A MATRIX GENERALIZATION OF A THEOREM OF FINE

ERIC ROWLAND

ABSTRACT. In 1947 Nathan Fine gave a beautiful product for the number of binomial coefficients $\binom{n}{m}$, for m in the range $0 \le m \le n$, that are not divisible by p. We give a matrix product that generalizes Fine's formula, simultaneously counting binomial coefficients with p-adic valuation α for each $\alpha \ge 0$. For each n this information is naturally encoded in a polynomial generating function, and the sequence of these polynomials is p-regular in the sense of Allouche and Shallit. We also give a further generalization to multinomial coefficients.

1. BINOMIAL COEFFICIENTS

For a prime p and an integer $n \ge 0$, let $F_p(n)$ be the number of integers m in the range $0 \le m \le n$ such that $\binom{n}{m}$ is not divisible by p. Let the standard base-p representation of n be $n_{\ell} \cdots n_1 n_0$. Fine [6] showed that

$$F_p(n) = (n_0 + 1)(n_1 + 1) \cdots (n_{\ell} + 1).$$

Equivalently,

(1)
$$F_p(n) = \prod_{d=0}^{p-1} (d+1)^{|n|_d},$$

where $|n|_w$ is the number of occurrences of the word w in the base-p representation of n. In the special case p = 2, Glaisher [7] was aware of this result nearly 50 years earlier.

Many authors have been interested in generalizing Fine's theorem to higher powers of p. Since Equation (1) involves $|n|_d$, a common approach is to express the number of binomial coefficients satisfying some congruence property modulo p^{α} in terms of $|n|_w$ for more general words w. Howard [8], Davis and Webb [4], Webb [16], and Huard, Spearman, and Williams [9, 10, 11] all produced results in this direction. Implicit in the work of Barat and Grabner [2, §3] is that the number of binomial coefficients $\binom{n}{m}$ with p-adic valuation α is equal to $F_p(n) \cdot G_{p^{\alpha}}(n)$, where $G_{p^{\alpha}}(n)$ is some polynomial in the subword-counting functions $|n|_w$. The present author [14] gave an algorithm for computing a suitable polynomial $G_{p^{\alpha}}(n)$. Spiegelhofer and Wallner [15] showed that $G_{p^{\alpha}}(n)$ is unique and greatly sped up its computation by showing that its coefficients can be read off from certain power series.

These general results all use the following theorem of Kummer [12, pages 115– 116]. Let $\nu_p(n)$ denote the *p*-adic valuation of *n*, that is, the exponent of the highest power of *p* dividing *n*. Let $\sigma_p(m)$ be the sum of the standard base-*p* digits of *m*.

Kummer's theorem. Let p be a prime, and let n and m be integers with $0 \le m \le n$. Then $\nu_p(\binom{n}{m})$ is the number of carries involved in adding m to n-m in base p. Equivalently, $\nu_p(\binom{n}{m}) = \frac{\sigma_p(m) + \sigma_p(n-m) - \sigma_p(n)}{p-1}$.

Date: April 21, 2017.

Kummer's theorem follows easily from Legendre's formula

$$\nu_p(m!) = \frac{m - \sigma_p(m)}{p - 1}$$

for the p-adic valuation of m!.

Our first theorem is a new generalization of Fine's theorem. It provides a matrix product for the polynomial

$$T_p(n,x) = \sum_{m=0}^n x^{\nu_p\binom{n}{m}}$$

whose coefficient of x^{α} is the number of binomial coefficients $\binom{n}{m}$ with *p*-adic valuation α . In particular, $T_p(n,0) = F_p(n)$. For p = 2 the first few values of the sequence $(T_2(n,x))_{n\geq 0}$ are as follows.

n	$T_2(n,x)$	n	$T_2(n,x)$
0	1	8	$4x^3 + 2x^2 + x + 2$
1	2	9	$4x^2 + 2x + 4$
2	x+2	10	$2x^3 + x^2 + 4x + 4$
3	4	11	4x + 8
4	$2x^2 + x + 2$	12	$2x^3 + 5x^2 + 2x + 4$
5	2x + 4	13	$2x^2 + 4x + 8$
6	$x^2 + 2x + 4$	14	$x^3 + 2x^2 + 4x + 8$
7	8	15	16

The polynomial $T_p(n, x)$ was identified by Spiegelhofer and Wallner [15] as an important component in the efficient computation of the polynomial $G_{p^{\alpha}}(n)$. Everett [5] was also essentially working with $T_p(n, x)$.

