Eisenstein's Criterion,
 Fermat's Last Theorem, and a Conjecture on Powerful Numbers

Pietro Paparella
Division of Engineering \& Mathematics
University of Washington Bothell
18115 Campus Way NE
Bothell, WA 98011
USA
pietrop@uw.edu

Abstract

Given integers $\ell>m>0$, we define monic polynomials X_{n}, Y_{n}, and Z_{n} with the property that μ is a zero of X_{n} if and only if the triple $(\mu, \mu+m, \mu+\ell)$ satisfies $x^{n}+y^{n}=z^{n}$. It is shown that the irreducibility of these polynomials implies Fermat's last theorem. It is also shown, in a precise asymptotic sense, that for a vast majority of cases, these polynomials are irreducible via Eisenstein's criterion. We conclude by offering a conjecture on powerful numbers.

1 Introduction

In its original form, Fermat's last theorem (FLT) asserts that there are no positive solutions to the Diophantine equation

$$
\begin{equation*}
x^{n}+y^{n}=z^{n} \tag{1}
\end{equation*}
$$

if $n>2$. As is well-known, Wiles [8], with the assistance of Taylor [7], gave the first complete proof of FLT.

Given integers $\ell>m>0$, we define monic polynomials X_{n}, Y_{n}, and Z_{n} (that depend on ℓ and m) with the property that μ is a zero of X_{n} if and only if ($\mu, \mu+m, \mu+\ell$) satisfies (1). It is shown, in a precise asymptotic sense, that for a vast majority of cases, these polynomials are irreducible via direct application of Eisenstein's criterion. Although the results fall far short of constituting a full proof of FLT - in fact, the possibility is left open that there are infinitely-many cases to consider - they are nevertheless appealing given that: (i) they are elementary in nature; (ii) they apply to all values of n (including $n=2$); and (iii) they apply to the well-known first-case and second-case of (1). A conjecture on powerful numbers is also offered.

2 The Auxiliary Polynomials

Given $\ell>m>0$, let

$$
\begin{align*}
& X_{n}(t)=X_{n}(t, \ell, m):=t^{n}-\sum_{k=1}^{n}\binom{n}{k} t^{n-k}(\ell-m) Q_{k}(\ell, m) \tag{2}\\
& Y_{n}(t)=Y_{n}(t, \ell, m):=t^{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} t^{n-k} \ell Q_{k}(m, m-\ell) \tag{3}
\end{align*}
$$

and

$$
Z_{n}(t)=Z_{n}(t, \ell, m):=t^{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} t^{n-k}\left(\ell^{k}+(\ell-m)^{k}\right)
$$

where

$$
\begin{equation*}
Q_{k}(\ell, m):=\frac{\ell^{k}-m^{k}}{\ell-m}=\sum_{i=0}^{k-1} \ell^{k-1-i} m^{i}, k=1, \ldots, n \tag{4}
\end{equation*}
$$

Proposition 1. If $\mu \in \mathbb{C}$, then $(\mu, \mu+m, \mu+\ell) \in \mathbb{C}^{3}$ satisfies (1) if and only if $X_{n}(\mu)=$ $Y_{n}(\mu+m)=Z_{n}(\mu+\ell)=0$.

Proof. Following the binomial theorem, notice that

$$
\begin{aligned}
\mu^{n}+(\mu+m)^{n}=(\mu+\ell)^{n} & \Longleftrightarrow \mu^{n}-\sum_{k=1}^{n}\binom{n}{k} \mu^{n-k}\left(\ell^{k}-m^{k}\right)=0 \\
& \Longleftrightarrow \mu^{n}-\sum_{k=1}^{n}\binom{n}{k} \mu^{n-k}(\ell-m) Q_{k}(\ell, m)=0 \\
& \Longleftrightarrow X_{n}(\mu)=0
\end{aligned}
$$

