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Abstract

In this article, new series for the first and second Stieltjes constants (also known as generalized Eu-

ler’s constant), as well as for some closely related constants are obtained. These series contain rational

terms only and involve the so–called Gregory coefficients, which are also known as (reciprocal) log-

arithmic numbers, Cauchy numbers of the first kind and Bernoulli numbers of the second kind. In

addition, two interesting series with rational terms for Euler’s constant γ and the constant ln 2π are

given, and yet another generalization of Euler’s constant is proposed and various formulas for the cal-

culation of these constants are obtained. Finally, we mention in the paper that almost all the constants

considered in this work admit simple representations via the Ramanujan summation.

Keywords: Stieltjes constants, Generalized Euler’s constants, Series expansions, Ramanujan

summation, Harmonic product of sequences, Gregory’s coefficients, Logarithmic numbers, Cauchy

numbers, Bernoulli numbers of the second kind, Stirling numbers of the first kind, Harmonic

numbers.

I. Introduction and definitions

The zeta-function

ζ(s) ≡
∞

∑
n=1

n−s =
∞

∏
n=1

(
1 − p−s

n

)−1
,

Re s > 1

pn ∈ P ≡ {2, 3, 5, 7, 11, . . .}

is of fundamental and long-standing importance in analytic number theory, modern analysis, theory

of L–functions, prime number theory and in a variety of other fields. The ζ–function is a meromorphic

function on the entire complex plane, except at point s = 1 at which it has one simple pole with residue

1. The coefficients of the regular part of its Laurent series, denoted γm,

ζ(s) =
1

s − 1
+ γ +

∞

∑
m=1

(−1)m(s − 1)m

m!
γm , s 6= 1. (1)
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where γ is Euler’s constant1, and those of the Maclaurin series δm

ζ(s) =
1

s − 1
+

1

2
+

∞

∑
m=1

(−1)msm

m!
δm , s 6= 1. (2)

are of special interest and have been widely studied in literature, see e.g. [25], [1, vol. I, letter 71 and

following], [23, p. 166 et seq.], [28, 29, 24, 26, 2, 11, 5, 33, 27, 34, 20, 6, 32, 37, 19]. Coefficients γm are

usually called Stieltjes constants or generalized Euler’s constants (both names being in use), while δm do

not possess a special name.2 It may be shown with the aid of the Euler–MacLaurin summation that

γm and δm may be also given by the following asymptotic representations

γm = lim
n→∞

{
n

∑
k=1

lnm k

k
−

lnm+1 n

m + 1

}

, m = 1, 2, 3, . . . , 3 (3)

and

δm = lim
n→∞

{
n

∑
k=1

lnmk − n m!
m

∑
k=0

(−1)m+k lnkn

k!
−

lnmn

2

}

, m = 1, 2, 3, . . . , 4 (4)

These representations may be translated into these simple expressions

γm =
R

∑
k>1

lnm k

k
, δm =

R

∑
k>1

lnm k , m = 1, 2, 3, . . .

where
R
∑ stands for the sum of the series in the sense of the Ramanujan summation of divergent series

5. Due to the reflection formula for the zeta-function ζ(1 − s) = 2ζ(s)Γ(s)(2π)−s cos 1
2 πs , numbers

δm and γm are related to each other polynomially and also involve Euler’s constant γ and the values

of the ζ–function at naturals. For the first values of m, this gives

δ1 = 1
2 ln 2π − 1 = −0.08106146679 . . .

δ2 = γ1 +
1
2 γ2 − 1

2 ln2 2π − 1
24 π2 + 2 = −0.006356455908 . . . 6

δ3 = − 3
2 γ2 − 3γ1γ − γ3 −

(
3γ1 +

3
2 γ2 − 1

8 π2
)

ln 2π + ζ(3) + 1
2 ln3 2π − 6 = +0.004711166862 . . .

and conversely

γ1 = δ2 + 2δ2
1 + 4δ1 −

1
2 γ + 1

24 π2 = −0.07281584548 . . .