For each $d \in \{0, 1, ..., p-1\}$, let

$$M_p(d) = \begin{bmatrix} d+1 & p-d-1 \\ dx & (p-d)x \end{bmatrix}.$$

Theorem 1. Let p be a prime, and let $n \ge 0$. Let $n_{\ell} \cdots n_1 n_0$ be the standard base-p representation of n. Then

$$T_p(n,x) = \begin{bmatrix} 1 & 0 \end{bmatrix} M_p(n_0) M_p(n_1) \cdots M_p(n_\ell) \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

A sequence $s(n)_{n\geq 0}$, with entries in some field, is p-regular if the vector space generated by the set of subsequences $\{s(p^en + i)_{n\geq 0} : e \geq 0 \text{ and } 0 \leq i \leq p^e - 1\}$ is finite-dimensional. Allouche and Shallit [1] introduced regular sequences and showed that they have several desirable properties, making them a natural class. The sequence $(F_p(n))_{n\geq 0}$ is included as an example of a p-regular sequence of integers in their original paper [1, Example 14]. It follows from Theorem 1 and [1, Theorem 2.2] that $(T_p(n, x))_{n\geq 0}$ is a p-regular sequence of polynomials.

Whereas Fine's product can be written as Equation (1), Theorem 1 cannot be written in an analogous way, since the matrices $M_p(i)$ and $M_p(j)$ do not commute if $i \neq j$.

The proof of Theorem 1 uses Lemma 4, which is stated and proved in general for multinomial coefficients in Section 2. The reason for including the following proof of Theorem 1 is that the outline is fairly simple. The details relegated to Lemma 4 are not essentially simpler in the case of binomial coefficients, so we do not include a separate proof. Proof of Theorem 1. For $n \ge 0$ and $d \in \{0, 1, \ldots, p-1\}$, let m be an integer with $0 \le m \le pn + d$. There are two cases. If $(m \mod p) \in \{0, 1, \ldots, d\}$, then there is no carry from the 0th position when adding m to pn + d - m in base p; therefore $\nu_p(\binom{pn+d}{m}) = \nu_p(\binom{n}{\lfloor m/p \rfloor})$ by Kummer's theorem. Otherwise, there is a carry from the 0th position, and $\nu_p(\binom{pn+d}{m}) = \nu_p(n) + \nu_p(\binom{n-1}{\lfloor m/p \rfloor}) + 1$ by Lemma 4 with i = 0 and j = 1. (Note that $n - 1 \ge 0$ here, since if n = 0 then $0 \le m \le d$ and we are in the first case.) Since $\{0, 1, \ldots, d\}$ has d + 1 elements and its complement has p - d - 1 elements, we have

$$\sum_{m=0}^{pn+d} x^{\nu_p\binom{pn+d}{m}} = (d+1) \sum_{c=0}^n x^{\nu_p\binom{n}{c}} + (p-d-1) \sum_{c=0}^{n-1} x^{\nu_p(n)+\nu_p\binom{n-1}{c}} + 1$$

by comparing the coefficient of x^{α} on each side for each $\alpha \geq 0$. Using the definition of $T_p(n, x)$, this equation can be written

(2)
$$T_p(pn+d,x) = (d+1)T_p(n,x) + \begin{cases} 0 & \text{if } n=0\\ (p-d-1)x^{\nu_p(n)+1}T_p(n-1,x) & \text{if } n \ge 1. \end{cases}$$