If $\nu:=\mu+m$, then

$$
\begin{aligned}
(\nu-m)^{n}+\nu^{n}=(\nu+(\ell-m))^{n} & \Longleftrightarrow \nu^{n}+\sum_{k=1}^{n}\binom{n}{k} \nu^{n-k}\left((-m)^{k}-(\ell-m)^{k}\right)=0 \\
& \Longleftrightarrow \nu^{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \nu^{n-k}\left(m^{k}-(-1)^{k}(\ell-m)^{k}\right)=0 \\
& \Longleftrightarrow \nu^{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \nu^{n-k}\left(m^{k}-(m-\ell)^{k}\right)=0 \\
& \Longleftrightarrow \nu^{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \nu^{n-k} \ell Q_{k}(m, m-\ell) \\
& \Longleftrightarrow Y_{n}(\nu)=Y_{n}(\mu+m)=0
\end{aligned}
$$

If $\xi:=\mu+\ell$, then

$$
\begin{aligned}
(\xi-\ell)^{n}+(\xi+(m-\ell))^{n}=\xi^{n} & \Longleftrightarrow \xi^{n}+\sum_{k=1}^{n}\binom{n}{k} \xi^{n-k}\left((-\ell)^{k}+(m-\ell)^{k}\right)=0 \\
& \Longleftrightarrow \xi^{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \xi^{n-k}\left(\ell^{k}+(-1)^{k}(m-\ell)^{k}\right)=0 \\
& \Longleftrightarrow \xi^{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \xi^{n-k}\left(\ell^{k}+(\ell-m)^{k}\right)=0 \\
& \Longleftrightarrow Z_{n}(\xi)=Z_{n}(\mu+\ell)=0
\end{aligned}
$$

and the result is established.
It can be shown that if $(x, y, z) \in \mathbb{N}^{3}$ satisfies (1), with $x<y<z, \operatorname{gcd}(x, y, z)=1$, and $(\ell, m):=(z-x, y-x)$, then $\operatorname{gcd}(\ell, m)=1([6, \mathrm{p} 2])$. Herein it is assumed that $\operatorname{gcd}(\ell, m)=1$.

Recall that a polynomial f with coefficients from \mathbb{Z} is called reducible (over \mathbb{Z}) if $f=g h$, where g and h are polynomials of positive degree with coefficients from \mathbb{Z}. If f is not reducible, then f is called irreducible (over \mathbb{Z}).

Proposition 2. The polynomials X_{n}, Y_{n}, and Z_{n} are simultaneously irreducible or reducible.
Proof. Following Proposition 1, notice that

$$
\begin{aligned}
X_{n}(\mu-m)=0 & \Longleftrightarrow(\mu-m)^{n}+\mu^{n}=(\mu-m+\ell)^{n} \\
& \Longleftrightarrow(\mu-m)^{n}+\mu^{n}=(\mu+\ell-m)^{n} \\
& \Longleftrightarrow Y_{n}(\mu)=0 .
\end{aligned}
$$

Thus,

$$
X_{n}(t-m)=\prod_{\left\{\mu \in \mathbb{C}: Y_{n}(\mu)=0\right\}}(t-\mu)=Y_{n}(t) .
$$

A similar argument demonstrates that $X_{n}(t-\ell)=Z_{n}(t)$. Thus, the polynomials X_{n}, Y_{n}, and Z_{n} are simultaneously irreducible or reducible.

Given a monic polynomial

$$
\begin{equation*}
f(t)=t^{n}-\sum_{i=1}^{n} a_{i} t^{n-i} \in \mathbb{C}[t] \tag{5}
\end{equation*}
$$

let

$$
\begin{equation*}
f_{k}(t):=t^{k}-\sum_{i=1}^{k} a_{i} t^{k-i}, 0 \leq k \leq n \tag{6}
\end{equation*}
$$

where the sum on the right is defined to be zero whenever it is empty. Notice that $f=f_{n}$ and $f(t)=t f_{n-1}(t)-a_{n}$.

Lemma 3. If f is the polynomial defined in (5), f_{k} is the polynomial defined in (6), and $r \in \mathbb{C}$, then

$$
f(t)=(t-r) \sum_{k=0}^{n-1} f_{k}(r) t^{n-1-k}+f(r)
$$

Proof. Proceed by induction on n. If $n=1$, then

$$
f(t)=t-a_{1}=t-r+r-a_{1}=(t-r)+f(r),
$$

and the base-case is established.
Assume that the result holds for every polynomial of degree j, where $j \geq 1$. If $f(t)=$ $t^{j+1}-\sum_{i=1}^{j+1} a_{i} t^{j+1-i}$, and $r \in \mathbb{C}$, then

