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Continued fractions for permutation statistics

Sergi Elizalde ∗

Abstract

We explore a bijection between permutations and colored Motzkin paths that has been used
in different forms by Foata and Zeilberger, Biane, and Corteel. By giving a visual representation
of this bijection in terms of so-called cycle diagrams, we find simple translations of some statis-
tics on permutations (and subsets of permutations) into statistics on colored Motzkin paths,
which are amenable to the use of continued fractions. We obtain new enumeration formulas for
subsets of permutations with respect to fixed points, excedances, double excedances, cycles, and
inversions. In particular, we prove that cyclic permutations whose excedances are increasing are
counted by the Bell numbers.

Finally, we propose a mechanism for interpreting certain combinatorial sequences as counting
colored Motzkin paths, which in some cases can convert sequences of positive integers into
simpler weight sequences.

1 Introduction

The interpretation of continued fractions as generating functions of colored (also referred to as
weighted or labeled) Motzkin paths is due to Flajolet. His celebrated paper [12] also gives sev-
eral applications of continued fractions to the enumeration of combinatorial objects, including set
partitions and permutations.

In the case of permutations, the results in [12] are based on a bijection of Françon and Vien-
not [15] between permutations and increasing binary trees, which allows Flajolet to obtain continued
fractions enumerating permutations with respect to the number of valleys, peaks, double rises, and
double falls.

A second bijection between permutations and colored Motzkin paths was introduced by Biane [2],
and it is essentially equivalent to a bijection of Foata and Zeilberger [14] between permutations and
so-called weighted bracketings. This bijection allows Biane to keep track of the number of inver-
sions. Furthermore, variations of it have been used by Corteel [6] to enumerate permutations with
respect to the number of weak excedances, crossings and nestings; and by Clarke, Steingŕımsson
and Zeng [5] to prove equidistribution results for several other permutations statistics.

In this paper we introduce a simple visual interpretation of this second bijection, using what we
call the cycle diagram of the permutation to produce the colored Motzkin path. The cycle diagram
combines the information contained in the permutation diagram used by Corteel [6] to deal with
crossings and nestings (see also [3]), as well as the permutation array, which allows us to keep track
of statistics such as inversions and pattern occurrences. The cycle diagram idea was used in [9]
to enumerate so-called almost increasing permutations, a generalization of certain permutations

∗Department of Mathematics, Dartmouth College, Hanover, NH 03755; sergi.elizalde@dartmouth.edu.

1

http://arxiv.org/abs/1703.08742v1


studied by Knuth [18] in connection to sorting algorithms. Here we analyze the correspondence
between permutations and colored Motzkin paths in order to easily keep track of multiple statistics
counting fixed points, cycles, excedances, inversions, and to impose different conditions on the
cycles and the excedances of the permutation, as well as pattern-avoidance conditions.

In Section 2 we describe the pictorial correspondence between permutations and colored Motzkin
paths and introduce some notation involving cycle diagrams and continued fractions. In Section 3
we find continued fraction expressions for the generating functions of permutations with respect
to several statistics, as well as for occurrences of a monotone consecutive pattern of length 3. In
Section 4 we focus on subsets of permutations satisfying different combinations of conditions such as
having a certain cycle structure, avoiding the classical pattern 321, having increasing excedances, or
having unimodal cycles. In particular, Theorem 4.3 proves that cylic permutations with increasing
excedances are counted by the Bell numbers. In Section 5 we discuss some known results and
open problems regarding the enumeration of pattern-avoiding cyclic permutations. Finally, in
Section 6 we show how certain combinatorial sequences can be interpreted as enumeration sequences
of weighted Motzkin paths, often with simple weight functions.

2 Permutations and colored Motzkin paths

In this section we present the aforementioned bijection between permutations and colored (or
weighted) Motzkin paths.

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) with up steps U = (1, 1), down
steps D = (1,−1), and level steps L = (1, 0), that never goes below the x-axis. We define the height
of a step to be the y-coordinate of its highest point. Let M be the set of all Motzkin paths. For a
path M ∈ M, let |M | denote its length. Let Sn be the symmetric group on {1, 2, . . . , n}.

First we describe a surjective map from permutations in Sn to Motzkin paths of length n. A
permutation π ∈ Sn can be drawn as an n × n array with dots in squares (i, π(i)) for 1 ≤ i ≤ n.
Our convention for the coordinates will be as in the cartesian plane, so that square (i, j) is in the
ith column from the left and the jth row from the bottom. Next, we capture the cycle structure of
the permutation on the array by drawing, for each i with π(i) 6= i, a vertical segment connecting
the dot in (i, π(i)) with the center of the square (i, i), and a horizontal segment connecting the
same dot with the center of the square (π(i), π(i)). The cycles of π are then visualized by simply
tracing connected dots, as shown in Figure 1. We call this drawing the cycle diagram of π.

The squares with coordinates (i, i) for some i in the cycle diagram of π can be classified into
five types, depending on the location of the dots and segments: a fixed point , an opening bracket
, a closing bracket , an upper bounce , and a lower bounce . The sequence given by the types

of the squares (i, i) for i from 1 to n is called the diagonal sequence of π, and denoted by D(π).
Clearly D(π) ∈ { , , , , }n. To turn the diagonal sequence into a Motzkin path of length n,
we replace each with a U , each with a D, and each , and with an L. Let us denote by
θ(π) the resulting Motzkin path. Figure 1 gives an example of this construction. For each element
of the diagonal sequence D(π), define its height to be the height of the corresponding step in the
Motzkin path θ(π).

The map θ is surjective but not one-to-one. Next we construct, given a Motzkin path M of
length n, the arrays of all the permutations π with θ(π) = M . For each i from 1 to n, consider the
ith step of M .

• If it is a U , place a in square (i, i) of the array, and regard the vertical segment pointing
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Figure 1: The cycle diagram of π = 572 4 3 8 1 6 9 12 10 11, and its associated Motzkin path θ(π).

upward and the horizontal segment pointing rightward in as open rays. These rays will
later be closed by extending them, placing a dot on them, and connecting them with a
perpendicular segment, as we will see next.

• If it is a D, place a in square (i, i) of the array. Letting h be the height of this D step,
choose any of the h currently open vertical rays, intersect its extension with the extension of
the ray pointing leftward in the newly inserted , and place a dot in the intersection. We
call this operation closing an open vertical ray. Similarly, choose one of the h currently open
horizontal rays, and close it by intersecting it with the ray pointing downward in the newly
inserted , placing a dot in the intersection. Note that this construction gives h2 choices for
which pair of open rays to close.