Similarly, let *m* be an integer with $0 \le m \le pn + d - 1$. If $(m \mod p) \in \{0, 1, \ldots, d-1\}$, then there is no carry from the 0th position when adding *m* to pn + d - 1 - m in base *p*, and $\nu_p(pn + d) + \nu_p(\binom{pn+d-1}{m}) = \nu_p(\binom{n}{\lfloor m/p \rfloor})$ by Lemma 4 with i = 1 and j = 0. (Note that $pn + d - 1 \ge 0$ here, since if n = d = 0 there is no *m* in the range $0 \le m \le pn + d - 1$.) Otherwise there is a carry from the 0th position, and $\nu_p(pn+d) + \nu_p(\binom{pn+d-1}{m}) = \nu_p(n) + \nu_p(\binom{n-1}{\lfloor m/p \rfloor}) + 1$ by Lemma 4 with i = 1 and j = 1. Therefore

$$\sum_{m=0}^{pn+d-1} x^{\nu_p(pn+d)+\nu_p(\binom{pn+d-1}{m})} = d \sum_{c=0}^n x^{\nu_p(\binom{n}{c})} + (p-d) \sum_{c=0}^{n-1} x^{\nu_p(n)+\nu_p(\binom{n-1}{c})+1}.$$

Multiplying both sides by x and rewriting in terms of $T_p(n, x)$ gives

(3)
$$\begin{cases} 0 & \text{if } pn + d = 0\\ x^{\nu_p(pn+d)+1} T_p(pn+d-1,x) & \text{if } pn+d \ge 1\\ = d x T_p(n,x) + \begin{cases} 0 & \text{if } n = 0\\ (p-d) x \cdot x^{\nu_p(n)+1} T_p(n-1,x) & \text{if } n \ge 1. \end{cases}$$

We combine Equations (2) and (3) into a matrix equation by defining

$$T'_p(n,x) := \begin{cases} 0 & \text{if } n = 0\\ x^{\nu_p(n)+1} T_p(n-1,x) & \text{if } n \ge 1. \end{cases}$$

For each $n \geq 0$, we therefore have the recurrence

(4)
$$\begin{bmatrix} T_p(pn+d,x) \\ T'_p(pn+d,x) \end{bmatrix} = \begin{bmatrix} d+1 & p-d-1 \\ dx & (p-d)x \end{bmatrix} \begin{bmatrix} T_p(n,x) \\ T'_p(n,x) \end{bmatrix},$$

which expresses $T_p(pn + d, x)$ and $T'_p(pn + d, x)$ in terms of $T_p(n, x)$ and $T'_p(n, x)$. The 2 × 2 coefficient matrix is $M_p(d)$. We have

$$\begin{bmatrix} T_p(0,x) \\ T'_p(0,x) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

for the vector of initial conditions, so the product

$$T_p(n,x) = \begin{bmatrix} 1 & 0 \end{bmatrix} M_p(n_0) M_p(n_1) \cdots M_p(n_\ell) \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

now follows by writing n in base p.

We obtain Fine's theorem as a special case by setting x = 0. The definition of $T'_p(n, x)$ implies $T'_p(n, 0) = 0$, so Equation (4) becomes

$$\begin{bmatrix} F_p(pn+d) \\ 0 \end{bmatrix} = \begin{bmatrix} d+1 & p-d-1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} F_p(n) \\ 0 \end{bmatrix},$$

or simply

$$F_p(pn+d) = (d+1) F_p(n).$$

Equation (2) was previously proved by Spiegelhofer and Wallner [15, Equation (2.2)] using an infinite product and can also be obtained from a equation discovered by Carlitz [3]. In fact Carlitz came close to discovering Theorem 1. He knew that the coefficients of $T_p(n,x)$ and $T'_p(n,x)$ can be written in terms of each other. In his notation, let $\theta_{\alpha}(n)$ be the coefficient of x^{α} in $T_p(n,x)$, and let $\psi_{\alpha-1}(n-1)$ be the coefficient of x^{α} in $T'_p(n,x)$. Carlitz gave the recurrence