γ2 = − 2
3 δ3 − 2δ2(γ + 2)− 4δ1δ2 −

16
3 δ3

1 − 4δ2
1(γ + 4)− 8δ1(γ + 1)− 1

12 γπ2 + 1
3 γ3 + 2

3 ζ(3)− 4
3

= −0.009690363192 . . .

Relationships between higher–order coefficients become very cumbersome, but may be found via

a semi–recursive procedure described in [3]. Altough there exist numerous representations for γm

1We recall that γ = limn→∞(Hn − ln n) = −Γ′(1) = 0.5772156649 . . . , where Hn is the harmonic number.
2It follows from (2) that δm = (−1)m

{
ζ(m)(0) + m!

}

3This representation is very old and was already known to Adolf Pilz, Stieltjes, Hermite and Jensen [6, p. 366].
4A slightly different expression for δm was given earlier by and by Lehmer [32, Eq. (5), p. 266], Sitaramachandrarao [37,

Theorem 1], Finch [23, p. 168 et seq.] and Connon [19, Eqs. (2.15), (2.19)]. The formula given by these writers differ from our

(4) by the presence of the definite integral of lnmx taken over [1, n], which in fact may be reduced to a finite combination of

logarithms and factorials.
5For more details on the Ramanujan summation, see [4, Ch. 6], [15, 13, 16, 12].
6This expression for δ2 was found by Ramanujan, see e.g. [4, (18.2)].
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and δm, no convergent series with rational terms only are known for them (unlike for Euler’s con-

stant γ, see e.g. [6, Sect. 3], or for various expressions containing it [8, p. 413, Eqs. (41), (45)–(47)]).

Recently, divergent envelopping series for γm containing rational terms only have been obtained in

[6, Eqs. (46)–(47)]. In this paper, by continuing the same line of investigation, we derive convergent

series representations with rational coefficients for γ1, δ1, γ2 and δ2, and also find two new series of

the same type for Euler’s constant γ and ln 2π respectively. These series are not simple and involve

a product of Gregory coefficients Gn, which are also known as (reciprocal) logarithmic numbers, Bernoulli

numbers of the second kind bn, and normalized Cauchy numbers of the first kind C1,n. Similar expressions

for higher–order constants γm and δm may be obtained by the same procedure, using the harmonic

product of sequences introduced in [14], but are quite cumbersome. Since the Stieltjes constants γm

generalize Euler’s constant γ and since our series contain the product of Gn, these new series may

also be seen as the generalization of the famous Fontana–Mascheroni series

γ =
∞

∑
n=1

∣
∣Gn

∣
∣

n
=

1

2
+

1

24
+

1

72
+

19

2880
+

3

800
+

863

362 880
+

275

169 344
+ . . . (5)

which is the first known series representation for Euler’s constant having rational terms only, see

[8, pp. 406, 413, 429], [6, p. 379]. In Appendix A, we introduce yet another set of constants κm =

∑
n>1

|Gn| n−m−1, which also generalize Euler’s constant γ. These numbers, similarly to γm, coincide

with Euler’s constant at m = 0 and have various interesting series and integral representations, none

of them being reducible to the “classical” mathematical constants.

II. Series expansions

II.1. Preliminaries

Since the results, that we come to present here, are essentially based on the Gregory coefficients

and Stirling numbers, it may be useful to briefly recall their definition and properties. Gregory num-

bers, denoted below Gn, are rational alternating G1 = +1/2 , G2 = −1/12 , G3 = +1/24 , G4 = −19/720 ,

G5 = +3/160 , G6 = −863/60 480 ,. . . , decreasing in absolute value, and are also closely related to the

theory of finite differences; they behave as
(

n ln2 n
)−1

at n → ∞ and may be bounded from below

and above accordingly to [8, Eqs. (55)–(56)]. They may be defined either via their generating function

z

ln(1 + z)
= 1 +

∞

∑
n=1

Gn zn, |z| < 1 , (6)

or recursively

Gn =
(−1)n+1

n + 1
+

n−1

∑
l=1

(−1)n−lGl

n + 1 − l
, G1 =

1

2
, n = 2, 3, 4, . . . (7)

or explicitly7

Gn =
1

n!