• If it is an L at height h, chose one of the following 2h + 1 options. One choice is to place
a in square (i, i) of the array. Additional h choices come from placing a , choosing one
of the h currently open vertical rays, closing it by intersecting it with the leftward pointing
ray in the and placing a dot in the intersection, and regarding the upward pointing ray in
the as an open ray. The remaining h choices come from placing a in square (i, i) and
proceeding in a symmetric fashion.

This process that builds a permutation by placing each diagonal square from left to right
while constructing a cycle diagram with that given diagonal sequence, opening and closing rays
accordingly, will be used repeatedly throughout the paper. We will refer to it as building a cycle
diagram from a diagonal sequence. See Figure 2 for an example of an intermediate step in the
construction. Note that the height of a , , or in the diagonal sequence equals the number
of open horizontal (equivalently, vertical) rays at the time when it is inserted in this process.

It follows from the above construction that if we assign weight 1 to each U in the Motzkin
path M , weight h2 to each D at height h, and weight 2h+1 to each L at height h, then the product
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Figure 2: An intermediate step in the process of building a cycle diagram from a diagonal sequence.
Open rays, drawn with dashed lines, have been labeled on the right picture to show how each vertical
ray is connected to one horizontal ray.

of the weights of the steps of M equals the number of permutations π ∈ Sn with θ(π) = M . We
denote by w(M) the product of the weights of the steps of M , and we call it simply the weight of M .
The generating function for weighted Motzkin paths with weight function w is

∑

M∈Mw(M)z|M |.
By interpreting the weight of a step as the number of possible colors it can receive, the above
construction gives a bijection between permutations and colored Motzkin paths, where D steps
(resp. L steps) at height h can receive h2 (resp. 2h+ 1) colors. We denote this bijection by Θ.

The bijection Θ will be used in Sections 3 to find the distribution of some permutation statistics,
and in Section 4 to enumerate certain subsets of permutations. In both cases, the problem is
reduced to counting weighted Motzkin paths, or equivalently, weighted diagonal sequences, where
the weights often contain formal variables that keep track of statistics. In the diagonal sequences,
we denote the weight of entries at height h as follows: has weight dh, has weight ℓah, has
weight ℓbh, and has weight ℓch. In the associated Motzkin path, a D step at height h has weight
dh, and an L step at height h has weight ℓh = ℓah + ℓbh + ℓch, with the convention that ℓa0 = ℓb0 = 0,
since diagonal sequences have no or at height 0.

We end this section by introducing some notation regarding continued fractions. Given two
sequences d = (d1, d2, . . . ) and ℓ = (ℓ0, ℓ1, ℓ2, . . . ), define the Jacobi type continued fraction (J-
fraction)

Jd,ℓ(z) =
1

1− ℓ0z −
d1z

2

1− ℓ1z −
d2z

2

1− ℓ2z −
d3z

2

. . .

. (1)

It was shown by Flajolet [12] that Jd,ℓ(z) is the generating function for weighted Motzkin paths
where D steps (resp. L steps) at height h have weight dh (resp. ℓh), for each h ≥ 0. Throughout
the paper, U steps of Motzkin paths will be assumed to have weight 1.
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We also define the continued fraction

Kd,ℓ(z) = ℓ0z +
d1z

2

1− ℓ1z −
d2z

2

1− ℓ2z −
d3z

2

. . .

, (2)

which is the generating function for elevated weighted Motzkin paths, meaning that they do not
touch the x-axis except at the beginning and at the end (where we allow the length-1 path H),
with weights as above.

3 Statistics on permutations

An excedance (resp. fixed point, deficiency) of π ∈ Sn is a value π(i) such that i < π(i) (resp.
i = π(i), i > π(i)). Let exc(π) (resp. fp(π)) denote the number of excedances (resp. fixed points)
of π. A double excedance of π is a value π(i) such that i < π(i) < π(π(i)). Let dexc(π) denote the
number of double excedances of π. Let cyc(π) be the number of cycles of π, and let inv(π) be its
number of inversions.

Let S =
⋃

n≥0 Sn. For a permutation π ∈ Sn, we write |π| = n to denote its length. Let

FS(z) =
∑

π∈S z|π| =
∑

n≥0 n!z
n be the ordinary generating function (OGF) for all permutations.

Recall from Section 2 the bijection Θ between Sn and colored Motzkin paths of length n, where
D steps (resp. L steps) at height h can receive h2 (resp. 2h + 1) colors. This bijection yields the
well-known continued fraction expansion FS(z) = Jd,ℓ(z) with dh = h2 and ℓh = 2h + 1. This
expansion appears, for example, in [12, Thm. 3B].

3.1 Fixed points, excedances, double excedances, cycles, and inversions

The above enumeration of permutations can be refined by keeping track of statistics that behave
well under the bijection Θ. Next we consider a few.

(i) Fixed points in the permutation are simply squares of type , and as such they correspond
in the Motzkin path to one of the 2h+ 1 color choices for L steps at height h, for every h.

(ii) One can keep track of excedances by observing that i < π(i) if and only if the square (π(i), π(i))
in the array is of type or . Thus, excedances correspond in the Motzkin path to D steps,
plus h of the 2h+ 1 color choices for L steps at height h.

(iii) A double excedance i < π(i) < π(π(i)) in the permutation corresponds to a square (π(i), π(i))
of type , and thus to h of the 2h+ 1 color choices for L steps at height h.

(iv) In the process of building a cycle diagram from a diagonal sequence described in Section 2,
a cycle is completed every time that a diagonal square of type closes two rays that belong
to the same cycle in the partial diagram constructed so far (see Figure 2). Since each of the
open vertical rays is connected to exactly one of the open horizontal rays, it follows that h
vertical and h horizontal open rays give rise to h connected pairs before a at height h is
inserted. Thus, out of the h2 color choices for D steps at height h, there are exactly h of them
that complete a new cycle. Additionally, every fixed point produces a cycle as well.
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(v) In the process of building a cycle diagram from a diagonal sequence, one can keep track of
inversions by counting how many are forced by each new dot that is placed in the cycle
diagram. These can be inversions with another existing dot, or with an open ray that will
create an inversion once it is closed. Suppose that at some step of the process there are h
open vertical rays and h open horizontal rays when a diagonal square is placed.