$$\begin{aligned} \theta_{\alpha}(pn+d) &= (d+1)\theta_{\alpha}(n) + (p-d-1)\psi_{\alpha-1}(n-1) \\ \psi_{\alpha}(pn+d) &= \begin{cases} (d+1)\theta_{\alpha}(n) + (p-d-1)\psi_{\alpha-1}(n-1) & \text{if } 0 \le d \le p-2 \\ p\psi_{\alpha-1}(n) & \text{if } d = p-1. \end{cases} \end{aligned}$$

The first of these equations is equivalent to Equation (2). But to get a matrix product for $T_p(n, x)$, one needs an equation expressing $\psi_{\alpha}(pn+d-1)$, not $\psi_{\alpha}(pn+d)$, in terms of θ and ψ . That equation is

$$\psi_{\alpha}(pn+d-1) = d\theta_{\alpha}(n) + (p-d)\psi_{\alpha-1}(n-1),$$

which is equivalent to Equation (3). Therefore $\psi_{\alpha}(n-1)$ (or, more precisely, $\psi_{\alpha-1}(n-1)$) seems to be more natural than Carlitz's $\psi_{\alpha}(n)$.

In addition to making use of $T_p(n, x)$, Spiegelhofer and Wallner [15] also utilized the normalized polynomial

$$\overline{T}_p(n,x) = \frac{1}{F_p(n)} T_p(n,x).$$

It follows from Theorem 1 that the sequence $(\overline{T}_p(n, x))_{n \ge 0}$ is also *p*-regular, since it is generated by the normalized matrices $\frac{1}{d+1}M_p(d)$.

We briefly investigate $T_p(n, x)$ evaluated at particular values of x. We have already mentioned $T_p(n, 0) = F_p(n)$. It is clear that $T_p(n, 1) = n + 1$. When p = 2and x = -1, we obtain a version of A106407 [13] with different signs. Let $t(n)_{n\geq 0}$ be the Thue–Morse sequence, and let S(n, x) be the *n*th Stern polynomial, defined by

$$S(n,x) = \begin{bmatrix} 1 & 0 \end{bmatrix} A(n_0) A(n_1) \cdots A(n_\ell) \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

where

$$A(0) = \begin{bmatrix} x & 0\\ 1 & 1 \end{bmatrix}, \quad A(1) = \begin{bmatrix} 1 & 1\\ 0 & x \end{bmatrix},$$

and as before $n_{\ell} \cdots n_1 n_0$ is the standard base-2 representation of n.

Theorem 2. For each $n \ge 0$, we have $T_2(n, -1) = (-1)^{t(n)}S(n+1, -2)$.

Proof. Define the rank of a regular sequence to be the dimension of the corresponding vector space. We bound the rank of $T_2(n, -1) - (-1)^{t(n)}S(n+1, -2)$ using closure properties of 2-regular sequences [1, Theorems 2.5 and 2.6]. Since the rank of S(n, x) is 2, the rank of S(n + 1, -2) is at most 2. The rank of $(-1)^{t(n)}$ is 1. If two sequences have ranks r_1 and r_2 , then their sum and product have ranks at most $r_1 + r_2$ and r_1r_2 . Therefore $T_2(n, -1) - (-1)^{t(n)}S(n+1, -2)$ has rank at most 4, so to show that it is the 0 sequence it suffices to check 4 values of n.

It would be interesting to know if there is a combinatorial interpretation of this identity.

2. Multinomial coefficients

In this section we generalize Theorem 1 to multinomial coefficients. For a k-tuple $\mathbf{m} = (m_1, m_2, \dots, m_k)$ of non-negative integers, define

total
$$\mathbf{m} := m_1 + m_2 + \dots + m_k$$

and

$$\operatorname{mult} \mathbf{m} := \frac{(\operatorname{total} \mathbf{m})!}{m_1! \, m_2! \cdots m_k!}$$

Specifically, we count k-tuples **m** with a fixed total, according to the p-adic valuation $\nu_p(\text{mult }\mathbf{m})$. The result is a matrix product as in Theorem 1. The matrices are $k \times k$ matrices with coefficients from the following sequence.

Let $c_{p,k}(n)$ be the number of k-tuples $\mathbf{d} \in \{0, 1, \dots, p-1\}^k$ with total $\mathbf{d} = n$. Note that $c_{p,k}(n) = 0$ for n < 0. For example, let p = 5 and k = 3; the values of $c_{5,3}(n)$ for $-k+1 \le n \le pk-1$ are

$$0, 0, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1, 0, 0.$$

For $k \ge 1$, every tuple counted by $c_{p,k}(n)$ has a last entry d; removing that entry gives a (k-1)-tuple with total n-d, so we have the recurrence

$$c_{p,k}(n) = \sum_{d=0}^{p-1} c_{p,k-1}(n-d).$$

Therefore $c_{p,k}(n)$ is an entry in the Pascal-like triangle generated by adding p entries on the previous row. For p = 5 this triangle begins as follows.

10 6 4 10 52 68 80 85 80 68 52 35 20 10 4 1

The entry $c_{p,k}(n)$ is also the coefficient of x^n in $(1 + x + x^2 + \dots + x^{p-1})^k$.

ERIC ROWLAND

For each $d \in \{0, 1, ..., p-1\}$, let $M_{p,k}(d)$ be the $k \times k$ matrix whose (i, j) entry is $c_{p,k}(p(j-1) + d - (i-1)) x^{i-1}$. The matrices $M_{5,3}(0), ..., M_{5,3}(4)$ are

$$\begin{bmatrix} 1 & 18 & 6 \\ 0 & 15x & 10x \\ 0 & 10x^2 & 15x^2 \end{bmatrix}, \begin{bmatrix} 3 & 19 & 3 \\ x & 18x & 6x \\ 0 & 15x^2 & 10x^2 \end{bmatrix}, \begin{bmatrix} 6 & 18 & 1 \\ 3x & 19x & 3x \\ x^2 & 18x^2 & 6x^2 \end{bmatrix}, \begin{bmatrix} 10 & 15 & 0 \\ 6x & 18x & x \\ 3x^2 & 19x^2 & 3x^2 \end{bmatrix}, \begin{bmatrix} 15 & 10 & 0 \\ 10x & 15x & 0 \\ 6x^2 & 18x^2 & x^2 \end{bmatrix}.$$

For k = 2, the matrix $M_{p,2}(d)$ is exactly the matrix $M_p(d)$ in Section 1.

We use \mathbb{N} to denote the set of non-negative integers. Let

$$T_{p,k}(n,x) = \sum_{\substack{\mathbf{m} \in \mathbb{N}^k \\ \text{total } \mathbf{m} = n}} x^{\nu_p(\text{mult } \mathbf{m})}$$

Theorem 3. Let p be a prime, let $k \ge 1$, and let $n \ge 0$. Let $e = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix}$ be the first standard basis vector in \mathbb{Z}^k . Let $n_\ell \cdots n_1 n_0$ be the standard base-p representation of n. Then

$$T_{p,k}(n,x) = e M_{p,k}(n_0) M_{p,k}(n_1) \cdots M_{p,k}(n_\ell) e^{\top}.$$

By setting x = 0 we recover a generalization of Fine's theorem for the number of multinomial coefficients not divisible by p; the top left entry of $M_{p,k}(d)$ is $c_{p,k}(d) = \binom{d+k-1}{k-1}$, so

$$T_{p,k}(n,0) = \binom{n_0+k-1}{k-1} \binom{n_1+k-1}{k-1} \cdots \binom{n_\ell+k-1}{k-1}.$$

The proof of Theorem 3 uses the following generalization of Kummer's theorem. Recall that $\sigma_p(m)$ denotes the sum of the base-*p* digits of *m*. We write $\sigma_p(\mathbf{m})$, $\lfloor \mathbf{m}/p \rfloor$, and $\mathbf{m} \mod p$ for the tuples obtained by applying these functions termwise to the entries of \mathbf{m} .

