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Abstract
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1 Introduction

Let n be a positive integer and denote by SL(n) the special linear group of n×n matrices
with determinant 1. We know from classification of involutions on algebraic groups that there
are essentially four different types of involutory automorphisms associated with SL(n). The
first of these is the automorphism θ1 : SL(n) → SL(n) defined by θ1(g) = (g−1)⊤ whose fixed
point set is SO(n). The second one is θ2 : SL(2n) → SL(2n) defined by θ2(g) = J(g−1)⊤J ,
where J denotes the skew form

J =

(
0 idn

−idn 0

)
, (1.1)

and idn is the n × n identity matrix. The third one is actually a family; let 0 < q < p be
two positive integers such that n = q + p and define

Jp,q :=




0 0 sq
0 idp−q 0
sq 0 0


 , (1.2)
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where sq is the q × q matrix with 1’s on the anti-diagonal and 0’s elsewhere. Then
θ3 = θ3(p, q) is the automorphism θ3 : SL(n) → SL(n) defined by θ3(g) = Jp,q(g

−1)⊤Jp,q.
The final automorphism is the identity θ4(g) = g. (Actually, SL(n) can be viewed as the
diagonal in SL(n) × SL(n), θ4 is induced from the nontrivial involutory automorphism

θ̃4 : SL(n) × SL(n) → SL(n) × SL(n) defined by θ̃4((g, h)) = (h, g).) Note that for
i = 1, . . . , 4, the fixed point subgroups SL(n)θi = {g ∈ SL(n) : θi(g) = g}, are equal
to the special orthogonal group SO(n), the symplectic group Sp(2n), the Levi subgroup
S(GL(p)×GL(q)), and SL(n), respectively.

The symmetric group Sn of permutations on [n] := {1, . . . , n} plays a fundamental role
for the homogenous spaces of SL(n). Let us denote by Bn the standard Borel subgroup of
SL(n), that is the subgroup consisting of upper triangular matrices from SL(n). A Schubert
variety, by definition, is the Zariski closure of a Bn orbit in the quotient Bn := SL(n)/Bn,
which is commonly known as the “full flag variety” of SL(n). On one hand, Sn gives a
parametrization of all Schubert varieties in Bn. On the other hand, each involution θi,
i = 1, 2, 3 induces an involutory automorphism on Sn with the corresponding fixed point
sets:

1. Sθ1n = In = {π ∈ Sn : π2 = id};

2. Sθ2n = FIn, the set of involutions with no fixed points;

3. Sθ3n = I±p,q, the set of “signed (p, q)-involutions” in In, which we define below;

4. Sθ4n = Sn.

For i = 1, 2, 3, these sets of involutions parametrize the orbits of fixed point subgroup SL(n)θi

in Bn. Similarly, Sn parametrizes the SL(n)θi orbits in Bn × Bn.

Definition 1.3. A signed (p, q)-involution π ∈ Sn is an involution with an assignment of +
and − signs to the fixed points of π such that there are p− q more +’s than −’s if q < p. (If
p < q, there are q − p more − signs than + signs.) The set of all signed (p, q)-involutions in
Sn is denoted by I±p,q. The cardinality of I±p,q is denoted by αp,q.

For example, π = (1 6)(2 3)(4+)(5−)(7+)(8+) is an element of I±5,3. Observe here that
p is equal to the number of fixed points in π with a + sign attached plus the number of
two-cycles in π, while q is equal to the number of fixed points in π with a − sign attached
plus the number of two-cycles in π.

Our goal in this manuscript is to show that the numbers αp,q, p, q ≥ have a great deal
of interesting combinatorics pertaining to them. Let us give a brief summary of our results
and explain the structure of our paper.

Let γk,p,q denote the number of signed involutions from I±p,q with k 2-cycles. Clearly,
αp,q = γ0,p,q + γ1,p,q + · · · . First by finding a 3-term recurrence for γk,p,q’s we prove in
Section 3 that

αp,q = αp−1,q + αp,q−1 + (p+ q − 1)αp−1,q−1
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with obvious initial conditions αp,0 = α0,q = 1 for all p, q ≥ 1. The generating function
up(x) =

∑
q≥0 αp,qx

q and its bivariate extensions are worked out in Section 4. (Somewhat
surprisingly, the modified Bessel functions appear in our calculations.)

One of the most exciting main results of our paper is on the relationship between Borel
orbits and the lattice path combinatorics. We show in Section 5 that αp,q’s count the number
of weighted lattice paths in (p+1)×(q+1)-grid starting at the origin and ending at (p, q) with
(0, 1), (1, 0), and (1, 1)-steps only. In particular, by constructing an explicit bijection between
I±p,q and the paths we make note of the fact that now there is a way to reinterpret and study
the action of the “Richardson-Springer monoid of symmetric group” in terms of weighted
lattice paths. This connection is particularly exciting because intersection theory on Borel
orbit closures in SL(n)/S(GL(p)×GL(q)) is determined by the action of Richardson-Springer
monoid (see [11]) and there is an interplay between tableaux and lattice paths.

Let us pointed out the other similar result, that we know of, relating Schubert varieties
to lattice paths. Let Y = Gr(k, n) denote the Grassmann variety of k dimensional subspaces
of the n dimensional vector space Cn. It is well known that this variety is a homogeneous
space of the form SL(n)/P , where P is the subgroup

P :=

{(
∗ ∗
0 ∗

)
∈ SL(n) : 0 is the k × n− k matrix whose entries are all 0.

}
.

The orbits of Borel subgroup Bn, via its left translation action on SL(n)/P give a cellular
decomposition of Y ; the cells are in bijection with the lattice paths in the k × (n − k)-grid
starting at the origin ending at k× (n−k) and moving with (0, 1)- and (1, 0)-steps only. The
inclusion order on Borel orbit has a natural interpretation in terms of these lattice paths and
the length generating function of this poset is given by the t-analog of binomial coefficients[
n
k

]
= [n]!

[k]![n−k]!
, where [m] := 1 + · · ·+ tm−1 and [m]! = [m] · · · [2][1]. It obeys the recurrence

relation [
n

k

]
=

[
n− 1

k

]
+ tn−k

[
n− 1

k − 1

]
.

See [9, Chapter I].
In Section 6, we study three generating functions pertaining αp,q’s. Among them is the

length generating function Ep,q(t) =
∑

π∈I±p,q
tL(π) of the Bruhat order on I±p,q. We prove that

Ep,q(t)’s satisfy the 3-term recurrence

Ep,q(t) = Ep−1,q(t) + Ep,q−1(t) + ([p + q]− 1)Ep−1,q−1(t).

