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Abstract

Given integers ℓ > m > 0, we define monic polynomials Xn, Yn, and Zn with
the property that µ is a zero of Xn if and only if the triple (µ, µ +m,µ + ℓ) satisfies
xn + yn = zn. It is shown that the irreducibility of these polynomials implies Fermat’s
last theorem. It is also shown, in a precise asymptotic sense, that for a vast majority
of cases, these polynomials are irreducible via Eisenstein’s criterion. We conclude by
offering a conjecture on powerful numbers.

1 Introduction

In its original form, Fermat’s last theorem (FLT) asserts that there are no positive solutions
to the Diophantine equation

xn + yn = zn (1)

if n > 2. As is well-known, Wiles [8], with the assistance of Taylor [7], gave the first complete
proof of FLT.

Given integers ℓ > m > 0, we define monic polynomials Xn, Yn, and Zn (that depend on
ℓ and m) with the property that µ is a zero of Xn if and only if (µ, µ+m,µ+ ℓ) satisfies (1).
It is shown, in a precise asymptotic sense, that for a vast majority of cases, these polynomials
are irreducible via direct application of Eisenstein’s criterion. Although the results fall far
short of constituting a full proof of FLT – in fact, the possibility is left open that there are
infinitely-many cases to consider – they are nevertheless appealing given that: (i) they are
elementary in nature; (ii) they apply to all values of n (including n = 2); and (iii) they apply
to the well-known first-case and second-case of (1). A conjecture on powerful numbers is
also offered.
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2 The Auxiliary Polynomials

Given ℓ > m > 0, let

Xn(t) = Xn(t, ℓ,m) := tn −

n
∑

k=1

(

n

k

)

tn−k(ℓ−m)Qk(ℓ,m), (2)

Yn(t) = Yn(t, ℓ,m) := tn +

n
∑

k=1

(−1)k
(

n

k

)

tn−kℓQk(m,m− ℓ), (3)

and

Zn(t) = Zn(t, ℓ,m) := tn +

n
∑

k=1

(−1)k
(

n

k

)

tn−k
(

ℓk + (ℓ−m)k
)

,

where

Qk(ℓ,m) :=
ℓk −mk

ℓ−m
=

k−1
∑

i=0

ℓk−1−imi, k = 1, . . . , n. (4)

Proposition 1. If µ ∈ C, then (µ, µ +m,µ + ℓ) ∈ C3 satisfies (1) if and only if Xn(µ) =
Yn(µ+m) = Zn(µ+ ℓ) = 0.

Proof. Following the binomial theorem, notice that

µn + (µ+m)n = (µ+ ℓ)n ⇐⇒ µn −

n
∑

k=1

(

n

k

)

µn−k(ℓk −mk) = 0

⇐⇒ µn −
n
∑

k=1

(

n

k

)

µn−k(ℓ−m)Qk(ℓ,m) = 0

⇐⇒ Xn(µ) = 0.

If ν := µ+m, then

(ν −m)n + νn = (ν + (ℓ−m))n ⇐⇒ νn +

n
∑

k=1

(

n

k

)

νn−k
(

(−m)k − (ℓ−m)k
)

= 0

⇐⇒ νn +
n
∑

k=1

(−1)k
(

n

k

)

νn−k
(

mk − (−1)k(ℓ−m)k
)

= 0

⇐⇒ νn +
n
∑

k=1

(−1)k
(

n

k

)

νn−k
(

mk − (m− ℓ)k
)

= 0

⇐⇒ νn +

n
∑

k=1

(−1)k
(

n

k

)

νn−kℓQk(m,m− ℓ)

⇐⇒ Yn(ν) = Yn(µ+m) = 0.

2



If ξ := µ+ ℓ, then

(ξ − ℓ)n + (ξ + (m− ℓ))n = ξn ⇐⇒ ξn +

n
∑

k=1

(

n

k

)

ξn−k
(

(−ℓ)k + (m− ℓ)k
)

= 0

⇐⇒ ξn +
n
∑

k=1

(−1)k
(

n

k

)

ξn−k
(

ℓk + (−1)k(m− ℓ)k
)

= 0

⇐⇒ ξn +
n
∑

k=1

(−1)k
(

n

k

)

ξn−k
(

ℓk + (ℓ−m)k
)

= 0

⇐⇒ Zn(ξ) = Zn(µ+ ℓ) = 0,

and the result is established.

