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ALGEBRAS OF QUASI-PLUCKER COORDINATES ARE
KOSZUL

ROBERT LAUGWITZ AND VLADIMIR RETAKH

ABSTRACT. Motivated by the theory of quasi-determinants, we study
non-commutative algebras of quasi-Pliicker coordinates. We prove that
these algebras provide new examples of non-homogeneous quadratic
Koszul algebras by showing that their quadratic duals have quadratic
Grobner bases.

1. INTRODUCTION

Denote n = {1,2,...,n}. Given ordered sets I — J, we denote by J\I the
ordered set obtained by removing I, and by J|K the ordered set obtained
by appending an ordered set K. The set {j} containing one element j is
denoted by j.

1.1. Commutative Pliicker Coordinates. For k < n and a k x n-matrix
A with commutative entries we can choose a subset I = {iy,...,i} of the
column indices n and consider the Pliicker coordinates

(1) p](A) = detA(il,...,ik),
using the k x k submatrix with columns corresponding to the indices in I.
It is well-known (see e.g. [HP94, Chapter VIL.6]) that the pr(A) satisfy

GLy-invariance, skew-symmetry with respect to commuting columns, and
the Plicker identity

k+1
(2) (=1, (A)p, (A) = 0,
t=1
for subsets I = {i1,...,ix—1} and J = {j1,...,Jk+1} of the column indices.

For example, let £k = 2 < 3 = n. Then we can study a commutative
algebra generated by elements pio, p13, p12, and the Pliicker relations add no
extra information. Letting k = 2 < 4 = n and choosing I = {1}, J = {2, 3,4}
one obtains the classical identity

(3) P12P34 — D13P24 + P1apa3 = 0.
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For k = 3 and n = 6 we, for example, get the relations

(4) P123P456 — P124P356 + P125D346 — P126P345 = 0,
(5) P123D245 — P124P235 + Di2sPaga = 0,

plus similar relations interchanging the roles of the numbers in 6.

One can consider the symbols p; as generators of a quadratic commutative
algebra, the quadratic quotient Oy, ,, of the polynomial algebra C[p; | I < n]
by the relations (2), and skew-symmetry with respect to commuting indices.
It is well-known that O, is a Koszul ring since the relations give a qua-
dratic Grébner basis. This was proved in [DRS74], and also follows from
[Kem90], using results of [DCEP82]. See [MS05, Theorem 14.6] for a text-
book exposition.

The Hilbert series of Oy, , can be computed combinatorially using methods
from [Stu08]. In the above example of Go 4, one obtains the closed formula
(see [GW11, Section 7))

(1+ 6t + 6t2 +t3)
(1—1)°
The Pliicker coordinates pr(A) define an embedding of the Grassmannian

G}, n into projective space of dimension (Z) — 1. The coordinate ring of G,
via the Pliicker embedding is the quadratic algebra Oy, considered above.

(6) H(Og4,t) = =1+ 15t + 105t + 490t> + O(t%).

1.2. Non-commutative Pliicker Coordinates. Analogues of Pliicker co-
ordinates for a k x n-matrix with non-commuting entries are obtained using
the theory of quasi-determinants [GR97, GGRWO05] as rations of two quasi-
minors. More precisely, given a choice of two indices 4,j € n, and a subset
i1 ¢ I cn of size k — 1 and a matrix A with coefficients in a division ring,
the quasi-Plicker coordinate quj is defined as the following ratio of non-
commutative analogues of maximal minors:

ai; A1y .- alik% CLlj alg; .- alik%
I _ I N . . .
(7) q;; = qij(A) =1 : : : )
Qg Qkgy - - akik71 si akj (077 PR akik* sj

.

MA) ey

which is independent of choice in s, undefined if ¢ € I, and zero if j € I. The
following analogue of the Pliicker relations holds for these non-commutative
analogues of Pliicker coordinates:

(8) Mg =1
JeL

In the case where the entries of A commute, (8) recovers the classical relation
(2). Moreover, symmetry in changing the order of elements of I holds,
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replacing skew-symmetry for these ratios, and qJI»Z- is inverse to qifj if non-
zero. By considering the rations g;;, an additional relation appears:
N\(ig) N\(, N,
(9) g, \{i J}qu\L{] m} _ _qim\{l m}
See Section 2 for the list of relations among quasi-Pliicker coordinates.
For example, in the case k = 2 and n = 4, Equation (8) gives the formula

(10) Q%3qgl + Q%MZ’l =1

This translates to

(11) D12 P32D3i P14 + Pia Pa2Pgs P13 = 1.

If the elements p;; commute, this equality reduces to the classical formula
(3)-
As a second example, consider the case k = 2 and n = 6. Let M = {1,2}
and L = {3,4,5}. Then, with ¢ = 6, we obtain the equation
12 45 | 12 35 | 12 34
963936 + 961916 T 965956 = 1

(12) -1 -1 -1 -1 -1 -1 _1
A De12P3120345P645 + Dg1oP412D435P635 + Pg1oP512P543P643 = L.

Assuming that the variables commute, this recovers relation (4). Similarly,
Equation (5) can be recovered using M = {1,2}, L = {2,3,4}, i = 5.

1.3. Quantum Pliicker Coordinates. A quantum analogue of Equation
(2) was considered in [TT91, Eq. (3.2¢)] in order to construct a quantum
analogue of the coordinate algebra Og, , of the Grassmannian Gy ,. For
this, more general exchange relations appear, called Young symmetry rela-
tions:

(13) > (=g AN Fr s Fa

ACI|Al=n

for 1 < r < d, and I, J index sets of size d + r and d — r, respectively.
Here, we use notation adapted from [Lau06, Eq. (9)]. The classical Pliicker
relations (2) can be recovered as the case r = 1, ¢ = 1. It was further shown
in [Lau06] that the relations (13) can be reduced successively to relations
with r = 1.

In fact, the Young symmetry relations are are consequences of the quasi-
Pliicker relations (8) [Lau06, Theorem 28].

1.4. Sagbi and Grobner Basis for Coordinates of Grassmannians.
In the commutative setting, maximal minors form a sagbi (canonical subal-
gebra basis) according to [Stu08, 3.2.9]. (The relations among these maximal
minors give a quadratic Grobner basis as mentioned in Section 1.1.)

This result was generalized to another approach to quantum Grassman-
nians, which emerges from geometry and quantum cohomology and is a
commutative construction (rather than using g-commutators). The coor-
dinate ring, denoted by k[‘ggn] of the quantum Grassmannian consists of

maximal graded minors (of degree up to ¢ € N) of k x n-matrices with graded
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entries. In [SSO1, Theorem 1] it is proved that these maximal graded minors
give a sagbi basis for the coordinate ring k:[%,gn] within the polynomial ring
of graded entries of the matrix. Further, the relations among these maximal
graded minors have a quadratic Grobner basis [SS01, Theorem 2].

1.5. This Paper’s Approach. This paper takes the approach to start with
a quadratic algebra of quasi-Pliicker Coordinates (introduced in Section 2).
This algebra is quadratic-linear, and a theory for Koszulity of such algebras
has been developed in [PP05].

Our main result is that the associated quadratic algebra of this alge-
bra has a quadratic Grobner basis. Hence the algebra of non-commutative
Pliicker coordinates is a non-homogeneous Koszul algebra (Theorem 4). In
Section 4 we consider colimits of these algebras, varying k > 2. We further
study a second version of algebras of quasi-Pliicker coordinates which is not
quadratic-linear, but also non-homogeneous Koszul in Section 5.

In Section 6 we study the Koszul dual dg algebras explicitly in the case k =
2, and we finish the exposition by considering an algebra of non-commutative
flag coordinates which is also non-homogeneous Koszul in Section 7.

There are different approaches to non-commutative Grassmannian coor-
dinate rings, see e.g. [Kap98, KR00], which are not discussed here.

2. DEFINITION OF THE ALGEBRA R&k)

We want to define a quadratic algebra of quasi-Pliicker coordinates. As
outlined in Section 1.2, quasi-Pliicker coordinates were constructed using
quasi-determinants in [GR97, Section II], cf. [GGRWO05, 4.3]. For fixed

integers n, k = 2 we define the algebra Qslk) as having generators qi[j, where
I c n hassize k—1 and i ¢ I, which satisfy the following relations, obtained
from [GGRWO05, 4.3]:

(i qu does not depend on the ordering of the elements of I;

(iii) ¢& =1, and quq L= ql;
(iv
L
(v) If i ¢ M, then EJGL qzj‘fqﬂ\{j} 1.
Relation (iv) is called non-commutative skew-symmetry, and (v) is a non-
commutative analogue of the Pliicker relations.

The algebra Q%Z) is studied in [BR15], as the algebra of non-commutative
sectors, where it is denoted by Q,. Given an k x n-matrix A with entries
in a division ring, we note that the description of q{j in terms of quasi-

)

(ii) q” = (0 whenever j € I and i # j;
)
)

qg\{z,J} ;\Tfr\L{J mp _qurr>{Z m}

determinants in Equation (7) provides a morphism of algebras from ng) to

the skew-field generated by the non-commutative entries a;; of the matrix
A.
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We also consider the subalgebra Rgg) of Qslk) generated by those of the
ql-lj for which 7 < j. The restriction to R%k) can be justified by noting that

the skew-fields generated by the images of Rgg) and Q,(f) in the skew-field

generated by the matrix entries a;; coincide. One advantage of considering

,(f) is that it admits a presentation as a quadratic-linear algebra:

)

Proposition 1. The subalgebra Rﬁf can be described by the relations

(14) QT = Gy Vi<j<l ij¢l,
k—1

(15) Z qloquljlk ’ + lolk . ql()lk’
j=1

where L = {lp <l < -+ < lg},lo ¢ M, which are read in the way that
q% =01ifje M. Hence, R%k) s a quadratic-linear algebra.

Proof. Starting with formula (v), we distinguish three cases, depending on
the value of the index ¢. In the case when l; < ¢ < lj;1 for some j =
1,...,k — 1 we obtain Equation (15) by multiplying with qu‘l/{i on the left,

and qiL7 l\,fk on the right. If ¢ < Iy, it suffices to multiply by qiL’lkl

k

on the right;

and if [ < 4, it is enough to multiply by ql];/{ ;, on the left. In all three cases,
we obtain the same relation after relabelling so that the index-set L contains
i in the correct order. These are all possible relations between generators
qifj with ¢ < j as in this case Equation (iv) is a special case of Equation (15),
with M = L\{lo,;}. O

Ezample 2. Let us consider the case k = 2. In this case, the skew-symmetry
relation (iv) and the Pliicker relation (v) in Q'? become

(16) Giid5 =~

(17) q,”}f}ﬁ-i +arg; =1,

where all indices are distinct. In this case, the algebra Rg) has (n —2) (Z)

generators qﬁj with ¢ < j and [ # 4,j. The relations governing this algebra
are

(18) A + ) = 4t
(19) T — g = 0.

for all i < j <[ and m a distinct element from ¢, j,1, and if m = [ we have
the relation

(20) ;i + 4 = 0.
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3. KOSZULNESS OF THE ALGEBRA Rﬁf)

The Koszul property for quadratic algebras can, more generally, be stud-
ied for non-homogeneous quadratic algebras [PP05, Chapter 5]. A non-
homogeneous quadratic algebra is Koszul if the corresponding quadratic
algebra A©) obtained by taking the homogeneous parts of the quadratic re-
lations is Koszul. In this case, A is isomorphic to the associated graded
algebra gr A.

The associated quadratic algebra (Rﬁf))(()) is generated by the relations
(21) ;a4 =0, Vi<j<l, ij¢l,

k—1
L\{l;,l
(22) Z Q;‘fqulJ)i ! k} = 07
j=1

where L = {lp < l; < -+ < lt},lp ¢ M, which are read in the way that
gyl =0if je M.