1
ˆ

0

x (x − 1) (x − 2) · · · (x − n + 1) dx , n = 1, 2, 3, . . . (8)

7For more information about Gn, see [8, pp. 410–415], [6, p. 379], [9], and the literature given therein (nearly 50 references).
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Throughout the paper, we also make use of the Stirling numbers of the first kind, which we denote

below by S1(n, l). Since there are different definitions and notations for them, we specify that in our

definition they are simply the coefficients in the expansion of falling factorial

x (x − 1) (x − 2) · · · (x − n + 1) =
n

∑
l=1

S1(n, l) · xl , n = 1, 2, 3, . . . (9)

and may equally be defined via the generating function

lnl(1 + z)

l!
=

∞

∑
n=l

S1(n, l)

n!
zn =

∞

∑
n=0

S1(n, l)

n!
zn , |z| < 1 , l = 0, 1, 2, . . . (10)

It is important to note that sgn
[
S1(n, l)

]
= (−1)n±l. We also recall that the Stirling numbers of the

first kind and the Gregory coefficients are linked by the following relation8

Gn =
1

n!

n

∑
l=1

S1(n, l)

l + 1
, n = 1, 2, 3, . . . (11)

II.2. Some auxiliary lemmas

Before we proceed with the series expansions for δm and γm, we need to prove several useful

lemmas.

Lemma 1. For each natural number k, let

σk ≡
∞

∑
n=1

∣
∣Gn

∣
∣

n + k
,

the following equality holds

σk =
1

k
+

k

∑
m=1

(−1)m

(
k

m

)

ln(m + 1) , k = 1, 2, 3, . . . (12)

Proof. By using (11) and by making use of the generating equation for the Stirling numbers of the first

kind (10), we obtain

∞

∑
n=1

∣
∣Gn

∣
∣

n + k
=

∞

∑
n=1

1

n!

n

∑
l=1

(−1)l+1
∣
∣S1(n, l)

∣
∣

l + 1
·

1
ˆ

0

xn+k−1dx

︸ ︷︷ ︸

1/(n+k)

= −
∞

∑
l=1

1

(l + 1)!

1
ˆ

0

xk−1lnl(1 − x) dx

=
∞

∑
l=1

(−1)l+1

(l + 1)!

∞̂

0

(
1 − e−t

)k−1
tle−t dt =

∞

∑
l=1

(−1)l+1

(l + 1)!

k−1

∑
m=0

(−1)m

(
k − 1

m

) ∞̂

0

e−t(m+1)tl dt

︸ ︷︷ ︸

l! (m+1)−l−1

=
∞

∑
l=1

(−1)l+1

l + 1

k−1

∑
m=0

(−1)m

(
k − 1

m

)
1

(m + 1)l+1
=

k−1

∑
m=0

(−1)m

(
k − 1

m

){
1

m + 1
− ln

m + 2

m + 1

}

(13)

8More information and references (more than 60) on the Stirling numbers of the first kind may be found in [8, Sect. 2.1] and

[6, Sect. 1.2]. We also note that our definitions for the Stirling numbers agree with those adopted by MAPLE or MATHEMATICA:

our S1(n, l) equals to Stirling1(n,l) from the former and to StirlingS1[n,l] from the latter.
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where at the last stage we made a change of variable x = 1 − e−t and used the well-known formula

for the Γ–function. But since

k−1

∑
m=0

(−1)m

m + 1

(
k − 1

m

)

=
1

k
, and

(
k − 1

m

)

+

(
k − 1

m − 1

)

=

(
k

m

)

,

the last finite sum in (13) reduces to (12).9

Remark 1. One may show 10that σk may also be written in terms of the Ramanujan summation:

σk =
R

∑
n>1

Γ(k + 1)Γ(n)

Γ(n + k + 1)
=

R

∑
n>1

B(k + 1, n). (14)

where B stands for the Euler beta-function.