If the inserted square is of type , the dot in this square forces inversions with the dots that
will eventually be placed in each of the current open vertical rays (since they will be above
and to the left of the recent dot) and open horizontal rays (since they will be below and to
the right of the recent dot), contributing 2h inversions.

If the inserted square is of type , it closes one of the open vertical rays. Assuming it closes
the jth open vertical ray from the left, then the dot placed on this ray forces an inversion
with each of the j− 1 open rays to its left, as well as with each of the h open horizontal rays,
contributing j − 1 + h inversions. A symmetric argument applies if the inserted square is of
type . Thus, in a generating function where inversions are weighted by q, the contribution
of a level step at height h in the Motzkin path would be q2h +2

∑h
j=1 q

j−1+h = q2h +2qh[h]q,

where we use the notation [h]q := 1 + q + · · ·+ qh−1.

If the inserted square is of type , suppose it closes the jth open vertical ray from the left
and the kth open horizontal ray from the bottom. The dot placed on the jth open vertical ray
forces an inversion with each of the j−1 open rays to its left, as well as with each of the h open
horizontal rays, contributing j − 1 + h inversions. Similarly, the dot placed on the kth open
horizontal ray contributes k−1+h inversions, except that the inversion between the two newly
placed dots is counted twice. Thus, we have a total of 2h−1+(j−1)+(k−1) new inversions.
It follows that, weighing each inversion by q, the contribution to the generating function of a

D step at height h in the Motzkin path is q2h−1
(

∑h
j=1 q

j−1
)(

∑h
k=1 q

k−1
)

= q2h−1[h]2q .

Throughout the paper, we will use the variables x, v, w, t, q to mark the statistics number fixed
points, number of excedances, number of double excedances, number of cycles and number of
inversions, respectively.

If we ignore inversions, it follows from items (i)–(iv) above that the continued fraction of all
permutations with respect to the number of fixed points, the number of excedances, the number of
double excedances, and the number of cycles is

∑

π∈S
xfp(π)vexc(π)wdexc(π)tcyc(π)z|π| = Jd,ℓ(z)

with dh = v(h2 − h+ ht) = vh(h − 1 + t) and ℓh = xt+ h(1 + vw) for all h, that is,

Jd,ℓ(z) =
1

1− xtz − vtz2

1− (xt+ (1 + vw))z − 2v(1 + t)z2

1− (xt+ 2(1 + vw))z − 3v(2 + t)z2

. . .

. (3)

The special case of (3) where v = w = 1 was obtained in [12, Theorem 3C] using a more indirect
approach, consisting of first applying the Françon–Viennot bijection [15] from permutations viewed
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as increasing binary trees to weighted Motzkin paths, and then Foata’s fundamental transforma-
tion [13].

While it is difficult to simultaneously keep track of cycles and inversions, we can obtain from
items (i)–(iii) and (v) the continued fraction of all permutations with respect to the number of fixed
points, the number of excedances, the number of double excedances, and the number of inversions
as

∑

π∈S
xfp(π)vexc(π)wdexc(π)qinv(π)z|π| = Jd,ℓ(z)

with dh = vq2h−1[h]2q and ℓh = xq2h + (1 + vw)qh[h]q for all h, that is,

Jd,ℓ(z) =
1

1− xz − vqz2

1− (xq2 + (1 + vw)q)z − vq3(1 + q)2z2

1− (xq4 + (1 + vw)q2(1 + q))z − vq5(1 + q + q2)2z2

. . .

.

(4)
The special case of (4) where x = v = w = 1 appears in [2, Equation (1.1)]. Generating

functions similar to (3) and (4) for the subset of almost-increasing permutations with respect to
the above statistics (except for double excedances) appear in [9, Theorems 6.1, 6.2].

Permutations with no double excedances and no double deficiencies (that is, no i with i >
π(i) > π(π(i))) correspond to cycle diagrams with no and no . Their generating function with
respect to fp, exc and cyc is Jd,ℓ(z) with dh = vh(h− 1 + t) and ℓh = xt for all h. If, additionally,
we do not allow fixed points (which corresponds to setting x = 0 in the generating function), then
these are called CUD permutations with all cycles of even length in [8, Proposition 2.2], where they
are also shown to be counted by the secant numbers.

3.2 Double excedances and consecutive patterns

Next we show that double excedances in permutations are very closely related to occurrences of
the consecutive pattern 123. We underline consecutive patterns to distinguish them from classical
patterns, which will appear in Section 4.2. For σ ∈ Sm, an occurrence of σ in π as a consecutive
pattern is a subsequence π(i)π(i+1) . . . π(i+m− 1) whose elements are in the same relative order
as σ(1)σ(2) . . . σ(m). For example, an occurrence of 123 as a consecutive pattern is a subsequence
π(i)π(i + 1)π(i + 2) with π(i) < π(i+ 1) < π(i+ 2).

Given π ∈ Sn, consider its cycle decomposition where each cycle is written with its smallest
element first, and the cycles are sorted from left to right by decreasing smallest element. Let π̂
be the permutation whose one-line notation is obtained by removing the parentheses from this
cycle decomposition. The map π 7→ π̂ is a bijection from Sn to Sn, and it is a version of Foata’s
fundamental transformation [13].

We claim that the number of double excedances of π equals the number of occurrences of 123
in π̂ as a consecutive pattern. Indeed, since cycles are written with their smallest element first,
double excedances of π correspond to triples of adjacent increasing entries within a cycle. Since
there are no increasing subsequences of π̂ that straddle two cycles in this cycle decomposition of π,
it follows that double excedances of π become precisely occurrences of 123 in π̂.
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The exponential generating function (EGF) for permutations with respect to the number of
occurrences of 123 was found by Elizalde and Noy [11]. They showed that, if we let c123(π) denote
the number of occurrences of the consecutive pattern 123 in π, then

∑

π∈S
uc123(π)

z|π|

n!
=

2re
1

2
(1−u+r)z

1 + u+ r − erz(1 + u− r)
,

where r =
√

(u− 1)(u + 3). Using the bijection π 7→ π̂ together with Equation (3) with x = v =
t = 1, we obtain a continued fraction expression for the corresponding ordinary generating function:

∑

π∈S
wc123(π)z|π| =

1

1− z − z2

1− (2 + w)z − 22z2

1− (3 + 2w)z − 32z2

1− (4 + 3w)z − 42z2

. . .