Kummer's theorem for multinomial coefficients. Let p be a prime, and let $\mathbf{m} \in \mathbb{N}^k$ for some $k \ge 0$. Then

$$\nu_p(\text{mult }\mathbf{m}) = \frac{\text{total }\sigma_p(\mathbf{m}) - \sigma_p(\text{total }\mathbf{m})}{p-1}$$

This generalized version of Kummer's theorem also follows from Legendre's formula. The following lemma gives the relationship between $\nu_p(\text{mult} \mathbf{m})$ and $\nu_p(\text{mult}[\mathbf{m}/p])$.

Lemma 4. Let p be a prime, $k \ge 1$, $n \ge 0$, $d \in \{0, 1, \ldots, p-1\}$, and $0 \le i \le k-1$. Let $\mathbf{m} \in \mathbb{N}^k$ with $\operatorname{total} \mathbf{m} = pn + d - i$. Let $j = n - \operatorname{total}\lfloor \mathbf{m}/p \rfloor$. Then $\operatorname{total}(\mathbf{m} \mod p) = pj + d - i$, $0 \le j \le k - 1$, and

$$\nu_p\left(\frac{(pn+d)!}{(pn+d-i)!}\right) + \nu_p(\text{mult }\mathbf{m}) = \nu_p\left(\frac{n!}{(n-j)!}\right) + \nu_p(\text{mult}\lfloor\mathbf{m}/p\rfloor) + j.$$

 $\mathbf{6}$

Proof. Let $\mathbf{c} = \lfloor \mathbf{m}/p \rfloor$ and $\mathbf{d} = (\mathbf{m} \mod p) \in \{0, 1, \dots, p-1\}^k$, so that $\mathbf{m} = p \mathbf{c} + \mathbf{d}$. We have

$$\begin{aligned} \operatorname{total} \sigma_p(\mathbf{m}) - \operatorname{total} \sigma_p(\mathbf{c}) &= \operatorname{total} \mathbf{d} \\ &= \operatorname{total} \mathbf{m} - p \operatorname{total} \mathbf{c} \\ &= pj + d - i \\ &= pj + \sigma_p(pn+d) - \sigma_p(n) - i. \end{aligned}$$

In particular, total $\mathbf{d} = pj + d - i$, as claimed; solving this equation for j gives

$$j = \frac{-d + i + \text{total}\,\mathbf{d}}{p},$$

which implies the bounds

$$-1 + \frac{1}{p} = \frac{-(p-1) + 0 + 0}{p} \le j \le \frac{0 + (k-1) + (p-1)k}{p} = k - \frac{1}{p}$$

Since j is an integer, this implies $0 \le j \le k - 1$.

The generalized Kummer theorem gives

$$(p-1) (\nu_p(\text{mult } \mathbf{m}) - \nu_p(\text{mult } \mathbf{c})) = (\text{total } \sigma_p(\mathbf{m}) - \sigma_p(\text{total } \mathbf{m})) - (\text{total } \sigma_p(\mathbf{c}) - \sigma_p(\text{total } \mathbf{c})) = \text{total } \sigma_p(\mathbf{m}) - \sigma_p(pn + d - i) - \text{total } \sigma_p(\mathbf{c}) + \sigma_p(n - j).$$

Since we established

$$\operatorname{total} \sigma_p(\mathbf{m}) - \operatorname{total} \sigma_p(\mathbf{c}) = pj + \sigma_p(pn+d) - \sigma_p(n) - i$$

above, we can write

$$\begin{aligned} (p-1) \left(\nu_p(\text{mult } \mathbf{m}) - \nu_p(\text{mult } \mathbf{c}) \right) \\ &= pj + \sigma_p(pn+d) - \sigma_p(n) - i - \sigma_p(pn+d-i) + \sigma_p(n-j) \\ &= (\sigma_p(pn+d) - i - \sigma_p(pn+d-i)) + (-\sigma_p(n) + j + \sigma_p(n-j)) + (p-1)j \\ &= (p-1) \left(-\nu_p \left(\frac{(pn+d)!}{(pn+d-i)!} \right) + \nu_p \left(\frac{n!}{(n-j)!} \right) + j \right), \end{aligned}$$

where the last equality uses Legendre's formula. Dividing by p-1 and rearranging terms gives the desired equation.

