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FORMAL DUALITY IN FINITE CYCLIC GROUPS

ROMANOS DIOGENES MALIKIOSIS

Abstract. The notion of formal duality in finite Abelian groups appeared recently in relation to
spherical designs, tight sphere packings, and energy minimizing configurations in Euclidean spaces.
For finite cyclic groups it is conjectured that there are no primitive formally dual pairs besides the
trivial one and the TITO configuration. This conjecture has been verified for cyclic groups of prime
power order, as well as of square-free order. In this paper, we will confirm the conjecture for other classes
of cyclic groups, namely almost all cyclic groups of order a product of two prime powers, with finitely
many exceptions for each pair of primes, or whose order N satisfies p || N , where p a prime satisfying the
so-called self-conjugacy property with respect to N . For the above proofs, various tools were needed:
the field descent method, used chiefly for the circulant Hadamard conjecture, the techniques of Coven
& Meyerowitz for sets that tile Z or ZN by translations, dubbed herein as the polynomial method, as
well as basic number theory of cyclotomic fields, especially the splitting of primes in a given cyclotomic
extension.

1. Introduction

A fundamental problem in physics is the determination of ground states in a given space, with a
fixed density of particles and a pair potential. These ground states are also called minimal energy
configurations. A typical example is the equilibrium state of electrons in a shell of an atom. Problems
of this sort are extremely difficult to solve rigorously; the minimal energy configuration of five points
on a sphere is a notoriously difficult problem, having been determined for certain special cases for the
potential function [22].

In the Euclidean space Rn periodic configurations of fixed density are studied, say ρ = 1; a set
Λ ⊆ Rn is called periodic if it satisfies Λ+L = Λ for some lattice L, and its period is ρ(Λ) = N/det(L),
where det(L) is the volume of a fundamental parallelepiped of L. The lattice L is called the period
lattice of Λ, and there always exists a maximal such lattice. The Gaussian potential function is

considered in this case [2, 1], defined by Gc(r) = e−πcr2 , c ∈ R; this is the Gaussian core model. For a

potential function f and a periodic set Λ =
⋃N

j=1(tj + L), the total energy of the system is

(1.1) Ef (Λ) =
1

N

N∑

i,j=1

∑

v∈L
v 6=0 if i=j

f(|v + ti − tj|).

When the density ρ is very small, or when f = Gc with c → ∞, the optimal configuration approaches
the optimal sphere packing [2, 1].

Apart from the 1-dimensional case, where the energy minimizing configuration of density 1 is Z,
there are no proofs that certain structured configurations minimize energy, however, there is strong
numerical evidence towards certain patterns. In the study conducted in [2] for the Gaussian core model
and varying densities, a remarkable sort of symmetry was revealed between optimal configurations in
densities ρ and 1/ρ, the so-called formal duality. In particular, when n ≤ 9, the optimal configurations
for densities ρ and 1/ρ are either dual lattices, or when they are not lattices, they are formally dual
periodic sets. Formally dual sets satisfy a very strong property, namely a generalization of the Poisson
summation formula. We note that in all of the above situations, the density is considered fixed. For
systems in equilibrium without the fixed density restriction this task is even more difficult; we refer
the reader to [6].

We remind that for a Schwartz function f : Rn → C, and a lattice Λ ⊆ Rn, the Poisson summation
formula states that

(1.2)
∑

x∈Λ
f(x) =

1

det(Λ)

∑

y∈Λ⋆

f̂(y)
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where f̂ denotes the Fourier transform of f , defined by

(1.3) f̂(y) =

∫
f(x)e−2πi〈x,y〉dx,

and Λ⋆ := {x ∈ Rn : 〈x, y〉 ∈ Z,∀y ∈ Λ} is the dual lattice of Λ; finally, det(Λ) is the volume of any
fundamental parallelepiped of Λ, also known as the covolume of Λ. A consequence of this formula
is the fact that a lattice Λ minimizes Ef among periodic configurations of density ρ = 1/det(Λ) if
and only if Λ⋆ minimizes Ef̂ among periodic configurations of density 1/ρ. The significance of the

Gaussian core model is then justified by the relation Ĝc = c−n/2G1/c (in particular, Ĝ1 = G1).
It is known that (1.2) characterizes dual pairs of lattices [3] among discrete subsets of Rn; consider

the average pair sum for the periodic configuration Λ =
⋃N

j=1(tj + L)

(1.4) Σf (Λ) =
1

N

N∑

i,j=1

∑

v∈L
f(|v + ti − tj|),

or simply put,
∑

f (Λ) = f(0) + Ef (Λ). Another consequence of (1.2) is
∑

f (Λ) = ρ(Λ)
∑

f̂ (Λ
⋆) when

Λ is a lattice (i.e. N = 1). Minimal energy periodic configurations for the Gaussian core model found
in [2] at densities ρ and 1/ρ, say Λ and Γ respectively, were proven to satisfy

(1.5) Σf (Λ) = ρ(Λ)Σf̂ (Γ).

Definition 1.1. Two periodic sets Λ,Γ ⊆ Rn are called formally dual if they satisfy (1.5) for every
Schwartz function f .

Formally dual pairs that are not lattices seem to appear in a great scarcity in the 1-dimensional case;
the only known example is 2Z∪(2Z+ 1

2) (or a scaled version thereof), the so-called TITO configuration1.
While there are more high dimensional examples of formal duality, they do not seem to appear yet
in numerical computations; in the computations performed in [2] and Coulangeon-Schürmann2 for
n ≤ 9, all optimal configurations are linear images of Zn, TITO×Zn−1, or TITO2 × Zn−2. Thus, the
characterization of all 1-dimensional formally dual sets is in order; it was conjectured in [1], that Z
and TITO are the only discrete periodic subsets of R with density 1, possessing a formal dual set.

The above can be rephrased in terms of cyclic groups (for more details, see [1]). Let ZN denote the
cyclic groups of N elements, and call a subset T ⊆ ZN primitive, if it is not contained in any proper
coset of ZN . Then the aforementioned conjecture is equivalent to the following:

Conjecture 1.2. The only primitive subsets of ZN possessing a formal dual subset are {0} ⊆ Z/Z
and {0, 1} ⊆ Z4.

This conjecture has been verified when N is a prime power, by Schüler [21] for p odd or when N
an even power of 2, and by Xia, Park, and Cohn [27] in the remaining cases, as well as when N is
square-free.

We briefly mention that there is an infinite family of primitive formally dual sets in non–cyclic
groups, the Gauss sum configurations. The set T =

{
(n, n2) : n ∈ Zp

}
⊆ Zp×Zp is primitive formally

self-dual [1]. This example has been generalized to the groups Zpk × Zpk [27]. It might not be
coincidental that this is a Sidon set (see Exercise 2.2.7 in [23]); as we will see in the cyclic case, it

seems that such sets can only exist if their sizes both equal
√
N , where N is the order of the group,

and their sets of differences spread out in the group G. We prove in particular that when N is divisible
by at most two primes, then every element in Z⋆

N (which consists of a large part of the group ZN )
appears exactly once as difference of the form t− t′, where t, t′ ∈ T and T ⊆ ZN primitive, possessing
a formally dual set.

In this paper, we provide ample evidence towards the veracity of Conjecture 1.2. In particular, we
prove that the conjecture is true when:

(1) N = p2q2, for p, q distinct primes.
(2) N = pmqn, for p, q distinct primes, with possibly finitely many exceptions for each pair (p, q).
(3) A prime p divides exactly N , that is, p | N , but p2 ∤ N , and p is self-conjugate modN , i.e. there

exists j ∈ Z such that pj ≡ −1 mod N .

1TITO stands for two in-two out.
2Private communication.
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We should note that tools from different areas were introduced in order to tackle these cases; for
case (1), the ideas of Coven-Meyerowitz [4] for sets that tile Z by translations were used; for (2),
the so-called field descent method was used, that was developed by Schmidt [18, 19] chiefly for the
circulant Hadamard conjecture, as well as for applications in combinatorial designs and coding theory;
for (3), the arithmetic of cyclotomic fields, especially the splitting of primes in cyclotomic extensions.

We will try to keep this paper as self-contained as possible; it is organized as follows: in Section 2,
we provide the necessary number theoretic background to the problem. In Section 3, we develop the
“polynomial method”, and in Section 4 we prove basic results with respect to formal duality in cyclic
groups. The field descent method is introduced in Section 5, and in Section 6, we re-prove the prime
power case, showcasing the importance of the new ideas involved. In Section 7, we apply the field
descent method, as well as the polynomial method and use them to prove the conjecture for products
of two prime powers, except for finitely many cases for every pair (p, q). In Section 8, we prove the
conjecture when p || N and p self–conjugate modN . In the appendix we provide some numerical data
for case (2) above that indicate how few exceptions for each pair (p, q) exist.

2. Basic number theoretic background

2.1. Notation. Throughout this paper, we will denote by ZN the ring of integers modulo N , which
as an additive group is cyclic of order N . We also denote ζN = e2πi/N , a primitive Nth root of unity.
For a function f : ZN → C, the Fourier transform is defined as

Ff(y) = f̂(y) =
∑

x∈ZN

f(x)ζxyN .

For a set T ⊆ ZN we denote by 1T its indicator function. Some usual arithmetic functions will be
needed here: the number of distinct prime factors of N will be denoted by ω(N) and the product of
the distinct prime factors of N as rad(N), which is also known as the radical of N . Then, we have
the Möbius function µ(n), defined as

µ(n) =

{
(−1)ω(N), if N is square–free

0, otherwise.

We also set Id(N) = N and 1(N) = 1 for all N , and e(N) = 1 if N = 1, while e(N) = 0 otherwise.
ϕ(N) is the usual Euler totient function, which enumerates the positive integers prime to N that are
≤ N . The following well-known formula holds

ϕ(N) = N
∏

p|N
p prime

(
1− 1

p

)
.

Finally, for a prime p we define νp(N) by pνp(N) || N . The symbol ∗ will denote convolution, either
additive or multiplicative (i.e. Dirichlet convolution), depending on the context. For the classical
arithmetic functions, it will always be multiplicative; for example, the following formulae hold

ϕ = µ ∗ Id, Id = ϕ ∗ 1,
an example of Möbius inversion. We also have f ∗ e = f for all f , that is e is the identity element
with respect to the Dirichlet convolution, and 1 ∗ µ = e, that is, µ is the inverse of 1. For these basic
facts on arithmetic functions we refer the reader to [16], or any other book on basic number theory.

2.2. Cyclotomic fields. We list some of the basic results on cyclotomic fields, mainly the splitting
of primes in cyclotomic extensions of Q. For these basic facts we refer the reader to any of [11, 12, 25].

Cyclotomic fields have the form Q(ζN ); we remind that if N ≡ 2 mod 4 then Q(ζN ) = Q(ζ2N ),
which is also recovered from the fact that the degreee of the extension satisfies [Q(ζN ) : Q)] = ϕ(N).
This extension is always an Abelian extension, that is, it is Galois with Abelian Galois group. In
particular,

Gal(Q(ζN )/Q) ∼= Z⋆
N ,

and the canonical group isomorphism is defined by g 7→ σg for every g ∈ Z⋆
N , where σg(ζN ) = ζgN . The

ring of integers of the field Q(ζN ) is Z[ζN ], and every ideal can be factorized uniquely into a product
of prime ideals (which are also maximal, as algebraic number rings are Dedekind domains). The most
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important fact for our purposes is the splitting of the ideal pZ[ζN ] into primes, where p is a (rational)
prime.

Theorem 2.1. Let N be a positive integer, p be a prime and m the p-free part of N , i.e. N = pam,
where p ∤ m. Then

pZ[ζN ] = (P1P2 · · ·Pr)
e,

where P1, . . . ,Pr distinct prime ideals of Z[ζN ], e = ϕ(pa) the ramification index, and r = ϕ(m)/f ,
where f is the multiplicative order of p mod m, that is, pf ≡ 1 mod m and f is the smallest positive
integer with this property (also called the inertia degree). Furthermore, if we define κ(P) = Z[ζN ]/P
(the residue field), so that κ(pZ) = Z/pZ, we have f = [κ(Pi) : Z/pZ], in other words, the inertia
degree is the degree of the residue field extension.

Corollary 2.2. With the previous notation, if N = pa (i.e. m = 1), then r = f = 1, and

pZ[ζN ] = Pϕ(N).

