every even number in this range appears exactly once.

For example, here is a Goldbach square of order 3:

7 5 3

17 11 3

3 7 19

The sums across rows are:

7 + 5 = 12, 5 + 3 = 8,

17 + 11 = 28, 11 + 3 = 14,

3 + 7 = 10, 7 + 19 = 26.

(8)

The sums down columns are:

7 + 17 = 24, 17 + 3 = 20,

5 + 11 = 16, 11 + 7 = 18,

3 + 3 = 6, 3 + 19 = 22.

(9)

Notice that every even number from 6 to 28 appears exactly once. If
there are multiple Goldbach squares for a given n then we prefer the one
with the smallest sum of cells (weight). Tables 12 and 13 show the best
Goldbach squares that we found for n ≤ 10.
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n Goldbach Square Weight

2
5 7

3 3
18

3

3 5 7

7 11 17

19 3 3

75

4

5 11 13 5

17 19 31 7

3 29 11 3

5 23 23 3

208

5

5 7 11 17 5

31 31 23 53 3

11 37 43 29 23

3 47 31 29 17

3 17 13 3 7

499

6

7 79 13 17 11 3

41 17 71 43 31 19

37 29 23 59 59 13

61 7 47 53 3 31

19 103 17 23 101 7

5 13 3 3 5 5

1078

7

37 11 19 7 83 47 53

5 17 109 61 19 17 53

47 67 37 61 73 59 3

11 7 71 11 83 89 7

13 151 17 149 3 29 109

3 3 107 13 137 5 3

17 37 29 31 7 7 43

2077

Table 12: Goldbach squares for 2 ≤ n ≤ 7.
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n Goldbach Square Weight

8

17 23 157 13 43 37 31 67

17 7 47 71 79 79 97 127

3 71 131 31 61 127 37 73

23 5 7 11 149 19 89 139

41 53 113 41 3 3 127 17

149 59 11 131 83 13 47 179

71 29 3 5 31 59 3 7

11 37 181 41 151 47 101 31

3766

9

101 47 13 107 97 131 113 59 149

59 191 43 107 31 101 163 13 73

107 29 19 3 7 173 109 139 7

139 79 13 13 11 89 127 151 137

23 173 37 31 83 7 7 13 61

89 113 29 227 41 5 23 41 43

101 179 5 3 127 73 29 41 199

73 3 37 223 31 67 89 17 71

113 3 151 61 163 103 103 19 107

6187

10

89 11 101 71 271 13 5 89 59 197

107 227 23 251 67 19 3 211 29 47

13 83 47 79 43 313 3 139 127 131

3 223 11 163 7 13 181 181 37 61

89 79 73 151 3 173 73 131 227 97

199 149 179 97 41 7 127 233 71 47

97 17 11 31 5 7 109 53 37 31

257 89 251 101 131 19 37 241 67 7

79 109 31 191 29 11 43 19 163 53

127 163 181 89 179 23 59 5 47 19

9212

Table 13: Goldbach squares for 8 ≤ n ≤ 10.
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7 Prime Matrices

Definition 7.1. A prime matrix of order n is a n × n matrix P of odd
primes, such that the sum of every odd number of elements in any straight
line is prime. More formally, we have

∑
0≤k≤2L

P (r + kdr, c + kdc) is prime for

∀ r, c such that 0 ≤ r, c < n and

∀ dr, dc such that (dr, dc) ∈ {(0, 1), (1, 0), (1, 1)} and

∀ L such that 0 ≤ 2L < n and

r + 2Ldr < n and c + 2Ldc < n.

(10)

We were able to find prime matrices up to order 7. For n ≤ 4 we
found optimal (smallest weight) prime matrices. The results can be seen
in Table 14. The lower bound on the optimal weight is the sum of the
first n2 odd primes.
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n Prime Matrix Weight Lower Bound

3

5 19 13

3 17 23

29 11 7

127

4

19 53 17 3

47 23 31 29

43 7 11 5

41 13 59 37

438

5

101 107 61 109 41

127 43 11 29 31

5 17 37 13 59

79 97 23 131 19

47 53 7 67 89

1403 1159

6

73 131 113 109 61 227

149 541 229 41 11 211

379 491 419 349 139 53

89 97 13 71 83 277

193 59 137 307 127 29

167 43 31 5 101 241

5796 2582

7

547 719 1117 983 1201 29 397

691 827 103 1307 373 131 37

53 457 503 7 419 73 557

347 463 683 307 647 337 1433

163 167 313 1013 127 1217 643

367 677 787 107 193 653 13

1223 1087 23 769 227 487 887

25891 5115

Table 14: Prime matrices for 3 ≤ n ≤ 7.
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8 Conclusion and Future Work

We have investigated a number of constructions that generate primes via
the sum of primes. Some constructions are more efficient than others
at generating primes. We can define a construction’s efficiency as the
number of primes it generates divided by the number of primes used to
construct the construction. Table 8 shows the greatest efficiency achieved
by each construction sorted from highest to lowest:

Construction Order n Efficiency

Cyclic Prime Vector 14 6

Prime Vector 23 5.26

Prime Cylinder 4 and 6 5

Prime Matrix 7 4

Prime Stair 15 3.27

Prime Tuple 7 2.57

Prime Pyramid 9 1.04

Many questions remain unresolved:

• What are the optimal prime vectors for 15 ≤ n ≤ 23 ?

• Is there a prime vector of order 24 ?

• What are the optimal cyclic prime vectors for 11 ≤ n ≤ 14 ?

• Is there a cyclic prime vector of order 15 ?

• What are the optimal prime tuples for n = 7, 13, 19 ?

• What are the optimal prime stairs for 12 ≤ n ≤ 15 ?

• Is there a prime stair of order 16 ?

• What is the optimal prime pyramid of order 9 ?

• Is there a prime pyramid of order 10 ?

• What are the optimal prime cylinders for n ≤ 12 ?

• Is there a Goldbach square of order 11 ?

• What are the optimal prime matrices for 5 ≤ n ≤ 7 ?

• Is there a prime matrix of order 8 ?
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