Lemma 2. Let a = (a(1), a(2), . . . , a(n), . . . ) be a sequence of complex numbers. The following identity is

true for all nonnegative integers n:

n

∑
l=0

(−1)l

(
n

l

)
a(l + 1)

l + 1
=

1

n + 1

n

∑
k=0

k

∑
l=0

(−1)l

(
k

l

)

a(l + 1) (15)

In particular, if a = lnm for any natural m, then this identity reduces to

n

∑
l=0

(−1)l

(
n

l

)
lnm(l + 1)

l + 1
=

1

n + 1

n

∑
k=1

k

∑
l=1

(−1)l

(
k

l

)

lnm(l + 1) (16)

Proof. Formula (15) is an explicit translation of [14, Proposition 7].

Lemma 3. For all natural m

γm =
∞

∑
n=1

|Gn+1|

n + 1

n

∑
k=1

k

∑
l=1

(−1)l

(
k

l

)

lnm(l + 1) (17)

δm =
∞

∑
n=1

|Gn+1|
n

∑
l=1

(−1)l

(
n

l

)

lnm(l + 1) (18)

Proof. Using this representation for the ζ–function

ζ(s) =
1

s − 1
+

∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)−s , s 6= 1 ,

see e.g. [6, pp. 382–383], [7], we first have

γm =
∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
l=0

(−1)l

(
n

l

)
lnm(l + 1)

l + 1

and

δm =
∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
l=0

(−1)l

(
n

l

)

lnm(l + 1) .

Then formula (17) follows from property (16).

9This result appeared without proof in [8, p. 413]. For a slightly more general result, see [21, Proposition 1].
10See [12] Eq. (4.31).
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II.3. Series with rational terms for the first Stieltjes constant γ1 and for the coefficient δ1

Theorem 1. The first Stieltjes constant γ1 may be given by the following series

γ1 =
3

2
−

π2

6
+

∞

∑
n=2

[ ∣
∣Gn

∣
∣

n2
+

n−1

∑
k=1

∣
∣Gk Gn+1−k

∣
∣ ·
(

Hn − Hk

)

n + 1 − k

]

=
3

2
−

π2

6
+

1

32
+

5

432
+

1313

207 360
+

42 169

10 368 000
+

137 969

48 384 000
+

1 128 119

5 334 336 00
+ . . . (19)

containing π2 and positive rational coefficients only. Using Euler’s formula π2 = 6 ∑ n−2 , the latter may be

reduced to a series with rational terms only.

Proof. By (17) with m = 1, one has

γ1 =
∞

∑
n=1

∣
∣Gn+1

∣
∣

n + 1

n

∑
k=1

k

∑
m=1

(−1)m

(
k

m

)

ln(m + 1)

and by (12),

1

n + 1

n

∑
k=1

k

∑
m=1

(−1)m

(
k

m

)

ln(m + 1) =
1

n + 1

n

∑
k=1

σk −
Hn+1

n + 1
+

1

(n + 1)2
.

Thus

γ1 =
∞

∑
n=1

∣
∣Gn+1

∣
∣

n + 1

n

∑
k=1

σk −
∞

∑
n=0

∣
∣Gn+1

∣
∣Hn+1

n + 1
+

∞

∑
n=0

∣
∣Gn+1

∣
∣

(n + 1)2

=
∞

∑
n=1

∞

∑
m=1

∣
∣Gn+1 Gm

∣
∣(Hm+n − Hm)

n + 1
− ζ(2) + 1 +

∞

∑
n=1

∣
∣Gn

∣
∣

n2

since
∞

∑
n=1

∣
∣Gn

∣
∣ · Hn

n
= ζ(2)− 1

see e.g. [41, p. 2952, Eq. (1.3)], [17, p. 20,Eq. (3.6)], [13, p. 307, Eq. for F0(2)], [8, p. 413, Eq. (44)].