The ideal P is principal, and is generated by 1− ζ, where ζ is any primitive N th root of unity.

The prime ideals Pi are said to lie above p; the Galois group G = Gal(Q(ζN )/Q) acts transitively
on those. For P | p, the subgroup

GP = {σ ∈ G : σP = P}
is called the decomposition group of P. Since G is Abelian, GP is the same for all P | p (in general,
these groups are conjugate with each other).

Corollary 2.2 shows that 1 − ζ is not a unit in Z[ζN ], when N is a power of a prime and ζ is a
primitive Nth root of unity, otherwise (1 − ζ)Z[ζN ] = Z[ζN ]. This can be seen by taking the value of
the cyclotomic polynomial ΦN (X) at X = 1:

ΦN (1) =
∏

gcd(g,N)=1

(1− ζgN ).

As

(2.1) ΦN (1) =

{
p, if N is a power of p

1, otherwise,

we obtain the following Lemma.

Lemma 2.3. Let ζ be a primitive N th root of unity. 1− ζ is a unit in Z[ζN ] if and only if N is not
a prime power.

3. The polynomial method

With every multiset T with elements from G we associate an element of the group ring Z[G], namely∑
g∈G mgg, wheremg is the multiplicity of g in T . When G is cyclic, we can write instead

∑
g∈GmgX

g,

the so-called mask polynomial, which is an element of Z[X]/(XN − 1) ∼= Z[G], where N = |G|. Both
notations have appeared in bibliography before; see for example [9, 18, 19] for the group ring notation,
or [4] for the mask polynomial. The former has been advantageous in algebraic coding theory, while
the latter in tiling problems on Z or the finite cyclic groups, ZN [10].

In this paper, we will adhere to the polynomial notation; the mask polynomial of the multiset T
will be denoted simply by T (X). Now let d | n, and define d · T to be the multiset of elements dt
for t ∈ T , counting multiplicities. For example, if T = {0, 2} ⊆ Z4, then 2 · T = {0, 0}, i.e. 0 has
multiplicity 2 in 2 · T . A fundamental observation is:

Proposition 3.1. Let T be a multiset with elements from ZN and d | N . Then, T (Xd) is the mask
polynomial of the multiset d · T .
Proof. Let T (X) =

∑
g∈ZN

mgX
g, where mg is the multiplicity of g, as before. Then,

T (Xd) ≡
∑

g∈ZN

mgX
dg ≡

∑

h∈ZN

( ∑

dg≡h mod N

mg

)
Xh mod (XN − 1)

proving the desired fact. �
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Formal duality induces polynomial congruences modXN − 1, as we will see in the next section.
The following Lemma is then used to show that such a congruence cannot hold, as the values of
the derivatives of the polynomials under question on roots of unity do not agree, thus proving the
non-existence of primitive formally dual sets.

Lemma 3.2. Let P (X), Q(X) ∈ Z[X] such that P (X) ≡ Q(X) mod (XN − 1), where N is a positive
integer. Then, for every N th root of unity ζ (not necessarily primitive) we have P (ζ) = Q(ζ) and
P ′(ζ) ≡ Q′(ζ) mod NZ[ζN ].

Proof. This almost follows from definition; let R(X) ∈ Z[X] be such that P (X) − Q(X) = (XN −
1)R(X). From this, we readily have P (ζ) = Q(ζ), when ζN = 1. Differentiating both sides, we
obtain P ′(X) − Q′(X) = (XN − 1)R(X) + NXN−1R′(X), so substituting X = ζ gives P ′(ζ) ≡
Q′(ζ) mod NZ[ζN ]. �

The following polynomials will appear a lot in the sequel.

Proposition 3.3. Let d | N be positive integers. Consider the function

F (X) =

N/d−1∑

k=0

Xdk,

which we will also write formally as XN−1
Xd−1

, even at points where Xd − 1 = 0. Then,

F ′(ζ) ≡





0 mod NZ[ζN ], if ζd = 1 and N/d is odd,
N
2 ζ

−1 mod NZ[ζN ], if ζd = 1 and N/d is even
Nζ−1

ζd−1
mod NZ[ζN ], otherwise.

Proof. Obviously

F ′(X) = d

N/d−1∑

k=1

kXdk−1,

hence for ζd = 1,

F ′(ζ) = dζ−1 1

2
· N
d

(
N

d
− 1

)
= ζ−1N

2

(
N

d
− 1

)
,

and the result follows easily when ζd = 1. In all other cases, we use

F ′(X) =

(
XN − 1

Xd − 1

)′
= −dXd−1(XN − 1)

(Xd − 1)2
+

NXN−1

Xd − 1
,

whence the case ζd 6= 1, ζN = 1, follows. �

The mask polynomial of Z⋆
N will be denoted by RN (X), and appears prominently in the polynomial

congruences induced by formal duality. By definition,

RN (X) =
∑

1≤g≤N
gcd(g,N)=1

Xg,

and the values of RN at Nth roots of unity are the Ramanujan sums, denoted by

CN (d) = RN (ζdN ).

As Ramanujan proved [13] (see also [7]), these sums are integers, and their values are given by the
following formula

(3.1) CN (d) =
∑

g|gcd(d,N)

µ(
N

g
)g.

These sums will appear a lot when we apply Proposition 4.3, so we will also need the following [7] (d,
N are integers).

(3.2) CN (d) = µ

(
N

gcd(d,N)

)
ϕ(N)

ϕ
(

N
gcd(d,N)

) .
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Lemma 3.4. Consider the polynomial RN (X), the mask polynomial of Z⋆
N . Let d | N and ζ a

primitive dth root of unity. Then

(3.3) R′
N (ζ) ≡ Nζ−1

∑

g|N,d∤g

µ(g)

ζg − 1
mod NZ[ζN ],

unless 4 | N and d = rad(N) or 2 || N and d = rad(N2 ), in which cases

(3.4) R′
N (ζ) ≡ Nζ−1


1

2
+

∑

g|N,d∤g

µ(g)

ζg − 1


 mod NZ[ζN ]

holds.

Proof. The polynomial RN (X) is a sum of polynomials of the same form as F (X) in Proposition 3.3,
for various d | N . In particular, we may formally write

RN (X) =
∑

g|N
µ(g)

XN − 1

Xg − 1
.

Let d | N and ζd = 1. Assume first that N is odd; if d | g, then also ζg = 1 and the derivative of XN−1
Xg−1

at X = ζ is 0 by Proposition 3.3, so the only terms that will appear in R′
N (ζ) are those satisfying

d ∤ g, proving that (3.3) holds.
Next, assume that N is even. Again, by Proposition 3.3 the contribution of the terms satisfying

d ∤ g to R′
N (ζ) is precisely µ(g)Nζ−1

Xg−1 mod NZ[ζN ]. So, assume that d | g, so that ζg = 1; without loss

of generality, both d and g are square–free, otherwise µ(g) = 0 and the contribution is also 0 anyway.
If 4|N , then N/g is always even for every square–free g, so if d 6= rad(N) there is precisely an even

number of square–free g | N for which d | g (equal to the number of divisors of rad(N)
d when d | rad(N)

and 0 otherwise), hence their total contribution to R′
N (ζ) is 0 by Proposition 3.3 and (3.3) holds. If,

on the other hand, d = rad(N), there is only one such contribution of the form N
2 ζ

−1 mod NZ[ζN ]
by Proposition 3.3 (namely, from g = rad(N)), hence (3.4) holds. If 2 | N and the square–free g | N
is even, then the contribution is 0 to R′

N (ζ) by Proposition 3.3. So, let g be odd with d | g. Unless

d = rad(N2 ), there is an even number of odd square–free divisors g divisible by d, so their total

contribution is 0 and (3.3) holds. When d = rad(N2 ), the only contribution of N
2 ζ

−1 mod Z[ζN ] comes
from g = d, hence (3.4) holds, concluding the proof. �

Corollary 3.5. Let H(X) = RN/d(X
d), where d | N . Then, if ζN = 1

H ′(ζ) ≡ Nζ−1


ε

2
+

∑

g|N,δ∤g

µ(g)

ζdg−1


 mod NZ[ζN ]

holds, where ζd is a primitive δth root of unity, and

ε =

{
1, if 4 | N

d and δ = rad(N/d) or 2 || N
d and δ = rad(N/2d)

0, otherwise.

When T (X) vanishes on a certain Nth root of unity, we get some information about the structure
of T ⊆ ZN . This follows from a theorem on the vanishing sums of roots of unity, independently proven
by Rédei [14, 15], de Bruijn [5] and Schoenberg [20]. When we consider vanishing sums of Nth roots
of unity where N has at most two prime divisors (which are most of the cases that we consider in this
paper), there is a stronger result by Lam and Leung [8]. We summarize this in the following theorem.

Theorem 3.6. Suppose that
∑N−1

j=0 cjζ
j
N = 0 for some integers cj , 0 ≤ j ≤ N − 1. If we consider

ζN formally as an element of Z[G], where G = 〈ζN 〉, then ∑N−1
j=0 cjζ

j
N is equal to an integer linear

combination of terms of the form

(3.5) ζkN (1 + ζp + ζ2p + · · ·+ ζp−1
p ),

for p prime divisor of N and k integer (these terms are called p-cycles). If N has at most two distinct

prime divisors and cj ≥ 0 for all j, then we can write
∑N−1

j=0 cjζ
j
N as a nonnegative linear combination

of terms such as the above.
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The second part of this theorem does not hold when N has at least three distinct prime divisors,
as is evident from the example

(ζp + · · · + ζp−1
p )(ζq + · · ·+ ζq−1

q ) + (ζr + · · ·+ ζr−1
r ) = (−1)(−1) + (−1) = 0,

which cannot be written as a nonnegative linear combination of p-, q- or r-cycles [8].
Expressed with the polynomial notation, Theorem 3.6 gives the results below; in the two prime case

we include an additional fact that will be useful for our purposes (see also [10]):

Theorem 3.7. Let T ⊆ ZN , such that T (ζdN ) = 0 for some d | N , where p1, . . . , pk are the distinct
prime divisors of N . Then

T (Xd) ≡
k∑

j=1

Pj(X
d)ΦN (XN/pj ) mod (XN − 1),

for some Pj ∈ Z[X].

Proof. We simply remark that XkΦp(X
N/p) is the mask polynomial that corresponds to the term in

(3.5) under the canonical ring isomorphism Z[X]/(XN − 1) ∼= Z[G] with G = 〈ζN 〉, which identifies X
with ζN . The rest follows from Theorem 3.6. �

We emphasize that the polynomials Pj are not unique.list some basic facts about cyclotomic fields

Theorem 3.8. Let T ⊆ ZN , such that T (ζdN ) = 0 for some d | N , and N/d has at most two distinct
prime divisors, say p, q. Then,

(3.6) T (Xd) ≡ P (Xd)Φp(X
N/p) +Q(Xd)Φq(X

N/q) mod (XN − 1).

The polynomials P,Q ∈ Z[X] can be taken with nonnegative coefficients. If for some integer a > 0 we

have dpa | N (resp. dqa | N) and T (ζdp
a

N ) 6= 0 (resp. T (ζdq
a

N ) 6= 0), then P 6≡ 0 (resp. Q 6≡ 0) for any
selection of Q (resp. P ).

Proof. The nonnegativity of P and Q follows from the second part of Theorem 3.6. If T (Xdpa) 6= 0,
then replacing X by Xpa we obtain

T (Xdpa) ≡ pP (Xdpa) +Q(Xdpa)Φq(X
N/q) mod (XN − 1),

and substituting X by ζN , T (ζdp
a

N ) = pP (ζdp
a

N ) 6= 0, therefore P 6≡ 0, as desired. �

If N/d is only divided by one prime factor, p, it is understood Q ≡ 0 at (3.6).

4. Structural results on formal duality

Between G, a finite Abelian group, and its dual Ĝ there is a natural isomorphism; we will denote
the image of y ∈ G under this map by χy. With this notation, we have:

Definition 4.1. The sets S, T ⊆ G are formally dual if they satisfy

(4.1)

∣∣∣∣∣
1

|S|
∑

x∈S
χy(x)

∣∣∣∣∣

2

=
1

|T |νT (y),

for every y ∈ G, where νT is the weight enumerator of T , defined by

νT (y) = #
{
(t, t′) ∈ T × T : t− t′ = y

}
.

Under the notation introduced in Section 2, we observe that we can rewrite the weight enumerator
function simply as a convolution:

(4.2) νT (y) = 1T ∗ 1−T (y).

We will use the explicit isomorphism between ZN and ẐN given by χy(x) = ζxyN , for all x, y,∈ ZN .
Then, the left hand side of (4.1), can be written as

1

|S|2
∣∣∑

x∈S
ζxyN

∣∣2 = 1

|S|2
|S(ζyN )|2,
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so we can rewrite (4.1) as

(4.3)
1

|S|2
|S(ζyN )|2 = 1

|T |1T ∗ 1−T (y).

Furthermore, there is an obvious connection between the mask polynomial of S and the Fourier
transform of 1S , namely

1̂S(y) = S(ζyN ).

The operator 1√
N
F is unitary, so Parseval’s identity is

(4.4) N

N∑

x=1

|f(x)|2 =
N∑

y=1

|f̂(y)|2,

and we have f̂ ∗ g = f̂ ĝ, therefore,

(4.5) |S(ζyN )|2 = |1̂S(y)|2 = 1̂S(y)1̂−S(y) = ̂1S ∗ 1−S(y),

so (4.1) can be written as

(4.6)
1

|S|2
|1̂S(y)|2 =

1

|T |1T ∗ 1−T (y).

Summing over y ∈ ZN and applying (4.4), we obtain

N

|S|2
∑

y∈ZN

|1S(y)|2 =
N

|S| = |T |,

proving a fact already known [1, 21].

Proposition 4.2. Let T, S ⊆ ZN be formally dual. Then N = |S| · |T |.
(4.1) can also be written as

(4.7)
̂1S ∗ 1−S(y)

|S|2
=

1T ∗ 1−T (y)

|T | .

1
NF2 fixes all even functions, therefore by Fourier inversion we get

N1S ∗ 1−S(y)

|S|2
=

̂1T ∗ 1−T (y)

|T | ⇐⇒ 1S ∗ 1−S(y)

|S| =
̂1T ∗ 1−T (y)

|T |2
,

confirming that the definition of formal duality is indeed dual with respect to S, T , as expected.

Proposition 4.3. Let T, S ⊆ ZN be formally dual subsets. Then, the values of 1T ∗ 1−T are fixed

within a divisor class, and |T (ζdN )|2 ∈ Z for every integer d. Also, the mask polynomial of T − T as a

multiset is ≡ T (X)T (X−1) mod (XN − 1), where it is understood that X−1 ≡ XN−1 mod (XN − 1),
hence

T (X)T (X−1) ≡
∑

d|N
1T ∗ 1−T (d)RN/d(X

d) mod (XN − 1)

≡ |T |
|S|2

∑

d|N
|S(ζdN )|2RN/d(X

d) mod (XN − 1).

Proof. Let y ∈ ZN be arbitrary, and let g ∈ Z⋆
N . Consider σ ∈ Gal(Q(ζN )/Q) such that σ(ζN ) = ζgN .

The right hand side of (4.3) is a rational number, hence invariant under the action of σ; the left hand
side though, becomes

1

|S|2
|S(ζgyN )|2 = 1

|T |1T ∗ 1−T (gy),

which gives
1T ∗ 1−T (y) = 1T ∗ 1−T (gy),

for all y ∈ ZN , g ∈ Z⋆
N , proving the first part. Next, by (4.3) we obtain

|T (ζdN )|2 = |T |2
|S| 1S ∗ 1−S(d),
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for every d. The left hand side is in Z[ζN ], while the right hand side in Q, whence |T (ζdN )|2 ∈ Z for
all d (similarly for S).

The next part follows from the fact that T (X−1) is the mask polynomial of −T , and if A(X), B(X)
are the mask polynomials of the multisets A, B, then A(X)B(X) is the mask polynomial of the sumset
A+B (counting multiplicities). Furthermore, the coefficients of the mask polynomial of the multiset
T − T are precisely the values of 1T ∗ 1−T , which yields

T (X)T (X−1) ≡
N−1∑

t=0

1T ∗ 1−T (t)X
t ≡

∑

d|N
1T ∗ 1−T (d)RN/d(X

d) ≡

≡ |T |
|S|2

∑

d|N
|S(ζdN )|2RN/d(X

d) mod (XN − 1),

completing the proof. �

For any T ⊆ ZN and d | N , 0 ≤ j ≤ d− 1, we define

Tj,d := {t ∈ T : t ≡ j mod d}.
Proposition 4.4. The following holds for a primitive T ⊆ ZN possessing a formal dual:

1T ∗ 1−T (1)RN (X) ≡
∑

d|N
µ(d)

d−1∑

j=0

Tj,d(X)Tj,d(X
−1) mod (XN − 1).

Proof. Consider the following union of multisets:
⋃

0≤i,j≤rad(N)−1
gcd(N,i−j)=1

(Ti,rad(N) − Tj,rad(N)).

By definition, this is precisely the set Z⋆
N , where every element appears with the same multiplicity,

i.e. 1T ∗ 1−T (1), hence its mask polynomial is

1T ∗ 1−T (1)RN (X).

On the other hand, we have

∑

d|N
µ(d)

d−1∑

j=0

Tj,d(X)Tj,d(X
−1) ≡

N−1∑

n=0

∑

d|N
µ(d)

d−1∑

j=0

1Tj,d
∗ 1−Tj,d

(n)Xn mod (XN − 1),

so we will compare coefficients between the latter polynomial and 1T ∗1−T (1)RN (X). The coefficient

of Xn in
∑N−1

n=0

∑
d|N µ(d)

∑d−1
j=0 1Tj,d

∗ 1−Tj,d
(n)Xn is simply

(4.8)
∑

d|N
µ(d)

d−1∑

j=0

1Tj,d
∗ 1−Tj,d

(n).

The term 1Tj,d
∗ 1−Tj,d

(n) counts the number of pairs (t, t′) ∈ Tj,d × Tj,d that satisfy t − t′ = n. If
gcd(n,N) = 1, t and t′ cannot belong to the same set Tj,d, for every d > 1, 0 ≤ j ≤ d−1; therefore the
only contribution comes from the term 1T ∗1−T (n) = 1T ∗1−T (1), which is the same as the coefficient
of Xn in 1T ∗ 1−T (1)RN (X). If gcd(n,N) > 1, then the contribution of a specific pair (t, t′) ∈ T × T
with t− t′ = n in (4.8) is

∑
d|t−t′ µ(d) = 0, which shows that both coefficients must be equal to 0 in

this case, completing the proof. �

Lemma 4.5. Let T , S be formally dual subsets of ZN . Then, for every d | N we have

1√
d|T |3/2

∑

e|d
µ(de )|T (ζ

e
N )|2 = 1√

N/d|S|3/2
∑

δ|N
d

µ(N/d
δ )|S(ζδN )|2.

Proof. By Proposition 4.3, we get

|T (ζeN )|2 = |T |
|S|2

∑

δ|N
|S(ζδN )|2CN/δ(e) =

|T |
|S|2

∑

δ|N
|S(ζδN )|2

∑

g|gcd(e,N/δ)

gµ(
N/δ

g
).
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Hence,

(4.9)
∑

e|d
µ(

d

e
)|T (ζeN )|2 = |T |

|S|2
∑

δ|N
|S(ζδN )|2

∑

e|d
g|gcd(e,N/δ)

gµ(d/e)µ(
N/δ

g
).

The inner sum is equal to
∑

g|gcd(d,N/δ)

gµ(
N/δ

g
)
∑

g|e|d
µ(d/e) =

∑

g|gcd(d,N/δ)

gµ(
N/δ

g
)
∑

e′| d
g

µ(
d/g

e′
).

The latter sum is nonzero, precisely when g = d and d | N
δ ; in that case it’s equal to dµ(N/d

δ ).
Substituting into (4.9) we obtain

∑

e|d
µ(

d

e
)|T (ζeN )|2 = d|T |

|S|2
∑

δ|N
δ

µ(
N/d

δ
)|S(ζδN )|2,

and the proof is completed by dividing both sides by
√
d|T |3/2. �

Next, we restrict our attention to primitive subsets of ZN , that is, subsets that are not contained in
a coset of a proper subgroup. We remark that if we remove this restriction, there are trivial pairs of
formal duals given by H < ZN and H⊥, its orthogonal subgroup (which is isomorphic to the group of
characters that vanish on H). However, these examples come from dual lattices in Euclidean spaces,
so we gain no new information with regards to formal duality there. Furthermore, if T is not primitive,
we can always reduce this situation to a primitive formally dual pair in ZM , where M | N [1].

Proposition 4.6. Let T ⊆ ZN be primitive. Then, for every ζ 6= 1, ζN = 1, we have

|T (ζ)| < |T |.

Proof. Assume otherwise, that |T (ζ)|2 = |T |2, where ζ is a primitive dth root of unity. As T is
primitive, there are at least two integers j, k with j 6≡ k mod d, such that Tj,d and Tk,d are nonempty.
Then,

|T (ζ)| =
∣∣∣∣∣

d−1∑

i=0

Ti,dζ
i

∣∣∣∣∣ ≤ |Tj,dζ
j + Tk,dζ

k|+
∑

0≤i≤d−1
j,k 6≡i mod d

|Ti,d| <
d−1∑

i=0

|Ti,d| = |T |,

as |Tj,dζ
j + Tk,dζ

k| < |Tj,d| + |Tk,d|; equality could only hold if |Tj,d|ζj = λ|Tk,d|ζk for some λ > 0,
however, this is impossible. �

Lemma 4.5 provides the following estimate on 1T ∗ 1−T (1).

Corollary 4.7. Let T , S be primitive formally dual subsets of ZN . Then,

1T ∗ 1−T (1) ≤
2ω(N)−1|T |2

N
,

and similarly for S. Equality can only hold when ω(N) = 1 and T (ζp) = 0. Furthermore, if |T | ≤ |S|
and 1T ∗ 1−T (1) 6= 0 (or equivalently, S(ζN ) 6= 0), the following inequalities hold:

√
N

2ω(N)−1
≤ |T | ≤

√
N ≤ |S| ≤

√
2ω(N)−1N,

where again the leftmost and rightmost inequalities are equalities precisely when ω(N) = 1, T (ζp) = 0
and 1T ∗ 1−T (1) = 1.

Proof. We apply Lemma 4.5 for d = N :

1

|S|3/2
|S(ζN )|2 = 1√

N |T |3/2
∑

e|N
µ(N/e)|T (ζeN )|2 ≤ 2ω(N)−1|T |2√

N |T |3/2
,

by Proposition 4.6, where equality could only hold if ω(N) = 1 and T (ζp) = 0. By (4.3), the left hand
side is equal to

|S|3/2
N

1T ∗ 1−T (1),
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whence

1T ∗ 1−T (1) ≤
2ω(N)−1N |T |2√
N |S|3/2|T |3/2

=
2ω(N)−1|T |2

N
,

as desired. Solving this inequality for |T | and then using N = |S| · |T | by Proposition 4.2, we get the
final inequalities. �

The above estimate is not always the best we can achieve; we will close this section with another
estimate which most of the times is better.

Lemma 4.8. Let T , S be primitive formally dual subsets of ZN . Then

(4.10) 1T ∗ 1−T (1) ≤
|T |2 − |T |
ϕ(N)

<
|T |2
ϕ(N)

,

and similarly for S. Furthermore, if |T | ≤ |S| and 1T ∗ 1−T (1) 6= 0 (or equivalently, S(ζN ) 6= 0), the
following inequalities hold:

(4.11)
√

ϕ(N) < |T | ≤
√
N ≤ |S| < N√

ϕ(N)
.

The middle equalities can only hold when N is a square.

Proof. The number of nonzero differences between elements of T are precisely |T |2 − |T | (counting
multiplicities). If 1T ∗1−T (1) 6= 0, this means that every element of Z⋆

N appears at least once in T −T ,
yielding (4.10) (if 1T ∗1−T (1) = 0, it is trivial). From |T | ≤ |S| and (4.10) we easily obtain (4.11). �

Now we compare the inequalities from Corollary 4.7 and Lemma 4.8. Suppose that ω(N) ≥ 3, that
is N has at least three distinct prime factors. Then,

|T |2
ϕ(N)

=
|T |2
N

∏

p|N
p prime

(
1− 1

p

)−1

≤ |T |2
N

· 2 · 3
2
·
(
5

4

)ω(N)−2

<
2ω(N)−1|T |2

N
,

as (8/5)k > 3/2 for all k ≥ 1, so Lemma 4.8 provides a better bound. The same holds when ω(N) = 2
and N is odd, as

|T |2
ϕ(N)

≤ |T |2
N

3 · 5
2 · 4 <

2|T |2
N

,

but at all other cases, Corollary 4.7 gives better bounds. Indeed, if ω(N) = 1, then obviously

|T |2
N

<
|T |2
ϕ(N)

,

while if ω(N) = 2 and N even, we obtain

2|T |2
N

=
2|T |2
ϕ(N)

p− 1

2p
<

|T |2
ϕ(N)

,

where p the unique odd prime dividing N .

