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Analysis of the Ratio D(n)/n
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Abstract: In this note, we investigate properties of the ratio D(n)/n, which we will call the deficiency index. We

will discuss some concepts recast in the language of the deficiency index, based on similar considerations in terms

of the abundancy index.
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1 Introduction

If n is a positive integer, then we write σ(n) for the sum of the divisors of n. A number n is perfect if σ(n) = 2n.

We call M almost perfect if σ(M) = 2M − 1. We say k is deficient if σ(k) < 2k, and we call m abundant if

σ(m) > 2m. We denote the abundancy index I of the positive integer w as I(w) = σ(w)/w. We also denote the

deficiency D of the positive integer x as D(x) = 2x− σ(x) [4]. (In this case, if D(x) > 0 we say that x is deficient

by D(x), since the last equation can be rewritten as σ(x) = 2x − D(x). Similarly, if D(x) < 0 we say that x is

abundant by D(x). Of course, if D(x) = 0 then x is perfect.) Lastly, we will call the ratio D(x)/x as the deficiency

index of x, and will denote it by d(x) = D(x)/x. Notice that we have the equation

2− I(x) = 2−
σ(x)

x
=

2x− σ(x)

x
=

D(x)

x
= d(x).

In his undergraduate honors thesis [3], Ludwick analyzed the properties of the ratio I(n) = σ(n)/n.

2 On a Criterion for Deficient Numbers in Terms of the Abundancy and

Deficiency Indices

In the preprint [1], Dris proves that n is deficient by D(n) > 1 if and only if the following bounds hold:

Theorem 2.1. σ(n) = 2n−D(n) and D(n) > 1 if and only if

2n

n+D(n)
< I(n) <

2n+D(n)

n+D(n)
.

We will prove the following version of Theorem 2.1 here:

Theorem 2.2. σ(M) = 2M − 1 if and only if

2M

M + 1
≤ I(M) <

2M + 1

M + 1
.

Proof. Rewriting the bounds, we obtain

2M

M + 1
=

2(M + 1)

M + 1
−

2

M + 1
= 2−

2

M + 1
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and
2M + 1

M + 1
=

2(M + 1)

M + 1
−

1

M + 1
= 2−

1

M + 1
.

Now, σ(M) = 2M − 1 if and only if I(M) = σ(M)/M = 2− (1/M). We want to show that

2−
2

M + 1
≤ I(M) = 2−

1

M
< 2−

1

M + 1
.

Cancelling 2 and rearranging, we get
1

M + 1
<

1

M
≤

2

M + 1
,

which is trivially true as

M < M + 1 ≤ 2M

holds, where the inequality on the right follows from M ≥ 1. This proves one direction of the theorem. Now,

suppose that

2−
2

M + 1
≤ I(M) < 2−

1

M + 1
.

This implies that
1

M + 1
< 2− I(M) ≤

2

M + 1

from which we obtain

0 <
M

M + 1
< D(M) ≤

2M

M + 1
.

We claim that D(M) = 1. Suppose to the contrary that D(M) ≥ 2. Then we have

2 ≤ D(M) ≤
2M

M + 1

resulting in the contradiction 2(M + 1) = 2M + 2 ≤ 2M . Hence, D(M) = 1, and we are done.

In particular, the criterion in Theorem 2.1 can be rewritten in terms of the deficiency index, as follows: σ(n) =

2n−D(n) and D(n) > 1 if and only if

2

1 + d(n)
< I(n) <

2 + d(n)

1 + d(n)
.

As an application of the criterion in Theorem 2.1, we can prove that primes, powers of primes, and products of

two distinct odd prime powers are deficient.

First, we dispose of two technical lemmas.

Lemma 2.1. If x | y, then d(y) ≤ d(x).

Proof. Suppose that x | y. This implies that I(x) ≤ I(y), from which it follows that

d(y) =
D(y)

y
= 2− I(y) ≤ 2− I(x) =

D(x)

x
= d(x).

Lemma 2.2. If gcd(x, y) = 1, then D(xy) ≤ D(x)D(y).

Proof. Consider the difference

D(x)D(y) −D(xy) =

(

2x− σ(x)

)(

2y − σ(y)

)

−

(

2xy − σ(xy)

)

.