Rearranging the double absolutely convergent series as follows

∞

∑
n=1

∞

∑
m=1

∣
∣Gn+1 Gm

∣
∣ ·
(

Hm+n − Hm
)

n + 1
=

∞

∑
n=2

n−1

∑
k=1

∣
∣Gk Gn+1−k

∣
∣ ·
(

Hn − Hk

)

n + 1 − k

we finally arrive at (19).

Remark 2. It seems that the sum κ1 ≡ ∑ |Gn| n−2 = 0.5290529699 . . . cannot be reduced to the “standard”

mathematical constants.11 However, it admits several interesting representations, which we give in Appendix

A.

Theorem 2. The first MacLaurin coefficient δ1 = 1
2 ln 2π − 1 admits a series representation similar to that

for γ1, namely

δ1 =
∞

∑
n=1

1

n

n

∑
k=1

∣
∣Gk Gn+1−k

∣
∣+

1 − ln 2π

2
(20)

11For more digits, see OEIS A270859.
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Proof. Proceeding analogously to the previous case and recalling that

∞

∑
n=2

|Gn|

n − 1
= −

γ + 1 − ln 2π

2

see e.g. [8, p. 413, Eq. (41)], [42, Corollary 9], we have

δ1 =
∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
l=0

(−1)l

(
n

l

)

ln(l + 1)

=
∞

∑
n=1

∣
∣Gn+1

∣
∣

(

σn −
1

n

)

=
∞

∑
n=1

∣
∣Gn+1

∣
∣ σn −

∞

∑
n=1

∣
∣Gn+1

∣
∣

n

=
∞

∑
n=1

∞

∑
k=1

∣
∣Gn+1 Gk

∣
∣

n + k
+

γ + 1 − ln 2π

2
=

∞

∑
n=1

∞

∑
k=1

∣
∣Gn Gk

∣
∣

n + k − 1
+

1 − ln 2π

2
(21)

=
∞

∑
n=1

1

n

n

∑
k=1

∣
∣Gk Gn+1−k

∣
∣+

1 − ln 2π

2

where in (21) we could eliminate γ thanks to the fact that G1 = 1/2 and that the sum of |Gn|/n over

all natural n equals precisely Euler’s constant, see (5).

Corollary 1. The constant ln 2π has the following beautiful series representation with rational terms only and

containing a product of Gregory coefficients

ln 2π =
3

2
+

∞

∑
n=1

1

n

n

∑
k=1

∣
∣Gk Gn+1−k

∣
∣ =

3

2
+

1

4
+

1

24
+

7

432
+

1

120
+

43

8640
+

79

24 192
+ . . . (22)

which directly follows from (20). From the latter, one can also readily derive a series with rational coefficients

only for ln π (for instance, with the aids of the Mercator series).

Corollary 2. Euler’s constant γ admits the following series representation with rational terms

γ = 2 ln 2π − 3 − 2
∞

∑
n=1

1

n + 1

n

∑
k=1

∣
∣Gk Gn+2−k

∣
∣ = 2 ln 2π − 3 −

1

24
−

1

54
−

29

2880
−

−
67

10 800
−

1507

362 880
−

3121

1 058 400
−

12 703

15 806 080
−

164 551

97 977 600
− . . . (23)

which seems to be undiscovered yet. This curious series straightforwardly follows from (21), from the transfor-

mation
∞

∑
k=1

∞

∑
n=1

∣
∣Gk+1 Gn

∣
∣

n + k
=

∞

∑
n=1

1

n + 1

n

∑
k=1

∣
∣Gk Gn+2−k

∣
∣

and from Eq. (5).