5. The field descent method

We mention the main tools from the field descent method, developed in [9, 18, 19]. The question that
was addressed by this method is the following: under which circumstances can we have X ∈ Z[ζN ],

such that |X|2 = n ∈ Z? First, we need the definition below, before we pass to the main theorems of
the field descent method.

Definition 5.1 (Definition 2.6 [9]). Let m,n > 1 integers. D(t) denotes the set of prime divisors of
an integer t. For q ∈ D(n) let

mq :=

{∏
p∈D(m)\{q} p, if m is odd or q = 2

4
∏

p∈D(m)\{2,q} p, otherwise.
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Set

b(2,m, n) = maxq∈D(n)\{2}
{
ν2(q

2 − 1) + ν2(ordmq (q))− 1
}

b(r,m, n) = maxq∈D(n)\{r}
{
νr(q

r−1 − 1) + νr(ordmq (q))
}

for any prime r > 2 with the convention that b(2,m, n) = 2 if D(n) = {2} and b(r,m, n) = 1 if
D(n) = {r}. We define

F (m,n) := gcd(m,
∏

p∈D(m)

pb(p,m,n)).

Theorem 5.2 ([18, 19]). Let A ∈ Z[ζm], such that |A|2 = n. Then, A belongs to a smaller cyclotomic
field up to multiplication by a root of unity, that is

A ∈ ζjmZ[ζF (m,n)].

Theorem 5.3 ([19]). Let X ∈ Z[ζm] be of the form

X =
m−1∑

i=0

aiζ
i
m

with 0 ≤ ai ≤ C for some constant C and assume that n = |X|2 is an integer. Then

n ≤ C2F (m,n)2

4ϕ(F (m,n))
.

The definition of F (m,n) seems technical, so we need the Proposition below in order to shed some
light on it; see also [9].

Proposition 5.4. The number F (m,n) has the following properties.

(1) F (m,n) divides m.
(2) rad(m) = rad(F (m,n)).
(3) F (m,n) = F (m, rad(n)), i.e., if we fix m, F (m,n) depends only on the prime divisors of n.
(4) For every finite set of primes P , there is an explicitly computable constant C(P ), such that

F (m,n) ≤ C(P ) whenever D(m),D(n) ⊆ P (Proposition 2.2.7 [19]).

The case ω(m) ≤ 2 and D(n) ⊆ D(m) (n > 1) will be particularly useful in the next two sections,
so we will provide formulae for F (m,n) in this case. By Proposition 5.4(3), F (m,n) = F (m, p) if
D(m) = {p}, and F (m,n) is equal to F (m, pq), F (m, p), or F (m, q), if D(m) = {p, q}.
Proposition 5.5. Let p, q be distinct primes. We have

F (pk, p) =

{
p, if p > 2

gcd(2k, 4), if p = 2.

Next, let m = pkql and k, l > 0. If m is odd we have

F (m, pq) = gcd(m, (pq−1 − 1)(qp−1 − 1))(5.1)

F (m, p) = p gcd(ql, pq−1 − 1)(5.2)

F (m, q) = q gcd(pk, qp−1 − 1),(5.3)

and if m is even (without loss of generality, p = 2) we have

F (m, 2q) =

{
gcd(m, 12(q

2 − 1)(2q−1 − 1)), if q ≡ 1 mod 4

gcd(m, (q2 − 1)(2q−1 − 1)), if q ≡ 3 mod 4
(5.4)

F (m, 2) =

{
2 gcd(ql, 2q−1 − 1), if 4 ∤ m

4 gcd(ql, 2q−1 − 1), if 4 | m(5.5)

F (m, q) =

{
q gcd(2k, 12 (q

2 − 1)), if q ≡ 1 mod 4

q gcd(2k, q2 − 1), if q ≡ 3 mod 4
.(5.6)

At all cases,

(5.7) F (m, p), F (m, q) ≤ F (m, pq) ≤ paqb,
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where

a =

{
νp(q

p−1 − 1), if p > 2

ν2(q
2 − 1), otherwise,

b = νq(p
q−1 − 1).

Proof. By Definition 5.1, b(2, 2k , 2) = 2 and b(p, pk, p) = 1 for p > 2, so F (2k, 2) = gcd(2k, 22), while
F (pk, p) = gcd(pk, p) = p, proving the first part.

Next, let m = pkql. First we assume that m is odd. Then, according to Definition 5.1, mq = p
and mp = q, therefore b(p,m, pq) = b(p,m, q) = νp(q

p−1 − 1) while b(p,m, p) = 1, and similarly
b(q,m, pq) = b(q,m, p) = νq(p

q−1 − 1) and b(q,m, q) = 1, since p ∤ ordp(q) and q ∤ ordq(p). This shows
that

F (m, pq) = gcd(m, pb(p,m,pq)qb(q,m,pq)) = gcd(m, (pq−1 − 1)(qp−1 − 1)),

since
νp((p

q−1 − 1)(qp−1 − 1)) = νp(p
q−1 − 1) + νp(q

p−1 − 1) = b(p,m, pq),

and similarly for b(q,m, pq). Moreover,

F (m, p) = gcd(m, pqb(q,m,p)) = p gcd(ql, qp−1 − 1),

and the formula for F (m, q) is recovered in the same manner.
Next, assume that m is even, so that p = 2 without loss of generality. Then, m2 = q and mq = 4,

therefore b(2,m, 2q) = b(2,m, q) = ν2(q
2−1)+ν2(ord4(q))−1 and b(2,m, 2) = 2; similarly b(q,m, 2q) =

b(q,m, 2) = νq(2
q−1 − 1), as q ∤ ordq(2), and b(q,m, q) = 1, as before. Hence,

F (m, 2q) = gcd(m, 2b(2,m,2q)qb(q,m,2q)) = gcd(m,
1

2
ord4(q)(q

2 − 1)(2q−1 − 1))

yielding (5.4). Also

F (m, 2) = gcd(m, 4qb(q,m,2)) = 2 gcd(
m

2
, 2q − 2),

and

F (m, q) = gcd(m, 2b(2,m,q)q) = q gcd(2k,
1

2
ord4(q)(q

2 − 1)),

giving us (5.5) and (5.6). Equation (5.7) follows easily. �

6. The prime power case, revisited

Now we are ready to apply the methods already introduced; we will begin by providing two different
proofs for the prime power case, one using the field descent method and one using the polynomial
method. We emphasize that the polynomial method comprises of similar arguments as in [21], albeit
with a different language.

Theorem 6.1. Let N = pk, where p prime. Then, ZN cannot have primitive formally dual sets,
unless N = 4

Let N = pm, and let T , S be a pair of primitive formally dual subsets of ZN . We have (see also
Lemma 7.1)

(T − T ) ∩ Z⋆
N 6= ∅ 6= (S − S) ∩ Z⋆

N ,

otherwise T −T ⊆ pZN or S−S ⊆ pZN , a possibility excluded due to the fact that T , S are primitive.
Thsi is equivalent to 1T ∗ 1−T (1)1S ∗ 1−S(1) 6= 0 or T (ζN )S(ζN ) 6= 0. Without loss of generality, we

suppose |T | ≤ |S|, so that |T | ≤
√
N . If N is not a square, then m = 2k + 1, and

|T | ≤ pk < pk+1 ≤ |S|.
But then, the differences between unequal elements of T are

|T |2 − |T | ≤ p2k − pk < p2k(p− 1) = ϕ(N),

contradicting Lemma 4.8. Hence, N must be a square, so that m = 2k. If |T | < |S|, then |T | ≤ pk−1,
and we are led again to a contradiction, as

|T |(|T | − 1) ≤ p2k−2 − pk−1 < p2k−1(p− 1) = ϕ(N).

Therefore, |T | = |S| =
√
N = pk.
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Proof of Theorem 6.1 via the field descent method. By Lemma 4.8 we have

0 < 1T ∗ 1−T (1) <
|T |2
N

=
N

ϕ(N)
=

p

p− 1
≤ 2,

hence 1T ∗ 1−T (1) = 1 and by (4.3) we get

n = |S(ζN )|2 = |S|2
|T | ≥

√
N = pk,

and D(n) = {p}. Furthermore, S(ζN ) =
∑

s∈S ζ
s
N , therefore applying Theorem 5.3 with C = 1 and

Propositions 5.4 and 5.5 we get for p odd

pk ≤ F (p2k, p)2

4ϕ(F (pk, p))
=

p2

4(p − 1)
< p,

a contradiction, while for p = 2,

2k ≤ F (22k, 2)2

4ϕ(F (22k , 2))
= 2,

yielding k = 1, as desired. �

Proof of Theorem 6.1 via the polynomial method. Define Tj := {t ∈ T : t ≡ j mod p}. Since
1T ∗ 1−T (1) = 1,

Proposition 4.4 gives

RN (X) ≡ T (X)T (X−1)−
p−1∑

j=0

Tj(X)Tj(X
−1) mod XN − 1,

so that

RN (ζ) = |T (ζ)|2 −
p−1∑

j=0

|Tj(ζ)|2,

for every Nth root of unity ζ. Putting ζ = 1 we get

ϕ(N) = N −
p−1∑

j=0

|Tj|2 ⇐⇒
p−1∑

j=0

|Tj|2 = N/p ⇐⇒ N = p

p−1∑

j=0

|Tj|2 ≥ |T |2

by Cauchy-Schwarz inequality, where equality holds precisely when all |Tj | are the same; equality

indeed holds3, since |T | =
√
N , hence |Tj | = pk−1, for all j. This implies that

T (ζp) =

p−1∑

j=0

ζjp|Tj| = 0,

and similarly S(ζp) = 0. The case N = p2 has already been tackled in [1], where primitive formally
dual subsets exist only for p = 2, so we may assume that m = 2k with k ≥ 2.

If T (ζ) 6= 0 for any other Nth root of unity besides ζp and its conjugates, then S − S intersects all

divisor classes except for N
p Z

⋆
N , yielding

|S|2 − |S| ≥
m−2∑

i=0

ϕ(N/pi) = N − p,

while on the other hand

|S|2 − |S| = N −
√
N < N − p,

a contradiction. So, there is some Nth root of unity ζ with ζp 6= 1, such that T (ζ) = 0, hence by (3.2)

0 = RN (ζ) = −
p−1∑

j=0

|Tj(ζ)|2,

3In [1, 21], this argument was attributed to Gregory Minton.



FORMAL DUALITY IN FINITE CYCLIC GROUPS 15

implying that Tj(ζ) = 0 for all j. This leads to a contradiction, when we take derivatives; by Lemma
3.4 we have

R′(ζ) ≡ Nζ−1

[
1

ζ − 1
− 1

ζp − 1

]
≡ N(1 + ζ + . . . + ζp−2)

ζp − 1
≡ N

ζp − 1

ζp−1 − 1

ζ − 1
6≡ 0 mod NZ[ζN ],

since ζp−1−1
ζ−1 is a unit in Z[ζN ], while ζp − 1 is not. On the other hand, we obtain

[
T (X)T (X−1)−∑p−1

j=0 Tj(X)Tj(X
−1)

]′
=

T ′(X)T (X−1)− T (X)T ′(X−1)X−2 −∑p−1
j=0(T

′
j(X)Tj(X

−1)− Tj(X)T ′
j(X

−1)X−2),

and keeping in mind that we have T (ζ) = T (ζ−1) = Tj(ζ) = Tj(ζ
−1) = 0 for all j, we get

d

dX


T (X)T (X−1)−

p−1∑

j=0

Tj(X)Tj(X
−1)



X=ζ

= 0,

a contradiction. Thus, if N is a prime power with N 6= 4, there are no primitive formally dual pairs
in ZN . �

7. Products of two prime powers

In this section, we will address the case D(N) = {p, q}.
Lemma 7.1. Let T ⊆ ZN be primitive and N is divisible by at most two primes. Then (T −T )∩Z⋆

N 6=
∅.