. (5)

Keeping the variables v and t in Equation (3), we obtain a refinement of Equation (5) with respect to
the number of ascents (i.e., occurrences of 12) and the number of left-to-right minima, respectively.
This is because the bijection π → π̂ sends excedances to ascents, and cycles to left-to-right minima.

As a particular case, permutations that avoid the consecutive pattern 123 are in bijection with
permutations without double excedances, which are those whose cycle diagram has no diagonal
squares of type . These correspond, via Θ, to Motzkin paths where L steps at height h can have
h+1 colors and D steps at height h can have h2 colors, or equivalently, to Motzkin paths where all
steps (U , L and D) whose lowest point has ordinate y can have y+1 colors. Equation (5) for u = 0
had been conjectured by Paul D. Hanna [17] based on empirical evidence (see also [20, A049774]).

A continued fraction related to Equation (5) was given by Flajolet [12]. Defining a double rise
of π ∈ Sn to be an occurrence of the consecutive pattern 123 in the sequence 0π1π2 . . . πn0, and
shifting the exponent of z up by one, a continued fraction for permutations with respect to the
number of double rises appears in [12, Theorem 3A].

4 Subsets of Sn

In this section we enumerate subsets of permutations by restricting the choices of open rays that
can be closed by squares of type , and in the cycle diagram. This is equivalent to restricting
the color choices of the D and L steps of the Motzkin path.

For each subset of permutations, we express the generating function with respect to several
statistics as a continued fraction. Table 1 summarizes the continued fractions obtained in this
section. For simplicity, the table does not include the refinements with respect to statistics.

4.1 Cyclic permutations

The same idea that we used in Section 3.1(iv) to keep track of cycles in permutations allows us
to restrict our enumeration to cyclic permutations, that is, permutations that consist of one cycle.
Denote by Cn the set cyclic permutations in Sn, and let C =

⋃

n≥0 Cn. Recall that |Cn| = (n− 1)!.
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Subset of
permutations

dh ℓah ℓbh ℓch ℓh = ℓah+
ℓbh + ℓch

Formula

all h2 h h 1 2h+ 1 n!

cyclic∗
h(h− 1)

(n)
(d1 = 1)

h h 0 2h (n− 1)!

321-avoiding
(nonnesting)

1 (o) 1 (o) 1 (o) 0
(ℓc0 = 1)

2
(ℓ0 = 1)

Cnwith unimodal
noncrossing cycles

and no nested
fixed points

1 (i) 1 (i) 1 (i)

noncrossing 1 (i) 0 1 (i) 1

with increasing
excedances

h
(o/any)

1 (o) h 1
h+ 2

(ℓ0 = 1)
[20, A074664]

with increasing
weak excedances

h
(o/any)

1 (o) h
0

(ℓc0 = 1)
h+ 1 Bn

cyclic∗ with
increasing
excedances

h− 1
(o/n)

(d1 = 1)
1 (o) h 0 h+ 1 Bn−1

with unimodal
cycles

h (m) h h 1 2h+ 1
EGF is

exp

(

e2z+2z−1

4

)

with unimodal
cycles and
increasing
excedances

1 (o/m) 1 (o) h 1
h+ 2

(ℓ0 = 1)
(closed form
unknown)

with increasing
excedances

and increasing
deficiencies

1 (o) 1 (o) 1 (o)
1

3
(ℓ0 = 1)

OGF is
2

1+x+
√
1−6x+5x2

with
unimodal

noncrossing
cycles

1 (i) 1 (i) 1 (i)

with no double
excedances
or double
deficiencies

h2 0 0 1 1 EGF is
ez

cos z

involutions h (m) 0 0 1 1 EGF is ez+z2/2

321-avoiding
involutions

1 (m) 0 0
0

(ℓc0 = 1)
0

(ℓ0 = 1)

(

n

⌊n/2⌋

)

Table 1: Summary of cycle diagram restrictions and resulting continued fractions for the subsets
of permutations considered in Section 4. The restrictions on rays to be closed are indicated by the
following abbreviations: innermost (i); outermost (o); matching (m), i.e., requiring the vertical and
horizontal rays to be connected; nonmatching (n). For subsets of cyclic permutations (marked with
a *), the resulting Motzkin paths are elevated and the continued fraction is given by Equation (2).
For all the other subsets, the continued fraction is given by Equation (1).
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In the expansion of (3), cyclic permutations correspond to the terms where the exponent of t
is 1. Thus, the generating function for cyclic permutations with respect to the statistics fp, exc and
dexc can be obtained from (3) by subtracting 1, dividing by t, and then setting t = 0. However,
we will see that it is also possible to directly obtain a continued fraction of the form (2).

Consider again the process that builds a cycle diagram from a diagonal sequence. In order to
build a cyclic permutation, we have to restrict the possible vertical and horizontal rays that can be
closed when a is placed, so that the rays that we close are not connected to each other before
this diagonal square is placed. As discussed in item (iv) from Section 3.1 and in Figure 2, each
open vertical ray is connected to exactly one open horizontal ray. Thus, for each square of type
(equivalently, each D step in the Motzkin path) at height h, there are h(h − 1) possible pairs of
non-connected rays to close, with the exception of the rightmost (equivalently, the last D step
of the path), for which there is one choice, namely to close the unique open horizontal and vertical
rays, creating the only cycle in the permutation. Additionally, for it to be cyclic, a permutation
cannot have any fixed points unless it has length 1. Using items (ii) and (iii) as well, it follows
that

∑

π∈C x
fp(π)vexc(π)wdexc(π)z|π| = Kd,ℓ(z) with d1 = v, ℓ0 = x, dh = h(h − 1)v for h ≥ 2, and

ℓh = h(1 + vw) for h ≥ 1, that is,

Kd,ℓ(z) = xz +
vz2

1− (1 + vw)z − 2vz2

1− 2(1 + vw)z − 6vz2

1− 3(1 + vw)z − 12vz2

. . .

.

4.2 321-avoiding permutations

In this section we use the classical definition of permutation patterns, not to be confused with
consecutive patterns as defined in Section 3.2. For σ ∈ Sm, a permutation π ∈ Sn is said to avoid
σ if there is no subsequence π(i1)π(i2) . . . π(im) with i1 < · · · < im whose elements are in the same
relative order as σ(1)σ(2) . . . σ(m). For example, an occurrence of 321 is a decreasing subsequence
of length 3.