We consider the quadratic dual of (Rﬁf))(()) which is denoted by BW. 1t
consists of generators rin for i < j and i ¢ I, and r{j =0if j e I. Again, we
regard [ as a strictly ordered set of indices.

We will write i < K < j to denote that i <l < j for every element | € K.

Lemma 3. The algebra Bﬁlk) 1s given by the relations

(23) ri; =0, ificl
. d . . b

(24) TinTZLIb =0, unless j = a and {Z €J andi < J\i < 7
orl =J

(25) TinT}]l = Tz'ljfrj‘],yuj, Vi e J\(J n I), provided i < J\i <,

provided that i ¢ I, a¢ J for (24), and i ¢ I, j ¢ J for (25).

Theorem 4. The algebra BT(Lk) has a quadratic non-commutative Grébner
basis, for k,n = 2, given by the relations (24)-(25) on generators r{j, 1,5 ¢ 1.

Note that for k > n, B,(Lk) = ( is trivial as no subset of size k + 1 of n can
be chosen.

Proof. In order to prove the theorem, we have to show that there are no
obstructions of degree larger than two (see e.g. [Ani86, CPU99] for the
terminology). We chose the following ordering on the generators qllj We
first order by size of (i, j) lexicographically. Given same subscripts, we order
according to the lexicographic order on the superscripts I. The monomials
are then ordered graded reverse lexicographically (degrevlex order). There
are two different types of normal words of degree two:

r{jrjjlv fori<j<J\{JﬁIUi}<l,

1.1 ‘
735751 J¢El,
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with ¢ ¢ I.
We claim that a basis for By(Lk) is given by monomials of the form
Io I I

(26) Tiin Tivis "+ Tip_yieo
with ig < 41 < ... < 4, where for each j = 1,...,t — 1 we have for

Lim1 s either

1j—1,05 550541

(27) [j—l = Ij, or

(28) ij—l € [j and ij < []\{[] N Ij—l U ij—l} < ij+1.

To prove this, we note in an arbitrary non-zero monomial M we might have
I I

degree two sub-word of the form r.;”~'. r.7.
=105 Vst +1

smaller than all element in [;\{I; n I;_; U ;_1}. In this case, we can re-

where i; is not necessarily

place the sub-word by 7"211711 p rZ.I,j i where z; is smaller than all elements
J=105 Uity
in I;\{I; n I;—1 U ij_1} using relation (25). Assume that j corresponds to

. I; o I
right-most occurrence of such a degree two sub-word. If now ri; 2ij1 z; e
— 4 - — 1

is of the same form, but there exists an element of I;_; which is larger than
z';-, the monomial M was zero by relation (24). Hence, such a situation can-
not occur and by replacing all the non-normal degree two sub-words of M
we obtain that M equals a monomial of the form (26).

It is now clear by the description of the monomial basis in (26) that the
quadratic relations given in Lemma 3 give a non-commutative Grébner basis

(non-commutative PBW basis) for the algebra Bﬁlk). 0
)

We note, in particular, that BT(Lk is a monomial algebra if and only if

k=2

Corollary 5. The algebra Bﬁlk)z's Koszul, and hence the algebra Rﬁf
homogeneous Koszul for all k,n = 2.

) is non-
Ezample 6.
(i) Consider B for small values of n. The algebra B§2) has a basis
given by
1<y <riy <733 < riaras,

so the Hilbert series are

(29) HBP 1) =143t + 12,
HRP 1) =1 -3t +3)"
=1+ 3t + 8% + 21t + 55t% 4 144> 4+ O(¢°).

According to [Ani85, Ani86| (see [CPU99, Theorem 7.1]), this implies
that the global dimension of Ri(f) equals two. The n-th coefficient of
H(R(2),t) is the 2(n — 1)-th Fibonacci number.!