Proof. If rad(N) = p, then T is not a subset of any coset of the subgroup pZN . In particular, there
are two elements of T that are not congruent modp; hence, their difference is also prime to N , which
yields the desired conclusion.

Let rad(N) = pq, and define Tj = {t ∈ T : t ≡ j mod p}. Since T is primitive, at least two of the
sets Tj are nonempty. Let Ta and Tb be two arbitrary nonempty sets of this family. Suppose that Ta

has at least two elements, say t, t′, and take t′′ ∈ Tb. Assume that (T − T )∩Z⋆
N = ∅. Since p ∤ t− t′′,

we must certainly have q | t − t′′, otherwise gcd(t − t′′, N) = 1. The same holds for the difference
between elements of Ta and Tb, so

Ta − Tb ⊆ qZN .

On the other hand, t− t′ = (t− t′′)− (t′ − t′′) ∈ qZN , and since t, t′ ∈ Ta were arbitrary, we obtain

Ta − Ta ⊆ qZN ,

therefore,

T − T =

p−1⋃

a,b=0

(Ta − Tb) ⊆ qZN ,

a contradiction. Thus, (T − T ) ∩ Z⋆
N 6= ∅. �

Remark. The above does not necessarily hold when n is divisible by at least three primes. For
example, take rad(N) = pqr, and

T = pqZN ∪ qrZN ∪ prZN .

T is indeed a primitive set, but (T − T ) ∩ Z⋆
N = ∅.

Lemma 7.1 shows that S(ζN )T (ζN ) 6= 0 when rad(N) = pq and S, T are primitive formally dual,
or equivalently, 1T ∗ 1−T (1),1S ∗ 1−S(1) ≥ 1. Upper bounds are given by the following:

Proposition 7.2. Let N be a positive integer with rad(N) = pq, and T , S primitive formally dual
subsets of ZN with |T | ≤ |S|. Then

(7.1) |S(ζN )|2 = |S|3
N

.
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Furthermore, 1S ∗ 1−S(1) ≤ 3, so that

|T (ζN )|2 = K|T |3
N

,

where 1 ≤ K ≤ 3.

Proof. By Corollary 4.7 we obtain

1T ∗ 1−T (1) <
2|T |2
N

≤ 2,

whence 1T ∗ 1−T (1) = 1, due to Lemma 7.1, yielding (7.1). Furthermore,

1S ∗ 1−S(1) <
2|S|2
N

<
2 · 2N
N

= 4,

concluding the proof. �

Since |S| | N and |S(ζN )|2 ∈ Z, Proposition 7.2 implies that |S(ζN )|2 is not divisible by primes

other than p and q, and |S| ≥
√
N yields

|S(ζN )|2 ≥
√
N,

that is, the squared modulus of the algebraic integer S(ζN ) ∈ Z[ζN ] is a relatively large integer with
respect to the order of ζN , i.e. N . This leads to the main result of this section.

Theorem 7.3. Fix p, q, two distinct primes. Then, possibly with finitely many exceptions, no group
ZN with rad(N) = pq possesses primitive formally dual subsets.

Proof. Let P = {p, q} and put a, b, exactly as in Proposition 5.5, hence F (m,n) ≤ paqb, whenever
D(n) ⊆ D(m) = P . Now let N = pkql, and T, S ⊆ ZN be primitive formally dual, with |T | ≤ |S|, so
that |S| ≥

√
N ; also, put n = |S(ζN )|2, where ζN = e2πi/N . Then, by Proposition 7.2 we get

(7.2) n =
|S|3
N

≥
√
N.

On the other hand, we observe that S(ζN ) =
∑

j∈S ζjN , so if we put X = S(ζN ) as in Theorem 5.3,
the constant C can be taken equal to 1. Applying this Theorem we obtain

(7.3) n ≤ F (N,n)2

4ϕ(F (N,n))
=

F (N,n)

4(1 − 1
p)(1− 1

q )
≤ paqb

4(1− 1
p)(1− 1

q )
.

Combining equations (7.2) and (7.3), we get

N ≤ p2aq2b

16(1 − 1
p)

2(1− 1
q )

2
,

hence at most finitely many groups ZN with rad(N) = pq possess primitive formally dual subsets. �

Theorem 7.3 tackles the Conjecture when the sum of the exponents of p and q is sufficiently high.
Next, we will tackle some cases where one or both of the exponents are small.

Proposition 7.4. Let N = paq, where p, q distinct primes. Then ZN does not have primitive formally
dual subsets.

Proof. We remind that if a = 1 then N is square–free, so this is already proven by [27]; we may assume
that a > 1. Suppose on the contrary that T , S are such subsets, with |T | < |S| as usual (equality
cannot occur in this case, as N is not a square), therefore

(7.4)
√

ϕ(N) < |T | <
√
N < |S| < N√

ϕ(N)
.

By Proposition 7.2 we get

|S(ζN )|2 = |S|3
N

,

hence q | |S| and q ∤ |T |, so |T | = pb and |S| = pa−bq for some integer b. We recall that

(7.5) |T (ζN )|2 = |T |3
N

1S ∗ 1−S(1).
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Since the latter is an integer, q | N and q ∤ |T |, we must have

(7.6) q | 1S ∗ 1−S(1).

Suppose first that q is odd; then by Proposition 7.2 we must have q = 1S ∗1−S(1) = 3 so that N = 3pa

and ϕ(N) = 2(p− 1)pa−1. By virtue of Lemma 4.8 we obtain
√
2(p − 1)p

a−1

2 < pb <
√
3p

a
2 .

If N is odd, then p > 3, so we have
√

2(p− 1) >
√
p, so the above inequalities lead to

p
a
2 < pb < p

a+1

2

which is a contradiction, as there is no such integer b.
Now suppose that p = 2, so that N = 2a3. Then |T | = 2b and by (7.4) we get

2
a
2 < 2b < 2

a
2

√
3,

yielding |T | = 2
a+1

2 and |S| = 2
a−1

2 3; also, a must be odd. Equations (7.5) and (7.6) yield

|T (ζN )|2 = 2
a+3

2 .

Applying Theorem 5.3 and equation (5.4), we get

|T (ζN )|2 ≤ F (2a3, 2)

4ϕ(F (2a3, 2))
=

122

4ϕ(12)
= 9,

and since a is odd, the only solution we get from 2
a+3

2 ≤ 9 is a = 3. Hence, N = 24, |T | = 4, |S| = 6,

and |T (ζN )|2 = 8. Now we will try to determine T−T as a multi-set. Since 12 = |T |2−|T | < 2ϕ(24) =

16 it only contains Z⋆
24 with multiplicity one. The rest of the 4 = |T |2−|T |−ϕ(24) differences between

different elements of T must belong to other divisor classes. Two of these classes must necessarily be
from

12Z⋆
24 = {12}, 6Z⋆

24 = {6, 18}, 3Z⋆
24 = {3, 9, 15, 21},

otherwise 4 | |S|, a contradiction. Thus, the only possibility is for 12Z⋆
24 to appear with multiplicity

2 and 6Z⋆
24 with multiplicity 1. This means, that there is some t ∈ T , such that t + 12 ∈ T , say

T = {u, v, t, t+ 12}. But then,
|T (ζN )|2 = |ζuN + ζvN + ζtN − ζtN |2 = |ζuN + ζvN |2 ≤ 4 < 8,

a contradiction. Therefore, neither in this case do exist primitive formally dual subsets.
Finally, suppose that q = 2, so that N = 2pa, |T | = pb, |S| = 2pa−b. By (7.4) we have the bounds

√
2p

a
2 < 2pa−b <

2p
a+1

2

√
p− 1

,

or equivalently,

1√
2
p

a
2 < pa−b <

p
a+1

2√
p− 1

,

which can only happen if a is even and a = 2b. Hence, |S| = 2p
a
2 and |T | = p

a
2 ; however, this

contradicts Corollary 4.7 and Lemma 7.1, as

1T ∗ 1−T (1) <
2|T |2
N

= 1,

completing the proof. �

Proposition 7.5. Let N = paq2, where p, q distinct primes and a is odd. Then ZN does not have
primitive formally dual subsets.

Proof. Throughout the proof we assume that a ≥ 3, as the case a = 1 is covered by Proposition 7.4.
As before, we assume that T , S are primitive formally dual subsets of ZN , with |T | < |S|, as N is not
a square, hence

√
ϕ(N) < |T | <

√
N < |S| < N√

ϕ(N)
.
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Proposition 7.2 implies that q | |S|. We will also show that q | |T |; suppose on the contrary that
q ∤ |T |. Then q2 | 1S ∗ 1−S(1), since

|T (ζN )|2 = |T |3
N

1S ∗ 1−S(1),

contradicting Proposition 7.2.
Thus, q divides both |T | and |S|, hence |T | ≤ pkq, where a = 2k + 1. This leads to |T |2 − |T | ≤

pkq(pkq−1), while ϕ(N) = p2kq(p−1)(q−1). Since |T |2−|T | ≥ ϕ(N), we get pkq−1 ≥ pk(p−1)(q−1);
when p is odd, the latter is ≥ 2pk(q− 1) ≥ pkq, a contradiction. Hence, p = 2, and applying Corollary
4.7 we obtain

1T ∗ 1−T (1) <
2|T |2
N

≤ 2 · 22kq2
22k+1q2

= 1,

contradicting Lemma 7.1, as desired. �

Lastly, we prove the following:

Proposition 7.6. Let N = p2q2, for p, q distinct primes. Then, ZN does not have primitive formally
dual subsets.

Proof. As usual, suppose that such subsets exists, with |T | ≤ |S|. Without loss of generality assume
p < q; then |T | ∈

{
p, q, p2, pq

}
. If |T | = p or |T | = q, then ϕ(N) = pq(p − 1)(q − 1) ≥ 2q(q − 1) >

q2 ≥ |T |2, contradicting Lemma 4.8 and Lemma 7.1. If |T | = p2, then ϕ(N) = pq(p − 1)(q − 1) ≥
(p+2)(p+1)p(p−1) = p4+2p3−p2−2p > p4, contradicting again Lemma 4.8. Thus, |T | = |S| = pq,
and Proposition 7.2 applies to T as well, that is

|S(ζN )|2 = |T (ζN )|2 = pq,

or equivalently, 1T ∗ 1−T (1) = 1S ∗ 1−S(1) = 1. Applying Lemma 4.5 for d = N we obtain

pq

(pq)3/2
=

1

pq(pq)3/2

[
|T (1)|2 − |T (ζp)|2 − |T (ζq)|2 + |T (ζpq)|2

]
,

or equivalently,

(7.7) |T (ζpq)|2 = |T (ζp)|2 + |T (ζq)|2,
and similarly for S,

(7.8) |S(ζpq)|2 = |S(ζp)|2 + |S(ζq)|2.
Suppose first that T (ζpq) = 0; from (7.7) we also get T (ζp) = T (ζq) = 0, hence T (X) is divided by
Xpq−1
X−1 = 1 +X + · · · +Xpq−1. Since T (1) = |T | = pq, we have

T (X) ≡ 1 +X + · · ·+Xpq−1 mod (Xpq − 1).

This implies that |Tj,pq| = 1, for all 0 ≤ j ≤ pq − 1, therefore

1T ∗ 1−T (pq) = 1T ∗ 1−T (p
2q) = 1T ∗ 1−T (pq

2) = 0,

or S(ζpq) = S(ζp) = S(ζq) = 0. Moreover, Tj,pq(X) are monomials with coefficient 1; since 1T ∗
1−T (1) = 1, we have ⋃

j∈Zpq

(Tj,pq − Tj−1,pq) = 1 + pqZN .

Taking mask polynomials on both sides we obtain

X(1 +Xpq + · · ·+Xpq(pq−1)) ≡
∑

j∈Zpq

Tj,pq(X)Tj−1,pq(X
−1) mod (XN − 1).

