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Abstract

The Motzkin numbers can be derived as coefficients of hybrid polynomials. Such

an identification allows the derivation of new identities for this family of numbers

and offers a tool to investigate previously unnoticed links with the theory of special

functions and with the relevant treatment in terms of operational means. The use of

umbral methods opens new directions for further developments and generalizations,

which leads, e.g., to the identification of new Motzkin associated forms.
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1 Introduction

The telephone numbers (Tn), also called convolution numbers, provide a very well known
example of link between special numbers and special polynomials. The (Tn) can be expressed
in terms of Hermite polynomials coefficients (hs) [1]. Two of the present authors (M.A and
G.D.) have recently pointed out in ref. [2] that the Padovan and Perrin numbers [3, 4] can
be recognized to be associated with particular values of two variable Legendre polynomials
[5].

Weinstein has discussed in [6] the connection between Motzkin numbers and a family of
hybrid polynomials, and Blasiak et al. and Dattoli et al. have studied, in [7, 8], the relevant
properties of Motzkin numbers.

The hybrid polynomials are indeed defined as [8]

P (q)
n (x, y) = n!

⌊n
2
⌋

∑

r=0

xn−2ryr

(n− 2r)!r!(r + q)!
, (1)

and the relevant generating function reads

∞
∑

n=0

tn

n!
P (q)
n (x, y) =

Iq(2
√
y t)

(
√
y t)q

ext, (2)

where Iq(x) is the modified Bessel function of the first kind of order q.

Within the present framework, the Motzkin numbers sequence can be specified as [7]

mn = P (1)
n (1, 1) =

n
∑

s=0

mn,s,

mn,s =

(

n

s

)

fs,

fs =
s!

Γ
(s

2
+ 2

)

Γ
(s

2
+ 1

)

∣

∣

∣
cos

(

s
π

2

)
∣

∣

∣
,

(3)

where the coefficients mn,s can be represented as the triangle reported in the following table,
in which mn,2 corresponds, in OEIS, to the sequence A000217, mn,4 to A034827, mn,6 to
A000910 and so on.

According to eq. (2), the Motzkin numbers can also be defined as the coefficients of the
following series expansion

∞
∑

n=0

tn

n!
mn =

I1(2t)

t
et. (4)
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mn,s coefficients mn Motzkin

Parameter
s ∑n

s=0mn,s

0 1 2 3 4 5 6 7

n

0 1 1

1 1 0 1

2 1 0 1 2

3 1 0 3 0 4

4 1 0 6 0 2 9

5 1 0 10 0 10 0 21

6 1 0 15 0 30 0 5 51

7 1 0 21 0 70 0 35 0 127

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: Motzkin Numbers and their Coefficients.

In the following we will show how some progresses in the study of the relevant properties
can be done by the use of a formalism of umbral nature.

2 Motzkin Numbers and Umbral Calculus

In order to simplify most of the algebra associated with the study of the properties of the
Motzkin numbers and to get new relevant identities, we introduce a formalism successfully
exploited elsewhere [9] based on methods of umbral nature [10].
To this aim we note that the function

Cq(x) =
Iq(2

√
x)

(
√
x)q

=

∞
∑

r=0

xr

r!(q + r)!
(5)

can be cast in the form

Cq(x) = ĉq ◦ eĉx, (6)

where ĉ is an umbral operator defined according to

ĉµ =
1

Γ(µ+ 1)
, (7)

with µ not necessarily integer and real.
We define the following composition rule

ĉµ ◦ ĉν = ĉµ+ν (8)
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and we let Ĉ = {ĉα, α ∈ C} denote the set of ĉ-operators. Then, the pair (Ĉ, ◦) satisfying
the Abelian-group property. The mathematical foundations of the theory of ĉ-operators can
be traced back to those underlying the Borel transform and have been carefully discussed in
ref. [10].

The use of this formalism allows to restyle the hybrid polynomials in the form

P (q)
n (x, y) = ĉq ◦Hn(x, ĉ y), (9)

where

Hn(x, y) = n!

⌊n
2
⌋

∑

r=0

xn−2ryr

(n− 2r)!r!
(10)

are the two variable Hermite-Kampé de Fériét polynomials of order 2.
We can accordingly use the wealth of properties of this family of polynomials to derive fur-
ther and new relations regarding those of the Motzkin numbers family.

By recalling indeed the generating function [8]

∞
∑

n=0

tn

n!
Hn+l(x, y) = Hl(x+ 2yt, y)ext+yt2, (11)

we find

∞
∑

n=0

tn

n!
mn+l = ĉ ◦Hl(1 + 2ĉt, ĉ)et+ĉt2 , (12)

which, after using eqs. (8), (10), (6), finally yields

∞
∑

n=0

tn

n!
mn+l = µl(t) e

t,

µl(t) = l!

⌊ l
2
⌋

∑

r=0

1

r!

l−2r
∑

s=0

2s

s!(l − 2r − s)!

Is+r+1(2t)

tr+1
.

(13)

Furthermore, the same procedure and the use of the Hermite polynomials duplication
formula [11]

H2n(x, y) =

n
∑

r=0

(

n

r

)2

r! (2y)r (Hn−r(x, y))
2
, (14)

yields the following identity for Motzkin numbers
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m2n = ĉ ◦
n

∑

r=0

r!