We finish our paper with a section on the plan of a future work.

2 Preliminaries (remarks and notation)

For i = 1, 2, 3, let θi be one of the involutions mentioned in the introduction and set
Ki := SL(n)θi to denote the group of θi-fixed elements in SL(n). As we mentioned it
earlier, the Ki orbits in Bn are parametrized by the corresponding sets of involutions in
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Sn. Equivalently, these sets of involutions parametrize the Bn orbits in the symmetric
varieties SL(n)/Ki, respectively. Borel orbit closures form a graded poset with respect to
(set-theoretic) inclusion. These posets are first considered by Richardson and Springer in
their seminal paper [8]. We briefly review some well known results pertaining to these posets,
which are commonly referred to as Bruhat posets.

We start with setting up our notation. In combinatorics, it is customary to denote by [n]
the set {1, . . . , n}. We write the elements of the symmetric group Sn in cycle notation using
parentheses, as well as in one-line notation using brackets. We omit brackets in one-line
notation if there is no danger of confusion. For example, w = 4213 = [4, 2, 1, 3] = (1, 4, 3) is
the permutation that maps 1 to 4, 2 to 2, 3 to 1, and 4 to 3.

An involution is an element of Sn of order ≤ 2 and the set of involutions in Sn is denoted
by In. The Bruhat order on In has a minimal element αn := id, and a maximal element
βn := w0, where w0 = [n, n− 1, · · · , 2, 1], the longest permutation. We drop the subscript n
when it is clear from context.

Let π ∈ In be an involution. The standard way of writing π is as a product of 2-cycles.
Since we often need the data of fixed points (1-cycles) of π, we are always going to include
them in our notation. Thus, our standard form for π is

π = (a1, b1)(a2, b2) · · · (ak, bk)c1 . . . cn−2k,

where ai < bi for all 1 ≤ i ≤ k, a1 < a2 < · · · < ak, and c1 < · · · < cn−2k.
The Bruhat-Chevalley order on Sn is a ranked poset and its grading is given by ℓ : Sn → Z,

ℓ(π) = the number of inversions in π. The Bruhat order on In is also a ranked poset; for
π = (a1, b1) · · · (ak, bk)c1 . . . cn−2k ∈ In, the length L(π) is defined by

L(π) :=
ℓ(π) + k

2
,

where ℓ(π) is the length of π in Sn, and k is the number 2-cycles that appear in the standard
form of π.

For more on the combinatorics of Bruhat order on (fixed point free) involutions we rec-
ommend works [5] and [1]. The PhD thesis [11] of Ben Wyser has a concrete description of
the Bruhat order on signed involutions, although it is described in a different terminology
((p, q)-clans and degeneracy loci).

There is another “geometric” partial ordering on involutions, namely the weak order, that
is extremely useful for studying Bruhat ordering. In particular, the weak order is a ranked
poset and its length function agrees with that of the Bruhat order. In general, a convenient
way of defining the weak order is via the so called ”Richardson-Springer monoid” action.
Since our goal in this paper is not studying the poset structure, and since the descriptions
of both Bruhat and weak orders are lengthy we skip their definitions but mention a relevant
fact. (See Figure 2.1, where we illustrate the weak order on I±2,2.)

It is observed in [2] that the length function of the weak order on signed involutions I±p,q
agrees with that of the weak order on In. In other words, the length of π ∈ I±p,q is equal
to L(π), where π is identified with its supporting involution. We occasionally speak of the
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1+2+3−4− 1+2−3+4− 1+2−3−4+ 1−2+3+4− 1−2+3−4+ 1−2−3+4+

(1+)(23)(4−) (1+)(2−)(34) (12)(3+)(4−) (12)(3−)(4+) (1−)(2+)(34) (1−)(23)(4+)

(1+)(24)(3−) (13)(2+)(4−) (12)(34) (13)(2−)(4+) (1−)(24)(3+)

(14)(2+)(3−) (13)(24) (14)(2−)(3+)

(14)(23)

Figure 2.1: Weak order on I±2,2

support of a signed involution to mean the underlying involution without reference to its
signs. Thus, from now on, by abusing notation we are going to use L(·) for denoting the
length function of Bruhat as well as the weak order on I±p,q. Our final remark on the length
function L(·) is that if π ∈ I±p,q is the signed involution corresponding to the Borel orbit O,
then the dimension of O is equal to L(π) + c, where c is the dimension of (any) closed Borel
orbit in SL(p+ q)/S(GL(p)×GL(q)). Thus, studying L(π), and its generating function, is
equivalent to studying dimensions of orbits.

2.1 Signed involutions with k 2-cycles.

Let n and k be two integers such that 0 ≤ k ≤ ⌊n
2
⌋ and let π = (i1j1) . . . (ikjk)l1 . . . ln−2k

be an involution with fixed points l1 < · · · < ln−2k. Let us assume that p and q are two
numbers such that 0 ≤ q ≤ p and p+ q = n.

We denote by I±k,p,q the set of all signed involutions π from I±p,q such that π has n − 2k
fixed points, p−q ≤ n−2k, and there are p−q more +’s than −’s. We denote the cardinality
of I±k,p,q by γk,p,q. Our aim in this section is to give a practical formula for γk,p,q.

Remark 2.1. Since q + p− 2k = n− 2k ≥ p− q, it holds true that 0 ≤ k ≤ q.

Now, if π ∈ I±k,p,q, then its support is one of the
(
n
2k

) (2k)!
2kk!

involutions π ∈ In with n− 2k
fixed points. This is easy to see but let us justify it for completeness: Once the entries
to appear in the transpositions of π are chosen the fixed points, which are ordered in an
increasing manner, are uniquely determined. So, the question is equivalent to choosing k

5



transposition from [n] and ordering them to give π. It is not difficult to see that this is

indeed given by
(
n
2k

)
(2k)!
2kk!

.
Next, we look into ways to place a +’s and b -’s on the string l1 . . . ln−2k so that there are

exactly p− q = a− b +’s more than -’s. Clearly, this number is equivalent to
(
n−2k
a

)
. Since

a+ b = n− 2k = q + p− 2k and a− b = p− q, we have a = p− k. Therefore,

γk,p,q =

(
q + p

2k

)
(2k)!

2kk!

(
q + p− 2k

q − k

)
, (2.2)

or more symmetrically expressed as

γk,p,q =
(q + p)!

(q − k)!(p− k)!