$$
\begin{aligned}
f(t) & =t f_{j}(t)-a_{j+1} \\
& =t\left((t-r) \sum_{k=0}^{j-1} f_{k}(r) t^{j-1-k}+f_{j}(r)\right)-a_{j+1} \\
& =(t-r) \sum_{k=0}^{j-1} f_{k}(r) t^{j-k}+t f_{j}(r)-a_{j+1} \\
& =(t-r) \sum_{k=0}^{j-1} f_{k}(r) t^{j-k}+(t-r) f_{j}(r)+r f_{j}(r)-a_{j+1} \\
& =(t-r) \sum_{k=0}^{j} f_{k}(r) t^{j-k}+f(r),
\end{aligned}
$$

establishing the result when $n=j+1$. The entire result now follows by the principle of mathematical induction.

Remark 4. If $f(t)=t^{n}-\sum_{i=1}^{n} a_{i} t^{n-i} \in \mathbb{Z}[t]$ and $r \in \mathbb{Z}$ is a zero, then, following Lemma 3,

$$
f(t)=(t-r) \sum_{k=0}^{n-1} f_{k}(r) t^{n-1-k}
$$

i.e., f is reducible.

Corollary 5. If $(x, x+m, x+\ell) \in \mathbb{N}^{3}$ satisfies (1), then the polynomials X_{n}, Y_{n}, and Z_{n} are reducible.

3 Main Results

The following result is fundamental (see, e.g., [5, Theorem 2.1.3]) and follows from a result due to Schönemann (see, e.g., [1]).

Theorem 6 (Eisenstein's criterion). Let $f(t)=\sum_{k=0}^{n} a_{k} t^{n-k} \in \mathbb{Z}[t]$. If there is a prime number p such that:

1. $p \nmid a_{0}$;
2. $p \mid a_{k}, k=1, \ldots, n$; and
3. $p^{2} \nmid a_{n}$,
then f is irreducible over \mathbb{Z}.
With f and p as in Theorem 6, let

$$
\operatorname{Eis}(f, p):= \begin{cases}1, & (\mathrm{i}),(\mathrm{ii}), \text { and (iii) are satisfied } \\ 0, & \text { otherwise }\end{cases}
$$

The following result is well-known in the literature on FLT (see [6, (3B)(5), p. 81] and references therein). For definiteness, we include a proof that depends only on the definition of the polynomial Q in (4).

Lemma 7. Let $n>1$ and p be a prime. If $\operatorname{gcd}(\ell, m)=1, p \nmid n$, and $p \mid(\ell-m)$, then $p \nmid Q_{n}(\ell, m)$.

Proof. If $p \mid \ell-m$, then there is an integer j such that $\ell=m+p j$. Thus,

$$
\begin{aligned}
Q_{n}(\ell, m) & =\frac{(m+p j)^{n}-m^{n}}{p j} \\
& =\left(\sum_{k=0}^{n}\binom{n}{k} m^{n-k} p^{k} j^{k}-m^{n}\right) / p j \\
& =\sum_{k=1}^{n}\binom{n}{k} m^{n-k} p^{k-1} j^{k-1} \\
& =n m^{n-1}+\sum_{k=2}^{n}\binom{n}{k} m^{n-k} p^{k-1} j^{k-1} \\
& =n m^{n-1}+\sum_{k=1}^{n}\binom{n}{k+1} m^{n-k-1} p^{k} j^{k}
\end{aligned}
$$

and $Q_{n}(\ell, m) \equiv\left(n m^{n-1}\right) \not \equiv 0(\bmod p)$.
Theorem 8. If X_{n} is defined as in (2) and there is a prime p such that $p \mid \ell-m, p^{2} \nmid \ell-m$, and $p \nmid n$, then X_{n} is irreducible.

Proof. Immediate in view of (2), Theorem 6, and Lemma 7.

Remark 9. The import of Theorem 8 is amplified by the following observation: a positive integer a is called powerful if p^{2} divides a for every prime p that divides a (sequence A001694 in the On-Line Encyclopedia of Integer Sequences (OEIS) [4]). Otherwise, it is called nonpowerful.