Let Sn(321) denote the set of 321-avoiding permutations of length n, and let S(321) = ⋃n≥0 Sn(321).
It is well known [18] that |Sn(321)| = Cn, the nth Catalan number. The following fact about 321-
avoiding permutations is often used in the literature. A non-excedance refers to a value π(i) such
that i ≥ π(i), that is, a fixed point or deficiency.

Lemma 4.1. A permutation is 321-avoiding if and only if both its excedances and its non-excedances
form increasing subsequences.

Proof. Clearly, a merge of two increasing subsequences cannot contain an occurrence of 321, prov-
ing the ‘if’ direction. To prove the converse, suppose that π contains a pair of decreasing non-
excedances, say π(k) < π(j) ≤ j < k. We will show that there is some i < j such that π(i) > π(j),
and thus π(i)π(j)π(k) is an occurrence of 321 in π. Indeed, if the entries π(1), π(2), . . . , π(j − 1)
were all less than π(j), then, using that π(k) < π(j), there would be j entries taking no more than
π(j) − 1 ≤ j − 1 different values, which is a contradiction.

Again, consider the process that builds the cycle diagram of a permutation from a diagonal
sequence. Requiring excedances to form an increasing subsequence is equivalent to requiring that
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every vertical ray that we close is the leftmost open ray at that time. This prevents us from creating
a pair of decreasing excedances by first closing a vertical ray and later closing another vertical ray
to the left of it. Similarly, having the sequence of deficiencies to be increasing is equivalent to
requiring every horizontal ray that we close to be the bottommost open ray at that time. We use
the term outermost ray to refer to the leftmost open vertical ray or the bottommost open horizontal
ray. Additionally, in order for the sequence of non-excedances to be increasing, fixed points can
only occur when there are no open rays.

In summary, a permutation has increasing excedances and non-excedances (equivalently, avoids
321 by Lemma 4.1) if and only if its cycle diagram is obtained from a diagonal sequence with no
fixed points at height ≥ 1 by always closing the outermost open rays every time that a , or
is encountered.

By the above argument, Θ restricts to a bijection between 321-avoiding permutations and
colored Motzkin paths where D steps can only receive one color (since for each , the rays to
close are forced), L steps at height h ≥ 1 can receive two colors (corresponding to inserting a
or a ), and L steps at height 0 can receive one color (corresponding to inserting a ). These
bicolored Motzkin paths are well-known to be counted by the Catalan numbers [7]. Keeping track
of fixed points, excedances, double excedances and inversions and using items (i)–(iii) and (v) from
Section 3.1, their continued fraction expansion is

∑

π∈S(321) x
fp(π)vexc(π)wdexc(π)qinv(π)z|π| = Jd,ℓ(z)

where ℓ0 = x, dh = vq2h−1 and ℓh = (1 + vw)qh for h ≥ 1, that is,

Jd,ℓ(z) =
1

1− xz − vqz2

1− (1 + vw)qz − vq3z2

1− (1 + vw)q2z − vq5z2

. . .

.

Figure 3: The 321-avoiding permutation π = 367 8 1 9 2 10 4 5 11.

A slight variation of this continued fraction without the statistic dexc appears in [4, Theorem
7.3], where it is obtained using a bijection similar to the above restriction of Θ, although without the
visual description. A remarkable property of this bijection is that the statistic inv on a 321-avoiding
permutation becomes the area under the corresponding Motzkin path (and above the x-axis). This
property does not hold for the general definition of Θ on arbitrary permutations.
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A closed form for the generating function of 321-avoiding permutations with respect to the
statistics fp and exc appears in [10]:

∑

π∈S(321)
xfp(π)vexc(π)z|π| =

2

1 + (1− 2x+ v)z +
√

1− 2(1 + v)z + (1− v)2z2
.

4.3 Other Catalan classes

The construction of cyclic diagrams of 321-avoiding permutations given in Section 4.2 can be mod-
ified to obtain other subsets of permutations counted also by the Catalan numbers. For example,
the restriction of allowing only the outermost open (vertical and horizontal) ray to be closed at
any time can be replaced by allowing only the innermost open (vertical and horizontal) ray to be
closed, without changing the condition that can only occur at height 0. This new restriction of
Θ gives a bijection between bicolored Motzkin paths as before, and permutations with unimodal
noncrossing cycles and no nested fixed points, defined as follows.

Definition 4.2. Let π ∈ Sn. We say that

(a) π has noncrossing cycles if the partition of {1, 2, . . . , n} induced by the cycles of π is noncrossing,
that is, there are no i < j < k < l such that i, k belong to one cycle and j, l belong to another;

(b) a cycle of π is unimodal if, when written with its smallest element first as (a1, a2, . . . , ak), there
exists some 1 ≤ i ≤ k such that a1 < · · · < ai > · · · > ak;

(c) a fixed point j is nested there exist i, k with i < j < k such that π(i) = k or π(k) = i.

Figure 4 gives an example of a permutation with unimodal noncrossing cycles and no nested
fixed points. By construction, the number of such permutations is the Catalan number Cn, and
their refined enumeration with respect to fixed points, excedances, and double excedances coincides
with that of Sn(321). Keeping track of the number of cycles and inversions as well, with the usual
variables, the generating function for permutations with unimodal noncrossing cycles and no nested
fixed points is Jd,ℓ(z) with ℓ0 = xt, dh = vtq4h−3 and ℓh = (1 + vw)q2h−1 for h ≥ 1.

Another set counted by the Catalan numbers consists of permutations obtained from diagonal
sequences by closing always the outermost open vertical ray and the innermost open horizontal ray,
and not allowing except at height 0.

Yet another variation ensues by closing always the innermost open ray, but not allowing any ,
and instead allowing at any height. The resulting permutations are precisely noncrossing per-
mutations in the sense of [6], whereas 321-avoiding permutations coincide with nonnesting permu-
tations in this setting. More generally, the distribution of crossings and nestings in permutations
can be obtained using the same ideas, as has been done by Corteel [6].

4.4 Permutations with increasing excedances with respect to cycles

In this section we show that cyclic permutations whose subsequence of excedances is increasing are
counted by the Bell numbers. As discussed in Section 4.2, a permutation has increasing excedances
if and only if in the process that builds its cycle diagram from a diagonal sequence, the leftmost
open vertical ray is closed each time that a or a is encountered. At this time, this leftmost
open vertical ray is connected to one of the open horizontal rays. Thus, when a square of type is
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Figure 4: The permutation π = 123 10 6 4 7 8 5 2 9 1 11 = (1, 12, 11)(2, 3, 10, 9)(4, 6, 7, 8, 5) has uni-
modal noncrossing cycles and no nested fixed points.

placed in the diagonal and the leftmost open vertical is closed, any of the open horizontal rays can
be closed, but there is precisely one of them whose closure creates a new cycle in the permutation.