1Acc0rding to  the On-Line  Encyclopaedia  of  Integer  Sequence®,
https://oeis.org/A001906.
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(ii) The Hilbert series k = 2 and n =4 is

(31) H(RP ) = (1 — 12t + 1262 — 5¢3) 7
=1+ 12t + 132t% + 1,445t3 + O(t4).

(iii) The Hilbert series k = 2 and n =5 is

H(Réz)’t) = (1-30t + 50t2 — 453 + 17t4)*1

(32)
= 1+ 30t + 8502 + 24, 045> + 680, 183t* + O(¢°).

In general, the top degree of H (B,(f),t) is n — 1. The leading coefficient
hp—1 is given by
(n—i+1)2"" = > (i+1)2,
i=0

n(n — 1)(n — 2). The other coefficients can be

-

N—= W

(33) Bp1 =

7

while the coefficient hy =
computed as

n n—I[{—2 '
(34) At = (l B 1) (l —1+ > @ +l)2l> :
i=0

forl<i<n-—1.
Example 7. If k = 3 and n = 4, then 7‘{3 4}7’;11 3 is the only non-zero qua-

(3)

dratic monomial in B4, and hence

(35) HRY 1) = (1 -6t +1¢2)7!
= 1+ 6t + 35t2 + 204> + 1,189t* + O(t7),

for which the coefficients satisfy the recursion a, = 6a,_1 — a,_2, With
ag = 1.

In general, we find that H(R(" 1),t) = (1= 3n(n — 1)t + *)7! since
the monomial r—\{l 2 n\{l " s the only non-zero quadratic monomial in

Bf’), and hence the coeﬂi(nents of this Hilbert series satisfy the recursion
an = %n(n — Dap—1 — an—o2.

4. KOSZULNESS OF THE COLIMIT ALGEBRA R,

The relations in [GGRWO05, 4.8.1] link the quasi-Pliicker coordinates for
k x m-matrices with those of (k — 1) x n-matrices. In our algebraic setting,
this gives the non-homogeneous relations

(36) @y = a7+ @ 4l

where i, m ¢ J. This relation links Q( 1 and Qn , where J is a set of size

k—1. We can inductively define the quadratic algebra ngk) as the coproduct
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of the algebras Q,(@k’), for k' < k, with the additional relations of the form
(36). Accordingly, we define the algebra of quasi-Pliicker coordinates Q.

Qn = Qf") .

Note that Q%k) = 0 for k > n as then it is not possible to choose an index
set of size k + 1 in n. The colimit algebra @), is again a quadratic-linear
algebra with finitely many generators.

Lemma 8. The subalgebra Rfk) of ngk) generated by qglj with © < j can
be described as the quotient of the colimit over the subalgebras R%k) together

with the relations (36) for i <m < j.

Proof. In the larger algebra Q,(fk), all relations of the form (36) can be
transformed into relations of the same form where the lower indices are in
strictly increasing order. This can be checked distinguishing cases depending
on the order of {i,m,j} according to size, and multiplying by the correct

inverse. Hence all the relations in the subalgebra R,(fk) are of the same
form. O

Therefore, we define the colimit algebra

R, := RS,

n

Theorem 9. The algebras R,(fk) are quadratic-linear Koszul algebras, and

hence the quadratic-linear algebra R, is Koszul.

Proof. The quadratic part of the relation (36) gives that
(37) aat =0, Vi<j<m,

where 4,5 ¢ J. Consider the quadratic dual B,(fk) of (R&ék))(o). In this

algebras, all products of generators rl‘-]jréi with different sizes of the index
sets J, K are zero unless j = a and K = J ui. We extend the linear

ordering on generators by requiring that qi]j < ¢ if |K| < |L|, again using
the degrevlex ordering on monomials. Then a non-commutative PBW
basis is given by products MMy ... Mg of monomials of the form from (26)

which only give a non-zero product if the last generator in M; is of the form
7’2-]; , and the first generator or M; 1 has the form 7’]]-1( “*. This shows that a
quadratic non-commutative Groébner basis exists for Bf(fk). In particular,

(R&ék))(o) is Koszul, and so Rgfk) is non-homogeneous Koszul. O
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Ezample 10. Consider the algebra Q4. The quadratic dual has the PBW
basis