Differentiating both sides with respect to X and then setting X = 1 we get

pq + pq
pq(pq − 1)

2
≡

∑

j∈Zpq

T ′
j,pq(1)Tj−1,pq(1)− Tj,pq(1)T

′
j−1,pq(1) mod N

≡
∑

j∈Zpq

T ′
j,pq(1)− T ′

j−1,pq(1) ≡ 0 mod N,

a contradiction, since the left hand side can never be divisible by N ; if N is odd, it is pq mod N ,
otherwise, we have (say) p = 2, and it is 2q mod 2q2.
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Therefore, we assume that T (ζpq)S(ζpq) 6= 0. If T (ζpN ) = 0, then

T (Xp) ≡ Pp(X
p)Φp(X

N/p) +Qp(X
p)Φq(X

N/q) mod (XN − 1),

for some Pp, Qp ∈ Z[X] with nonnegative coefficients. Since

pq = T (1) = pPp(1) + qQp(1),

we have either Pp(1) = q and Qp ≡ 0 or Pp ≡ 0 and Qp(1) = p. The former case implies

T (Xpq) ≡ Pp(X
pq)Φp(X

N/p) mod (XN − 1),

contradicting T (ζpq) 6= 0. Thus, Pp ≡ 0, establishing

T (Xp) ≡ Qp(X
p)Φq(X

N/q) mod (XN − 1),

whence T (ζp
2

N ) = 0. Applying Lemma 4.5 for d = p2 we get

|S(ζq2N )|2 = |S(ζqN )|2,
and another application for d = p yields

− 1√
p
|T (ζN )|2 = − 1

q
√
p
|S(ζq)|2,

or equivalently, |S(ζq)|2 = pq2.

We distinguish two cases; first, T (ζp) = 0. By (7.7) we have |T (ζpq)|2 = |T (ζq)|2, so Lemma 4.5 for

d = p2q gives |S(ζqN )|2 = |S(ζN )|2, and thence

|S(ζq2N )|2 = |S(ζqN )|2 = |S(ζN )|2 = pq.

Also, by |S(ζq)|2 = pq2 and (7.8) we get |S(ζpq)|2 ≥ pq2, so by Proposition 4.3 for X = 1 we get

p2q2 =
1

pq

∑

d|N
|S(ζdN )|2ϕ(N/d) ≥ ϕ(p2q2) + ϕ(p2q) + ϕ(p2) + q(ϕ(pq) + ϕ(q)) + pq = p2q2,

therefore, since the inequality in the middle is actually an equality, we obtain

S(ζpN ) = S(ζp
2

N ) = S(ζp) = 0,

and utilizing the same arguments as before (interchanging T by S) we obtain

|T (ζdN )|2 = |S(ζdN )|2

for all integers d. This also yields

1T ∗ 1−T (1) = 1T ∗ 1−T (q) = 1T ∗ 1−T (q
2) = 1,

1T ∗ 1−T (pq) = 1T ∗ 1−T (p
2q) = q,

1T ∗ 1−T (p) = 1T ∗ 1−T (p
2) = 1T ∗ 1−T (pq

2) = 0.

For every j ∈ Zp, the difference sets Tj,p − Tj−1,p are subsets of 1 + pZN ; furthermore, from the
equations above, every element of 1 + pZN occurs exactly once as difference t − t′, where t, t′ ∈ T .
Hence, the following equality between multisets holds:

⋃

j∈Zp

(Tj,p − Tj−1,p) = 1 + pZN ,

and taking mask polynomials on both sides we obtain

(7.9)
∑

j∈Zp

Tj,p(X)Tj−1,p(X
−1) ≡ X

pq2−1∑

k=0

Xpk mod (XN − 1).

A consequence of T (ζp) = 0 is |Tj,p| = q for all j; indeed, as

T (ζp) =
∑

j∈Zp

ζjp|Tj,p| = 0.

Differentiating the left hand side side of (7.9) at X = 1, we get
∑

j∈Zp

T ′
j,p(1)Tj−1,p(1)− Tj,p(1)T

′
j−1,p(1) = q

∑

j∈Zp

T ′
j,p(1) − T ′

j−1,p(1) = 0,



20 ROMANOS DIOGENES MALIKIOSIS

and differentiating the right hand side of (7.9) at X = 1,

pq2 + p
pq2(pq2 − 1)

2
=

N

p
+N

N/p − 1

2
.

Next, we apply Lemma 3.2; if N is odd, then the above derivative is ≡ N
p mod N , a contradiction. So,

N must be even and p = 2, because this derivative is ≡ N
p mod N

2 . Furthermore, T (ζq2) = 0 implies
∑

j∈Zq2

ζj
q2
|Tj,q2| = 0.

This implies that for every j,

|Tj,q2 | = |Tj+q,q2| = |Tj+2q,q2 | = · · · = |Tj+(q2−q),q2 |,
or, simply put, |Tj,q| = q|Tj,q2 |. Since |T | = 2q and T 6= Tj,q for any j, due to the primitivity of
T , there must be j, k ∈ Zq, j 6= k, such that T = Tj,q ∪ Tk,q; moreover, |Tj,q| = |Tk,q| = q. The
differences T − T taken modq would then be only 0 and ±(j − k), which shows that q = 3, since all
possible residues modq appear in Z⋆

4q2 ⊆ T − T . Possibly after translating T , we may assume that

T = T0,3 ∪ T1,3. As multisets, we would have the following equality

(T0,3 − T1,3) ∪ (T1,3 − T0,3) = Z⋆
36.

But this leads to a contradiction, as the possible differences in the left hand side are 18, while Z⋆
36 = 12.

The next case is T (ζp) 6= 0. Applying Lemma 4.5 for d = p2q and (7.7) we obtain

− 1

p
√
q
|T (ζp)|2 =

1√
q

[
|S(ζqN )|2 − |S(ζN )|2

]
,

hence |S(ζqN )|2 < |S(ζN )|2 or equivalently, 1T ∗ 1−T (q) < 1. Therefore, S(ζqN ) = 0, and by Lemma 4.5
for d = p2 we also get

S(ζqN ) = S(ζq
2

N ) = 0.

Applying Lemma 4.5 for d = pq2 and d = q2, we obtain the formulae

1

q

[
−|T (ζq)|2 − |T (ζq2N )|2 + |T (ζqN )|2

]
= |S(ζpN )|2 − |S(ζN )|2

and
1

q

[
|T (ζq2N )|2 − |T (ζqN )|2

]
=

1

p

[
|S(ζp2N )|2 − |S(ζpN )|2

]
.

Adding these equations by parts yields

−1

q
|T (ζq)|2 =

1

p

[
|S(ζp2N )|2 − |S(ζpn)|2

]
+

[
|S(ζpN )|2 − |S(ζN )|2

]

=
1

p

[
|S(ζp2N )|2 − |S(ζn)|2

]
+

(
1− 1

p

)[
|S(ζpN )|2 − |S(ζN )|2

]
.

Since the left hand side is negative, either one of |S(ζpN )|2 and |S(ζp2N )|2 must be less than |S(ζN )|2; but
this means that one of them is zero, as it would imply that either 1T ∗1−T (p) < 1 or 1T ∗1−T (p

2) < 1.

If S(ζpN ) = 0, then S(ζp
2

N ) = 0 as well, since S(ζpq) 6= 0, so at any rate, S(ζp
2

N ) = 0. Hence,

−1

q
|T (ζq)|2 =

(
1− 1

p

)
|S(ζpN )|2 − |S(ζN )|2.

If 1T ∗1−T (p) ≥ 2, then |S(ζpN )|2 ≥ 2pq and the right hand side would be≥ 2(p−1)q−pq = (p−2)q ≥ 0,

while the left hand side is negative. so, either 1T ∗1−T (p) = 0 or 1. If 1T ∗1−T = 1, then |T (ζq)|2 = q2,

an absurdity as pq | |T (ζdN )|2 for all d ∈ Z. This shows that S(ζpN ) = 0 as well; a symmetric argument

also yields T (ζqN ) = T (ζq
2

N ) = 0. Now consider the difference sets Tj,p − Tk,p, for j 6≡ k mod p; all
differences are prime to p, and since 1T ∗ 1−T (q) = 1T ∗ 1−T (q

2) = 0, we must have the following
equality of multisets: ⋃

j,k∈Zp

j 6≡k mod p

(Tj,p − Tk,p) = Z⋆
N .



FORMAL DUALITY IN FINITE CYCLIC GROUPS 21

Taking mask polynomials, we get
∑

j,k∈Zp

j 6≡k mod p

Tj,p(X)Tk,p(X
−1) ≡ RN (X) mod (XN − 1),

whence for X = 1, ∑

j,k∈Zp

j 6≡k mod p

|Tj,p||Tk,p| = pq(p− 1)(q − 1).

The left hand side is also equal to

∑

j∈Zp

|Tj,p|



2

−
∑

j∈Zp

|Tj,p|2 = p2q2 −
∑

j∈Zp

|Tj,p|2.

therefore, ∑

j∈Zp

|Tj,p|2 = pq(p+ q − 1).

On the other hand, using a simliar argument as before, the fact that T (ζq
2

N ) = 0 implies p | |Tj,p| for
all p, whence p2 | ∑j∈Zp

|Tj,p|2; we should also have q2 | ∑j∈Zp
|Tj,p|2, as T (ζp

2

N ) = 0 as well, which is

clearly an absurdity as p2q2 ∤ pq(p+ q − 1).
Thus, we may assume that

T (ζpN )T (ζqN )T (ζpq)S(ζ
p
N )S(ζqN )S(ζpq) 6= 0,

otherwise we would revisit one of the previous cases, possibly by interchanging S by T and p by q.
We will show that

(7.10) q1T ∗ 1−T (p
2) + 1T ∗ 1−T (p

2q) ≥ q,

and similarly,

(7.11) p1T ∗ 1−T (q
2) + 1T ∗ 1−T (pq

2) ≥ p.

If 1T ∗1−T (p
2) ≥ 1, (7.10) is trivially satisfied, so assume 1T ∗1−T (p

2) = 0, or equivalently, S(ζp
2

N ) = 0.
Then,

S(Xp2) ≡ Q(Xp2)Φq(X
N/q) mod (XN − 1),

for some Q(X) ∈ Z[X] with nonnegative coefficients. Therefore,

S(Xp2q) ≡ qQ(Xp2q) mod (XN − 1),

whence

|S(ζq)|2 = q2|Q(ζq)|2.
The term |Q(ζq)|2 is simultaneously an algebraic integer by definition and a rational number due to

the above equation, hence an integer. This implies q2 | |S(ζq)|2, hence q | 1T ∗ 1−T (p
2q); we note

that 1T ∗ 1−T (p
2q) and 1T ∗ 1−T (p

2) cannot be both zero, otherwise q2 | |S|, a contradiction. Thus,
1T ∗ 1−T (p

2q) ≥ q in this case, proving (7.10) and (7.11) at all cases. Now apply Proposition 4.3 for
X = 1, along with (7.10) and (7.11) we get

|T |2 =
∑

d|N
1T ∗ 1−T (d)ϕ(N/d)

≥ pq + ϕ(p2q2) + ϕ(p2q) + ϕ(pq2) + ϕ(pq) +

+ 1T ∗ 1−T (p
2)ϕ(q2) + 1T ∗ 1−T (p

2q)ϕ(q) + 1T ∗ 1−T (q
2)ϕ(p2) + 1T ∗ 1−T (pq

2)ϕ(p)

≥ pq + pq(p− 1)(q − 1) + q(p − 1)(q − 1) + p(p − 1)(q − 1) + (p − 1)(q − 1) + q(q − 1) + p(p− 1)

= p2q2 + (p − 1)(q − 1) > p2q2,

which is clearly a contradiction, concluding the proof. �
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Summarizing the results of this section, we conclude that the field descent method tackles the cases
pkql with both exponents relatively high, while the polynomial method tackles the cases where one
exponent is small. Combining these methods, we see that for most pairs of primes the conjecture
is settled; of course, this needs to be properly quantified. In the Appendix, we find the number
of exceptions among all N with rad(N) = pq and p, q < 103, just to get an idea. This number is
significantly lower if we use the polynomial method to prove the N = p4q2 case.

8. Beyond two prime factors

The main obstruction to apply the field descent method when ω(N) > 2 is the fact that primitivity
of T ⊆ ZN does not imply (T−T )∩Z⋆

N 6= ∅, as can be seen from the Remark immediately after Lemma
7.1. However, it needs to be emphasized that so far this method was only applied to the condition
|S(ζN )|2 ∈ Z, and not |S(ζdN )|2 ∈ Z in general. For S(ζdN ), the constant C in Theorem 5.3 can be as

large as d, so it might suffice to show that there always exists some d | N , say d ≤ N1/5, satisfying
S(ζdN ) 6= 0. Moreover, Lemma 7.1 was proven for primitive sets, without any other condition. It is
possible that this can be extended to other cases with conditions such as |T | | N , or the requirement
that the differences t− t′ with t, t′ ∈ T are equidistributed in every divisor class dZ⋆

N .
Besides the case for square–free N where Conjecture 1.2 has been confirmed [27], we will show that

1.2 is also true for another family of orders N that satisfy the so–called self conjugacy property with
respect to a prime factor p (there is no restriction on the number of distinct prime factors for such
N). This notion was first used by Turyn [24] to attack the circulant Hadamard conjecture stated by
Ryser [17].

Definition 8.1. A prime p is called self–conjugate modN if every ideal P ⊆ Z[ζN ] dividing pZ[ζN ]
is invariant under complex conjugation, i.e. P = P.

In other words, the complex conjugation belongs to the decomposition group of any prime ideal
P | p. A characterization of the decomposition group (cf. Theorem 1.4.3 [19]) shows that σ ∈ GP if

and only if σ(ζm) = ζp
j

m for some j ∈ Z, where N = pam, p ∤ m (i.e. m is the p–free part of N). From
this follows the result of Turyn [24] (see also Corollary 1.4.5 [19]), a weaker version of which we state
below.

Theorem 8.2. Let A ∈ Z[ζN ] such that |A|2 ≡ 0 mod p2b, where p is self–conjugate modN . Then
A ≡ 0 mod pbZ[ζN ].

This the main result of this section.

Theorem 8.3. Let p be a prime such that p || N and pj ≡ −1 mod N
p for some integer j. Then ZN

does not have any pair of primitive formally dual subsets.

Proof. The hypothesis clearly shows that p is self–conjugate modN . Let T , S be a pair of primitive
formally dual subsets of ZN . Without loss of generality, we assume p | |T |, so that p ∤ |S|. For every
d | N we have

|T (ζdN )|2 = 1S ∗ 1−S(d)
|T |2
|S| ,

hence p2 | |T (ζdN )|2. We consider the mask polynomial T (X) mod (p,XN/p − 1), and let P be any
prime ideal in Q(ζpN ) that is above p. The degree of the residue field extension

f = [Z[ζpN ]/P : Z/pZ]

is also equal to the multiplicative order of p mod N
p . In particular, the ring epimorphism

Z[ζpN ] ։ κ(P) := Z[ζpN ]/P

sends all N
p th roots of unity of C to the N

p th roots of unity of κ(P). Let T (X) be the image of T (X)

under the projection
Z[X] ։ Fp[X].

Since p2 | |T (ζdN )|2 for every d | N , we must have

T (ζdN ) ≡ 0 mod P,
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for every d | N by Theorem 8.2; restricting to p | d, we observe that T (X) accepts as roots all N
p th

roots of unity of κ(P) ∼= Fpf , which yields

T (X) ≡ 0 mod (XN/p − 1).

Lifting up to Z[X], we obtain

T (X) ≡ pQ(X) mod (XN/p − 1),

or equivalently,

(8.1) T (Xp) ≡ pQ(Xp) mod XN − 1,

where we can take Q(X) ∈ Z≥0[X]. But T (Xp) mod XN − 1 is also the mask polynomial of the
multi-set p · T ; the multiplicities that appear in this multi-set are at most p, since T is a proper set.
On the other hand, (8.1) shows that all multiplicities are at least p. This can only occur when t ∈ T
implies t+ jN/p ∈ T for all j, as these elements exactly have the same image under multiplication by
p. Therefore, T is a union of p-cycles, in particular,

T (X) ≡ Φp(X
N/p)R(X) mod XN − 1,

for some R(X) ∈ Z≥0[X]. Then, for every t ∈ T , t−N/p ∈ T , which shows that

1T ∗ 1−T (
N
p ) = |T |,

hence by (4.3), |S(ζp)| = |S|, contradicting Proposition 4.6. �

Appendix A. Products of two powers of small primes

We will focus on N = pkql, where p, q < 103. As mentioned at the end of Section 7, the field
descent method tackles the cases where k+ l is large, and the polynomial method tackles those where
k + l is small, roughly speaking. Most of the times there is no gap, and when there is, it usually
consists of a single exception. This search for exceptions is assisted by simple computer programs on
wxMaxima4. In particular, for every pair (p, q) with p < q < 103 these programs compute νp(q

p−1−1)
and νq(p

q−1 − 1) when p > 2; when p = 2 they compute ν2(
1
2 ord4(q)(q

2 − 1)), as well the number of
possible exceptions from each pair of the form (2, q).

Before proceeding, we will need two useful propositions for small primes, as well as the notions of
a Wieferich prime and a Wieferich pair [26]:

Definition A.1. A prime p is called Wieferich, if p2 | 2p−1 − 1. A pair of primes (p, q) is called a
Wieferich pair, if p2 | qp−1 − 1 and q2 | pq−1 − 1.

There are only two known Wieferich primes, namely 1193 and 3511, and only 7 known Wieferich
pairs (sequences A124121 and A124122 from OEIS5):

(2, 1093), (3, 1006003), (5, 1645333507), (5, 188748146801), (83, 4871), (911, 318917), (2903, 18787).

Proposition A.2. Let N = p3q3. If ZN has a pair of primitive formally dual subsets, then p and q
are simultaneously twin primes and a Wieferich pair.

Proof. Let T, S ⊆ ZN be such a pair with |T | < |S|. Since |S(ζN )|2 ∈ Z, Proposition 7.2 implies
that pq | |S|. Furthermore, since 1S ∗ 1−S(1) cannot be divisible by the cube of any integer > 1 by
Proposition 7.2, we must also have pq | |T |. Without loss of generality, we consider p < q, so by
Proposition 4.2 the only possibility for |T | and |S| is

|T | = p2q, |S| = pq2.

If N is even, then p = 2, hence by Corollary 4.7 we get 32q2 = 2|T |2 > N = 8q3, hence q = 3, and

|S(ζN )|2 = 27 by Proposition 7.2. Applying Theorem 5.3 and Propositions 5.4 and 5.5, we obtain

27 ≤ F (216, 27)2

4ϕ(F (216, 27))
= 18,

a contradiction by Proposition 5.5.

4Available at https://sites.google.com/site/romanosdiogenesmalikiosis/computational-data
5http://oeis.org/A124121 and http://oeis.org/A124122

https://sites.google.com/site/romanosdiogenesmalikiosis/computational-data
 http://oeis.org/A124121
 http://oeis.org/A124122
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So, N must be odd. By Lemma 4.8, we get

pq
√

(p− 1)(q − 1) < p2q,

or equivalently, (p − 1)(q − 1) < p2, which cannot hold true unless q = p + 2, i.e. p and q are twin

primes. Since |S| = pq2, we will have |S(ζN )|2 = q3, so applying again Theorem 5.3 and Propositions
5.4 and 5.5 we get

q3 ≤ F (p3q3, q3)2

4ϕ(F (p3q3, q3))
=

F (p3q3, q)

4(1 − 1
p)(1 − 1

q )
=

q gcd(p3, qp−1 − 1)

4(1− 1
p)(1− 1

q )
,

or equivalently, 4(p−1)(q−1)q ≤ p gcd(p3, qp−1−1). This inequality can only hold when p3 | qp−1−1.
We note that this cannot happen when (p, q) = (3, 5) or (5, 7), so we may assume that p ≥ 7. Next,
we examine

|T (ζN )|2 = |T |3
N

1S ∗ 1−S(1) = p31S ∗ 1−S(1).

By Lemma 4.8 we get

1S ∗ 1−S(1) <
|S|2
ϕ(N)

=
q2

(p− 1)(q − 1)
= 1 +

4p+ 5

p2 − 1
≤ 1 +

p(p− 2)

(p − 1)(p + 1)
< 2,

since q = p + 2, so 1S ∗ 1−S(1) = 1 and |T (ζN )|2 = p3. Applying the field descent method, as was

done with |S(ζN )|2, we also get q3 | pq−1 − 1, thus p and q form a Wieferich pair. �

We remark that p and q satisfy a stronger condition than the one given in Definition A.1; at any
rate, these conditions never hold when p, q < 103. It is possible, however, that an application of the
polynomial method (that was left out from the proof) would eventually show that no such ZN has a
primitive formal dual pair.

Proposition A.3. Let N = p4q3. Then ZN has no primitive formally dual subsets.

Proof. Let T, S ⊆ ZN be such a pair with |T | < |S|. Since |S(ζN )|2 ∈ Z, Proposition 7.2 implies that
p2q | |S|. Furthermore, pq | |T |, since 1S ∗ 1−S(1) cannot be divided by a cube of an integer > 1.
If p || |T |, then we must necessarily have p | 1S ∗ 1−S(1), which can only happen if p = 2 or p = 3.
If p = 2, so that N = 16q3, then |T | = 2q2; the only other possibility would be |T | = 2q, but this

contradicts Corollary 4.7, as 2|T |2 = 8q2 < N in this case. Hence, |S| = 8q, and since |S| > |T |, we
must have q = 3 and |S(ζN )|2 = 32 by Proposition 7.2. Applying Theorem 5.3 and Propositions 5.4
and 5.5 we get

32 ≤ F (N, 32)2

4ϕ(F (N, 32))
=

F (2433, 2)

4/3
=

4gcd(33, 22 − 1)

4/3
= 9,

a contradiction. Assume next that p = 3. If |T | = 3q, then |T |2 < ϕ(N), hence the only possibility
that remains by Lemma 4.8 is |T | = 3q2 and |S| = 27q. Since |S| > |T |, we must have q < 9.

Furthermore, since |T |2 > ϕ(N) by Lemma 4.8, we should have

9q4 > 27q2 · 2(q − 1) ⇔ q2 > 6(q − 1),

which yields q > 4. Lastly, since 3 | 1S ∗ 1−S(1), we must have 1S ∗ 1−S(1) = 3 by Proposition 7.2,

which implies 3ϕ(N) < |S|2 by Lemma 4.8. Hence,

34q2 · 2(q − 1) < 36q2 ⇔ 2(q − 1) < 9,

yielding q ≤ 5, thus q = 5, and |S(ζN )|2 = 35 by Proposition 7.2. Applying Theorem 5.3 and
Propositions 5.4 and 5.5 we get

35 ≤ F (N, 35)2

4ϕ(F (N, 35))
=

F (N, 3)

4 · 2
3 · 4

5

<
1

2
· 3 gcd(53, 34 − 1) =

15

2
,

a contradiction.
Therefore, p || |T | cannot hold; p2q divides both |T | and |S|. The only possibility is |T | = p2q and

|S| = p2q2. The inequality ϕ(N) < |T |2 would then imply (p − 1)(q − 1) < p, which only holds when

q = 2. Applying Corollary 4.7 we establish a contradiction, as 2|T |2 = 8p4 = N , completing the
proof. �
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Proposition A.4. Let N = pmq3, with m ≥ 5 and p, q < 103. Then ZN has no primitive formally
dual subsets.

Proof. Let T, S ⊆ ZN be such a pair of subsets with |S| > |T |. As before, Proposition 7.2 yields q | |S|
and q | |T |. We distinguish two cases.

q || |S| As |S(ζN )|2 = |S|3
N , this must be equal to a power of p; furthermore, |S(ζN )|2 >

√
N ≥ p5/2q3/2.

Applying Theorem 5.3 and Proposition 5.4, we get

(A.1) p5/2q3/2 <
F (N, |S(ζN )|2)2

4ϕ(F (N, |S(ζN )|2))
=

F (N, p)

4(1− 1
p)(1 − 1

q )
.

If p = 2, then F (N, 2) ≤ 4 gcd(q3, 2q−1−1) = 4q, by Proposition 5.5 and the fact that no prime q < 103

is Wieferich. Therefore, (A.1) gives 2
√
2(q − 1) <

√
q, which never holds. If q = 2, then F (N, p) ≤

p gcd(8, p2 − 1) = 8p, by Proposition 5.5, since p is odd. In this case, (A.1) gives
√
p(p − 1) <

√
2,

which again never holds. So, we assume that N is odd. Then, (A.1) becomes

p5/2q3/2 <
p gcd(q3, pq−1 − 1)

4(1− 1
p)(1− 1

q )
<

1

2
pqa,

where a ≤ 3. This in turn yields

(A.2) 2p3/2 < qa−3/2,

and as the right hand side is < q3/2, we must certainly have p < q. A simple search for primes
p < q < 103 reveals that we never have q3 | pq−1 − 1, so a ≤ 2. If a = 1, (A.2) cannot hold; the only
pairs of primes (p, q) with p < q < 103 and q2 | pq−1 − 1 are

(A.3) (3, 11), (11, 71), (13, 863), (19, 137), (71, 331), (127, 907).

However, none of them satisfies 2p
√
p <

√
q, therefore we cannot have q || |S|.

q || |T | Then |T |3
N is a power of p. For p, q ≥ 7, we have

1S ∗ 1−S(1) <
|S|2
ϕ(N)

<
N2

ϕ(N)2
=

(
pq

(p− 1)(q − 1)

)2

≤
(
77

60

)2

< 2,

and if p, q ≥ 5 with p, q 6= 7, then

1S ∗ 1−S(1) <

(
pq

(p− 1)(q − 1)

)2

≤
(
55

40

)2

< 2,

so in both cases,

|T (ζN )|2 = |T |3
N

.

In these cases, we get

|T |3
N

≤ F (N, |T (ζN )|2)2
4ϕ(F (N, |T (ζN )|2))

=
F (N, p)

4(1 − 1
p)(1− 1

q )
=

p gcd(q3, pq−1 − 1)

4(1− 1
p)(1− 1

q )
.

By Lemma 4.8, we get

|T |3
N

>
ϕ(N)3/2

N
=

√
N
[
(1− 1

p)(1− 1
q )
] 3

2

.

Combining the above, we get

p5/2q3/2 ≤
√
N < pqa,

since 4[(1 − 1
p)(1 − 1

q )]
5/2 > 1 when p, q ≥ 5, where qa = gcd(q3, pq−1, 1). The above is equivalent to

p
√
p < qa−3/2, and as the latter is ≤ q

√
q, we must have p < q. Again, with a simple computer search

we find that we cannot have a = 3 for such primes with p < q < 103; moreover, if a = 1, p
√
p < qa−3/2

cannot hold, so we must have a = 2 and p3 < q. We are led again to the pairs in (A.3), but none
satisfies p3 < q. The only case that is not tackled for p, q ≥ 5 is when we have the pair (5, 7), or
equivalently, 35 | N . In that case, by Theorem 5.3 and Propositions 5.4 and 5.5 we get

55/273/2 ≤
√
N < |S(ζN )|2 ≤ F (N, |S(ζN )|2)2

4ϕ(F (N, |S(ζN )|2))
≤ F (N, 35)

4 · 24
35

=
5372

96
,
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since 52 || 74 − 1 and 7 || 56 − 1. But this leads to 96 <
√
35 a contradiction.

Next, assume that N is odd and p = 3. Then
√
N ≥ 35/2q3/2 and

√
N < |S(ζN )|2 ≤ F (N, |S(ζN )|2)2

4ϕ(F (N, |S(ζN )|2))
≤ F (N, 3q)

8
3 (1− 1

q )
,

yielding

(A.4) 8 · 33/2√q(q − 1) < gcd(3mq3, (3q−1 − 1)(q2 − 1)),

by Theorem 5.3 and Propositions 5.4 and 5.5. If q 6= 11 and q < 103, then the right hand side is

q gcd(3m, q2− 1) ≤ 3ν3(q
2−1). The left hand side is > 33, as 8 > 33/2 and q− 1 >

√
q for all odd primes

q; hence, ν3(q
2 − 1) ≥ 4, therefore q ≥ 163. At any rate, ν3(q

2 − 1) ≤ 5 for q < 103, yielding

q − 1√
q

<
37/2

8
,

which is a contradiction, as 6 > 37/2

8 and q−1√
q > 12 for q ≥ 163. If q = 11, (A.4) becomes

8 · 33/2 10√
11

< 3 · 112,

which holds. Applying Theorem 5.3 and Propositions 5.4 and 5.5 on |S(ζN )|2 >
√
N gives

35/2113/2 ≤
√
N <

F (N, 33)2

4ϕ(F (N, 33))
=

3 · 112
80
33

or 80
√
3 < 11

√
11, a contradiction.

If N is odd and q = 3, then applying Theorem 5.3 and Propositions 5.4 and 5.5 for |S(ζN )|2 >√
N ≥ 33/2p5/2,

33/2p5/2 <
F (N, 3p)2

4ϕ(F (N, 3p))

holds, or equivalently,

8
√
3p3/2(p− 1) < gcd(pm33, (p2 − 1)(3p−1 − 1)).

If p 6= 11 and p < 103, then the right hand side is p gcd(27, p2 − 1) ≤ 27p, so we must have

8
√
p(p− 1) < 9

√
3 < 16,

whence
√
p(p − 1) < 2, a contradiction, as p ≥ 3 does not satisfy this inequality. If p = 11, then we

get 8 · 113/2
√
3 · 10 < 3 · 112 or 80 <

√
33, a contradiction.

Lastly, suppose that N is even. Assume first that p = 2, so that |S(ζN )|2 >
√
N = 2m/2q3/2. By

Theorem 5.3 and Propositions 5.4 and 5.5 we get

2m/2q3/2 <
F (N, |S(ζN )|2)

4ϕ(F (N, |S(ζN )|2))
≤ F (N, 2q)

2(1− 1
q )

,

yielding

2
m
2
+1√q(q − 1) < gcd(2mq3, (2q−1 − 1)(12 ord4(q)(q

2 − 1))) = q gcd(2m, 12 ord4(q)(q
2 − 1)),

as no prime q < 103 is Wieferich. We put 2a = gcd(2m, 12 ord4(q)(q
2 − 1)); for q < 103, a ≤ 8 holds.

Furthermore, the above inequality yields

(A.5) q − 1 < 2a−
m
2
−1√q.

By definition, a ≤ m, so the right hand side is ≤ 2
a
2
−1√q ≤ 8

√
q, as

ν2(
1
2 ord4(q)(q

2 − 1)) ≤ 8

when q < 103. The inequality q − 1 < 8
√
q further yields q ≤ 67; for these primes,

ν2(
1
2 ord4(q)(q

2 − 1)) ≤ 6,

which in turn implies q − 1 < 4
√
q, therefore q ≤ 17. Repeating this argument once again, we deduce

ν2(
1
2 ord4(q)(q

2 − 1)) ≤ 4.
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Since m ≥ 5, (A.5) gives

q − 1 <
√

2q,

which can only hold for q = 3. However, ν2(
1
2 ord4(3)(3

2−1)) = ν2(8) = 3, so substituting at (A.5) we

obtain q− 1 <
√

q
2 , a contradiction. The last case is N even and q = 2. As before, we apply Theorem

5.3 and Propositions 5.4 and 5.5 on |S(ζN )|2, getting

pm/223/2 =
√
N < |S(ζN )|2 ≤ F (N, |S(ζN )|2)2

4ϕ(F (N, |S(ζN )|2))
≤ F (N, 2p)

2(1− 1
p)

,

or equivalently,

p
m
2
−125/2(p− 1) < gcd(23pm, 12 ord4(p)(p

2 − 1)(2p−1 − 1)) = p gcd(8, 12 ord4(p)(p
2 − 1)) ≤ 8p,

as no prime p < 103 is Wieferich. The above gives

p
m
2
−2(p − 1) <

√
2,

a contradiction, wince the left hand side is ≥ √
p(p − 1) > 2, concluding the proof. �

Proposition A.5. Let N = pmqn, with m,n ≥ 4 and p, q < 103. Then ZN has no primitive formally
dual subsets.

Proof. Without loss of generality, we assume p < q. Also, we suppose that T, S ⊆ ZN is a primitive
pair of formally dual sets with |S| ≥ |T |. Then by Proposition 7.2,

|S(ζN )|2 = |S|3
N

≥
√
N ≥ p2q2.

Applying Theorem 5.3 and Propositions 5.4 and 5.5 we obtain

(A.6) p2q2 ≤ F (N, |S(ζN )|2)2
4ϕ(F (N, |S(ζN )|2))

≤ F (N, pq)

4(1− 1
p)(1− 1

q )
.

Suppose first that N is odd; for p, q < 103, we have either F (N, pq) = paq for some a ≤ 5 or
F (N, pq) = pq2. In the latter case, (A.6) yields

4(1 − 1
p)(1− 1

q )p < 1,

a contradiction, as the left hand side is > 2p. In the former case, we get

4(1− 1
p)(1− 1

q )q < pa−2

which implies

(A.7) 2q < pa−2,

since 4(1− 1
p)(1− 1

q ) ≥ 4· 8
15 > 2 when p, q are odd primes. Therefore, either a = 4 or a = 5; both cases

occur only when q ≥ 163. The case a = 5 happens only for p = 3; (A.7) cannot hold, as 326 ≤ 2q < 27
is false. Moreover, a = 4 happens for p ≤ 13, but again (A.7) fails, as p2 ≤ 169 < 326 ≤ 2q.

Next, suppose that N is even, that is p = 2. (A.6) gives

(A.8) 8q(q − 1) ≤ F (N, 2q) = gcd(2mqn, 12 ord4(q)(q
2 − 1)(2q−1 − 1)) = 2aq,

since no prime q < 103 is Wieferich; here, a = min(m, ν2(
1
2 ord4(q)(q

2 − 1))). (A.8) is equivalent to

(A.9) q − 1 < 2a−3.

For q < 103, ν2(
1
2 ord4(q)(q

2 − 1)) ≤ 8 holds, so (A.9) implies q − 1 < 32 or q ≤ 31. For this range of

primes, ν2(
1
2 ord4(q)(q

2 − 1)) ≤ 6, so (A.9) further gives q− 1 < 8 or q ≤ 7. This argument once again

gives ν2(
1
2 ord4(q)(q

2 − 1)) ≤ 4, so (A.9) implies q − 1 < 2, a contradiction, concluding the proof. �

The number of prime pairs (p, q) with p < q < 103 is 14028. Propositions 7.4, 7.5, 7.6, A.2, A.3,
A.4, A.5 show that the only possible exceptions come from orders N of the form p2kq2. The number of
pairs with possible exceptions is only 162, and the total number of exceptions (that cannot be solved
with the methods developed here) is 290.



28 ROMANOS DIOGENES MALIKIOSIS

Indeed, we consider first the case p = 2; then, either N = 22kq2 or 4q2k. Applying (7.2) and (7.3)
in the latter case, we obtain

2q2 ≤
√
N ≤ 4q

2(1− 1
q )
.

We remark that b = 1 in (7.3), as no prime q < 103 is Wieferich; furthermore, the quantity F (N,n)
in (7.3) is ≤ F (N, 2q) = 4q due to Proposition 5.5. The above gives q − 1 ≤ 1 a contradiction. Thus,
all such exceptions are of the form 22kq2, k ≥ 2, hence applying (7.2) and (7.3) we obtain

2kq ≤ 2aq

2(1 − 1
q )
,

which is equivalent to 2 ≤ k ≤ a − 1, giving a − 2 exceptions. We can easily calculate a for every
q < 103 and verify6 that the number of such exceptions for N even are 240.

If N is odd, we have possible exceptions of the form p2kq2 or p2q2k, for p < q < 103. Inequalities
(7.2) and (7.3) give in the former case

pkq ≤ paqb

4(1− 1
p)(1− 1

q )
<

1

2
paqb.

We either have a = 1 or b = 1 when p, q < 103. For a = 1 the above inequality can only hold for b > 1,
however, since b ≤ 2 if a = 1, we get the pairs from (A.3). The previous inequality becomes 2pk−1 < q,
and we have a total of 7 exceptions; every pair has an exception of the form p4q2 and there is also
the additional exception 1368632. When b = 1, the inequality becomes 2pk < pa or k < a, or a − 2
exceptions for every such pair as k ≥ 2. We can calculate all such exceptions7; they are another 42 in
total which come from 32 pairs, and this tackles the case N = p2kq2 with p < q < 103, which gives
a total of 49 cases. When N = p2q2k, we have only one other possible exception, namely 1322394;
indeed, (7.2) and (7.3) give

pqk ≤ paqb

4(1− 1
p)(1− 1

q )
<

1

2
paqb.

If a = 1 we would have b ≤ 2 and pqk < pq2, a contradiction, as k ≥ 2. So b = 1, so the above
inequality becomes 2qk−1 < pa−1, which is only satisfied for p = 13, q = 239, k = 2, thus obtaining a
total of 50 possible exceptions when N is odd. Therefore, the total number of possible exceptions is
290.
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