Letting Se ⊂ S be the subset of permutations with increasing excedances, it follows that

∑

π∈Se

xfp(π)vexc(π)wdexc(π)tcyc(π)z|π| = Jd,ℓ(z)

with dh = v(h − 1 + t) for all h, ℓ0 = xt and ℓh = xt+ vw + h for h ≥ 1, that is,

Jd,ℓ(z) =
1

1− xtz − vtz2

1− (1 + xt+ vw)z − v(1 + t)z2

1− (1 + xt+ vw)z − v(2 + t)z2

. . .

. (6)

Setting x = v = w = t = 1, we obtain sequence [20, A074664].
Now let Ce ⊂ C be the subset of cyclic permutations with increasing excedances. The same

argument gives
∑

π∈Ce

xfp(π)vexc(π)wdexc(π)tcyc(π)z|π| = Kd,ℓ(z)

with d1 = v, ℓ0 = x, dh = (h − 1)v for h ≥ 2, and ℓh = vw + h for all h ≥ 1. In particular, setting
x = v = w = 1 and letting Ce

n = Ce ∩ Sn, we have
∑

n≥1 |Ce
n| zn = Kd,ℓ(z) with d1 = 1, dh = h− 1

for h ≥ 2, and ℓh = h+ 1 for all h, that is,

∑

n≥1

|Ce
n| zn = z +

z2

1− 2z − z2

1− 3z − 2z2

1− 4z − 3z2

. . .

. (7)
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Our next result states that the coefficients of this generating function are the Bell numbers. Let
Bn denote the nth Bell number, which is the number of partitions of an n-element set.

Theorem 4.3. For n ≥ 1,
|Ce

n| = Bn−1.

We will give a bijective proof of Theorem 4.3 using the following result of Flajolet [12].

Lemma 4.4 ([12, Prop. 8]). There is an explicit bijection between set partitions of {1, 2, . . . , n}
and colored (or weighted) Motzkin paths of length n where ℓh = h+ 1 and dh = h. In particular,

∑

n≥0

Bnz
n =

1

1− z − z2

1− 2z − 2z2

1− 3z − 3z2

. . .

.

Proof of Theorem 4.3. The restriction of Θ to Ce
n used to obtain Equation (7) gives a bijection

between Ce
n and the set of elevated colored Motzkin paths of length n where each L step at height

h receives some color r with 0 ≤ r ≤ h, and each D step at height h ≥ 2 receives some color r with
0 ≤ r ≤ h− 2 (down steps at height h = 1 receive color 0). Let En be this set of colored paths.

By Lemma 4.4, set partitions of {1, 2, . . . , n − 1} (which are counted by Bn−1) are in bijection
with colored Motzkin paths of length n − 1 where each L step at height h receives some color r
with 0 ≤ r ≤ h, and each D step at height h receives some color r with 0 ≤ r ≤ h − 1. Let Bn−1

be this set of colored paths.
Our goal is to construct a bijection ϕ between En and Bn−1. Given a path M ∈ En, consider

two cases:

1. If no L step of M receives a color equal to its height, then write M = UPD, where P is a
colored Motzkin path. Let ϕ(M) = LP , where the colors of the steps of P are preserved, and
the new L step receives color 0.

2. Otherwise, write M = P1LP2D, where the step between P1 and P2 is the rightmost L step of
M whose color equals its height, say h. Let ϕ(M) = P1DP2, where the new D step receives
color h− 1, and the colors of the steps of P1 and P2 are preserved.

In both cases, we have ϕ(M) ∈ Bn−1 by construction. An example is given in Figure 5.

2

L

1
1

2
0

0

D

7→ϕ
2 1

1

1

D 0

Figure 5: An example of case 2 of the description of the bijection ϕ : En → Bn−1. The labels on
the steps indicate the colors.

To show that ϕ is a bijection, we describe its inverse. Given a path M ′ ∈ Bn−1, consider again
two cases:
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1. If M ′ starts with a level step, write M ′ = LP , and let ϕ−1(M ′) = UPD, where the colors of
the steps of P are preserved, and the D step at the end gets color 0.

2. Otherwise, write M ′ = P1DP2, where the step between P1 and P2 is the leftmost D step
whose color is one less than its height. Call this height h, and let ϕ−1(M ′) = P1LP2D, where
the new L step receives color h, the D at the end receives color 0, and the colors of the steps
of P1 and P2 are preserved.

Figure 6 gives an example of the full bijection between cyclic permutations with increasing
excedances and set partitions. In the encoding of a permutation by a colored Motzkin path via Θ,
a D step receives color r if the corresponding in the cycle diagram closes the rth open horizontal
ray that does not create a cycle with the leftmost vertical ray (which we are forced to close), where
available horizontal rays are numbered 0, 1, . . . , h − 2 from bottom to top. Similarly, an L step at
height h receives color h if the corresponding square in the diagonal sequence is a (necessarily
closing the leftmost open vertical ray), and it receives color r < h if the corresponding square is a

closing the rth open horizontal ray, numbered increasingly from bottom to top. The last step in
Figure 6 illustrates the bijection mentioned in Lemma 4.4, which is described in [12].

An argument similar to the derivation of Equation (6) can be used to construct permutations
with increasing weak excedances, with the only modification being the disallowance of fixed points
at height h ≥ 1. The resulting formula differs from Equation (6) only in that now ℓh = vw + h for
h ≥ 1. Setting x = v = w = t = 1, we obtain precisely the generating function from Lemma 4.4,
implying that the number of permutations in Sn whose subsequence of weak excedances is increasing
is again Bn. A direct bijection between such permutations and set partitions can be obtained by
declaring i and π(i) to be in the same block of the partition for every i with π(i) < i; equivalently, by
erasing from the array of the permutation all the boxes on or above the diagonal, and interpreting
the remaining filling of the staircase as a partition, as in [19, Fig. 4]. For each k ≥ 2, this bijection
specializes to a bijection between permutations in Sn((k+1)k . . . 1) with increasing weak excedances
and set partitions of {1, 2, . . . , n} avoiding k-nestings, as defined in [3].