It can be shown that if (x, y, z) ∈ N3 satisfies (1), with x < y < z, gcd(x, y, z) = 1, and
(ℓ,m) := (z−x, y−x), then gcd(ℓ,m) = 1 ([6, p 2]). Herein it is assumed that gcd (ℓ,m) = 1.

Recall that a polynomial f with coefficients from Z is called reducible (over Z) if f = gh,
where g and h are polynomials of positive degree with coefficients from Z. If f is not
reducible, then f is called irreducible (over Z).

Proposition 2. The polynomials Xn, Yn, and Zn are simultaneously irreducible or reducible.

Proof. Following Proposition 1, notice that

Xn(µ−m) = 0 ⇐⇒ (µ−m)n + µn = (µ−m+ ℓ)n

⇐⇒ (µ−m)n + µn = (µ+ ℓ−m)n

⇐⇒ Yn(µ) = 0.

Thus,

Xn(t−m) =
∏

{µ∈C:Yn(µ)=0}

(t− µ) = Yn(t).

A similar argument demonstrates that Xn(t − ℓ) = Zn(t). Thus, the polynomials Xn, Yn,
and Zn are simultaneously irreducible or reducible.

Given a monic polynomial

f(t) = tn −

n
∑

i=1

ait
n−i ∈ C[t], (5)

let

fk(t) := tk −

k
∑

i=1

ait
k−i, 0 ≤ k ≤ n, (6)

where the sum on the right is defined to be zero whenever it is empty. Notice that f = fn
and f(t) = tfn−1(t)− an.
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Lemma 3. If f is the polynomial defined in (5), fk is the polynomial defined in (6), and
r ∈ C, then

f(t) = (t− r)

n−1
∑

k=0

fk(r)t
n−1−k + f(r).

Proof. Proceed by induction on n. If n = 1, then

f(t) = t− a1 = t− r + r − a1 = (t− r) + f(r),

and the base-case is established.
Assume that the result holds for every polynomial of degree j, where j ≥ 1. If f(t) =

tj+1 −
∑j+1

i=1 ait
j+1−i, and r ∈ C, then

f(t) = tfj(t)− aj+1

= t

(

(t− r)

j−1
∑

k=0

fk(r)t
j−1−k + fj(r)

)

− aj+1

= (t− r)

j−1
∑

k=0

fk(r)t
j−k + tfj(r)− aj+1

= (t− r)

j−1
∑

k=0

fk(r)t
j−k + (t− r)fj(r) + rfj(r)− aj+1

= (t− r)

j
∑

k=0

fk(r)t
j−k + f(r),

establishing the result when n = j + 1. The entire result now follows by the principle of
mathematical induction.

Remark 4. If f(t) = tn −
∑n

i=1 ait
n−i ∈ Z[t] and r ∈ Z is a zero, then, following Lemma 3,

f(t) = (t− r)

n−1
∑

k=0

fk(r)t
n−1−k,

i.e., f is reducible.

Corollary 5. If (x, x +m, x + ℓ) ∈ N3 satisfies (1), then the polynomials Xn, Yn, and Zn

are reducible.

3 Main Results

The following result is fundamental (see, e.g., [5, Theorem 2.1.3]) and follows from a result
due to Schönemann (see, e.g., [1]).
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Theorem 6 (Eisenstein’s criterion). Let f(t) =
∑n

k=0 akt
n−k ∈ Z[t]. If there is a prime

number p such that:

1. p ∤ a0;

2. p | ak, k = 1, . . . , n; and

3. p2 ∤ an,

then f is irreducible over Z.

With f and p as in Theorem 6, let

Eis(f, p) :=

{

1, (i), (ii), and (iii) are satisfied;

0, otherwise.