Golomb [2] proved that if $\kappa(t)$ denotes the number of powerful numbers in the interval $[1, t]$, then

$$
\begin{equation*}
c t^{1 / 2}-3 t^{1 / 3} \leq \kappa(t) \leq c t^{1 / 2} \tag{7}
\end{equation*}
$$

where $c:=\zeta(3 / 2) / \zeta(3) \approx 2.1733$ and ζ denotes the Riemann zeta function (an improvement of (7) can be found in [3]). Consequently, $\kappa(t) / t \longrightarrow 0$ as $t \longrightarrow \infty$.

If

$$
\Delta(t):=\{\delta=\ell-m \in \mathbb{N}: 1 \leq m<\ell \leq t, \delta \text { powerful, } \operatorname{gcd}(\ell, m)=1\}
$$

then $|\Delta(t)|=\kappa(t)$. Thus, $|\Delta(t)| / t \longrightarrow 0$ as $t \longrightarrow \infty$.
In case $\ell-m$ is powerful, we offer the following results.
Theorem 10. If there is a prime p such that $p \mid \ell, p^{2} \nmid \ell$, and $p \nmid n$, then Y_{n} irreducible.
Proof. Immediate in view of (3), Theorem 6, and Lemma 7.
Theorem 11. If $2 \ell-m$ is singly even, then Z_{n} is irreducible.
Proof. If $2 \ell-m$ is singly even, then ℓ is odd, m is even, and there is an odd integer q such that $2 \ell-m=2 q$. As a consequence, $m=2(\ell-q) \equiv 0(\bmod 4)$. As ℓ and $\ell-m$ are odd, notice that

$$
\left(\ell^{k}+(\ell-m)^{k}\right) \equiv 0 \quad(\bmod 2), k=1, \ldots, n
$$

Moreover, since

$$
\ell^{n}+(\ell-m)^{n}=2 \ell^{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \ell^{n-k} m^{k}
$$

it follows that $\left(\ell^{n}+(\ell-m)^{n}\right) \equiv 2 \ell^{n} \not \equiv 0(\bmod 4)$, i.e., $\operatorname{Eis}\left(Z_{n}, 2\right)=1$.
Example 12. If $(\ell, m)=(9,4), n \geq 2, n \not \equiv 0(\bmod 5)$, then $\operatorname{Eis}\left(X_{n}, 5\right)=1 ;$ and if $n \equiv 0$ $(\bmod 5)$, then $\operatorname{Eis}\left(Z_{n}, 2\right)=1$ since $2(9)-4=14$ is singly even.

Example 13. If $(\ell, m)=(9,5)$, then the irreducibility of the auxiliary polynomials cannot be asserted from the previous results.

As mentioned in the introduction, the above results leave the possibility that there are infinitely-many cases to resolve. The following conjecture, which generalizes Example 13 and is related to sequence A133364 of the OEIS [4], would not only establish this, but seems to be more important in its own right.

Conjecture 14. If $a>1$ is powerful, then there is a prime p and a powerful number b such that $a=b+p$.

4 Acknowledgements

I would like to thank Ioana Dumitriu, Jennifer McLoud-Mann, Casey Mann, and Steven J. Miller for their generosity.

References

[1] D. A. Cox, Why Eisenstein proved the Eisenstein criterion and why Schönemann discovered it first [reprint of mr2572615], Amer. Math. Monthly 118(1) (2011), 3-21.
[2] S. W. Golomb, Powerful numbers, Amer. Math. Monthly 77 (1970), 848-855.
[3] G. Mincu and L. Panaitopol, More about powerful numbers, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 52(100)(4) (2009), 451-460.
[4] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[5] V. V. Prasolov, Polynomials, Vol. 11 of Algorithms and Computation in Mathematics, Springer-Verlag, Berlin, 2010. Translated from the 2001 Russian second edition by Dimitry Leites, Paperback edition [of MR2082772].
[6] P. Ribenboim, Fermat's last theorem for amateurs, Springer-Verlag, New York, 1999.
[7] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141(3) (1995), 553-572.
[8] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141(3) (1995), 443-551.

2010 Mathematics Subject Classification: Primary 11D41; Secondary 11A05, 11C08, 11P32. Keywords: Fermat's last theorem, Eisenstein's criterion, powerful number
(Concerned with sequences A001694, A133364.)

Return to Journal of Integer Sequences home page.