3 4 2 4 2 3 1 4 1 3 1 2
Tlg < T <T13 < T3 < Ty <Tpg < Tz <To3 < Ty <Toy < T34 < T3y

34 24 23 14 13 12

< 1T < Tiyray < Thardy < riyrii < riyray < Tigray < TiaThy < Tiaras
< riaTy < Ti3ray < TisT3i < TisThy < Togvay < Thariy < ThaTy < Th3Thy
< 7‘%27’%37’?1,4 < 7‘%27"%37’?2,4 < 7‘:1)’27‘%37"31,2 < 7’127’537’?1,4
< 7’%27’%37’?2,4 < 7’%27’%37’?1,3 < 7‘41127‘42137"54-
Hence the Hilbert series for Q4 is given by
H(Qu,t) = (1 — 18t 4 16t* — 7t3)~*

38
(38) =14 18t + 308> + 5,263t> + 89,932t* + O(t°)

5. THE ALCEBRAS ng) AND @), ARE ALSO KoszuL

The non-homogeneous quadratic algebras ng) can also be shown to be
Koszul. However, it is not quadratic-linear, as constant terms appear in
the relations (cf. [PP05, Chapter 5]). We change the presentation from
[GGRWO05, 4.3] slightly:

Lemma 11. The algebra ng) has generators q{j, where |I| = k —1 and
i ¢ I, subject to the relations

(i) ql-lj does not depend on the ordering of the elements of I;
(ii) qZI] = 0 whenever j € I;
(iii) ¢& =1, and qwqﬂ qh, i j ¢ 1;
, NGl L\{i,l
(V ) If’L ¢ M, 1€ L, then ZjGL\{Z} qu‘j/‘[q]l\{j ) + qll\{z b=
Theorem 12. The non-homogeneous quadratic algebras ng and Q(<k
(and hence, in particular, Q) are non-homogeneous Koszul.

Proof. The proof is similar to that for Rgf) in Theorem 4, but there are less
k)

restrictions of the order of indices. We consider C’T(L , which is the quadratic

dual of the associated quadratic algebra (Q(k))(o). Denote generators for
this algebra by 7’ : (dual to qw). Then TKT =0if j # a or, if j = «a,

7"5 rip =0 if K # L and 7 ¢ L. The relations in Cj, ) are fully described by

I\l NG . .
(39) MRS = MDY, Vi, 5 € I\{L A M Ui},
requiring distinct sub-indices and ¢ € L. This means we have a rewriting
rule

M, L M L
Tig U507 Vilpyar Tlpyar
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where I\ p; = min L\(L n M v ), and L' = (L\lp\ps) U j. One checks that

! r‘]lrle, applying the rewriting rule to the first two

for a critical triple r;; i

generators and then to the last two generators gives a reduce monomial,
and the same reduced monomial emerges if we apply the rewriting rules
in opposite order. Hence, the process of applying rewriting rules stabilizes
after two steps. This means every critical pair is confluent, and hence the
algebra is Koszul (cf. e.g. [LV12, Section 4.1] for these general results and
terminology). This implies that Q,(f) is non-homogeneous Koszul. Further,
after adding relation (36), the same is true. Moreover, the process of passing
to the quadratic part of relations still commutes with taking the coproduct,

and hence the algebras ngk) are also non-homogeneous Koszul. O

6. DIFFERENTIAL GRADINGS ON THE QUADRATIC DUALS

Using the non-homogeneous quadratic duality of [PP05, 5.4], it follows

that the algebras Bﬁlk) are differentially graded (dg) algebras. That is, for
each of these algebras, there exist a graded map d of degree one such that

(40) d* =0, d(zy) = d(z)y + (=1)* =z d(y),
for homogeneous elements x,y, which is referred to as the differential. We
study the case kK = 2 in more detail and relate it to certain refinements of

triangles with labelled corners.
To a generator rfj with i < j, k # 1, j associate the triangle with labelled

corners
k
b= N
i J

Consider three types of ways to add a corner to the triangles:

1 <l<j, and [ # k,

1 <l<j, and [ # k,

k k
VAN RPN
1 J t l J
k k
CAVANLRYEN
? J 1 J



12 ROBERT LAUGWITZ AND VLADIMIR RETAKH

k l

(43) A —> A, 1<k<j, and | # i, k.
i J i J
The triangulations on the right hand side correspond to the products
—riklrlkj «—  (41), —riklrlij —  (42), rﬁkrzj —  (43).