We are now ready to prove the main theorem of this section.

Proof of Theorem 3. Let $d \in \{0, 1, ..., p-1\}, 0 \le i \le k-1$, and $\alpha \ge 0$. We claim that the map β defined by

$$\beta(\mathbf{m}) := (\lfloor \mathbf{m}/p \rfloor, \mathbf{m} \bmod p)$$

is a bijection from the set

$$A = \left\{ \mathbf{m} \in \mathbb{N}^k : \text{total}\,\mathbf{m} = pn + d - i \text{ and } \nu_p(\text{mult}\,\mathbf{m}) = \alpha - \nu_p\left(\frac{(pn+d)!}{(pn+d-i)!}\right) \right\}$$

ERIC ROWLAND

to the set

$$B = \bigcup_{j=0}^{k-1} \left(\left\{ \mathbf{c} \in \mathbb{N}^k : \text{total } \mathbf{c} = n - j \text{ and } \nu_p(\text{mult } \mathbf{c}) = \alpha - \nu_p \left(\frac{n!}{(n-j)!} \right) - j \right\} \\ \times \left\{ \mathbf{d} \in \{0, 1, \dots, p-1\}^k : \text{total } \mathbf{d} = pj + d - i \right\} \right).$$

Note that the k sets in the union comprising B are disjoint, since each tuple **d** occurs for at most one index j. Lemma 4 implies that if $\mathbf{m} \in A$ then $\beta(\mathbf{m}) \in B$.

Clearly β is injective, since $\beta(\mathbf{m})$ preserves all the digits of the entries of \mathbf{m} . It is also clear that β is surjective, since a given pair $(\mathbf{c}, \mathbf{d}) \in B$ is the image of $p \mathbf{c} + \mathbf{d} \in A$. Therefore $\beta : A \to B$ is a bijection.

Consider the polynomial

$$\sum_{\substack{\mathbf{m}\in\mathbb{N}^k\\\text{total }\mathbf{m}=pn+d-i}} x^{\nu_p\left(\frac{(pn+d)!}{(pn+d-i)!}\right)+\nu_p(\text{mult }\mathbf{m})}$$

The coefficient of x^{α} in this polynomial is |A|. On the other hand, the coefficient of x^{α} in the polynomial

$$\sum_{j=0}^{k-1} c_{p,k}(pj+d-i) \sum_{\substack{\mathbf{c} \in \mathbb{N}^k \\ \text{total } \mathbf{c}=n-j}} x^{\nu_p \left(\frac{n!}{(n-j)!}\right) + \nu_p (\text{mult } \mathbf{c}) + j}$$

is |B|, since $c_{p,k}(pj + d - i)$ is the number of k-tuples $\mathbf{d} \in \{0, 1, \dots, p-1\}^k$ with total $\mathbf{d} = pj + d - i$. Since A and B are in bijection for each $\alpha \geq 0$, these two polynomials are equal. Multiplying both polynomials by x^i and rewriting in terms of $T_{p,k}(n, x)$ gives

$$\begin{cases} 0 & \text{if } 0 \le pn + d \le i - 1 \\ x^{\nu_p \left(\frac{(pn+d)!}{(pn+d-i)!}\right) + i} T_{p,k}(pn+d-i,x) & \text{if } pn + d \ge i \\ \\ = \sum_{j=0}^{k-1} \begin{cases} 0 & \text{if } 0 \le n \le j - 1 \\ c_{p,k}(pj+d-i) x^i \cdot x^{\nu_p \left(\frac{n!}{(n-j)!}\right) + j} T_{p,k}(n-j,x) & \text{if } n \ge j. \end{cases}$$