II.4. Generalizations to the second–order coefficients δ2 and γ2 via an application of the harmonic product

We recall the main properties of the harmonic product of sequences which are stated and proved

in [14]). If a = (a(1), a(2), . . . ) and b = (b(1), b(2), . . . ) are two sequences in C
N∗

, then the harmonic

product a ⋊⋉ b admits the explicit expression:

(a ⋊⋉ b)(m + 1) = ∑
06l6k6m

(−1)k−l

(
m

k

)(
k

l

)

a(k + 1)b(m + 1 − l) , m = 0, 1, 2, . . . (24)

7



For small values of m, this gives:

(a ⋊⋉ b)(1) = a(1)b(1) ,

(a ⋊⋉ b)(2) = a(2)b(1) + a(1)b(2)− a(2)b(2) ,

(a ⋊⋉ b)(3) = a(3)b(1) + a(1)b(3) + 2a(2)b(2)− 2a(3)b(2)− 2a(2)b(3) + a(3)b(3)

etc.

The harmonic product ⋊⋉ is associative and commutative.

Let D be the operator defined by

D(a)(m + 1) =
m

∑
j=0

(−1)j

(
m

j

)

a(j + 1) , m = 0, 1, 2, . . .

then D = D−1 and the harmonic product satisfies the following property:

D(ab) = D(a) ⋊⋉ D(b) (25)

In particular, if a(m) = ln m, then D(a)(1) = ln 1 = 0, and by (12),

D(a)(m + 1) =
m

∑
j=1

(−1)j

(
m

j

)

ln(j + 1) = σm −
1

m
, m = 1, 2, 3, . . . (26)

Therefore, if a = ln then, by (24), (25), and (26), the following identity holds

D(ln2)(m + 1) = ∑
06l6k6m

k 6=0
l 6=m

(−1)k−l

(
m

k

)(
k

l

) (

σk −
1

k

)(

σm−l −
1

m − l

)

(27)

From this identity results the following theorem:

Theorem 3. The second coefficients γ2 and δ2 may be given by the following series

γ2 =
∞

∑
n=1

|Gn+1|

n + 1 ∑
06l6k6m6n

k 6=0
l 6=m

(−1)k−l

(
m

k

)(
k

l

)(

σk −
1

k

)(

σm−l −
1

m − l

)

and

δ2 =
∞

∑
m=1

|Gm+1| ∑
06l6k6m

k 6=0
l 6=m

(−1)k−l

(
m

k

)(
k

l

)(

σk −
1

k

)(

σm−l −
1

m − l

)

,

respectively.

Proof. Applying (17) with m = 2, and using equation (27), we can write the following equalities:
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γ2 =
∞

∑
n=1

|Gn+1|

n + 1

n

∑
m=1

m

∑
j=1

(−1)j

(
m

j

)

ln2(j + 1)

=
∞

∑
n=1

|Gn+1|

n + 1

n

∑
m=1

D(ln2)(m + 1)

=
∞

∑
n=1

|Gn+1|

n + 1

n

∑
m=1

∑
06l6k6m

k 6=0
l 6=m

(−1)k−l

(
m

k

)(
k

l

) (

σk −
1

k

)(

σm−l −
1

m − l

)

,

and for δ2,

δ2 =
∞

∑
n=0

|Gn+1|
n

∑
j=0

(−1)j

(
n

j

)

ln2(j + 1)

=
∞

∑
n=1

|Gn+1|D(ln2)(n + 1)

=
∞

∑
m=1

|Gm+1| ∑
06l6k6m

k 6=0
l 6=m

(−1)k−l

(
m

k

)(
k

l

)(

σk −
1

k

)(

σm−l −
1

m − l

)

.