4.5 Permutations with unimodal cycles and other variations

The conditions in Definition 4.2 can be considered separately when building cycle diagrams from
diagonal sequences. For example, to obtain permutations with unimodal cycles, we simply require
that every completes a cycle by closing two connected open rays. Letting U denote the set
of permutations with unimodal cycles, we have that

∑

π∈U xfp(π)vexc(π)wdexc(π)tcyc(π)z|π| = Jd,ℓ(z)
with dh = hvt and ℓh = xt+ h(1 + vw) for all h.

It is also possible to get a closed form for the corresponding exponential generating function by
using the symbolic method. For n ≥ 2, the generating function for unimodal cycles of size n with
respect to the statistics fp, exc and dexc is v(1+vw)n−2, since each entry other than 1 and n can be
placed in the cycle notation (1, . . . , n, . . . ) either after or before n, contributing an excedance and
a double excedance in the latter case. Thus, the exponential generating function for all unimodal
cycles is

xz +
∑

n≥0

v(1 + vw)n−2 z
n

n!
= xz + v

e(1+vw)z − 1− (1 + vw)z

(1 + vw)2
.
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↓Θ

1

1

3 1
1

0
0

0

L

D
↓ϕ

1

1
2

1
1

0
0

D

↓ [12]

1 9 10

2 3 4 7 8

5 6

{1, 9}, {2}, {3, 4, 7, 8}, {5, 6}, {10}

Figure 6: The bijection between cyclic permutations with increasing excedances and set partitions.

Taking sets of such cycles, we get

∑

π∈U
xfp(π)vexc(π)wdexc(π)tcyc(π)

z|π|

|π|! = exp

(

txz + tv
e(1+vw)z − 1− (1 + vw)z

(1 + vw)2

)

.

Setting x = v = w = t = 1 in the last formula, we obtain sequence [20, A187251].

Next we consider the set Ue of permutations with unimodal cycles and increasing excedances.
Note that there is no immediate way to adapt the symbolic method approach described above to
this case. However, our cycle diagram approach is well suited to enumerate these permutations. To
obtain the cycle diagram of a permutation in Ue, every must close the leftmost open vertical ray,
and every must close the leftmost open vertical ray and its matching open horizontal ray, leaving
only one possibility in each case. It follows that

∑

π∈Ue xfp(π)vexc(π)wdexc(π)tcyc(π)z|π| = Jd,ℓ(z),
where ℓ0 = xt, dh = vt and ℓh = xt+ vw + h for all h ≥ 1.

16



To obtain permutations with unimodal noncrossing cycles, as in Definition 4.2(a)(b), each
must close the rightmost open vertical ray, each must close the uppermost open horizontal ray,
and each must close the two innermost open rays. It follows that the generating function for
these permutations with respect to the usual statistics (including now the number of inversions as
well) is Jd,ℓ(z) with ℓ0 = xt, dh = vtq4h−3 and ℓh = xtq2h + (1 + vw)q2h−1 for h ≥ 1.

Setting x = v = w = t = q = 1, we obtain the continued fraction F (z) := Jd,ℓ(z) with
ℓ0 = 1, dh = 1 and ℓh = 3 for h ≥ 1, which can be written as F (z) = 1/(1 − z − B(z)), where
B(z) = z2/(1 − 3z −B(z)). We can solve this equation to obtain the closed form

F (z) =
2

1 + z +
√
1− 6z + 5z2

.

The coefficients give the sequence [20, A033321], which also counts permutations avoiding certain
triples of patterns of length 4.

The same sequence is obtained when counting permutations with increasing excedances and
increasing deficiencies. Indeed, to build the cycle diagrams of such permutations, every , and

is forced to close the outermost open rays. Even though we are unable to keep track of the
number of cycles (as happened in the case of 321-avoiding permutations from Section 4.2), the
generating function for permutations with increasing excedances and increasing deficiencies with
respect to the other usual statistics is Jd,ℓ(z) with ℓ0 = x, dh = vq2h−1 and ℓh = x + (1 + vw)qh

for h ≥ 1.

4.6 Involutions

Most of our results can be easily adapted to involutions, that is, permutations equal to their
inverse. The cycle diagrams of involutions are those that are symmetric along the main diagonal.
In particular, they do not have any diagonal squares of type or , and each must close an
open vertical ray and its symmetric open horizontal ray.

For example, the continued fraction for involutions with respect to our usual statisics (note that
involutions have no double excedances) is Jd,ℓ(z) with dh = vtq2h−1[h]q2 and ℓh = xtq2h for all h.
If we require the involutions to be 321-avoiding, then we get Jd,ℓ(z) with ℓ0 = xt, dh = vtq2h−1 and
ℓh = 0 for h ≥ 1.

5 Pattern-avoiding cyclic permutations

In this section we discuss a related research direction, namely the problem of enumerating pattern-
avoiding cyclic permutations, and describe what is known in this area.

5.1 Classical patterns

Given a pattern σ, let Cn(σ) = Cn∩Sn(σ) be the set of cyclic permutations that avoid σ. Similarly,
for a set of patterns Σ, denote by Cn(Σ) the set of cyclic permutations avoiding all the patterns
in Σ.

The following question was posed by Richard Stanley at the Permutation Patterns 2010 con-
ference held at Dartmouth College.

Question 5.1. For given σ ∈ Sk, find a formula for |Cn(σ)|.
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The present paper was originally motivated by this question, which remains open for all patterns
of length |σ| ≥ 3. Focusing on σ = 321, recall from Lemma 4.1 that 321-avoiding permutations are
those whose excedances and non-excedances are increasing. In Theorem 4.3 we have enumerated
cyclic permutations that satisfy the first condition, but there is no obvious way to incorporate the
second one.

Related to Question 5.1, one may consider cyclic permutations that avoid multiple patterns.
For some very specific sets of patterns, the enumeration of cyclic permutations avoiding them was
done in [1]. In the following theorem, µ denotes the Möbius function.

Theorem 5.2 ([1]). For n ≥ 2,

|Cn(213, 312)| = |Cn(132, 231)| =
1

2n

∑

d|n
d odd

µ(d)2n/d,

|Cn(321, 2143, 3142)| =
1

n

∑

d|n
µ(d)2n/d,

|Cn(123, 2413, 3412)| =
{

1
n

∑

d|n µ(d)2
n/d if n 6≡ 2 mod 4,

1
n

∑

d|n µ(d)2
n/d + 2

n

∑

d|n
2

µ(d)2n/2d if n ≡ 2 mod 4.