(

n

r

)2

(2ĉ)r ◦Hn−r(1, ĉ) ◦Hn−r(1, ĉ) =

=

n
∑

r=0

(

n

r

)2

2rr!(n− r)!

⌊n−r
2

⌋
∑

s=0

m
(r+s+1)
n−r

(n− r − 2s)!s!
,

(15)

where

m(q)
n = P (q)

n (1, 1) = ĉq ◦Hn(1, ĉ) (16)

are associated Motzkin numbers [7].
The identification of Motzkin numbers as in eq. (16), along with the use of the recurrences
of Hermite polynomials, yields, e.g., the identities

m
(q)
n+1 = m(q)

n + 2 n m
(q+1)
n−1 ,

mn+p =

min[n,p]
∑

s=0

2ss!

(

p

s

) (

n

s

)

Mp−s, n−s, s,

Mp, n, t = p!

⌊ p

2
⌋

∑

r=0

m
(t+r+1)
n

(p− 2r)!r!
,

(17)

in which, the second identity, has been derived from the Nielsen formula for Hn+m(x, y) [12].

3 Final Comments

In this paper we have shown that a fairly straightforward extension of the formalism put
forward in ref. [7], allows non trivial progresses in the theory of Motzkin numbers. Further
relations can be easily obtained by applying the method we have envisaged as, e.g.,

n
∑

s=0

mn−s ms = 2 (n + 1) m(2)
n , (18)

which represents a discrete self-convolution of Motzkin numbers.

We have also mentioned the existence of the associated Motzkin numbers

m(q)
n = P (q)

n (1, 1), (19)

touched on in ref. [7]. In the present context they have been introduced on purely algebraic
grounds. Strictly speaking they are not integers and therefore they are not amenable for a
combinatorial interpretation however, redefining them as
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m̃(q)
n =

(n+ q)!

n!
P (q)
n (1, 1), (20)

we obtain for q = 2 the sequences in OEIS (A014531), while for q = 3 the sequences
(A014532) and so on.

A more appropriate interpretation in combinatorial terms can be obtained by following,
e.g., the procedures indicated in ref. [13] and deserves further investigations, out of the scope
of the present paper.

We have mentioned in the introduction the theory of telephone numbers T (n) [14], whose
importance in chemical Graph theory has been recently emphasized in ref. [15]. As well
known, they can be expressed in terms of ordinary Hermite polynomials, however the use of
the two variable extension is more effective. They can indeed be expressed as T (n) = Hn(1,

1
2
)

.
The use of Hermite polynomials properties, like the index duplication formula, yields

T (2n) =

n
∑

r=0

(

n

r

)2

r! T (n− r)2. (21)

The use of the Hermite numbers hs [16] allows the derivation of the following further expres-
sion

T (n) =
n

∑

s=0

tn,s,

tn,s =

(

n

s

)

hs

(

1

2

)

,

hs(y) = y
s
2Γ

(s

2
+ 2

)

fs =
y

s
2s!

Γ
(s

2
+ 1

)

∣

∣

∣
cos

(

s
π

2

)∣

∣

∣
.

(22)

The coefficients tn,s of the telephone numbers can be arranged in the following triangle, in
which, the numbers belonging to the column s = 4 , (3, 15, 45, 105, 210, 378, . . .), are identi-
fied, in OEIS, with the sequence A050534 and the column in s = 6, (15, 105, 420, 1260, 3150, . . .),
is just a multiple of A00910.

The use of the identification with two variable Hermite polynomials opens further per-
spectives, by exploiting indeed the polynomials (see [1] and references therein)

H(m)
n (x, y) = n!

⌊ n
m
⌋

∑

r=0

xn−mryr

(n−mr)!r!
, (23)

we can introduce the following generalization of telephone numbers
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tn,s coefficients T (n) telephone numbers

Parameter
s ∑n

s=0 tn,s
0 1 2 3 4 5 6 7

n

0 1 1

1 1 0 1

2 1 0 1 2

3 1 0 3 0 4

4 1 0 6 0 3 10

5 1 0 10 0 15 0 26

6 1 0 15 0 45 0 15 76

7 1 0 21 0 105 0 105 0 232

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Telephone Number Coefficients

T (m)
n = H(m)

n

(

1,
1

m

)

, (24)

with generating function

∞
∑

n=0

tn

n!
T (m)
n = et+

1

m
tm , (25)

which satisfy the recurrence

T
(m)
n+1 = T (m)

n +
n!

(n−m+ 1)!
T

(m)
n−m+1. (26)

In the case of m = 3 the numbers T
(3)
n = (1, 1, 1, 3, 9, 21, 81, 351, 1233, . . .) are identified with

OEIS A001470, while for m = 4, the series (1, 1, 1, 1, 7, 31, 91, 211, 1681, 12097, . . .), corre-
sponds to A118934. For m = 5 the associated series appears to be A052501 but should be
more appropriately identified with the coefficients of the expansion (24), finally the sequence
m = 6 is not reported in OEIS.

A more accurate analysis of this family of numbers and the relevant interplay with
Motzkin will be discussed elsewhere.
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