By following the same method, one may also obtain expressions for higher–order constants γm

and δm. However, the resulting expressions are more theoretical than practical.
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Appendice A. Yet another generalization of Euler’s constant

The numbers κp ≡ ∑ |Gn| n−p−1, where the summation extends over n = [1, ∞), may also be

regarded as one of the possible generalizations of Euler’s constant (since κ0 = γ0 = γ and κ−1 =

γ−1 = 1).12,13 These constants, which do not seem to be reducible to the “classical mathematical

constants”, admit several interesting representations as stated in the following proposition.

12Numbers κ0 and κ−1 are found for the values to which Fontana–Mascheroni and Fontana series converge respectively [8,

pp. 406, 410].
13Other possible generalizations of Euler’s constant were proposed by Briggs, Lehmer, Dilcher and some other authors

[10, 31, 38, 35, 39, 22].

9



Proposition 1. Generalized Euler’s constants κp ≡ ∑ |Gn| n−p−1, where the summation extends over n =

[1, ∞), admit the following representations:

κp =
(−1)p

Γ(p + 1)

1
ˆ

0

{
1

ln(1 − x)
+

1

x

}

lnpx dx , Re p > −1 . (28)

=

1
ˆ

0

· · ·

1
ˆ

0
︸ ︷︷ ︸

p-fold

{

li

(

1 −
p

∏
k=1

xk

)

+ γ +
p

∑
k=1

ln xk

}

dx1 · · · dxp

x1 · · · xp
, p = 1, 2, 3, . . . (29)

=
∞

∑
k=2

(−1)k

k

∞

∑
n=p+1

∣
∣S1(n, p + 1)

∣
∣

n! nk−1
, p = 0, 1, 2, . . . (30)

=
∞

∑
k=2

(−1)k

k

∞

∑
n=p

Pp(H
(1)
n ,−H

(2)
n , . . . , (−1)p−1H

(p)
n )

(n + 1)k
, p = 0, 1, 2, . . . (31)

=
R

∑
n>1

1

n ∑
n>n1>...>np>1

1

n1 . . . np
=

R

∑
n>1

Pp
(

H
(1)
n , H

(2)
n , . . . , H

(p)
n

)

n
, p = 1, 2, 3, . . . (32)

where li is the integral logarithm function, H
(m)
n ≡

n

∑
k=1

k−m stands for the generalized harmonic number and

Pm denotes the modified Bell polynomials

P0 = 1, P1(x1) = x1, P2(x1, x2) =
1
2

(

x2
1 + x2

)

,

P3(x1, x2, x3) =
1
6

(

x3
1 + 3x1x2 + 2x3

)

, . . . 14

In particular, for the series κ1 which we encountered in Theorem 1 and Remark 2, this gives

κ1 =
∞

∑
n=1

∣
∣Gn

∣
∣

n2
= −

1
ˆ

0

{
1

ln(1 − x)
+

1

x

}

ln x dx (33)

=

1
ˆ

0

− li(1 − x) + γ + ln x

x
dx =

∞̂

0

{

− li
(
1 − e−x

)
+ γ − x

}

dx (34)

=
∞

∑
k=2

(−1)k

k

∞

∑
n=2

Hn−1

nk
=

R

∑
n>1

Hn

n
. (35)

14More generally, these polynomials are defined by the generating function: exp

(
∞

∑
n=1

xn
tn

n

)

=
∞

∑
m=0

Pm(x1, · · · , xm) tm .
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Moreover, we also have

κ1 = γ1 +
γ2

2
−

π2

12
+

1
ˆ

0

Ψ(x + 1) + γ

x
dx (36)

=
γ2

2
+

π2

12
−

1

2
+

1

2

1
ˆ

0

Ψ2(x + 1) dx (37)

where Ψ denotes the digamma function (logarithmic derivative of the Γ–function).