1

2kk!
. (2.3)

Observe that the formula (2.3) is defined independently of the inequality q < p. From
now on, for our combinatorial purposes, we skip mentioning this comparison between p and
q and use the equality γk,p,q = γk,q,p whenever it is needed. Also, we record the following
obvious recurrences for future reference:

γk,p,q =
1

2(p− k)(q − k)(k − 1)
γk−1,p,q, γk,p,q =

p+ q

p− k
γk,p−1,q, γk,p,q =

p+ q

q − k
γk,p,q−1. (2.4)

which hold true (whenever they are defined) for all p, q, k ≥ 1.

It is well known that the (exponential) generating function for the number of involutions

In, which we denote by cn, is given by et+
t2

2 . In fact, define polynomials Kn(x) by the formula

∑

n≥0

Kn(x)
tn

n!
= ext+

t2

2 .

It is well known that Kn(x) =
∑

π∈In
xa1(π), where a1(π) denotes the number of 1-cycles

(fixed points) of π. See [9, Exercise 5.19]. It easily follows that if cn,r denotes the number of
elements of In with exactly r 1-cycles, then

∑

n,r≥0

cn,r
tn

n!
xr = ext+

t2

2 . (2.5)

Remark 2.6. The numbers cn,r appear in our context rather naturally. Suppose we have
q = k ≤ p. Then γk,p,k = γk,k,p is the number of signed involutions on [p+ k] such that there
are p − k +’s more than -’s on the fixed points. It is not difficult to see in this case that
the number of −’s is 0. Therefore, γk,p,k is the number of involutions on [p + k] with p − k
1-cycles and whose fixed points have + signs only. In other words, γk,p,k = cp+k,p−k.

The polynomial Kn(x) is the sum of the entries of the nth row of Table 1. In the sequel,
we are going to need the following finite diagonal sums of the same table:

Gm(x) =
m∑

k=1

cm+k,m−kx
k. (2.7)
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c0,0x
0 0 0 0 0 · · ·

c1,0x
0 c1,1x

1 0 0 0 · · ·
c2,0x

0 c2,1x
1 c2,2x

2 0 0 · · ·
c3,0x

0 c3,1x
1 c3,2x

2 c3,3x
3 0 · · ·

Table 1: Dissection of Kn(x)’s.

3 Recurrences

We are going to show that γk,p,q’s obey a 3-term recurrence and exploit its consequences.

Theorem 3.1. Let p and q be two positive integers. If k ≥ 1, then the following recurrence
relation and its initial condition holds true:

γk,p,q = γk,p−1,q + γk,p,q−1 + (q + p− 1)γk−1,p−1,q−1 and γ0,p,q =

(
p+ q

q

)
. (3.2)

Proof. The proof of the second equality (initial condition) is straightforward. We are going
to construct our proof of the recurrence by analyzing what happens to an involution π ∈ I±k,p,q
when we remove its largest entry n. Clearly, n appears in π either as a fixed point, or in one
of the 2-cycles. Thus we partition I±k,p,q into n+ 1 disjoint subsets;

I±k,p,q = I±k,p,q(+) ∪ I±k,p,q(−) ∪
n−1⋃

i=1

I±k,p,q(i),

where

1. I±k,p,q(+) := {π ∈ I±k,p,q : n is a fixed point with a + sign},

2. I±k,p,q(−) := {π ∈ I±k,p,q : n is a fixed point with a - sign},

3. I±k,p,q(i) := {π ∈ I±k,p,q : n appears in the 2-cycle (i, n)} for i = 1, . . . , n− 1.

First, we assume that π ∈ I±k,p,q(+), so

π = (i1 j1) . . . (ik jk)l1 . . . ln−2k−1n
+.

It follows that by removing n we reduce the total number of + signs by 1. Note that this
makes sense because p− q is fixed. Thus, the number of such signed (p, q)-involutions on [n]
is counted by γk,p−1,q. By using a similar argument for the case π ∈ I±k,p,q(−), we conclude
that there are γk,p,q−1 such signed involutions on [n].

Next, and finally, we consider the case where n appears in a 2-cycle (i, j) of π. Then
j = n and therefore π ∈ I±k,p,q(i). It is obvious that there are (n−1) possibilities for i from n
numbers. Removing this 2-cycle from π leaves us with (n− 2) elements and (k− 1) 2-cycles
but it does not change the signs on the fixed points. Of course, once this 2-cycle is removed,
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we decrease the numbers that are greater than ir by 1 so that we have valid signed involution
whose support lies in In−2. In particular, since the difference of + and − signs is preserved,
we see that the number of such signed (p, q)-involutions on [n] is given by (n−1)γk−1,p−1,q−1.

Notice that in each of these cases we get an injective map into a set of signed involutions
of a smaller size. Indeed, by removing n, in the cases 1. and 2. we get injections into I±k,p−1,q

and I±k,p,q−1, respectively. In the case of 3. we get an injection into I±k−1,p−1,q−1. Conversely,

if π′ is a signed involution from I±k,p−1,q (or, from Ik,p,q−1), then we append n+ (resp. n−)

to get an element ψk(+)(π′) ∈ I±k,p,q (resp. ψk(−)(π′) ∈ I±k,p,q). If π′ ∈ I±k−1,p−1,q−1, then we
pick a number, say i ∈ [n − 1] in n − 1 different ways; we add 1 to every number j such
that i < j and j appears in the standard form of π′; and insert the 2-cycle (i, n) into π′. Let
us denote the resulting map by ψk(i)(π

′) ∈ I±k,p,q Obviously, these maps, ψ(±) and ψ(i)’s,
are well defined inverses to the procedures that are described in the previous paragraph.
Thus, it is now clear that we have built a bijection between I±k,p,q and the disjoin union

I±k,p−1,q ∪ I
±
k,p,q−1 ∪

⊔n−1
i=1 I

±
k−1,p−1,q−1, proving our claimed recurrence. (We use square-union

to indicate that it is a disjoint union of n− 1 copies of the same set.)

We list two important corollaries.

Corollary 3.3. The number of involutions π ∈ In with exactly r 1-cycles, cn,r, is a special
case of γk,p,q’s.

Proof. We already know from Remark 2.6 that γk,p,k = cp+k,p−k. The result follows from the
fact that the equations n = p+ k, r = p− k have a unique solution.