The following result is well-known in the literature on FLT (see [6, (3B)(5), p. 81] and
references therein). For definiteness, we include a proof that depends only on the definition
of the polynomial Q in (4).

Lemma 7. Let n > 1 and p be a prime. If gcd(ℓ,m) = 1, p ∤ n, and p | (ℓ − m), then
p ∤ Qn(ℓ,m).

Proof. If p | ℓ−m, then there is an integer j such that ℓ = m+ pj. Thus,

Qn(ℓ,m) =
(m+ pj)n −mn

pj

=

(

n
∑

k=0

(

n

k

)

mn−kpkjk −mn

)

/pj

=

n
∑

k=1

(

n

k

)

mn−kpk−1jk−1

= nmn−1 +

n
∑

k=2

(

n

k

)

mn−kpk−1jk−1

= nmn−1 +
n
∑

k=1

(

n

k + 1

)

mn−k−1pkjk,

and Qn(ℓ,m) ≡ (nmn−1) 6≡ 0 (mod p).

Theorem 8. If Xn is defined as in (2) and there is a prime p such that p | ℓ−m, p2 ∤ ℓ−m,
and p ∤ n, then Xn is irreducible.

Proof. Immediate in view of (2), Theorem 6, and Lemma 7.
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Remark 9. The import of Theorem 8 is amplified by the following observation: a positive
integer a is called powerful if p2 divides a for every prime p that divides a (sequence A001694
in the On-Line Encyclopedia of Integer Sequences (OEIS) [4]). Otherwise, it is called non-
powerful.

Golomb [2] proved that if κ(t) denotes the number of powerful numbers in the interval
[1, t], then

ct1/2 − 3t1/3 ≤ κ(t) ≤ ct1/2, (7)

where c := ζ(3/2)/ζ(3) ≈ 2.1733 and ζ denotes the Riemann zeta function (an improvement
of (7) can be found in [3]). Consequently, κ(t)/t −→ 0 as t −→ ∞.

If
∆(t) := {δ = ℓ−m ∈ N : 1 ≤ m < ℓ ≤ t, δ powerful, gcd (ℓ,m) = 1},

then |∆(t)| = κ(t). Thus, |∆(t)|/t −→ 0 as t −→ ∞.

In case ℓ−m is powerful, we offer the following results.

Theorem 10. If there is a prime p such that p | ℓ, p2 ∤ ℓ, and p ∤ n, then Yn irreducible.

Proof. Immediate in view of (3), Theorem 6, and Lemma 7.

Theorem 11. If 2ℓ−m is singly even, then Zn is irreducible.

Proof. If 2ℓ−m is singly even, then ℓ is odd, m is even, and there is an odd integer q such
that 2ℓ−m = 2q. As a consequence, m = 2(ℓ− q) ≡ 0 (mod 4). As ℓ and ℓ −m are odd,
notice that

(

ℓk + (ℓ−m)k
)

≡ 0 (mod 2), k = 1, . . . , n.

Moreover, since

ℓn + (ℓ−m)n = 2ℓn +

n
∑

k=1

(−1)k
(

n

k

)

ℓn−kmk

it follows that (ℓn + (ℓ−m)n) ≡ 2ℓn 6≡ 0 (mod 4), i.e., Eis(Zn, 2) = 1.

Example 12. If (ℓ,m) = (9, 4), n ≥ 2, n 6≡ 0 (mod 5), then Eis(Xn, 5) = 1; and if n ≡ 0
(mod 5), then Eis(Zn, 2) = 1 since 2(9)− 4 = 14 is singly even.

Example 13. If (ℓ,m) = (9, 5), then the irreducibility of the auxiliary polynomials cannot
be asserted from the previous results.

As mentioned in the introduction, the above results leave the possibility that there are
infinitely-many cases to resolve. The following conjecture, which generalizes Example 13 and
is related to sequence A133364 of the OEIS [4], would not only establish this, but seems to
be more important in its own right.

Conjecture 14. If a > 1 is powerful, then there is a prime p and a powerful number b such
that a=b+p.
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