This is equal to

D(x)D(y) −D(xy) = 4xy − 2xσ(y)− 2yσ(x) + σ(x)σ(y) − 2xy + σ(x)σ(y)
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since gcd(x, y) = 1. Collecting like terms, we obtain

D(x)D(y) −D(xy) = 2xy − 2xσ(y)− 2yσ(x) + 2σ(x)σ(y) = 2 ·

(

xy − xσ(y)− yσ(x) + σ(x)σ(y)

)

= 2 ·

(

σ(y) · (σ(x) − x) − y · (σ(x) − x)

)

= 2 ·

(

σ(x)− x

)

·

(

σ(y)− y

)

.

D(xy) ≤ D(x)D(y) now follows from x ≤ σ(x) and y ≤ σ(y) for all x, y ∈ N.

We are now ready to prove our claimed result.

Theorem 2.3. Primes, prime powers, and products of two distinct odd prime powers are deficient.

Proof. We begin with the case of primes q.

d(q) =
D(q)

q
=

2q − σ(q)

q
=

2q − (q + 1)

q
=

q − 1

q
= 1−

1

q
.

We compute

1 + d(q) = 2−
1

q

2 + d(q) = 3−
1

q
.

Now we test whether the inequalities

2

2− 1
q

< I(q) = 1 +
1

q
<

3− 1
q

2− 1
q

hold. These inequalities are equivalent to

2 <

(

1 +
1

q

)

·

(

2−
1

q

)

< 3−
1

q

which in turn are equivalent to

2 < 2 +
1

q
−

(

1

q

)2

< 3−
1

q
(

0 <
1

q
−

(

1

q

)2

=
q − 1

q2

)

∧

(

0 < 1− 2

(

1

q

)

+

(

1

q

)2

=

(

q − 1

q

)2)

.

Both inequalities are now readily seen to hold since q prime implies that q ≥ 2 > 1. We therefore conclude, by

Theorem 2.1, that primes are deficient.

We now consider the case of prime powers. Let p be a prime and let k be a positive integer.

d(pk) =
D(pk)

pk
=

2pk − σ(pk)

pk
=

2pk − (pk + σ(pk−1))

pk
=

pk − σ(pk−1)

pk
= 1−

σ(pk−1)

pk
.

Notice that the inequality

σ(pk−1) =
pk − 1

p− 1
< pk

holds. We compute

1 + d(pk) = 2−
σ(pk−1)

pk

2 + d(pk) = 3−
σ(pk−1)

pk
.

Now we test whether the inequalities

2

2− σ(pk−1)
pk

< I(pk) =
σ(pk)

pk
=

pk + σ(pk−1)

pk
= 1 +

σ(pk−1)

pk
<

3− σ(pk−1)
pk

2− σ(pk−1)
pk
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hold. These inequalities are equivalent to

2 < 2 +
σ(pk−1)

pk
−

(

σ(pk−1)

pk

)2

< 3−
σ(pk−1)

pk

which in turn are equivalent to

(

0 <
σ(pk−1)

pk

(

1−
σ(pk−1)

pk

))

∧

(

0 < 1− 2
σ(pk−1)

pk
+

(

σ(pk−1)

pk

)2

=

(

1−
σ(pk−1)

pk

)2)

.

Both inequalities are now readily seen to hold since σ(pk−1) < pk implies that 1 − σ(pk−1)
pk > 0. We therefore

conclude, by Theorem 2.1, that prime powers are deficient.

Lastly, we turn our attention to products of two distinct odd prime powers. Let p and q 6= p be primes, and let r

and s be positive integers.

d(prqs) =
D(prqs)

prqs
=

2prqs − σ(prqs)

prqs
= 2− I(pr)I(qs)

Notice that

1 <

(

1 +
1

p

)

·

(

1 +
1

q

)

≤ I(pr)I(qs) <

(

1 +
1

p− 1

)

·

(

1 +
1

q − 1

)

≤
3

2
·
5

4
=

15

8
< 2.

We compute

1 + d(prqs) = 3− I(pr)I(qs)

2 + d(prqs) = 4− I(pr)I(qs).

Now we test whether the inequalities

2

3− I(pr)I(qs)
< I(pr)I(qs) <

4− I(pr)I(qs)

3− I(pr)I(qs)

hold. These inequalities are equivalent to

2 < 3I(pr)I(qs)−

(

I(pr)I(qs)

)2

< 4− I(pr)I(qs)

which in turn are equivalent to

((

I(pr)I(qs)− 1

)(

I(pr)I(qs)− 2

)

=

(

I(pr)I(qs)

)2

− 3I(pr)I(qs) + 2 < 0

)

and
((

2− I(pr)I(qs)

)2

= 4− 4I(pr)I(qs) +

(

I(pr)I(qs)

)2

> 0

)

,

which both imply that

I(prqs) = I(pr)I(qs) < 2

since I(pr)I(qs) > 1. Since I(pr)I(qs) < 2 is known to be true, we therefore conclude by Theorem 2.1 that

products of two distinct odd prime powers are deficient.