Corollary 3.4. Set αp,0 = α0,q = 1 for all nonnegative integers p and q. Then the numbers
αp,q satisfy the following recurrence relation

αp,q = αp−1,q + αp,q−1 + (p+ q − 1)αp−1,q−1, p, q ≥ 1. (3.5)

Proof. Taking the sum of both sides of the equation (3.2) over k, where 1 ≤ k ≤ p− 1, gives
us

αp,q − αp−1,q − αp,q−1 − (p+ q − 1)αp−1,q−1 = γ0,p,q − γ0,p−1,q − γ0,p,q−1

+ γp,p,q − γp,p,q−1 − (p+ q − 1)γp−1,p−1,q−1

= 0.

By using the recurrence relation in (3.2) once more, we see that the latter becomes 0.
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4 Generating functions

In this section we are going to describe the generating function up(x) :=
∑

q≥0 αp,qx
q. We

first assume that p ≥ 1. By tabulating a few terms of up(x) as in

αp,0 = γ0,p,0

αp,1x = γ0,p,1x+ γ1,p,1x

αp,2x
2 = γ0,p,2x

2 + γ1,p,2x
2 + γ2,p,2x

2

αp,3x
3 = γ0,p,3x

3 + γ1,p,3x
3 + γ2,p,3x

3 + γ3,p,3x
3

we find that it is going to be useful to determine the following infinite sums first:

Fk(x) :=
∑

q≥k

γk,p,qx
q (k ≥ 1).

Indeed, it is clear from the above table that

up(x) =
1

1− x
+
∑

k≥1

Fk(x). (4.1)

By using recurrences in (2.4) we rewrite Fk(x)’s:

Fk(x) =
∑

q≥k

γk,p,qx
q = γk,p,kx

k +
∑

q≥k+1

γk,p,qx
q

= γk,p,kx
k +

∑

q≥k+1

γk,p,q−1
p + q

q − k
xq

= γk,p,kx
k +

∑

q≥k+1

(
γk,p,q−1x

q + γk,p,q−1
p + k

q − k
xq
)

= γk,p,kx
k + x

∑

q≥k+1

γk,p,q−1x
q−1 +

∑

q≥k+1

γk,p,q−1
p+ k

q − k
xq

= γk,p,kx
k + xFk(x) + (p+ k)

∑

q≥k+1

γk,p,q−1
1

q − k
xq

= γk,p,kx
k + xFk(x) + (p+ k)xk

∑

q≥k+1

γk,p,q−1
1

q − k
xq−k

= γk,p,kx
k + xFk(x) + (p+ k)xk

∫ ∑

q≥k+1

γk,p,q−1x
q−k−1dx.
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We re-organize the last equation as follows:

Fk(x)− xFk(x)

xk
= γk,p,k + (p+ k)

∫
x−kFk(x)dx.

Equivalently,

Fk(x)(x
−k − x−k+1) = γk,p,k + (p+ k)

∫
Fk(x)x

−kdx. (4.2)

Taking the derivative of both sides gives us a first order differential equation with variable
coefficients:

F ′
k(x

−k − x−k+1)− Fk(kx
−k−1 + (−k + 1)x−k + (p+ k)x−k) = 0

or

F ′
k +

k + x(1 + p)

x2 − x
Fk = 0, (4.3)

which is a first order linear separable homogeneous ODE with the initial condition

Fk(x)

xk

∣∣∣∣
x=0

= γk,p,k.

Therefore,
Fk(x) = xk((1− x)−(k+p+1) + γk,p,k − 1).

Recall our assumption that p ≥ 1. Now, taking the sum of both sides over all k ≥ 1 gives
us

up(x) =
1

1− x
+
∑

k≥1

Fk(x)

=
1

1− x
+
∑

k≥1

xk(1− x)−(k+p+1) +

p∑

k=1

γk,p,kx
k −

∑

k≥1

xk

=
1

1− x
+
∑

k≥1

xk(1− x)−(k+p+1) +

p∑

k=1

γk,p,kx
k −

x

1− x

= 1 +
1

(1− x)1+p

∑

k≥1

xk

(1− x)k
+

p∑

k=1

γk,p,kx
k

= 1 +
1

(1− x)1+p

(
1

1− x
(1−x)

− 1

)
+

p∑

k=1

γk,p,kx
k

= 1 +
1

(1− x)1+p

(
x

1− 2x

)
+

p∑

k=1

γk,p,kx
k. (4.4)

Recall also that cm,r stands for the number of involutions on [m] with exactly r 1-cycles.
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Theorem 4.5. Let p be a nonnegative integer. The generating function up =
∑

q≥0 αp,qx
q is

equal to

up(x) =





1
1−x

; if p = 0;

1 + 1
(1−x)1+p

(
x

1−2x

)
+
∑p

k=1 cp+k,p−kx
k; if p ≥ 1.

Proof. The proof follows from (4.4) and Remark 2.6.

One of the many options for a bivariate generating function for αp,q’s is

v(x, y) :=
∑

p,q≥0

αp,qx
q y

p

p!
=
∑

p≥0

up(x)
yp

p!
, (4.6)

which is easily seen (by Theorem 4.5) to reduce to the calculation of

∑

p≥0

Gp(x)
yp

p!
, (4.7)

where Gp(x) =
∑p

k=1 cp+k,p−kx
k. Substituting γk,p,k = cp+k,p−k =

(p+k)!
(p−k)!2kk!

into (4.7), we have

∑

p≥0

Gp(x)
yp

p!
=
∑

p≥0

p∑

k=1

γk,p,k
p!

xkyp

=
∑

p≥0

p∑

k=1

(p + k)!

(p− k)!k!p!

(
x

2

)k
yp

=
∑

p≥0

√
2
π
e

1

x

√
1
x
K̃p+ 1

2

( 1
x
)− 1

p!
yp

= e
1

x

√
2

πx

∑

p≥0

K̃p+ 1

2

( 1
x
)

p!
yp −

∑

p≥0

yp

p!

= −ey + e
1

x

√
2

πx

∑

p≥0

K̃p+ 1

2

( 1
x
)

p!
yp,

where K̃n(x) denotes the modified Bessel function of the second kind, which is one of the
solutions to the modified Bessel differential equation. Now the following consequence is
immediate from Theorem 4.5.

Corollary 4.8. The bivariate generating function
∑

p,q≥0 αp,qx
q yp

p!
is given by

ey

1− x
+

xe
y

1−x

(1− 2x)(1− x)
+ e

1

x

√
2

πx

∑

p≥0

K̃p+ 1

2

( 1
x
)

p!
yp.
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Another approach for deriving the bivariate generating function (4.6) is by transforming
the recurrence relation (3.5) into a partial differential equation as follows. Multiplying both
side of the recurrence relation by xqyp

p!
and taking the sum over all p, q ≥ 1 gives us

∑

p,q≥1

αp,q
p!
xqyp =

∑

p,q≥1

αp−1,q

p!
xqyp +

∑

p,q≥1

αp,q−1

p!
xqyq +

∑

p,q≥1

(p+ q − 1)
αp−1,q−1

p!
xqyp. (4.9)

Since

v(x, y) =
∑

p,q≥0

αp,q
p!
xqyp = α0,0 + α0,1x+ · · ·+ α0,qx

q + . . .

+
α1,0

1!
y + · · ·+

αp,0
p!

yp + . . .

+
α1,1

1!
xy + · · ·+

αp,1
p!
xyp + . . .

+
α1,2

1!
x2y + · · ·+

αp,2
p!

x2yp + . . .

the equation (4.9) combined with the initial conditions αp,0 = α0,q = 1 gives

v(x, y)−
1

1− x
− ey + 1 =

∫ ∑

p≥1,q≥0

αp−1,q

(p− 1)!
xqyp−1dy − ey + x

( ∑

p,q≥0

αp,q
p!
xqyp −

1

1− x

)

+
∑

p,q≥1

p
αp−1,q−1

p!
xqyp +

∑

p,q≥1

q
αp−1,q−1

p!
xqyp −

∑

p,q≥1

αp−1,q−1

p!
xqyp

=

∫ ∑

p≥1,q≥0

αp−1,q

(p− 1)!
xqyp−1dy − ey + x

( ∑

p,q≥0

αp,q
p!
xqyp −

1

1− x

)

+ xy
∑

p,q≥0

αp−1,q−1

(p− 1)!
xq−1yq−1 +

∫ ∑

p,q≥1

qαp−1,q−1

(p− 1)!
xq−1yp−1dy

− x

∫ ∑

p,q≥1

αp−1,q−1

(p− 1)!
xq−1ypdy.

Thus, we have

v(x, y)−
1

1− x
− ey + 1 =

∫
v(x, y)dy − ey + xv(x, y)−

x

1− x
+ xyv(x, y)

+ x

∫ (
∂

∂x
(xv(x, y))

)
dy − x

∫
v(x, y)dy,

or equivalently,

(1− x− xy)v(x, y) = (1− x)

∫
v(x, y)dy + x

∫ (
∂

∂x
(xv(x, y))

)
dy.
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Taking the integral of both sides with respect to y yields the following PDE

−xv(x, y) + (1− x− xy)
∂v(x, y)

∂y
= (1− x)v(x, y) + x

(
v(x, y) + x

∂v(x, y)

∂x

)
,

or

(−x2)
∂v(x, y)

∂x
+ (1− x− xy)

∂v(x, y)

∂y
= (1 + x)v(x, y),

with the initial conditions v(0, y) = ey and v(x, 0) = 1
1−x

.
Solutions of such PDE’s are easily obtained by applying the method of “characteristic

curves.” Our characteristic curves are x(r, s), y(r, s), and v(r, s). Their tangents are equal
to

∂x

∂r
= −x2

∂y

∂r
= 1− x− xy,

∂v

∂r
= (1 + x)v, (4.10)

with the initial conditions

x(0, s) = s, y(0, s) = 1, and v(0, s) = es.

From the first equation given in (4.10) and its initial condition below, we have

x(r, s) =
s

rs+ 1
. (4.11)

Plugging this into the second equation gives us ∂y
∂r

= 1 − s
rs+1

(1 + y), which is a first order
linear ODE. The general solution for this ODE is

y(r, s) =
r2s− 2rs+ 2r + 2

2(rs+ 1)
. (4.12)

Finally, from the last equation in (4.10) together with its initial condition we conclude
that

v(r, s) = er+s(rs+ 1).

In summary we outlined the proof of our next result.

Corollary 4.13. Let v(x, y) denote the function that is represented by the series
∑

p,q≥0 αp,qx
q yp

p!

around the origin. If r and s are the variables related to x and y as in equations (4.12) and
(4.11), then

v(r, s) = er+s(rs+ 1) (4.14)

around (r, s) = (−1, 0).

Unfortunately, the beautiful form in (4.14) of v(r, s) diminishes once the variables r and s
are solved in terms of x and y. In fact, this seems to be a nontrivial task due to complicated
nature of (4.12). However, one can still recover some information by computing (by brute
force of long division) the inverses of power series. We anticipate that this approach will be
helpful for understanding special values (at small numbers) of the modified Bessel functions.
Such information is useful in number theory.
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5 A combinatorial interpretation

The Delannoy numbers, denoted by D(p, q) (p, q ∈ N) are defined by the recurrence
relation

D(p, q) = D(p− 1, q) +D(p, q − 1) +D(p− 1, q − 1) (5.1)

and the initial conditions D(p, 0) = D(0, q) = D(0, 0) = 0. Their generating series is

∑

a+b≥0
a, b∈N

D(p, q)xiyj =
1

1− x− y − xy

Our goal in this section is to show that our involution numbers αp,q have a beautiful
interpretation in terms of lattice paths and they are related to the generalized Delannoy
numbers.

We first set up our terminology. For us, a step in R2 is a pair ((a, b), (a′, b′)) of points
from Z2 such that (a−a′)2+(b−b′)2 ≤ 2. We always assume that |a′|+ |b′| > |a|+ |b|. A step
is called diagonal if a′ = a+1 and b′ = b+1. We are going to need two other types of steps;
a horizontal step is a step from (a, b) to (a + 1, b) and a vertical step is a step from (a, b)
to (a, b + 1). Occasionally, if there is no need to be specific about coordinates, we denote a
horizontal step by N , a vertical step by V , and a diagonal step by NE.

A lattice path π is a sequence of steps (π1, . . . , πr), where πi ∈ {N,E,NE} for
i = 1, . . . , r, and moreover, the second entry of πi is the first entry of πi+1 for i = 1, . . . , r−1.
The set of all lattice paths from (0, 0) to (p, q) is denoted by L(p, q). The subset of L(p, q)
which consists of lattice paths with no diagonal step is denoted by L0(p, q). More generally,
of a ≤ c, b ≤ d are four nonnegative integers, then we are going to denote by L((a, b), (c, d))
the set of paths that starts at (a, b) and ends at (c, d).

Clearly, the number of elements of L(p, q) is the Delannoy number D(p, q). Let us denote
the number of elements of L0(p, q) by bp,q. Then

bp,q := #L0(p, q) =

(
p+ q

q

)
.