5.2 Consecutive patterns

Gessel and Reutenauer [16] expressed the number of permutations with a given cycle structure and
given descent set (equivalently, a given set of positions of occurrences of 21) as a scalar product of
symmetric functions.

In [16, Theorem 6.1], they give a generating function for cyclic permutations according to
the number of descents, proved using quasisymmetric functions. The distribution of ascent sets
(equivalently, occurrences of 12) on Cn agrees with that of descent sets as long as n 6≡ 2 mod 4,
as shown algebraically in [16, Theorem 4.1], and combinatorially in [21, Corollary 3.1] and [1,
Proposition 3.13]. In addition, recursive formulas for the number of cycles in Cn with k descents
(resp. with k ascents), including the case n ≡ 2 mod 4, are given and proved combinatorially in [1].

Regarding the distribution of occurrences of longer consecutive patterns in cyclic permutations,
some results on the enumeration of 123-avoiding (and 321-avoiding) cycles have been recently
obtained by Troyka [22].

6 From combinatorial sequences to weight sequences

In this section we regard our method for translating between permutations and colored Motzkin
paths in a more abstract setting.

Given two sequences d = (d1, d2, . . . ) and ℓ = (ℓ0, ℓ1, ℓ2, . . . ), one can define a sequence a =
(a0, a1, a2, . . . ) by

∑

n≥0

anz
n =

1

1− ℓ0z −
d1z

2

1− ℓ1z −
d2z

2

1− ℓ2z −
d3z

2

. . .

. (8)
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As we have used repeatedly in the paper, the coefficient an counts weighted Motzkin paths of length
n where D steps (resp. L steps) at height h have weight dh (resp. ℓh) for each h ≥ 0. In particular,
if dh, ℓh ∈ Z≥0 for all h, then an ∈ Z≥0 for all n. Note also that a0 = 1, corresponding to the empty
path.

It is interesting to consider the inverse construction. Given a sequence a = (a0, a1, a2, . . . ) with
a0 = 1, one can sometimes solve Equation (8) for d and ℓ. We claim that, when the solution exists,
it is unique. To see this, expand the right-hand side of (8) to get

1 + ℓ0z + (ℓ20 + d1)z
2 + (ℓ30 + 2ℓ0d1 + ℓ1d1)z

3 + (ℓ40 + 3l20d1 + 2l0l1d1 + l21d1 + d21 + d1d2)z
4 + · · · .

In general, equating coefficients of zn in Equation (8) for even n, say n = 2m, we get

a2m = d1d2 . . . dm + polynomial(ℓ0, ℓ1, . . . , ℓm−1, d1, d2, . . . , dm−1),

whereas for odd n, say n = 2m+ 1, we get

a2m+1 = d1d2 . . . dmℓm + polynomial(ℓ0, ℓ1, . . . , ℓm−1, d1, d2, . . . , dm),

as determined by the heights of L and D steps that Motzkin paths of length n can have. (The
notation polynomial(x1, x2, . . . ) stands for some polynomial in the variables x1, x2, . . . .) Thus, as
long as di 6= 0 for all i, we can solve for d and ℓ to obtain

dm =
a2m − polynomial(ℓ0, ℓ1, . . . , ℓm−1, d1, d2, . . . , dm−1)

d1d2 . . . dm−1
,

ℓm =
a2m+1 − polynomial(ℓ0, ℓ1, . . . , ℓm−1, d1, d2, . . . , dm)

d1d2 . . . dm
.

The first few terms of these sequences are

ℓ0 = a1, d1 = a2 − ℓ20, ℓ1 =
a3 − ℓ30 − 2ℓ0d1

d1
, d2 =

a4 − ℓ40 − 3l20d1 − 2l0l1d1 − l21d1 − d21
d1

, . . .

For an arbitrary sequence a of nonnegative integers with a0 = 1, the corresponding sequences
d and ℓ given by Equation (8) may not exist, and even when they do, they typically do not consist
of nonnegative integers. However, some experimentation shows that many combinatorial sequences
a seem to correspond to sequences d, ℓ of nonnegative integers, as shown in Table 2. This means
that such sequences can be interpreted as counting weighted Motzkin paths, often with a simple
weight function. This raises the questions of which combinatorial sequences have this property,
which ones give positive rational numbers, and how the type of generating function for a is related
to the behavior of d and ℓ. An example of a sequence that does not give nice weights is the one
for Baxter numbers [20, A001181], where the corresponding sequences d and ℓ contain fractional
negative entries. Another example is the counting sequence of 1342-avoiding permutations, for
which the weights are not integers but they are positive and have a simple expression.

This correspondence provides an alternative approach to finding (or conjecturing) an expression
for a sequence a for which only the first few terms are known: one can compute the corresponding
sequences of weights d and ℓ, and check if they appear to have a simple formula. As shown in
Table 2, this method may work even when the generating function for a is not D-finite.
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Name of sequence OEIS[20] an dh ℓh

Catalan A000108 Cn 1

{

1, h = 0

2, h ≥ 1

Motzkin A001006 Mn 1 1

central binomial A000984

(

2n

n

)

{

2, h = 1

1, h ≥ 2
2

central trinomial A002426 [zn] 1√
1−2z−3z2

{

2, h = 1

1, h ≥ 2
1

(large) Schröder A006318 Sn 2

{

2, h = 0

3, h ≥ 1

Bell A000110 Bn h h+ 1

set partitions
with no singletons

A000296 n! [zn]ee
z−1−z h h

factorial A000142 n! h2 2h+ 1

odd double factorial A001147 1 · 3 · · · (2n − 1) 2h(2h − 1) 4h+ 1

even double factorial A000165 2 · 4 · · · (2n) 4h2 4h+ 2

derangements A000166 n!
∑n

i=0
(−1)i

i! h2 2h

Euler A000111 En

(

h+ 1

2

)

h+ 1

123-avoiding A049774 |Sn(123)| h2 h+ 1

labeled graphs A006125 2(
n
2) 8h−1(2h − 1) 2h−1(3 · 2h − 1)

unsigned even Genocchi A110501 G2n h3(h+ 1) (h+ 1)(2h + 1)

median Genocchi A005439 H2n+1 h4 2h(h + 1) + 1

Table 2: Examples of combinatorial sequences and their corresponding Motzkin weights.
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