Remark 2.1. Why did we bother with a laborious proof for Theorem 2.3? The method presented may lend itself well

to further generalizations.
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3 Friendly and Solitary Numbers in the Language of the Deficiency Index

If there exists y 6= x such that I(x) = I(y), then

d(x) = 2− I(x) = 2− I(y) = d(y),

and y is said to be a friend of x. (We shall likewise refer to x and y as friendly numbers.) Otherwise, if I(x′) 6= I(z)

for all z ∈ N, then

d(x′) = 2− I(x′) 6= 2− I(z) = d(z),

for all z ∈ N. Such a number x′ is said to be solitary.

We now show how to prove results for friendly and solitary numbers in the language of the deficiency index,

similar to those that are done in terms of the abundancy index.

Lemma 3.1. If gcd(n,D(n)) = 1, then n is solitary.

In particular, if the fraction D(n)/n is in lowest terms, then n is solitary by Lemma 3.1.

Proof. By Greening’s Theorem [2], it suffices to show that

gcd(n,D(n)) = gcd(n, σ(n)).

But

gcd(n,D(n)) = gcd(n, 2n− σ(n)) = gcd(n, σ(n)),

where we have used the fact that gcd(a, b) = gcd(a, ax+ by) for x, y ∈ Z.

Corollary 3.1. Primes and powers of primes are solitary.

Proof. Let q be a prime. Then

D(q) = 2q − σ(q) = 2q − (q + 1) = q − 1,

which implies that gcd(q,D(q)) = 1. Hence, primes are solitary by Lemma 3.1.

Let p be a prime, and let k be a positive integer. Then

D(qk) = 2qk − σ(qk) = 2qk − (qk + σ(qk−1)) = qk − σ(qk−1).

We want to show that gcd(qk, D(qk)) = 1. Suppose to the contrary that

gcd(qk, D(qk)) = m > 1.

Then m | qk and m | D(qk) = qk − σ(qk−1). It follows that m | σ(qk−1), whence we have

gcd(qk, σ(qk−1)) ≥ m > 1.

This is a contradiction. We therefore conclude that gcd(qk, D(qk)) = 1, so that prime powers are solitary.

Remark 3.1. In particular, by Lemma 3.1 and Corollary 3.1, there are infinitely many numbersn satisfying gcd(n,D(n)) =

1.

4 On Odd Deficient-Perfect Numbers

A number x is said to be deficient-perfect if the divisibility condition D(x) | x holds [5].

y = 9018009 = 32 · 72 · 112 · 132 is deficient-perfect, since

D(y) = D(9018009) = 819 = 32 · 7 · 13.

The quotient
y

D(y)
= 7 · 112 · 13 = 11011
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happens to be a palindrome! By our formula relating the deficiency and abundancy indices, we have

D(y)

y
=

1

11011

and

I(y) = 2−
D(y)

y
=

22021

11011

which is perilously close to 2 as some have described.

(This portion is currently a work in progress.)

5 Acknowledgments

The author thanks the anonymous referee(s) whose valuable feedback improved the overall presentation and style of

this manuscript.

References

[1] J. A. B. Dris, A Criterion for Deficient Numbers Using the Abundancy Index and Deficiency Functions, preprint

(2016), https://arxiv.org/pdf/1308.6767.pdf.

[2] C. W. Anderson, D. Hickerson, and M. G. Greening, Advanced Problem 6020: Friendly Integers, American

Mathematical Monthly, vol 84, no 1, (1977) pp 65–66.

[3] K. E. Ludwick, Analysis of the Ratio σ(n)/n, Undergraduate honors thesis, Penn State University (1994).

[4] N. J. A. Sloane, OEIS sequence A033879 - Deficiency of n, or 2n− σ(n), http://oeis.org/A033879.

[5] C. F. E. Adajar, OEIS sequence A271816 - Deficient-perfect numbers: Deficient numbers n such that n/(2n−

σ(n)) is an integer, http://oeis.org/A271816.

6

https://arxiv.org/pdf/1308.6767.pdf
http://oeis.org/A033879
http://oeis.org/A271816

	1 Introduction
	2 On a Criterion for Deficient Numbers in Terms of the Abundancy and Deficiency Indices
	3 Friendly and Solitary Numbers in the Language of the Deficiency Index
	4 On Odd Deficient-Perfect Numbers
	5 Acknowledgments

