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THE n-QUEENS PROBLEM: A NEW APPROACH

M. BACA, S. C. LOPEZ, F. A. MUNTANER-BATLE, AND A. SEMANICOVA-FENOVCIKOVA

ABSTRACT. Let D be a digraph, possibly with loops. A queen labeling of D is a bijective
function ! : V(G) — {1,2,...,|V(G)|} such that, for every pair of arcs in E(D), namely
(u,v) and (u’,v") we have (i) I(u) + l(v) # I(u") + 1(v') and (i) I(v) — l(u) # I(v") — ().
Similarly, if the two conditions are satisfied modulo n = |[V(G)|, we define a modular queen
labeling. There is a bijection between (modular) queen labelings of 1-regular digraphs and
the solutions of the (modular) n-queens problem.

The ®p-product was introduced in 2008 as a generalization of the Kronecker product and
since then, many relations among labelings have been established using the ®j-product and
some particular families of graphs.

In this paper, we study some families of 1-regular digraphs that admit (modular) queen
labelings and present a new construction concerning to the (modular) n-queens problem in
terms of the ®p-product, which in some sense complements a previous result due to Pélya.
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1. INTRODUCTION

The n-queens problem consists in placing n nonattacking queens on an n x n chessboard. The
modular version of this problem, namely the modular n-queens problem consists in placing n
nonattacking queens on an n x n chessboard where the opposite sides are identified to make
a torus. It is known that there is at least one solution to the n-queens problem on a n x n
standard chessboard [I8], [19]. However, for the modular version of the problem, a solution
exists if and only if, ged(n,6) = 1 [20]. See [3] for a survey of other known results and research
going on for this problem, as well as a history of it.

For the graph theory terminology and notation not defined in this paper we refer the reader
to either one of the following sources [2, [, [0, 23]. However, in order to make this paper
reasonably self-contained, we mention that by a (p, ¢)-graph we mean a graph of order p and
size q. For integers m < n, we denote [m,n| ={m,m+1,...,n}.

Let D be a digraph, possibly with loops. A queen labeling [4] of D is a bijective function
[: V(D) — [1,|V(D)|] such that, for every pair of arcs in E(D), namely (u,v) and (u/,v")
we have (i) I(u) + l(v) # l(v') + (V) and (ii) I(v) — l(u) # 1(v") = I(u'). It is well known


http://arxiv.org/abs/1703.09942v3

2 M. BACA, S. C. LOPEZ, F. A. MUNTANER-BATLE, AND A. SEMANICOVA-FENOVCIKOVA

(see for instance, [3, [4]) that there is a bijection between the set of queen labelings of 1-
regular digraphs of order n and the set of solutions of the n-queens problem. Similarly,
we can introduce a modular queen labeling of a digraph D. A modular queen labeling of a
digraph D is a bijective function [ : V(D) — [1, |V (D)|] such that, for every pair of arcs
in F(D), namely (u,v) and (u’,v") we have (i) I(u) + I(v) # I(u') + I(v") (mod n) and (ii)
l(v) = l(u) # 1(v') —I(v') (mod n). Thus, if a digraph admits a modular queen labeling
then |E(D)| < |[V(D)|. In particular, a modular queen labeling of a 1-regular digraph D
is a harmonious labeling | of und(D), where und(D) means the underlying graph of D,
satisfying the extra condition that for every pair of arcs (u,v) and (u/,v") in E(D), we have
l(v) = l(u) # 1(v)) = I(u') (mod n). A digraph that admits a (modular) queen labeling is
called a ( modular) queen digraph.

Kotzig and Rosa [12] introduced in 1970, the concepts of edge-magic graphs and edge-magic
labelings as follows: Let G be a (p, ¢)-graph. Then G is called edge-magic if there is a bijective
function f : V(G) U E(G) — [1,p + q| such that the sum f(z) + f(zy) + f(y) = k for any
xy € E(G). Such a function is called an edge-magic labeling of G and k is called the valence
[12] or the magic sum [23] of the labeling f. Motivated by the concept of edge-magic labelings,
Enomoto et al. [0] introduced in 1998 the concepts of super edge-magic graphs and labelings
as follows: Let f: V(G)U E(G) — [1,p + q] be an edge-magic labeling of a (p, ¢)-graph G
with the extra property that f(V(G)) = [1,p]. Then G is called super edge-magic and f is
a super edge-magic labeling of G. It is worthwhile mentioning that Acharya and Hegde had
already defined in [I] the concept of strongly indexable graph that turns out to be equivalent
to the concept of super edge-magic graph. We take this opportunity to mention that although
the original definitions of (super) edge-magic graphs and labelings were provided for simple
graphs (that is to say, graphs with no loops nor multiple edges), in this paper, we understand
these definitions for any graph. Therefore, unless otherwise specified, the graphs considered
in this paper are not necessarily simple. Moreover, we say that a digraph is (super) edge-
magic if its underlying graph is (super) edge-magic. In [7], Figueroa-Centeno et al. provided
the following useful characterization of super edge-magic simple graphs, that works in exactly
the same way for graphs in general.

Lemma 1.1. [7] Let G be a (p,q)-graph. Then G is super edge-magic if and only if there is
a bijective function g : V(G) — [1,p] such that the set S = {g(u) + g(v) : wv € E(G)} is a
set of q consecutive integers. In this case, g can be extended to a super edge-magic labeling f
with valence p + ¢ + min S.

Figueroa et al. defined in [§], the following product: Let D be a digraph and let T' be
a family of digraphs with the same vertex set V. Assume that h : E(D) — T is any
function that assigns elements of I' to the arcs of D. Then the digraph D ®p ' is defined
by (i) V(D @, T') = V(D) x V and (ii) ((a,i),(b,j)) € E(D @, T) < (a,b) € E(D) and
(i,j) € E(h(a,b)). Note that when h is constant, D ®j I' is the Kronecker product. Many
relations among labelings have been established using the ®p-product and some particular
families of graphs, namely S, and S;f (see for instance, [11, 13, 14}, 15]). The family S,
contains all super edge-magic 1-regular labeled digraphs of order p where each vertex takes
the name of the label that has been assigned to it. A super edge-magic digraph F is in Sg if
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|V(F)| = |E(F)| = p and the minimum sum of the labels of the adjacent vertices (see Lemma
[L1)) is equal to k. Notice that, since each 1-regular digraph has minimum edge induced sum

equal to (p + 3)/2, it follows that S, C S,(,p /2 The following result was introduced in [14],
generalizing a previous result found in [g]:

Theorem 1.1. [14] Let D be a (super) edge-magic digraph and let h : E(D) — S¥ be any
function. Then D ®j, S;,’f is (super) edge-magic.

Let Q(n) denote the number of solutions for the n-queens problem and M (n) the number of
solutions for the modular n-queens problem.

Theorem 1.2. [2I] For all m and n for which m > 3 and ged(n,6) = 1, it holds that
Q(mn) > (Q(m))"M(n). In particular, if gcd(N,30) =5 then Q(N) > 4N/5.

The first part of the above theorem is a corollary of a previous result due to Pdlya, where a
solution of the n-queens problem is described by means of a bijective function f : [0,n—1] —
[0,n — 1], so that the k" queen is placed at the (k, f(k)) coordinate of the chessboard.

Theorem 1.3. [20] For given m,n > 3 such that ged(n,6) = 1, f1,..., foum) are all solutions
for the m x m standard board, and g is a solution for the n x n modular board, then for each
map 7 : [0,n — 1] — [1,Q(m)] the function h(an +b) = fru)(a)n + g(b) gives a distinct
mn X mn solution for the standard board.

In this paper, we present a new construction concerning to the (modular) n-queens problem
in terms of the ®j-product, which in some sense complements a previous result due to Polya.
We also study some families of 1-regular digraphs that admit (modular) queen labelings.

2. QUEEN DIGRAFS AND THE ®j; PRODUCT

We start this section by introducing some notation. For the rest of the paper, whenever we
work with a (modular) queen digraph, we will assume that the vertices are identified with
the labels of a (modular) queen labeling.

Let D be a queen digraph and assume (u,v) € E(D). We define s(u,v) = u + v and
s(D) = {s(u,v), (u,v) € E(D)}. Similarly, for any (u,v) € E(D), we define d(u,v) =v —u
and d(D) = {d(u,v), (u,v) € E(D)}.

The next two lemmas are trivial.

Lemma 2.1. Let F' be a queen digraph of order n. Then,

(i) s(F) C [2,2n] and
(ii) d(F) C [-(n—1),n —1].

Let J be a finite set of integers. We denote by ¥(J) the sum of all integers in J.
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Lemma 2.2. Let F be a 1-reqular queen digraph of order n. Then, ¥(s(F)) =n(n+1) and
Y(d(F)) =0.

Proof. When considering ¥(s(F')), we sum all integers in [1, n] twice, while when we calculate
Y(d(F)) every integer in [1,n] appears also twice but with opposite sign. O

Let J be a subset of integers. We denote by J —n={j —n, j € J}.

Theorem 2.1. Let D be any queen digraph. Let I' be a family of queen digraphs of order n
and let h : E(D) — T be any function such that for any pair of arcs (u,v) and (u',v") in
E(D) the following conditions hold

(i) If s(u,v) = s(v/,v") — 1, then (s(h(u,v)) —n) Ns(h(u',v")) = 0.
(ii) If d(u,v) = d(v',v") — 1, then (d(h(u,v)) —n) Nd(h(d',v")) = 0.

Then, D @, T is a queen digraph.

Proof. Recall that we assume that the vertices of D and each element of I' is renamed after
the labels of their corresponding queen labeling. Consider, similarly to what was done in
the proof of Theorem [T the labeling [ of the product D ® I' that assigns to the vertex
(a,i) € V(D ®p,T') the label: n(a — 1) + i. Thus, an arc ((a, i), (b,7)) € E(D ®;,I') has:

(2.1) s((a,i),(b,j)) =nla+b—2)+i+j,
and
(2.2) d((a,i),(b,7)) =n(b—a)+j —i.

Let us check now that, for any two pairs of different arcs ((a,i),(b,7)), ((a "),( 7)) €

( /
E(D®n 1), (e1) s((a.i), (b, 1)) # s((a,i), (,7")) and (c2) d((a, i), (b, 1)) # d((a', 1), (', ).
We start by proving (c1). Without loss of restriction assume that s(a b') > s(a,b). Notice
that, if s(a’,b") > s(a,b) + 2 then, by ([2.I)) and Lemma 2.1](i), we obtain

s((d, i),V ,i")) =nld +V —-2)+i +j >nla+b+2—-2)+2
>n(a+b—2)+2n > s((a,i), (b,7)).
Thus, assume that s(a’,b’) = s(a,b) + 1. Hence, the value for s((d’,), (¥, 7)) is
nd+v-2)+i+j57 =nla+b+1-2)+i+j5 =nla+b—-2)+ (@ +j5 +n),

which clearly differs from s((a, 7), (b, j)) = n(a+b—2)+(i+7) by condition (i) in the statement
of the theorem together with the facts that i + j € s(h(a,b)) and ¢ + j' € s(h(a’,V’)). The
proof of (¢2) is similar. Without loss of restriction assume that d(a’,b’) > d(a,b). Notice
that, if d(a’,V") > d(a,b) + 2 then, by [22]) and Lemma 2.1{ii), we will obtain

d((a’,i"),(t,j")) =n( —d) +j =i > nb—a+2) - (n—1)
>n(b—a)+n—12>d(a,i),(b,7)).
Thus, assume that d(a’,b") = d(a,b) + 1. Hence, the value for d((a’,'), (V/,5")) is
n —d)+j —i'=nlb—a+1)+j —i'=nb—a)+ (G —i +n),
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which clearly differs from d((a,?), (b, j)) = n(b—a)+ (i+j) by condition (ii) in the statement
of the theorem together with the facts that j — i € d(h(a,b)) and j' — i’ € d(h(a',V")). O

The next corollary gives a sufficient condition to simplify the statement of Theorem 211

Corollary 2.1. Let D be a queen digraph. Let I' be a family of queen digraphs of order
n and let h : E(D) — T be any function. Let I and J be sets of n integers such that
(I-n)NI=(J—-n)NJ=0.If, forany F €T, s(F) =1 and d(F) = J then D @, T is a
queen digraph.

Proof. The assumptions s(F') = I and d(F) = J imply conditions (i) and (ii) of Theorem
Z1 O

The following result gives an application of the ®p-product to the n-queens problem in terms
of queen labelings of 1-regular digraphs. This result can be thought as a complementary
result of Theorem [I.3], since the solutions that are provided, never appear in the construction
provided in Theorem [.3]

Theorem 2.2. Let D be any 1-reqular queen digraph. Let I' be a family of 1-reqular queen
digraphs of order n and let h : E(D) — T be any function such that for any pair of arcs
(u,v) and (v',v") in E(D) the following conditions hold.

(i) If s(u,v) = s(u',v") — 1, then (s(h(u,v)) —n) N s(h(v/,v")) = 0.
(ii) If d(u,v) = d(v',v") — 1, then (d(h(u,v)) —n) Nd(h(d',v")) = 0.

Then, D @y, T is a 1-regular queen digraph.

Proof. This is an immediate consequence of Theorem 2.1 and the fact that, by definition of
the ®p-product, the product of 1-regular digraphs produces 1-regular digraphs. O

Example 2.1. Let D be the 1-regular queen labeled digraph defined by V(D) = [1,5] and
E(D) = {(1,5),(2,3),(3,1),(4,4),(5,2)} and ' = {Fy, Fy}, where Fy = D and Fy is the
digraph obtained from D by reversing all its arcs. Consider h : E(D) — T defined by:
h(1,5) = h(2,3) = h(4,4) = Fy and h(3,1) = h(5,2) = F,. Then, a queen labeling of D @, T
appears in Fig. Q. Notice that the adjacency matriz of DRy, where the vertices are identified
with the labels assigned by the queen labeling, gives a solution of the 25-queens problem (see

Fig. [2).

15 6 13 7 11 8 14 9 12 10 18 17

-

1 25 2 23 3 21 4 24 5 22 16 20 19

FIGURE 1. A queen labeled digraph of order 25.
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F1cURE 2. The solution of the 25-queens problem obtained from Fig. [1

Example 2.2. Let D be the 1-reqular queen labeled digraph defined by V(D) = [1,4] and
E(D) ={(1,3),(2,1),(3,4),(4,2)}. Let T = {F, F», F3, Fy}, where V(F;) = [1,8], E(F}) =
{(17 5)7 (27 2)7 (37 4)7 (47 7)7 (57 3)7 (67 8)7 (77 6)7 (87 1)}} E(FZ) = {(17 1)7 (27 5)7 (37 8)7 (47 6)7 (57 3)7
(6,7),(7,2),(8,4)} and the adjacency matrices of F3 and Fy are obtained from the adja-
cency matriz of Fy by rotating it w/2 and 7 radiants clockwise, respectively. Consider
h : E(D) — T defined by: h(2,1) = Fi, h(1,3) = F», h(3,4) = F3 and h(4,2) = Fy.
Then, the adjacency matriz of D ®p I', where the vertices are identified with the labels in-
duced by the product (that is, a vertex (a,i) of the ®p-product is identified with 8(a — 1) +1),
gives a solution of the 32-queens problem (see Fig. [3).

Notice that, since ged(4,6) = ged(8,6) # 1, no one of the queen solutions related to the
digraphs that are involved in the Qp-product are modular solutions.

3. MODULAR QUEEN DIGRAPHS

We start this section by applying the ®-product to modular queen labelings. The idea of
this proof is related to the one of Theorem 2.1 in [I1].

Theorem 3.1. Let D be any modular queen digraph. Let I' be a family of modular queen
digraphs of order n and let h : E(D) — T be any function. Then, D &, ' is a modular
queen digraph.
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FIGURE 3. A solution of the 32-queens problem obtained from the ®j-product.

Proof. Let m = |V(D)|. As in the previous section, we rename the vertices of D and each
element in I" after the labels of their corresponding modular queen labelings and, we consider
the labeling I : V(D®,T') — [1, mn] that assigns to the vertex (a, i) the label n(a—1)+i. Let
us check that [ is a modular queen labeling of D®,I". That is, for any two pairs of different arcs
(a,1), (b, ). (@, ), (. 37)) € E(D @, T), (c1) s((a,i). (5,3)) # s((a','), (,3")) (mod mn)
and (¢2) d((a,1), (b, 7)) # d((d',4),(V/,7")) (mod mn), where s((a,i), (b,7)) and d((a, 1), (b, ]))
are the induced sum and the induced difference introduced in (21 and ([2.2)), respectively.
Since each F' € T is labeled with a modular queen labeling, all the sums i + j (mod n), for
(i,j) € F are different. The same happens with all the sums a+b (mod m), for (a,b) € E(D).
Therefore, (c1) holds. The proof of (¢2) is similar. O

Similarly to what happens with Theorem 2.2, we can obtain an application of the above result
to the modular n-queens problem.

Corollary 3.1. Let D be any modular queen 1-reqular digraph. Let I' be a family of modular
queen 1-regular digraphs of order n and let h : E(D) — T be any function. Then, D @, T is
a modular queen 1-regular digraph.

Example 3.1. It turns out that the labelings of the digraphs that appear in Example 2.1,
namely D, F1 and Fy are modular queens. Thus, the resulting labeled digraph obtained by
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means of the ®y-product is also a modular queen labeling. Therefore, the solution of Fig. 2,
s also a solution for the modular 25-queens problem.

The next result is a direct consequence of Corollary Bl

Corollary 3.2. For all integers m and n, it holds that
M (mn) > max{M (m)M(n)™, M(n)M(m)"}.

Proof. By definition, it is clear that for every function h we obtain a distinct solution of the
modular queens problem. O

Remark 3.1. This lower bound is implicitly assumed in [21], to prove Theorem 1(b) therein.
Howewver, this formula is based on the construction of a mn-queens solution obtained in The-
orem [1.3, which clearly differs from our construction.

4. QUEEN LABELINGS OF 1-REGULAR DIGRAPHS

We know that there is a bijection between solutions of the (modular) n-queens problem and
(modular) queen labelings of 1-regular digraph of order n. In this section we will provide
some families of 1-regular digraphs that admit (modular) queen labelings.

Let C;f be a strong orientation of the cycle of n vertices. By checking by hand, we obtain
the following information:

o n=24: C’I is a queen digraph, but C’; U C’f’ is not a queen digraph.

o n=>5 Cgr is not a queen digraph, but CZ’ U Cf’ is a queen digraph.

e n==0: Cgr and 2(5’5r are queen digraphs, but C'gr U Cf is not a queen digraph.

en=" C’g’ U C’f’, 20;’ U C’f’ and C’;’ are queen digraphs, but C’I U C’; is not a queen
digraph.

One of the first families that we provide in this paper is obtained by using the modular
solution provided by Pélya in [20]. Let Z,, be the integers modulo m.

Lemma 4.1. Let p be a prime integer, p > 3. If 2 is a primitive root of p, then C;F_l U C1+

is a (modular) queen digraph and C’;_l is a queen digraph.

Proof. Let D be the 1-regular digraph with V(D) = Z,, defined by (u,v) € E(D) if and only
if v = 2u (mod p). An easy check shows that the adjacency matrix of D is a solution for the
modular p-queens problem with a queen in position (0,0). Since 2 is a primitive root of p,
the sequence 1,2,4,8 (mod p),...,2P~! (mod p) defines a labeling of a cycle of length p — 1.
Thus, C;F_l U Cfr is a (modular) queen digraph and C’;’_l is a queen digraph. O

Park et al. characterized in [17] some primes for which 2 is a primitive root.

Theorem 4.1. [I7] Let p and q be primes.
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o Let p=2q+ 1. Then 2 is a primitive root modulo p if and only if ¢ =1 (mod 4).
e Letp=4q+ 1. Then 2 is a primitive root modulo p, for all p.

Let p be a Mersenne prime, that is, a prime of the form p = 2™ — 1 for some integer n. It is
known that the order of 2 modulo p is n. Thus, using a similar proof that the one of Lemma
1] we obtain the next result.

Lemma 4.2. Letp = 2" —1 be a prime integer, p > 3. Then (p—1)/nC,fUCT is a (modular)
queen digraph and (p — 1)/nC;t is a queen digraph.

The Jacobsthal sequence (or Jacobsthal numbers) is an integer sequence which appears in
[22] as ‘A001045’. It has connections with multiple applications, some of them can be found
in [22]. Let D, be the l-regular digraph on [1,n] defined by (u,v) € E(D,,) if and only if
v = —2u + 2 (mod n). The structure of D,, was characterized in [16] using the previous
sequence.

Lemma 4.3. [16] Let n be an odd integer, (a;) the Jacobsthal sequence and © C {1,2,...,n}
such that x € O if k is the minimum i with 3a;,x = 2a; (mod n). Then,

Using the solutions of the n-queens problem provided by Pauls, for n = 1,5 (mod n), in
[18] 19], and as a corollary of the above result we obtain the next lemma.

Lemma 4.4. Letn be an odd integer such thatn = 1,5 (mod 6), (a;) the Jacobsthal sequence
and ©y C {1,2,...,n} such that x € Oy if k is the minimum i with 3a;x = 2a; (mod n).

Then,
L k
k=1
1 a queen digraph.

Proof. The adjacency matrix of D,, is a w/2 radiants clockwise rotation of the solution of the
(n — 1) x (n — 1)-queens problem provided by Pauls, for n = 1,5 (mod n), in [I8] 19], when
an extra queen is added in position (0,0). Thus, D, defines a queen labeled digraph. By
Lemma [4.3] the result follows. O

Alhough C’; is not a queen graph, for every positive integer m > 3, m = 0,1 (mod 3), the
union of m(m — 1)/3 strong oriented cycles of length 3 is a queen digraph. See the next
proposition.

Proposition 4.1. [4] Placing m(m — 1) queens in positions (i, f(i)), i = 1,2,...,m(m — 1)
is a solution to the problem of queen labeling a union of m(m — 1)/3 copies of C’;, where

f(@) = (m =1 = 1) (mod m)] + (m —1) — [(i — 1)/m].
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A known result in the area of graph products (see for instance, [10]) is that the direct product
of two strongly oriented cycles produces copies of a strongly oriented cycle, namely,
(4.1) CheCh=ged(m,n)C;t

lem(m,n)’

By combining Proposition 1], Theorem and (4] we obtain the next lemma.

Lemma 4.5. Let m be an integer with m >3, m = 0,1 (mod 3) and p a prime p > 4 such

that 2 is a primitive root of p. Then, m(m — 1)/3 copies of ged((p — 1, 3)01ng(p—1 5 U Cf is

a queen digraph.

Proof. Recall that, by Proposition BT} (m(m — 1)/3)C5 is a queen digraph and by Lemma
41l C’;’_l U C’f’ is a modular queen digraph. Thus, in particular, the induced sums and
differences of C;F_l U C{ satisfy the statement of Theorem Hence, by Theorem 2.2 the
direct product (m(m —1)/3)C5 ® (C;_l UCY) is a 1-regular queen digraph. Note that, for
any pair of digraphs D; and Dy, D1 ® Dy ~ Dy ® Dy. Therefore,

(m(m —1)/3)C5 ® (C;_l UCy) =~ (m(m—1)/3)ged(p — 1’3)C1ng(p—1,3) ucy,

and the result follows. O
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