Proof of formula (28)

We first write the generating equation for Gregory’s coefficients, Eq. (6), in the following form

1

ln(1 − x)
+

1

x
=

∞

∑
n=1

|Gn| xn−1 , |x| < 1 . (38)

Multiplying both sides by lnp x, integrating over the unit interval and changing the order of summa-

tion and integration15 yields:

1
ˆ

0

{
1

ln(1 − x)
+

1

x

}

lnpx dx =
∞

∑
n=1

|Gn|

1
ˆ

0

xn−1 lnpx dx , Re p > −1 . (39)

The last integral may be evaluated as follows. Considering Legendre’s integral Γ(p + 1) =
´

tpe−tdt

taken over [0, ∞) and making a change of variable t = −(s + 1) ln x , we have

1
ˆ

0

xs lnpx dx = (−1)p Γ(p + 1)

(s + 1)p+1
,

Re s > −1

Re p > −1
. (40)

Inserting this formula into (39) and setting n − 1 instead of s, yields (28).

Proof of formula (29)

Putting in (38) x = x1x2 · · · xp+1 and integrating over the volume [0, 1]p+1, where p ∈ N, on the

one hand, we have

1
ˆ

0

· · ·

1
ˆ

0
︸ ︷︷ ︸

(p+1)-fold

∞

∑
n=1

|Gn|
(
x1x2 · · · xp+1

)n−1
dx1 · · · dxp+1 =

∞

∑
n=1

|Gn|

np+1
(41)

On the other hand
1
ˆ

0

{
1

ln(1 − xy)
+

1

xy

}

dx = −
li(1 − y)− γ − ln y

y

Taking instead of y the product x1x2 · · · xp and setting x = xp+1 , and then integrating p times over

the unit hypercube and equating the result with (41) yields (29).

15The series being uniformly convergent.
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Proof of formula (36)–(37)

Using Eqs. (3.21)–(3.23) of [12] we obtain (36)–(37).

Proof of formulas (30)–(31)

Writing in the generating equation (10) x instead of z, multiplying it by lnm x/x and integrating

over the unit interval, we obtain the following relation16

Ω(k, m) = (−1)m+km! k!
∞

∑
n=k

∣
∣S1(n, k)

∣
∣

n! nm+1

where

Ω(k, m) ≡

1
ˆ

0

lnk(1 − x) lnm x

x
dx ,

k ∈ N

m ∈ N

By integration by parts, it may be readily shown that

Ω(k, m) =
k

m + 1
Ω(m + 1, k − 1)

and thus, we deduce the duality formula:

∞

∑
n=k

∣
∣S1(n, k)

∣
∣

n! nm+1
=

∞

∑
n=m+1

∣
∣S1(n, m + 1)

∣
∣

n! nk
.

Now, writing

x + ln(1 − x) = −
∞

∑
k=1

lnk+1(1 − x)

(k + 1)!

we obtain

1
ˆ

0

{
1

ln(1 − x)
+

1

x

}

lnmx dx = −

1
ˆ

0

∞

∑
k=1

lnk+1(1 − x)

(k + 1)!
·

lnm x

ln(1 − x)
·

dx

x

= −
∞

∑
k=1

Ω(k, m)

(k + 1)!
= (−1)mm!

∞

∑
k=1

(−1)k+1

(k + 1)

∞

∑
n=m+1

∣
∣S1(n, m + 1)

∣
∣

n! nk

which is identical with (30) if setting m = p. Furthermore, it is well known that

∣
∣S1(n + 1, m + 1)

∣
∣

n!
= Pm

(
H

(1)
n ,−H

(2)
n , . . . , (−1)m−1H

(m)
n

)
.

see [18, p. 217], [36, p. 1395], [30, p. 425, Eq. (43)], [6, Eq. (16)], which immediately gives (31) and

completes the proof.

Proof of formula (32)

This formula straightforwardly follows form the fact that κp = Fp(1), see [13, p. 307, 318 et seq.],

where Fp(s) is the special function introduced in the above–cited reference.

16See also [40, Theorem 2.7].
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