Now suppose we have 3 sequences of complex numbers h = (h1, h2, . . . ), v = (v1, v2, . . . ),
and d = (d1, d2, . . . ), and suppose ζ is a complex number. Let π = (π1, . . . , πr) be a lattice
path. Put L := (h, v, d, ζ). The L-weight of π is defined as the product of weights of the
steps of π. More precisely, if πi = ((a, b), (c, e)) is a step in π, then its weight is defined as

ωL(πi) =






vc if πi is a vertical step,

hcζ
e if πi is a horizontal step,

dcζ
e−1 if πi is a diagonal step.

The weight of π is

ωL(π) := ωL(π1) · · ·ω
L(πr). (5.2)
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In his seminal article [4], Dziemianczuk describes a generalization of Delannoy numbers

as follows. The (p, q) L-Delannoy number, denoted by
〈
p
q

〉
L
, is the sum

〈
p

q

〉

L

=
∑

π∈P (p,q)

ωL(π). (5.3)

If the sequences h, v, d are all the same and equal to (1, 1, . . . ), and if ζ = 1, then it is
not difficult to see that 〈

p

q

〉

L

= D(p, q) for all p, q ≥ 0.

Thus,
〈
p
q

〉

L
is indeed a generalization of the Delannoy number D(p, q).

Now we re-interpret our αp,q’s in terms of weighted lattice paths.

Definition 5.4. For us, different than Dziemianczuk’s weights (see part 1 of Remark 5.8),
the weights of horizontal and vertical steps are 1, and the weight of the step πi = ((a, b), (c, e))
is c + e − 1. If π = (π1, . . . , πr) is a lattice path from (0, 0) to (p, q), then we define our
weight, similar to the above definition, as the product of weights of the steps πi, i = 1, . . . , r,
and denote it simply by ω(π) with no decoration.

Example 5.5. Consider the following paths given in (4, 6)-grid.

1

3

1

1 7

1

1

1

1

3

1 6

8

1

The weight of the first path π is ω(π) = 3 · 7 = 21 and the weight of the second path π
′

is ω(π
′

) = 3 · 6 · 8 = 144.

It is now immediate from our definition of weight and Corollary 3.4 that

Proposition 5.6. If p and q are two nonnegative integers, then

αp,q =
∑

π∈L(p,q)

ω(π). (5.7)

We have a remark in order.
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Remark 5.8. 1. The weights that we use in equation (5.7) are constant along each antidi-
agonal in the plane. Indeed, the weight of a NE-step which crosses the mth antidiag-
onal x + y = m is m − 1. (In a sense, this gives a “force field” in R2, and αp,q is the
count of paths in L(p, q) which are weighted against this force field.) It is easy to check
that the weight systems (that is to say ωL’s) that are introduced by Dziemianczuk do
not satisfy this property, therefore, our results are not included in [4].

2. The proof of Proposition 5.7 does not depend on an explicit bijection but rather relies
on the equality of the numbers arising from the recurrence in Corollary 3.4 and the
obvious recurrence that is satisfied by our weights.

It is now desirable to produce the an explicit bijection between the set of signed involu-
tions I±p,q and the paths in L(p, q) with certain labels.

5.1 Lattice paths and signed involutions.

Let π = π(0) = (i1, j1) . . . (ik, jk)l1 . . . ln−2k be a signed involution from I±p,q. To construct
the corresponding weighted path we proceed algorithmically as in the proof of Theorem 3.1.

First we look at where n = p + q appears in π. If it appears as a fixed point with a +
sign, then we draw a E-step between (p, q) and (p− 1, q). If it appears as a fixed point with
a − sign, then we draw a N -step between (p, q) and (p, q − 1). In the these cases, removing
n from π results in an involution, that we denote by π(1), in either I±k,p−1,q or I±k,p,q−1. If n
appears as the second entry of one of the 2-cycles, say (ir, jr) = (i, n) (for some r and i), then
we draw a NE-step between (p, q) and (p− 1, q− 1), label it with i, and then we remove the
two cycle (i, n) from π and reduce every number that is bigger than i in π by −1. Hence we
obtain an element π(1) of I±k−1,p−1,q−1. By Theorem 3.1 we know that this algorithm results
in a bijection.

By abusing notation we denote the map that we obtain by φ, without giving any reference
to the indices p and q. Let us demonstrate this bijection step by step in an example.

Example 5.9. Let π = (1, 4)(3, 8)2+5+6+7−. Then p + q = 8 and p − q = 2, hence
p = 5, q = 3. Then φ(π) is the path that is in the last picture of Figure 5.1.

Let us denote by P (p, q) the set of labeled paths that lie in the image of the bijection φ.
In other words, P (p, q) = φ(I±p,q). It is interesting, though we postpone its investigation to an
upcoming article that the weak order on I±p,q is easy to describe using P (p, q). (The covering
relations of the weak order, equivalently the action of the Richardson-Springer monoid on
I±p,q, as described in [2, Figure 2.5] are easy to express in terms of certain simple operations
on the paths in P (p, q).) In this notation, for example, the unique maximal element of I±p,q
is the path depicted in Figure 5.2. It corresponds to the maximal dimensional Borel orbit in
X = SL(p+ q)/S(GL(p)×GL(q)). Closed Borel orbits in X correspond to the elements of
L0(p, q) in P (p, q), that is the set of paths with no diagonal step.
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π = (1, 4)(3, 8)2+5+6+7−

π(1) = (1, 3)2+4+5+6−

3

π(1) = (1, 3)2+4+5+6−

π(2) = (1, 3)2+4+5+

3

π(2) = (1, 3)2+4+5+

π(3) = (1, 3)2+4+

3

π(3) = (1, 3)2+4+

π(4) = (1, 3)2+

3

π(4) = (1, 3)2+

π(5) = 1+

3

1

π(5) = 1+

π(6) = ·

3

1

Figure 5.1: Algorithmic construction of φ.

(p, q)

(0, 0) (p− q, 0)

1

1

1

Figure 5.2: The unique maximal element of the weak order on I±p,q.
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6 Polynomial analogs of αp,q’s

In this section we consider 3-term t-analogs of the numbers αp,q, p, q = 0, 1, . . .

6.1 The weight generating function.

Our first version is as follows:

Dp,q(t) :=
1

t

∑

π∈L(p,q)

tω(π). (6.1)

This is the generating function, up to a factor of t, for the weight function ω as in Defini-
tion 5.4. It follows from definitions that Dp,q(t) obeys the recurrence

Dp,q(t) = Dp−1,q(t) +Dp,q−1(t) + tp+q−2Dp−1,q−1(t
p+q−1).

Obviously,
∂

∂t
(tDp,q(t))|t=1 = αp,q.

It is also obvious that Dp,q(1) is nothing but the cardinality of the set L(p, q), the De-
lannoy number D(p, q). The value at t = 0 of Dp,q(t) is also easy to find and described
below.

Evaluating Dp,q(t)’s at other roots of unities also gives Delannoy numbers.

Proposition 6.2. The value of the difference Dp,q(t)−Dp−1,q(t)−Dp,q−1(t) at a (p+q−1)’th
root of unity ζ is equal to D(p− 1, q − 1)ζ−1.

Proof. It follows immediately from the definition (6.1) that

t(Dp,q(t)−Dp−1,q(t)−Dp,q−1(t)) =
∑

P∈L(p−1,q−1)

t(p+q−1)ω(P ).

Therefore, evaluating both sides at ζ and then dividing by ζ gives

1

ζ

∑

P∈L(p−1,q−1)

ζ (p+q−1)ω(P ) =
1

ζ

∑

P∈L(p−1,q−1)

1ω(P ) = D(p− 1, q − 1)ζ−1.

Next, we are going to have a careful look at the coefficients of Dp,q(t). It turns out they
are always sums of products of binomial coefficients. Let n ≥ 1 denote the degree of Dp,q(t)
and set

Dp,q(t) = a0 + a1t + · · ·+ ant
n (ai ∈ N).
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We start with the constant term. It is clear from our definition of a path π ∈ L(p, q) that
ω(π) = 1 if and only if π has at most one diagonal step, which occurs as an initial diagonal
step (otherwise the weight would be greater than 1). Consequently,

a0 = bp,q + bp−1,q−1 =

(
p+ q

q

)
+

(
p+ q − 2

q − 1

)
. (6.3)

Let 0 ≤ a1 < · · · < ar ≤ p and 0 ≤ b1 < · · · < br ≤ q be two sequences. Next, we are going
to focus on the set of paths La,b(p, q) consisting of lattice paths π ∈ L(p, q) with diagonal
steps at πi = ((ai, bi), (ai + 1, bi + 1)) for i = 1, . . . , r. Clearly each element π ∈ La,b(p, q)
is a concatenation of r + 1 lattice paths π(1), . . . , π(r) each having no diagonal steps. More
precisely, π(i) ∈ L((ai + 1, bi + 1), (ai+1, bi+1)) for i = 0, . . . , r. Here (a0, b0) = (0, 0) and
(ar+1, br+1) = (p, q). Clearly, the number of lattice paths in La,b(p, q) is then

r∏

i=0

|L((ai + 1, bi + 1), (ai+1, bi+1))| =
r∏

i=0

(
ai+1 + bi+1 − ai − bi − 2

ai+1 − ai − 1

)
.

Note that the weight of any element π ∈ La,b(p, q) is equal to

ω(π) =

r∏

i=0

(ai + bi − 1).

Thus, by varying the number and choice of diagonal entries we obtain a formula for Dp,q(t):

Dp,q(t) =

min{q,p}∑

r=0

∑

0≤a1<···<ar≤p
0≤b1<···<br≤q

(
r∏

i=0

(
ai+1 + bi+1 − ai − bi − 2

ai+1 − ai − 1

))
t
∏r

i=0(ai+bi−1). (6.4)

Remark 6.5. The polynomials Dp,q(t) are in general not unimodal.

6.2 Rank generating function.

Our second t-analog has algebro-geometric significance. Recall that the inclusion poset
on Borel orbit closures in X = SL(n)/S(GL(p) × GL(q)) is the Bruhat order on signed
involutions I±p,q. This is a graded poset and its rank is equal to the length of its maximal
element, which is (1, n) · · · (q, n+ 1− q)(q + 1)+ · · · (n− q)+. Thus,

rank(I±p,q) =
((n− 1) + · · ·+ (n− q − 1)) + (1 + · · ·+ q)) + q

2

=
(q+1)(2n−q−2)

2
+ q(q+1)

2
+ q

2

=
pq ++q2 + p+ q − 1

2
= nq + n− 1
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Note that the dimension of X is (n2− 1)− (p2 + q2− 1) = n2− p2− q2 = 2pq. Therefore,
the smallest possible dimension for a Borel orbit in X is

fmin(p, q) := dimX − rank(I±p,q)

= 2pq −
pq + q2 + p+ q − 1

2

=
3pq − q2 − p− q + 1

2
.

If we denote the dimension of the Borel orbit in X attached to π ∈ I±p,q by dim π, then

dim π = L(π) + fmin(p, q).

Since, fmin(p, q) is constant (relative to p and q), the study of the function π 7→ dim π is
equivalent to studying the length function L(·) on I±p,q, so we consider the following (length)
generating function

Ep,q(t) :=
∑

π∈I±p,q

tL(π).

Our goal is to find a recurrence for Ep,q(t). To this end we go back to our ideas in
Section 3. Indeed, there is an important consequence of the proof of Theorem 3.1, where we
essentially constructed a bijection ψk = (ψk(+), ψk(−), ψk(1), . . . , ψk(n− 1)) from

I±k,p−1,q × I±k,p,q−1 × I±k−1,p−1,q−1 × · · · × I±k−1,p−1,q−1︸ ︷︷ ︸
(n− 1-copies)

to I±k,p,q.
In the light of Corollary 3.4, we obtain the bijection ψ = (ψ(+), ψ(−), ψ(1), . . . , ψ(n−1))

ψ : I±p,q−1 × I±p−1,q × I±p−1,q−1 × · · · × I±p−1,q−1︸ ︷︷ ︸
(n− 1-copies)

−→ I±p,q. (6.6)

Next, we analyze the effect of maps ψ(±) and ψ(i), i = 1, . . . , n − 1 on the length of
π ∈ I±p,q.