We can recover a quadratic monomial from a triangulation by reading from
left to right, reflecting the second triangle in the cases (42) and (43) so that
the left corner becomes the top corner.

k
Now the map d(rfj) is the sum over all ways to triangulate A by
i
adding one corner in any of the three ways described in (41)—(43).

Corollary 13. The map dp: BT(LZ) — BT(?) given by

j—1 k..k k.0 1 i . .
(44)  dp(k) = _Zl.:i1+1<Til7“lj L)+ D Tk E< K <,

Y - Zg=i+1(r§lrlkj + 7”57";]-)7 otherwise.
1s a differential for B,(?).

We can explicitly compute the homology of these dg algebras in small
examples: B?()Z) has homology 1 + 2¢, and Bf) has homology 1 + 7t + 2t2.

The algebras C’T(Lk) will not give dg algebras, but rather examples of non-
trivial curved dg algebras [PP05, 5.4, Definition 1].

7. QUASI-FLAG COORDINATES

As an alternative to Pliicker coordinates, one can consider flag coor-
dinates. These also generalize to non-commutative entries, using quasi-
determinants [GGRWO05, Section 4.10]. Given a k x n-matrix, n > k, choose
distinct indices 1, j1, ... jx—1 in n and denote

aj; a1, +-- Qlj,_,

)

(45) fistinniny (A) =

akjl akjk—l ki

which is independent of the order of {j1, ..., jx}. These functions are referred
to as flag coordinates and were introduced in [GR92].

For a set I of smaller size, one can consider f; j(A) by restricting to the
first [I| 4+ 1 rows of A. Then the following relations hold [GGRWO05, Section
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4.10.2]:

(46) fi,Ifi,_Il\k = _fk,I\kuif];}\k Vkel,
k

(47) ZlfjivJ\jifjivJ\{jivjil} =0,

where J = {j1,...,Jx} and we also denote jy = ji.

Definition 14. For n > 2, we denote by F;, the non-homogeneous quadratic
algebra with generators f; 7, where I is a subset of n and 4 ¢ I, and relations
given by (46)—(47) as well as

(48) fir Z-T[l = fi}lfz',f =1

Note that quasi-Pliicker and flag coordinates are closely related as by
[GGRWO05, Section 4.10],

(49) quj (A) = fir(A) 7 f1(A).
Theorem 15. The algebras F,, are non-homogeneous Koszul.

Proof. Consider the quadratic dual G,, := (F,SO))! of the homogeneous part
of the relations (46)—(48). In this algebra, denoting the dual generator for
fi,1 by gi,r, we have

(50) 91951 + 9;.1 91 = 0,

(51) 9i19i e = Ik I\kih 1\ Vkel,
—1 —1 ,

(52) 95,095, 0\ ky = ILINIL 1,5} l,j€J,

plus all quadratic monomials not appearing in these relations are zero. We

order the generators g;{,l lexicographically according to the triple (|I|,4,1)
and g < g~', and use the degrevlex ordering on monomials. Then the

normal words of degree two are
-1 -1
9i,19; 1> gJ:Jgj,J\k’

where ¢ ¢ I, and j < J (in particular j < k, otherwise no restriction on
k € J). The rewriting rule is given by

—1 —1
gi,lgi,]\k = gml:l\mIUigm],I\mI’

where m; = min I.

Monomials in which every two neighboring generators are one of these
normal words give a basis for G,,, which is thus a non-commutative PBW
basis, and hence F,, is non-homogeneous Koszul. O
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