For each i in the range $0 \le i \le k - 1$, define

$$T_{p,k,i}(n,x) := \begin{cases} 0 & \text{if } 0 \le n \le i-1 \\ x^{\nu_p\left(\frac{n!}{(n-i)!}\right)+i} T_{p,k}(n-i,x) & \text{if } n \ge i. \end{cases}$$

Note that $T_{p,k,0}(n,x) = T_{p,k}(n,x)$. For $n \ge 0$, we therefore have

$$T_{p,k,i}(pn+d,x) = \sum_{j=0}^{k-1} c_{p,k}(pj+d-i) x^i T_{p,k,j}(n,x).$$

For each *i*, this equation gives a recurrence for $T_{p,k,i}(pn+d, x)$ in terms of $T_{p,k,j}(n, x)$ for $0 \le j \le k-1$. The coefficients of this recurrence are the entries of the matrix $M_{p,k}(d)$. It follows from the definition of $T_{p,k,i}(n,x)$ that $T_{p,k,0}(0,x) = 1$ and $T_{p,k,i}(0,x) = 0$ for $1 \le i \le k-1$. Therefore the vector of initial conditions is $\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix}^{\top}$, and the matrix product follows.

8

A natural question suggested by this paper is whether various generalizations of binomial coefficients (Fibonomial coefficients, q-binomial coefficients, Carlitz binomial coefficients, etc.) and multinomial coefficients have results that are analogous to Theorems 1 and 3.

References

- Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Science 98 (1992) 163–197.
- [2] Guy Barat and Peter J. Grabner, Distribution of binomial coefficients and digital functions, Journal of the London Mathematical Society 64 (2001) 523-547.
- [3] Leonard Carlitz, The number of binomial coefficients divisible by a fixed power of a prime, Rendiconti del Circolo Matematico di Palermo 16 (1967) 299–320.
- [4] Kenneth Davis and William Webb, Pascal's triangle modulo 4, The Fibonacci Quarterly 29 (1989) 79–83.
- [5] William Everett, Subprime factorization and the numbers of binomial coefficients exactly divided by powers of a prime, *Integers* 11 (2011) #A63.
- [6] Nathan Fine, Binomial coefficients modulo a prime, The American Mathematical Monthly 54 (1947) 589–592.
- [7] James W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, *Quarterly Journal of Pure and Applied Mathematics* **30** (1899) 150–156.
- [8] Fred T. Howard, The number of binomial coefficients divisible by a fixed power of 2, Proceedings of the American Mathematical Society 29 (1971) 236-242.
- [9] James Huard, Blair Spearman, and Kenneth Williams, Pascal's triangle (mod 9), Acta Arithmetica 78 (1997) 331–349.
- [10] James Huard, Blair Spearman, and Kenneth Williams, On Pascal's triangle modulo p^2 , Colloquium Mathematicum **74** (1997) 157–165.
- [11] James Huard, Blair Spearman, and Kenneth Williams, Pascal's triangle (mod 8), European Journal of Combinatorics 19 (1998) 45–62.
- [12] Ernst Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, Journal für die reine und angewandte Mathematik 44 (1852) 93–146.
- [13] The OEIS Foundation, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
- [14] Eric Rowland, The number of nonzero binomial coefficients modulo p^{α} , Journal of Combinatorics and Number Theory **3** (2011) 15–25.
- [15] Lukas Spiegelhofer and Michael Wallner, Divisibility of binomial coefficients by powers of primes, https://arxiv.org/abs/1604.07089.
- [16] William Webb, The number of binomial coefficients in residue classes modulo p and p^2 , Colloquium Mathematicum **60/61** (1990) 275–280.

DEPARTMENT OF MATHEMATICS, HOFSTRA UNIVERSITY, HEMPSTEAD, NY, USA