We know from Section 2 that L(π) is equal to (ℓ(π) + k)/2, where k is the number of
2-cycles in π and ℓ(π) is the number of inversions in π viewed as a permutation. Thus, if n
is a fixed point of π, then removing it from π has no effect on the length:

L(ψ(±)−1(π)) = L(π). (6.7)

For ψ(i)’s, it is more interesting. Suppose π has the standard form
π = (i1, j1) · · · (ik, jk)c1 . . . cn−k. If n appears in the 2-cycle (ir, jr) = (i, n), then by re-
moving (ir, jr) from π we loose n − i inversions of the form n > j and we loose n − i − 1
inversions of the form j > i. Moreover, we loose one 2-cycle. Therefore,

L(ψ(i)−1(π)) =
ℓ(π) + k − (2n− 2i− 1)− 1

2
=
ℓ(π) + k

2
− (n− i) = L(π)− (n− i). (6.8)
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First we partition I±p,q into three disjoint sets ψ(+)(I±p−1,q), ψ(−)(I±p,q−1), and ψ(i)(I
±
p−1,q−1)

(i = 1, . . . , n− 1), then re-organize the sums by using our observations (6.7) and (6.8):

Ep,q(t) =
∑

π∈ψ(+)(I±p−1,q)

tL(π) +
∑

π∈ψ(−)(I±p,q−1
)

tL(π) +
n−1∑

i=1

∑

π∈ψ(i)(I±p−1,q−1
)

tL(π)

=
∑

π∈I±p−1,q

tL(π) +
∑

π∈I±p,q−1

tL(π) +

n−1∑

i=1

∑

π∈I±p−1,q−1

tL(π)+(n−i)

= Ep−1,q(t) + Ep,q−1(t) + (t + t2 + · · ·+ tn−1)Ep−1,q−1(t).

The coefficient of the last term is equal to [n]t − 1, where [n]t stands for the t-analog of the
natural number n:

[n]t :=
tn − 1

t− 1
.

Thus we obtained the proof of the following.

Proposition 6.9. The family of polynomials Ep,q(t), p, q ≥ 0 satisfies the following recur-
rence:

Ep,q = Ep−1,q(t) + Ep,q−1(t) + ([q + p]t − 1)Ep−1,q−1(t).

Remark 6.10. 1. The polynomials Ep,q(t) are unimodal.

2. It appears that the sequence (En,n(−1))n≥1 is the sequence of number of “grand
Motzkin paths” of length n. The sequence (En,n(0))n≥1 is the sequence of number
of “central binomial coeffients”

(
2n
n

)
, n ≥ 1. (For other interpretations of these se-

quences, see The On-Line Encyclopedia of Integer Sequences, https://oeis.org.)

3. There is another closely related t-analogue. We define Ẽp,q(t)’s by the recurrence

Ẽp,q(t) = Ẽp−1,q(t) + Ẽp,q−1(t) + [q + p− 1]tẼp−1,q−1(t).

Similarly to Ep,q(t), Ẽp,q(t) is a unimodal polynomial as well. Both families have
interesting specializations.

6.3 Generating functions of γk,p,q’s.

The power series Fk(x) :=
∑

q≥k γk,p,qx
q played a significant role in our determination of

the generating series of αp,q’s. We consider a closely related polynomial generating function.
Perhaps, as an initial choice, the most natural choice for a t-analog of αp,q’s is the polynomial

Ap,q(t) =

q∑

k=0

γk,p,qt
k,

where γk,p,q =
(p+q)!

(p−k)!(q−k)!
1

2kk!
. (Recall our convention that γk,p,q = 0 whenever k > min{p, q}.)
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Proposition 6.11. Let p and q be two nonnegative integers. Then

Ap,q(t) =
∑

π∈P (p,q)

t#of diagonal steps in π.

Proof. By definition, the coefficient of tk in Ap,q(t) is the number of signed involutions from

I±p,q with k fixed points. Equivalently, Ap,q(t) =
∑⌊n/2⌋

k=0 |I±k,p,q|t
k. The proof follows from

the fact that the bijection φ maps an element of I±k,q,p to a weighted path in L(p, q) with k
diagonal steps.

Proposition 6.12. The family {Ap,q(t)}p,q≥0 satisfies the following recurrence relation:

Ap,q(t) = Ap,q−1(t) + Ap−1,q(t) + (p+ q − 1)tAp−1,q−1(t)

with initial conditions Ap,0(t) = A0,q(t) = 1 for all p, q ≥ 0.

Proof. The proof is a straightforward application of the recurrences in Theorem 3.1.

Remark 6.13. The polynomials Ap,q(t) are unimodal also.

7 Final comments.

As it is mentioned earlier, it would be very interesting to transfer the description of
the (weak) Bruhat order [2, 13] on I±p,q to the (more combinatorial) setting of lattice paths.
One of the many good reasons to make such an effort is that the lattice path combinatorics
is well established and it has relations to many other branches of mathematics including
representation theory of classical groups and “Schubert calculus”. In this regard, the weak
order and tableaux corresponding to maximal chains on symmetric group play a crucial role.
We also have tableaux from our lattice path interpretation of the weak order on I±p,q. In
fact there are several ways to attach a tableau to a signed involutions, the obvious one is
obtained from a “signed version” of the Richardson-Schensted-Knuth algorithm. We are
going to report this and related developments in a future publication, where we are going to
focus on the poset theoretic properties of I±p,q.

There is a well established theory of symmetric varieties. If G denotes a simple simply
connected classical linear algebraic group, then according to Cartan’s classification, there are
10 types of symmetric varieties 4 of which are already mentioned in the introduction. See [3,
Table 26.3]. The polarizations namely, symmetric varieties of the form SL(n)/S(GL(p) ×
GL(q)) exist in other types as well. In other words, there are analogs of the signed involutions
(called “signed shuffles”) for types B and D. See [6, 7, 12, 14]. Our enumeration and
combinatorial reinterpretation of I±p,q has extensions to these types as well.

As it is mentioned in the introduction, the Borel orbit enumeration (and the Bruhat
order on the corresponding orbit representatives) in a grassmannian amounts to studying
L(p, q). Now, there is a liaison between (partial) flag varieties and symmetric varieties
via the well established theory of equivariant embeddings [3]. In particular, for special
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values of p and q, the wonderful compactification of the corresponding symmetric variety
has a unique closed G-orbit, which is isomorphic to a grassmann variety. Therefore, our
“path combinatorics” approach to Borel orbit counting is geometrically connected to that
of grassmannians. Also related to the wonderful compactifications are the “systems” of
lattice paths. Borel orbits in X, the wonderful compactification of X = SL(n)/S(GL(p) ×
GL(q)) are parametrized by combinatorial objects called “µ-involutions” where µ stands for
a composition of a fixed number (depending on p and q). In particular, when µ has a single
part, there the corresponding µ-involutions are just the elements of I±p,q. As µ runs over all
possible compositions, we get different sets of lattice paths. Each of these sets of paths have
their own enumeration problem. These connections will be explored in a future work.
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