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Abstract

Level-1 consensus is a property of a preference profile. Intuitively, it means that there exists some

preference relation such that, when ordering the other preference-relations by increasing distance

from it, the closer preferences are more frequent in the profile. This is a desirable property, since

it enhances the stability of the social choice by guaranteeing that there exists a Condorcet winner

and it is elected by all scoring rules.

In this paper, we present an algorithm for checking whether a given preference-profile exhibits

level-1 consensus. We apply this algorithm to a large number of preference-profiles, both real and

randomly-generated, and find that level-1 consensus is very improbable. We back this empirical

findings by a simple theoretical proof that, under the impartial culture assumption, the probability

of level-1 consensus approaches zero when the number of individuals approaches infinity.

Motivated by these observations, we show that the level-1 consensus property can be weakened

retaining the stability implications. The weaker level-1 consensus is considerably more probable,

both empirically and theoretically. In fact, under the impartial culture assumption, the probability

converges to a positive number when the number of individuals approaches infinity.
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I. INTRODUCTION

Recently, Mahajne et al. [9] have proposed the concept of level-1 consensus of a preference

profile showing that it considerably enhances the stability of social choice. In particular,

if a preference profile exhibits level-1 consensus around a given preference relation �0 with

respect to the inversion metric, then:1

• There exists a Condorcet winner;

• The Condorcet winner is chosen by all the scoring rules;

• With an odd number of individuals, the majority relation is transitive and equals �0.

The current study focuses on two questions:

1. How can a preference profile be tested for level-1 consensus?

2. How likely is it that level-1 consensus exists?

Questions of the former type have been recently studied with respect to various domain

restrictions. For example, Escoffier et al. [5] provide an efficient way to check whether

a preference profile is single-peaked, Bredereck et al. [3] provide an efficient way to check

whether a preference profile is single-crossing, and Barberà and Moreno [1] ask whether

the satisfaction of their proposed top monotonicity condition (a sufficient condition for an

extension of the median-voter theorem to hold) is easy to check.

Questions of the latter type have been studied in the social choice literature with respect

to various domain restrictions that guarantee social stability, e.g., the existence of Condorcet

winners under the majority rule [6, 14].

Our answer to the first question is an efficient algorithm for determining whether a

preference profile exhibits level-1 consensus. In case of such consensus, we further identify

the preference relations around which it occurs.

Our answer to the second question is that level-1 consensus is highly improbable. We ap-

plied our algorithm on a recently-released dataset of 315 real-world preference-profiles from

1 In fact, Mahajne et al. [9] define a family of conditions called level-r consensus, where r is an integer

between 1 and K!/2 and K is the number of alternatives. But for the sake of simplicity, in the present

paper we focus on level-1 consensus which is the strongest condition in this family.

Note that recently Poliakov [13] proved that level-r consensus is equivalent to level-1 consensus whenever

r ≤ (K − 1)!.
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various sources [12] and found that none of them exhibits level-1-consensus. Moreover, ex-

periments performed on thousands of profiles generated randomly according to Mallows’ phi

model [10] revealed that, for a wide range of parameter settings, profiles exhibiting level-1

consensus were rare. To support these findings, we prove that under the standard proba-

bilistic setting of equally-probable preference relations, the probability of level-1 consensus

goes to zero when the number of individuals is sufficiently large.

Motivated by these results, we established that the level-1 consensus property can be

weakened, enhancing the stability of social choice. Applying the modified algorithm to

the above mentioned dataset, it has been found that 39 out of 315 profiles exhibit level-1

consensus. The weaker level-1 consensus property is also much more probable in the settings

of randomly-generated profiles we tested. In particular, under the impartial assumption the

probability of the weaker level-1 consensus property converges to a positive number for any

number of individuals.

II. DEFINITIONS

Let A = {a1, . . . , aK} be a set of K ≥ 3 alternatives and let N = {1, . . . , n} be a set

of individuals. Also, let P be the subset of complete, transitive and antisymmetric binary

relations on A. We will refer to the elements of P as preference relations or simply as

preferences. A preference profile or simply a profile is a list π = (�1, . . . ,�n) of preference

relations on A such that for each i ∈ N , �i is the preference relation of individual i. We

denote by Pn the set of all possible preference profiles.

Let π = (�1, . . . ,�n) be a preference profile. For each preference �∈ P , let µπ(�) :=

|{i ∈ N :�i=�}| = the number of individuals whose preference is �, which in this study is

referred to as the frequency of �.

Definition 1. The inversion distance between two preferences �,�′, denoted d(�,�′), is

the number of pairs of alternatives that are ranked differently by the two preferences, i.e,

the number of sets {a, b} ⊆ A such that a � b and b �′ a or vice-versa.

It is known that the inversion-distance is a metric on P [7]. It is clear from the definition

that the inversion distance can vary between 0 and
(
K
2

)
, the number of subsets of two

alternatives.
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For example, if there are three alternatives and a1 � a3 � a2 and a2 �′ a3 �′ a1, then

d(�,�′) = 3 since all three pairs of alternatives are ranked differently by � and �′.

Definition 2. Let � and �′ be two different preference relations on A, and let �0∈ P be

a preference relation on A. We say that � is closer than �′ to �0 if d(�,�0) < d(�′,�0).

Definition 3. Let �0∈ P . A preference profile π ∈ Pn exhibits consensus of level-1 around

�0 if the following two conditions hold:

1. For all pairs of preference relations �,�′∈ P , � ≥�0 �′ ⇒ µπ(�) ≥ µπ(�′).

2. There is at least one pair �,�′∈ P , such that � >�0 �′ and µπ(�) > µπ(�′).

III. OPERATIVE TEST FOR LEVEL-1 CONSENSUS

Given a preference profile π ∈ Pn, we would like to check whether there exists some

preference relation �0 such that π exhibits level-1 consensus around it. Our operative

test relies on the observation that the two conditions in Definition 3 are equivalent to the

following:

(Condition 1) For all�′,�, if µπ(�′) > µπ(�), then d(�′,�0) < d(�,�0).

(Condition 2) There exists a pair �′,� such that µπ(�′) > µπ(�).

Our operative test proceeds in several steps.

First, we calculate the frequency µπ(�) of each of the preferences �∈ π. Let n′ be the

number of distinct preferences in π. Note that n′ ≤ n and also n′ ≤ K!, since with K

alternatives there are at most K! possible preferences. Now Condition 2 is easily checked: it

is satisfied if-and-only-if (a) there exists a pair of preferences in π with different frequencies,

or (b) n′ < K! (since this implies that there exists a preference not in π with frequency 0).

If Condition 2 is satisfied, it only remains to check whether Condition 1 is satisfied as

well.

We order the preferences in descending order of µπ(�), and rename them �1,�2, . . . ,�n′ ,

such that µπ(�1) ≥ µπ(�2) ≥ · · · ≥ µπ(�n′). This enables us to identify the candidates

for level-1-consensus. Since d(�0,�0) = 0, Condition 1 immediately implies that each
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candidate �0 must be a preference with maximal frequency. So, the list of candidates are

�1,�2, . . . ,�h such that h ≤ n′ is the largest index for which µπ(�1) = µπ(�2) = · · · =

µπ(�h).

Now we can directly check Condition 1. This condition should be checked separately for

each candidate preference �0. Given a candidate, we can calculate its inversion-distance

from each preference �i∈ π , d(�i,�0). Now, we represent the profile π relative to �0 in

the form of a scatter-plot, which will lead to a straight-forward assessment of the profile’s

consensus status. Our scatter-plot is a plot whose x-axis denotes the distance d(�i,�0)

and whose y-axis denotes the frequency µπ(�i). Notice that there may be several different

preference relations �i with the same frequency, µπ(�i) = m. Therefore, for each integer

value on the y-axis of the scatter-plot, m, we may have several corresponding values on the

x-axis, which can be represented by a horizontal segment whose maximum and minimum

borders are given by maxi:µπ(�i)=m d(�i,�0) and mini:µπ(�i)=m d(�i,�0), respectively.

Condition 1 above requires that, for every two frequencies m1 > m2, all preferences with

frequency m1 are closer to �0 than all preferences with frequency m2: maxi:µπ(�i)=m1 d(�i
,�0) < mini:µπ(�i)=m2 d(�i,�0). Graphically (see Figure 1), this means that when we scan

the scatter plot from top to bottom, we must see non-overlapping intervals ordered strictly

from left to right.

Three examples are shown in Figure 1. The left example is positive: there are 5 non-

overlapping intervals (two of which consist of a single point), and when they are scanned

from top to bottom, they are ordered strictly from left to right. Therefore Condition 1 holds.

The middle and right examples are negative: the second and third intervals from the top

overlap. For instance, in the middle example the overlap is in a single point, x = 2. This

point corresponds to two distinct preferences with different frequencies (5 and 4), which are

both found at distance 2 from the candidate preference; these preferences violate Condition

1.

The process of ’scanning the scatter plot from top to bottom’ can be formalized as

follows. Order the list of preferences by a double order criterion: the primary criterion is

descending frequency (as before), and the secondary criterion is ascending distance. So the

preferences are partitioned to equivalence-classes by their frequency: the classes are ordered

by descending frequency, and within each equivalence-class, the preferences are ordered

by ascending distance from �0. Preferences with both the same frequency and the same
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FIG. 1. Scatter-plot representation of profiles relative to a candidate preference enables to

graphically check whether level-1 consensus around that candidate is satisfied. The left plot satisfies

Condition 1 since the horizontal segments are decreasing and non-overlapping. The middle and

right plots violate Condition 1 since there are overlapping segments (circled).

distance are ordered arbitrarily. Under this ordering, the following lemma holds:

Lemma 1. If condition 1 is violated for any pair of preference relations in π, then it is

violated for an adjacent pair �i,�i+1 for some i.

The lemma is easy to understand based on the graphical criterion outlined above. A

formal proof is provided in Appendix A.

Lemma 1 implies that in order to ensure that Condition 1 is satisfied for all preferences

in π, it is sufficient to scan the ordered list of preferences from �1 to �n′ , and check if there

is some i such that µπ(�i) > µπ(�i+1), yet d(�i,�0) ≥ d(�i+1,�0).

If Condition 1 holds for all preferences in π, it remains to check that it holds for preferences

not in π, i.e, preferences with zero frequency. Let D = d(�n′ ,�0) be the largest distance of a

preference�n′ in π relative to�0. Condition 1 implies that, if µπ(�) = 0, then d(�,�0) > D.

Therefore, we have to check that the distances between �0 and preferences not in π are all

larger than D. Equivalently, we can ensure that all preferences with distance at most D are

in π. This can be checked by calculating the number of possible preferences with distance

at most D and verifying that it is equal to the total number n of preferences in π. Since this

number involves all possible preferences, it does not depend on the candidate �0. Therefore,

we can calculate this number assuming w.l.o.g that �0 is the identity permutation 1, . . . , K.

Then, n is the number of permutations on K elements with at most D inversions (out-of-
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order elements). This can be written as:

D∑
j=0

T (K, j)

where T (k, j) is the number of permutations on K elements with exactly j inversions.2

The number T (K, j) can be calculated using the following recurrence relation3:

• T (K, 0) = 1: there is exactly one permutation with zero inversions — the identity

permutation.

• T (0, j) = 0: there are no permutations with 0 elements.

• T (K, j) =
∑min(K−1,j)

i=0 T (K − 1, j − i): For any permutation of 1, . . . , K with j inver-

sions, let i be the number of elements that come after element K in that permutation.

Since K is larger than all other elements, there are exactly i inversions involving K.

Therefore, if we remove K, we get a permutation of 1, . . . , K − 1 with exactly j − i

inversions. By summing the counts of these permutations for all possible values of i

(namely, i ≥ 0, i ≤ j, i ≤ K − 1) we get T (K, j).

To summarize, we formally present our algorithm using two procedures.

Procedure Check Consensus(π):

1. Calculate the frequency µπ(�) of each preference �∈ π.

2. Define K = number of alternatives, n′ = number of distinct profiles in π.

3. If all frequencies are equal and n′ = K!, return “no consensus; Condition 2 violated”.

4. Order the preferences by descending frequency: µπ(�1) ≥ µπ(�2) ≥ · · · ≥ µπ(�n′).

5. Set M := µπ(�1) to be the maximum frequency of a preference relation.

6. For j = 1, 2, . . . n′ while µπ(�j) = M :

If Condition 1 Is Satisfied(π, �j), then return �j.

7. Return “no consensus; Condition 1 is violated for all candidates”.

2 T (K, d) is also called the Mahonian number ; see OEIS sequence A008302, https://oeis.org/A008302.
3 Explained by Vineel Kumar Reddy Kovvuri in http://stackoverflow.com/a/25747326/827927
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Procedure Condition 1 Is Satisfied(π, �0):

1. Within every group of preferences with the same frequency, order the preferences by

ascending inversion-distance from �0.

2. For i = 1, 2, . . . , n′ − 1:

If µπ(�i) > µπ(�i+1) and d(�i,�0) ≥ d(�i+1,�0), return False.

3. Set D := d(�n′ ,�0). If
∑D

j=0 T (K, j) = n, return True. Else, return False.

We now analyze the run-time of the above algorithm.

In procedure Condition 1 Is Satisfied, we have to calculate the distance between �0 and

each of the other n′−1 preferences. Calculating the inversion distance between a given pair of

preferences can be done by a recently-developed algorithm [4] with runtime of O(K
√

logK).

We then have to order the n′ distinct preferences and then scan them from top to bottom.

Ordering n′ items can be done in time O(n′ log n′). The value of n′ is at most the maximum

of n (the number of voters) and K! (the number of possible preferences). So the run-time

is simultaneously bounded by O(K!K logK) and O(n · K
√

logK + n · log n); the former

bound is relevant when the number of alternatives is small relative to the number of voters

(K! ≤ n) and the latter when it is large (K! > n).

As will be explained below, the probability of having two preferences with exactly

the same frequency is low, so in most cases we will have to run the procedure Condi-

tion 1 Is Satisfied only once. However, in the improbable case in which there are many

preferences with the same frequency, it would have to run at most n′ times. Therefore, the

worst-case run-time is O(n′ · (n′K
√

logK + n′ log n′)) = O(n′2K
√

logK + n′2 log n′).

IV. PROBABILITY OF LEVEL-1 CONSENSUS

Equipped with a procedure for checking level-1 consensus, we set out to check how likely

is this property in various settings. We conducted several simulation experiments.

In the first experiment we used the PrefLib database [12], an online database of real-world

preference-profiles collected from various sources. This database includes 315 full preference

profiles, with different numbers of alternatives and voters; see Table I for statistics. For each

preference profile, we used the algorithm described in the previous section to check whether
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there exists a 1-level consensus. The results were striking: none of the 315 profiles exhibited

a level-1 consensus.

In the second experiment we used preference-profiles that were generated according to

Mallows’ phi model [10], which was claimed to favor level-1 consensus [9]. Mallows’ model

assumes that there is a “correct” preference �∗, and the actual preferences of the voters

are noisy variants of it. The probability of a preference � depends on its inversion distance

from the correct preference: d(�,�∗). The strength of this dependence is determined by a

parameter φ ∈ (0, 1], where lower φ means higher dependence; when φ→ 0 the preferences

of all voters are identical and equal to �∗, while when φ = 1 the preference of each voter is

selected uniformly at random from the K! possible orderings on K items. In general, the

probability of each preference-relation � is given by [8]:

Prob
[
� | φ,�∗

]
=

1

Z
· φd(�,�∗)

where Z is a normalization factor.

We considered all 6 combinations of K ∈ {3, 4, 5} alternatives and n ∈ {100, 1000} voters,

where φ varied between 0 and 1. For each combination of K,n, φ we ran 1000 experiments

and calculated (a) the percentage of profiles that exhibit level-1 consensus, (b) the percentage

of profiles that are single-peaked,4 and (c) the percentage of profiles that exhibit a weakened

variant of level-1 consensus, which is presented in the next section. The results are shown

in Figure 2. As can be expected, consensus always exists when φ = 0, since in this case

there is a deterministic consensus on the “true” preference. Additionally, when there are 100

voters and 3 alternatives and φ is small, a small positive percentage of the profiles exhibit

a level-1 consensus (top left plot). In all other cases, the percentage of level-1 consensus

profiles drops to 0 when φ ≥ 0.05.

Why is level-1 consensus so rare? Intuitively, the reason is that it requires preferences to

have exactly the same frequency in the population. Condition 1 implies that if d(�i,�0) =

d(�j,�0) then µπ(�i) = µπ(�j). For every K ≥ 3 and for every candidate �0, there exist

at least two preferences with the same distance from the candidate, d(�i,�0) = d(�j,�0).

Hence, a necessary condition for level-1 consensus is that there exist at least two preferences

4 This calculation was done for the sake of comparison. It was implemented using Nicholas Mattei’s PrefLib

tools, which are freely available at GitHub: https://github.com/nmattei/PrefLib-Tools .
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FIG. 2. Percentage of profiles, from a set of profiles selected at random according to Mallows’ phi

model, which exhibit level-1-consensus or single-peakedness.

with exactly the same frequency. The probability of this event goes to 0 as the number of

voters goes to ∞.

Below we present an approximate asymptotic upper bound on the probability of level-1

consensus for the case φ = 1. This is the case of impartial culture, in which all K! preferences

are equally probable. Let �0 be the fixed preference K �0 · · · �0 1. Recall that T (K, d) is

the number of distinct preferences whose inversion-distance from �0 is exactly d. Since d

varies between 0 and
(
K
2

)
:

(K2 )∑
d=0

T (K, d) = K!

For each d, it is required that all T (K, d) profiles have exactly the same frequency. Let

P (n,K, d) be the probability that, with n voters and K alternatives, all profiles with distance
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d from �0 will have the same frequency. Then, the probability of having level-1 consensus

is at most:

P (n,K) =

(K2 )∏
d=0

P (n,K, d)

Under the impartial culture assumption, the frequency of a profile is a random variable

distributed like Binom[n, 1/K!]. Its mean value is µ = n/K! and its standard deviation is

σ =
√

(n/K!) · (1− 1/K!). We make the following simplifying assumptions:

1. The number of voters n is sufficiently large so that the binomial variable can be

approximated by a normal random variable distributed like Normal[µ, σ].

2. The frequencies of different profiles are independent random variables (in fact, the

frequencies are dependent. The sum of all frequencies must equal n, so when the

frequency of one preference is higher, it is more likely that the frequency of another

preference will be lower. However, we are interested in the probability that two vari-

ables are equal, which should not be much affected by this dependence).

Under these assumptions, P (n,K, d) can be estimated as the probability that T (K, d) i.i.d.

normal random variables will have the same value x, when x is integrated between −∞ and

∞:5

P (n,K, d) ≈
∫ ∞
−∞

(2πσ2)−T (K,d)/2 exp

(
−T (K, d) · (x− µ)2

2σ2

)
dx

= (2πσ2)−T (K,d)/2

√
2πσ2

−T (K, d)

=
1√

T (K, d) (2πσ2)T (K,d)−1

And their product is:

P (n,K) ≈ 1∏(K2 )
d=0

√
T (K, d) (2πσ2)T (K,d)−1

=
1√∏(K2 )

d=0 T (K, d) ·

√
(2πσ2)

∑(K2 )
d=0 (T (K,d)−1)

5 We are grateful to Hernan J. Gonzalez for his help in solving this problem.
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This expression depends on n only through σ. Hence, to get an asymptotic approximation

for how P (n,K) changes as a function of n, we remove the factors that do not depend on n:

P (n,K) <
1√

(2σ2)
∑(K2 )
d=0 (T (K,d)−1)

=
1√

(2σ2)K!−(K2 )−1

Now we substitute σ2 = (n/K!) · (1− 1/K!) > (n/K!) · (1/2) and get:

P (n,K) <
1√

(n/K!)K!−(K2 )−1

Recall that P (n, k) is the probability of level-1 consensus around a fixed preference; the

probability of level-1 consensus around any preference is, by the union bound, at most this

probability times the number of possible preferences, i.e,

K! · P (n,K) <
K!√

(n/K!)K!−(K2 )−1

For example, with K = 3 alternatives we get an upper bound of 6/
√

(n/6)2 = O(1/n); with

K = 4 alternatives the upper bound is 24/
√

(n/24)17 = O(1/n8.5). In any case, the upper

bound goes to 0 when n→∞, and the rate of convergence to 0 becomes much faster when

K is larger.

V. A WEAKER BUT MORE PROBABLE VARIANT OF LEVEL-1 CONSENSUS

Motivated by the low probability for a level-1 consensus, we suggest below a weakened

variant of this property, where Condition 1 is replaced with:

(Condition 1’) For all�′,�, if µπ(�′) > µπ(�), then d(�′,�0) ≤ d(�,�0).

It will be shown below that changing d(�′,�0) < d(�,�0) to d(�′,�0) ≤ d(�,�0) signif-

icantly increases the probability that the condition is satisfied, while keeping the desirable

stability properties of the original condition. Moreover, these stability properties hold even

without Condition 2.6

6 Our proofs below closely follow the proofs of [9]. Their proofs are stated for level-r consensus for general

r, and indeed Condition 1’ can also be adapted to general r, but for the sake of simplicity we prefer to

focus on the case r = 1.
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Code Description # profiles # alternatives # voters

ED-00004 1–100:
Netflix Prize Data [2]

Rankings of movies
by consumers. 100 3 100–1000

ED-00004 101-200:
Netflix Prize Data [2]

Rankings of movies
by consumers. 100 4 100–1000

ED-00006:
Skate Data

Ranking of skaters
by judges in competitions. 20 10–25 8–10

ED-00009:
AGH Course Selection

Ranking of courses
by university students. 2 7–9 ≈ 150

ED-00011:
Web Search

Ranking of search-phrases
by search-engines. 3 100–250 5

ED-00012:
T shirt

Ranking of T-shirt designs
by researchers. 1 10 30

ED-00014:
Sushi Data

Ranking of sushi kinds
by consumers. 1 10 5000

ED-00014:
Sushi Data

Ranking of sushi kinds
by consumers. 1 10 5000

ED-00015:
Clean Web Search

Ranking of search-phrases
by search-engines. 79 10–250 4

ED-00024:
Mechanical Turk Dots [11]

Ranking of dot-sets
by Amazon-Turk workers. 4 4 ≈ 800

ED-00025:
Mechanical Turk Puzzle [11]

Ranking of puzzles
by Amazon-Turk workers. 4 4 ≈ 800

ED-00032:
Education Surveys

Ranking of issues
by informatics students. 1 6 15

TABLE I. Summary of PrefLib [12] data-sets used in our experiments.

Given a preference-profile π, define the majority relation Mπ as follows: aMπb iff, in a

vote between a and b, a beats b by a weak majority. I.e, the number of preferences in π by

which a � b is at least as large as the number of preferences in π by which b � a.

Lemma 2. Let π ∈ Pn be a preference-profile and �0∈ P a preference-relation such that

Condition 1’ is satisfied. Then, for any two alternatives a, b, if a �0 b then aMπb.

Moreover, if n is odd then the opposite is also true: if aMπb then a �0 b.

Proof. =⇒ : Suppose that a �0 b. Partition P , the set of K! possible preferences, to two

subsets:

• The subset C(a > b) containing the K!/2 preferences for which a � b;

• The subset C(b > a) containing the K!/2 preferences for which b � a.

Let wab : C(b > a) → C(a > b) be the bijection that takes a preference in C(b > a) and
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switches a with b in the ranking. Then, since a �0 b, for every preference �∈ C(b > a) it

holds that d(wab(�),�0) < d(�,�0) (see proof in Appendix B).

By Condition 1’, this implies that µπ(wab(�)) ≥ µπ(�). So for every preference � by

which b is preferred to a, there is a preference wab(�) by which a is preferred to b, which is

at least as frequent. Therefore, a beats b by a weak majority: aMπb.

⇐= : When n is odd, every majority is strict. Hence, if aMπb then it is not true that

bMπa. Hence, by the first part of the lemma, it is not true that b �0 a. Since �0 is a

complete ranking, a �0 b.

We denote by Best(�0) the alternative ranked first according to �0.

A Condorcet winner of π is an alternative a that beats all other alternative by a weak

majority, i.e, for any other alternative b, aMπb.

Theorem 1. Let π ∈ Pn be a preference-profile and �0∈ P a preference-relation such that

Condition 1’ is satisfied. Then Best(�0) is a Condorcet winner of π.

Moreover, if n is odd then �0 coincides with the majority relation Mπ, and �0 is the

unique preference in P for which Condition 1’ is satisfied.

Proof. Let a1 := Best(�0). So for every b 6= a, a1 �0 b. By Lemma 2, this implies that

a1Mπb. Hence, a1 is a Condorcet winner of π.

When n is odd, Lemma 2 implies that a �0 b iff aMπb, so �0≡Mπ. This is true for any

preference in P for which Condition 1’ holds, so any such preference coincides with �0.

A scoring rule is a rule characterized by a vector S of K scores, S1 ≥ · · · ≥ SK . Given

a profile π, for each preference �∈ π, the rule assigns score S1 to the alternative ranked

first by �, S2 to the alternative ranked second by �, and so on. The rule then sums the

scores assigned to each alternative by all preferences in π, and selects the alternative/s that

received the highest total score.

Lemma 3. Let π ∈ Pn be a preference-profile and �0∈ P a preference-relation such that

Condition 1’ is satisfied. Then, for any two alternatives a, b and any scoring-rule S, if

a �0 b then the score of a is at least as large as the score of b.

Proof. Partition P to two halves, C(a > b) and C(b > a), and define the bijection wab

between them, as in the proof of Theorem 1.
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For every scoring-rule S and preference �∈ P , define ∆S(�) as the difference between

the score of a in � and the score of b in �. So:

• For every preference �∈ C(a > b), ∆S(�) is weakly-positive.

• For every preference �∈ C(b > a), ∆S(�) is weakly-negative.

• For every preference �∈ P , ∆S(�) = −∆S(wab(�)).

Given the scoring-rule S and the profile π, define ∆S(π) as the difference between the total

score of a in π and the total score of b in π. Then, by definition:

∆S(π) =
∑
�∈P

µπ(�) ·∆S(�)

=
∑

�∈C(a>b)

µπ(�) ·∆S(�) +
∑

�∈C(b>a)

µπ(�) ·∆S(�)

=
∑

�∈C(a>b)

µπ(�) ·∆S(�) + µπ(wab(�)) ·∆S(wab(�))

=
∑

�∈C(a>b)

µπ(�) ·∆S(�)− µπ(wab(�)) ·∆S(�) (Since ∆S(wab(�)) = −∆S(�))

=
∑

�∈C(a>b)

∆S(�) · [µπ(�)− µπ(wab(�))]

Since a �0 b, for every preference �∈ C(a > b), the lemma in Appendix B implies that

d(wab(�),�0) > d(�,�0). Hence, by Condition 1’, µπ(�) ≥ µπ(wab(�). Hence, all terms in

the last sum are weakly-positive. Hence, ∆S(π) ≥ 0 and the lemma is proved.

Theorem 2. Let π ∈ Pn be a preference-profile and �0∈ P a preference-relation such that

Condition 1’ is satisfied. Then every scoring-rule assigns a highest total score to Best(�0).

Proof. Follows directly from Lemma 3.

The procedure for checking Condition 1’ is very similar to the one for checking Condition

1 in Section III. There are two differences: the inequality that causes the procedure to fail is

d(�i,�0) > d(�i+1,�0) (instead of d(�i,�0) ≥ d(�i+1,�0)), and in the last step we have to

check that no preference outside π has distance less than D (instead of less-than-or-equal-to

D):

Procedure Condition 1’ Is Satisfied(π, �0):
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1. Order preferences with the same frequency by ascending inversion-distance from �0.

2. For i = 1, 2, . . . , n′ − 1:

If µπ(�i) > µπ(�i+1) and d(�i,�0) > d(�i+1,�0), return False.

3. Set D := d(�n′ ,�0). Set n∗ to the number of profiles in π whose distance to �0 is at

most D − 1. If
∑D−1

j=0 T (K, j) = n∗, return True. Else, return False.

We applied the modified procedure to the same experimental settings described in Section

IV and estimated the probability of having the weakened level-1-consensus. Out of the 315

PrefLib profiles, 39 exhibit weak level-1 consensus. All 39 profiles are from the dataset

labeled “ED-00004 1–100”, where all profiles have 3 alternatives. This means that 39% of

all profiles with 3 alternatives exhibited the weak level-1 consensus (in contrast to 0 which

exhibit level-1 consensus).

The results of the experiments on random profiles are shown in Figure 2; it is evident

that in all settings, including the most difficult setting of impartial culture (φ = 1), weak

level-1-consensus is substantially more probable than level-1-consensus.

Finally we present a theoretical calculation showing that, even in the impartial culture

setting, and even when n → ∞, the probability of weak-level-1-consensus approaches a

positive constant (in contrast to the probability of level-1-consensus, which approaches 0).

As explained above, the probability that two or more preferences will have exactly the

same frequency goes to 0 when n → ∞, so for simplicity we neglect this possibility and

assume that each preference relation has a different frequency. Under this assumption, there

always exists a unique preference with maximum frequency; let’s call it �0. This is the only

candidate for satisfying Condition 1’. Below we calculate the probability that Condition 1’

holds for this preference.

For every i ≥ 1, define:

Fi := { µπ(�) | d(�,�0) = i }

so Fi contains the frequencies of all preferences whose distance from�0 is exactly i. Note that

Fi is non-empty only when i ≤
(
K
2

)
, since

(
K
2

)
is the maximum possible inversion-distance

between two preferences on K alternatives.

Condition 1’ is equivalent to the requirement that each integer in Fi is larger than each

integer in Fj, for every i < j. Note that condition 1’ does not put any restriction on the
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frequencies within Fi.

Let F := ∪iFi = the set of frequencies of the K! − 1 preferences different than �0.

The total number of different orders on F is |F |!. The total number of orders that satisfy

Condition 1’ is |F1|! · |F2|! · · · |F(K2 )|!. Since all preferences are equally likely, we can assume

that all |F |! orders are equally likely. Therefore, the probability that the order of frequencies

satisfies Condition 1’ is at least:

|F1||F2| · · · |F(K2 )|

|F |!
(1)

which is a positive constant that does not approach 0 even when n→∞.

As an illustration, we calculate the probability of Condition 1’ for K = 3 alternatives. In

this case we have |F1| = 2 and |F2| = 2 and |F3| = 1 and |F | = 2 + 2 + 1 = 5. Therefore, the

probability that Condition 1’ is satisfied is at least 2! · 2! · 1!/5! = 1/30 ≈ 0.033. Indeed, in

our experiments with φ = 1, the fraction of profiles with weak level-1-consensus was 0.043

for 1000 voters (and at most 0.06 for less than 1000 voters). This is slightly higher than the

lower bound of 0.033, which can be explained by the fact that, when n is finite, there is a

positive probability for having two profiles with the same frequency.

When K > 3, the probability of Condition 1’ in impartial culture is much lower. For

example, for K = 4 the lower bound is only about 10−12. Indeed, we found no profiles that

exhibit weak level-1 consensus in our experiments with φ = 1 and K ≥ 4. However, the

probability is still positive and does not approach 0.

VI. REPRODUCIBILITY OF EXPERIMENTS

Our experiments can be reproduced by re-running the code, which is freely available

through the following GitHub fork: https://github.com/erelsgl/PrefLib-Tools

VII. CONCLUSION

We presented a practical procedure for checking whether a preference profile exhibits a

level-1 consensus. Realizing that this property is highly improbable, we have slightly weak-

ened the condition for a level-1 consensus, proving that it preserves the desirable stability

of the social choice. Furthermore, the modified condition is considerably more likely to be
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satisfied. This was demonstrated synthetically for the impartial culture setting and over a

database of real-world preference profiles.

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for insightful comments that led to the re-

vised version of the manuscript, and to Hernan J. Gonzalez for his help in the probability

calculations.

M.N. is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship. E.S. is

grateful to the Israeli Science Foundation for the ISF grant 1083/13.

Appendix A: Proof of Lemma 1

This section provides a formal proof to the following lemma used in subsection III.

Lemma 1. Suppose that the preference relations in a profile π are ordered by two criteria:

first by frequency µπ(�i), then by distance d(�i,�0), where �0 is a fixed preference. In

this ordering, if Condition 1 is violated for any pair of preference relations in π, then it is

violated for an adjacent pair �i,�i+1 for some i.

Proof. Suppose that there exist indices i < j such that Condition 1 is violated for the

pair �i,�j, i.e, µπ(�i) > µπ(�j) but d(�i,�0) ≥ d(�j,�0). We now prove the lemma by

induction on the difference of indices, j − i.

Base: If j − i = 1, then �i and �j are already adjacent, so we are done.

Step: Suppose that j− i > 1. We prove that there exists a pair with a smaller difference

that violates condition 1. We consider several cases.

Case #1 : i is not the largest index in its equivalence class. i.e, there exists i′ > i such

that µπ(�i′) = µπ(�i). Then, by the secondary ordering criterion, d(�i′ ,�0) ≥ d(�i,�0),

condition 1 is violated for the pair �i′ and �j.

Case #2 : j is not the smallest index in its equivalence class. i.e, there exists j′ < j such

that µπ(�j′) = µπ(�j). Then, by the secondary ordering criterion, d(�j,�0) ≥ d(�j′ ,�0),

condition 1 is violated for the pair �i and �j′ .

Otherwise, i is the largest index in its equivalence class, j is the smallest index in its

equivalence class, but still i+ 1 < j. This means that the equivalence classes of i and j are
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not adjacent, i.e, µπ(�i) > µπ(�i+1) > µπ(�j). Now there are two remaining cases:

Case #3 : d(�i,�0) ