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TRIANGLES WITH PRIME HYPOTENUSE

SAM CHOW AND CARL POMERANCE

Abstract. The sequence 3, 5, 9, 11, 15, 19, 21, 25, 29, 35, . . . consists of odd
legs in right triangles with integer side lengths and prime hypotenuse. We
show that the upper density of this sequence is zero, with logarithmic decay.
The same estimate holds for the sequence of even legs in such triangles. We
expect our upper bound, which involves the Erdős–Ford–Tenenbaum con-
stant, to be sharp up to a double-logarithmic factor. We also provide a
nontrivial lower bound. Our techniques involve sieve methods, the distri-
bution of Gaussian primes in narrow sectors, and the Hardy–Ramanujan
inequality.

1. Introduction

The sequence OEIS A281505 concerns odd legs in right triangles with integer
side lengths and prime hypotenuse. By the parametrisation of Pythagorean
triples, these are positive integers of the form x2 − y2, where x, y ∈ N and
x2 + y2 is prime. Even legs are those of the form 2xy, where x, y ∈ N and
x2 + y2 is an odd prime. Let A be the set of odd legs, and B the set of even
legs that occur in such triangles. Consider the quantities

A(N) = {n ∈ A : n 6 N}, B(N) = {n ∈ B : n 6 N}

as N → ∞.

Let P denote the set of primes. By a change of variables, observe that

A(N) = #{ab 6 N :
1

2
(a2 + b2) ∈ P}.

Additionally, note that
B(2N) = C(N),

where
C(N) = #{1 < ab 6 N : a2 + b2 ∈ P}.

We estimate C(N), which is equivalent to estimating B(N) and similar to
estimating A(N).

Let

η = 1−
1 + log log 2

log 2
≈ 0.086

be the Erdős–Ford–Tenenbaum constant. This constant is related to the num-
ber of distinct products in the multiplication table, and also arises in other
contexts, for example, see [2], [3], and [9].
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Theorem 1.1. We have

C(N) ≪
N

(logN)η
(log logN)O(1).

Since every prime p ≡ 1 (mod 4) is representable as a2+b2 with a, b integral,
we have C(N) unbounded. In fact, using the maximal order of the divisor
function, we have C(N) > N1−o(1) as N → ∞. We obtain a strengthening of
this lower bound.

Theorem 1.2. We have, as N → ∞,

C(N) >
N

(logN)log 4−1+o(1)
.

Note that log 4 − 1 ≈ 0.386. Since B(2N) = C(N), we obtain the same
bounds for B(N). By essentially the same proofs, one can also deduce these
bounds for A(N).

To motivate the outcome, consider the following heuristic. There are typi-
cally ≈ (logn)log 2 divisors of n, which follows from the normal number of prime
factors of n, a result of Hardy and Ramanujan [7]. Moreover, given a factori-
sation n = ab, the “probability” of a2 + b2 being prime is roughly (logn)−1.
Since log 2 < 1, we expect the proportion C(N)/N to decay logarithmically.
In the presence of biases and competing heuristics, this prima facie predic-
tion should be taken with a few grains of salt. We use Brun’s sieve and the
Hardy–Ramanujan inequality to formally establish our bounds. In addition,
for Theorem 1.2 we use a result of Harman and Lewis [8] on the distribution
of Gaussian primes in narrow sectors of the complex plane.

We write P for the set of primes. We use Vinogradov and Landau notation.
As usual, we write ω(n) for the number of distinct prime divisors of n, and
Ω(n) for the number of prime divisors of n counted with multiplicity. The
symbols p and ℓ are reserved for primes, and N denotes a large positive real
number.
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use yet again. We dedicate this note to this seminal paper.
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2. An upper bound

In this section, we establish Theorem 1.1. The Hardy–Ramanujan inequality
[7] states that there exists a positive constant c0 such that uniformly for i ∈ N
and N > 3 we have

#{n 6 N : ω(n) = i} ≪
N

logN

(log logN + c0)
i−1

(i− 1)!
.

By Mertens’s theorem and the fact that the sum of the reciprocals of prime
powers higher than the first power converges, there is a positive constant c1
such that

∑

pν6N

p−ν 6 log logN + c1 (N > 3). (2.1)

Let α be a parameter in the range 1 < α < 2, to be specified in due course.
We begin by bounding the size of the exceptional set

E1 := {n 6 N : ω(n) > L},

where
L = ⌊α log logN⌋. (2.2)

By the Hardy–Ramanujan inequality, we have

#E1 ≪
N

logN

∑

i>L

(k + c0)
i−1

(i− 1)!
=

N

logN

∑

j>L

(k + c0)
j

j!
,

where k = log logN , and therefore

logN

N
#E1 ≪

(k + c0)
L

L!
<

(

(k + c0)e

L

)L

=

(

e

α
+O

(

1

k

))L

.

Note that we have used here the elementary inequality 1/L! < (e/L)L, which
holds for all positive integers L and follows instantly from the Taylor series for
eL. Thus,

#E1 ≪
N

(logN)1−α+α logα
. (2.3)

For an integer n > 2, write P (n) for the largest prime factor of n, and let
P (1) = 1. By de Bruijn [1, Eq. (1.6)] we may bound the size of the exceptional
set

E2 := {n 6 N : P (n) 6 N1/ log logN}

by N/(logN)2 for all sufficiently large numbers N . (Actually, the denominator
may be taken as any fixed power of logN .)

Next, we estimate

C∗(N) := #{ab 6 N : ab /∈ (E1 ∪ E2), a2 + b2 ∈ P}.

For n counted by C∗(N), we see by symmetry that we have n = ab0ℓ for some
a, b0, ℓ ∈ N with ℓ > N1/ log logN prime and a2 + b20ℓ

2 prime. Thus

C∗(N) 6 2
∑

ab06N1−1/ log logN

ω(ab0)6L

S(a, b0), (2.4)
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where

S(a, b0) =
∑

N1/ log logN<ℓ6 N
ab0

ℓ, a2+b20ℓ
2∈P

1.

We turn our attention to S(a, b0). We may assume that ab0 is even and
gcd(a, b0) = 1, for otherwise S(a, b0) = 0. Observe that

S(a, b0) 6 #{m ∈ (z,X ] : gcd(m(a2 + b20m
2), P (z)) = 1},

where

z = N (log logN)−3

, P (z) =
∏

p<z

p, X =
N

ab0
.

To bound this from above, we apply Brun’s sieve [5, Corollary 6.2] with

A =
{

m(a2 + b20m
2) : 1 6 m 6 X

}

,

and with the completely multiplicative density function g defined by

g(p) =

{

1/p, if p | ab0 or p 6≡ 1 mod 4

3/p, if p ∤ ab0, p ≡ 1 mod 4.

For this to be valid, we need to check that

|rd(A)| 6 g(d)d (d | P (z)), (2.5)

where

rd(A) = |Ad| −Xg(d), Ad = {n ∈ A : n ≡ 0 mod d}

and P (z) =
∏

p<z p. We begin by noting that if p ∈ P then the congruence

m(a2 + b20m
2) ≡ 0 mod p

has g(p)p solutions m mod p. Observe that any divisor d of P (z) must be
squarefree; thus, by the Chinese remainder theorem, the congruence

m(a2 + b20m
2) ≡ 0 mod d

has g(d)d solutions m mod d. By periodicity, we now have

rd(A) = #{m 6 M : m(a2 + b20m
2) ≡ 0 mod d} −Mg(d),

where M = X − d⌊X/d⌋. This confirms (2.5), since 0 6 M < d and 0 <
g(d) 6 1.

We also need to check that

log z 6
logX

c log(V (z)−1 logX)
,

where V (z) =
∏

p<z(1− g(p)), and where

(c/e)c = e, c ≈ 3.59.

This follows from the inequalities

X > N1/ log logN , V (z) ≫ (log z)−2.
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Now [5, Corollary 6.2] tells us that

S(a, b0) 6 X3/4 + 2XV (z) ≪
N(log logN)O(1)

(logN)2ab0
.

(Note that we might equally have used the version of Brun’s sieve in [6, p. 68],
which is less precise, but somewhat easier to utilise.) Substituting this into
(2.4) yields

C∗(N) 6
N(log logN)O(1)

(logN)2
I, (2.6)

where
I =

∑

j+k6L

∑

a6N
ω(a)=j

a−1
∑

b06N
ω(b0)=k

b−1
0 .

It follows from the multinomial theorem that

I 6
∑

j+k6L

j!−1
(

∑

pv6N

p−v
)j

k!−1
(

∑

pv6N

p−v
)k

=
∑

j+k6L

(j + k)!−1

(

j + k

j

)

(

∑

pv6N

p−v
)j+k

.

Letting m = j + k, the binomial theorem now gives

I 6
∑

m6L

m!−1
(

2
∑

pv6N

p−v
)m

6
∑

m6L

(2 log logN + 2c1)
m

m!
,

where c1 is as in (2.1). In view of (2.2), we now have

I ≪ L!−1(2 log logN + 2c1)
L <

(

2e log logN + 2ec1
L

)L

=

(

2e

α
+O

(

1

L

))L

≪ (logN)α(1+log 2−logα).

Substituting this into (2.6) yields

C∗(N) 6 N(log logN)O(1)(logN)α(1+log 2−logα)−2. (2.7)

By (2.3), our estimate for #E2, and (2.7), we have

C(N) 6 C∗(N) + #E1 +#E2 6 N(log logN)O(1)(logN)−M,

where
M = min{1− α + α logα, 2, 2− α− α log 2 + α logα}.

We now choose 1 < α < 2 so as to maximise M. One might guess that this α
solves

1− α + α logα = 2− α− α log 2 + α logα,

and indeed α = (log 2)−1 does maximise M on the interval (1, 2). With this
choice of α, we have

M = 1−
1 + log log 2

log 2
= η,

completing the proof of Theorem 1.1.
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3. A lower bound

In this section, we establish Theorem 1.2. Let

L0 = {(a, b) ∈ N2 : 1 < ab 6 N, a2 + b2 ∈ P}.

Writing P (n) for the largest prime factor of n > 1, and P (1) = 1, put

L1 = {(a, b) ∈ L0 : P (ab) 6 N1/ log logN}.

Let ε be a small positive real number, and let

L2 = {(a, b) ∈ L0 \ L1 : ω(a) > (1 + ε) log logN},

L3 = {(a, b) ∈ L0 \ L1 : ω(b) > (1 + ε) log logN}.

Finally, write

L = L0 \ (L1 ∪ L2 ∪ L3).

As we seek a lower bound, we are free to discard some inconvenient elements
of C(N). Thus, by the Cauchy–Schwarz inequality, we have

C(N) > (#L)2/S(N), (3.1)

where S(N) is the number of quadruples (a, b, c, d) ∈ N4 such that

ab = cd and (a, b), (c, d) ∈ L.

We first show that

#L0 ≫ N. (3.2)

For this, we use existing work counting Gaussian primes in narrow sectors. For
convenience, we state the relevant result [8, Theorem 2].

Theorem 3.1 (Harman–Lewis). Let X be a large positive real number, and

let β, γ be real numbers in the ranges

0 6 β 6 π/2, X−0.381 6 γ 6 π/2.

Then

#{(a, b) ∈ N2 : a2 + b2 ∈ P ∩ [0, X ], arctan(b/a) ∈ [β, β + γ)} ≫
γX

logX
.

The implied constant is absolute.

For positive integers i 6 logN
10 log 2

, we apply this with

β = γ =
π

2i+1
, X = 2i−2N.

By Jordan’s inequality

2

π
x 6 sin x 6 x (0 6 x 6 π/2),

observe that if a, b ∈ N, a2 + b2 6 X and θ = arctan(b/a) 6 π2−i then

ab 6 X sin θ cos θ =
1

2
X sin(2θ) 6 Xθ 6 N2i−2 ·

π

2i
6 N.
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Thus

#L0 ≫
∑

i6 logN
10 log 2

N

logN
≫ N,

confirming (3.2).

Next, we show that #Lj = o(N) (j = 1, 2, 3).

Lemma 3.2. We have #L1 = o(N).

Proof. By de Bruijn [1, Eq. (1.6)], we have
∑

a6
√
N

∑

b6N/a

P (b)6N1/ log logN

≪
∑

a6
√
N

N

a(logN)2
≪

N

logN
.

Thus, by symmetry, we have #L1 ≪
N

logN
. �

Lemma 3.3. We have

#Lj = o(N) (j = 2, 3).

Proof. As #L2 = #L3, we need only show this for j = 2. Taking out a prime
factor ℓ > N1/ log logN of ab, we have

#L2 6 2
∑

a6N1−1/ log logN

ω(a)>(1+ε) log logN

∑

b6a−1N1−1/ log logN

Sa,b,

where
Sa,b =

∑

N1/ log logN<ℓ6N
ab

ℓ, a2+b2ℓ2∈P

1.

As in the last section, Brun’s sieve implies that

Sa,b ≪
N(log logN)O(1)

ab(logN)2
.

Therefore

#L2 ≪
N(log logN)O(1)

logN

∑

a6N1−1/ log logN

ω(a)>T

a−1, (3.3)

where
T = ⌊(1 + ε) log logN⌋. (3.4)

As in the prior section, the multinomial theorem implies that
∑

a6N1−1/ log logN

ω(a)>T

1

a
6

∑

j>T

1

j!
(log logN + c1)

j ≪ε
1

T !
(log logN + c1)

T

6

(

e log logN + ec1
T

)T

≪ (logN)(1+ε)(1−log(1+ε)).

Since (1 + ε)(1 − log(1 + ε)) < 1, using this estimate in (3.3) completes the
proof of the lemma. �
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Combining (3.2) with Lemmas 3.2 and 3.3 gives

#L ≫ N. (3.5)

Lemma 3.4. If c′ > log 4− 1 then

S(N) ≪c′ N(logN)c
′

.

Proof. One component of the count is when (a, b) = (c, d). This is the diagonal
case, and it is easily estimated. By the sieve, the number of pairs (a, b) ∈ L
with a 6 b is at most

∑

a6
√
N

∑

b6N1−1/ log logN/a

∑

ℓ6N/ab
a2+ℓ2b2∈P

1 6
N(log logN)O(1)

(logN)2

∑

a,b

1

ab
6 N(log logN)O(1),

which is negligible. (Note that this estimate shows that (3.5) is essentially
tight.)

For the nondiagonal case we imitate §2. If (a, b, c, d) is counted by S(N),
put

g = gcd(a, c), a = gu, c = gv,

so that
ub = vd, d = uw, b = vw.

Recall (3.4), and let G be the set of (g, u, v, w0) ∈ N4 such that

guvw0 6 N1−1/ log logN , ω(gu), ω(vw0), ω(gv), ω(uw0) 6 T, u 6= v.

As P (ab) > N1/ log logN , we see by symmetry that

S(N) ≪ N(log logN)O(1) +
∑

(g,u,v,w0)∈G

S(g, u, v, w0), (3.6)

where
S(g, u, v, w0) =

∑

ℓ∈P, N1/ log logN<ℓ6 N
guvw0

(gu)2+(vw0)2ℓ2, (gv)2+(uw0)2ℓ2∈P

1.

The fact that u 6= v ensures that there are three primality conditions defining
S(g, u, v, w0). To bound S(g, u, v, w0) from above, we may assume without loss
that guvw0 is even, and that the variables g, u, v, w0 are pairwise coprime, for
otherwise S(g, u, v, w0) = 0. Paralleling §2, an application of Brun’s sieve
reveals that

S(g, u, v, w0) ≪
N(log logN)O(1)

guvw0(logN)3
. (3.7)

Substituting (3.7) into (3.6) yields

S(N) ≪ N(log logN)O(1) +
N(log logN)O(1)

(logN)3
I, (3.8)

where

I =
∑

k1+···+k462T

4
∏

i=1

(

∑

n6N :ω(n)=ki

n−1
)
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and T is as in (3.4). With U = 2T , it follows from the multinomial theorem
that

I 6
∑

k1+···+k46U

∏

i

ki!
−1
(

∑

pv6N

p−v
)ki

=
∑

m6U

m!−1
∑

k1+···+k4=m

(

m

k1, k2, k3, k4

)

(

∑

pv6N

p−v
)m

,

and a further application of the multinomial theorem gives

I 6
∑

m6U

m!−1
(

4
∑

pv6N

p−v
)m

6
∑

m6U

(4 log logN + 4c1)
m

m!
.

As U = 2(1 + ε) log logN +O(1), we now have

I ≪
(4 log logN + 4c1)

U

U !
<

(

4e log logN + 4ec1
U

)U

=

(

4e

2 + 2ε
+O

(

1

U

))U

≪ (logN)2(1+ε)(1+log 2−log(1+ε)).

Substituting this into (3.8) yields

S(N) ≪ N(log logN)O(1)(logN)2(1+ε)(1+log 2−log(1+ε))−3

6 N(log logN)O(1)(logN)log 4−1+2ε(1+log 2).

As c′ > log 4− 1, we may choose ε > 0 to give S(N) ≪c′ N(logN)c
′

. �

Combining (3.1) and (3.5) with Lemma 3.4 establishes Theorem 1.2.

4. A final comment

We conjecture that Theorem 1.1 holds with equality. For a lower bound, one
might restrict attention to those pairs (a, b) with ω(a) ≈ ω(b) ≈ 1

2 log 2
log logN .

The upper bound for the second moment is analysed as in the paper, getting
N/(logN)η+o(1); we expect that a more refined analysis would give

N(log logN)O(1)

(logN)η

here. The difficulty is in obtaining this same estimate as a lower bound for
the first moment. This would follow if we had an analogue of Theorem 3.1 in
which a, b have a restricted number of prime factors. Such a result holds for
the general distribution of Gaussian primes, at least if one restricts only one
of a, b, see [4].
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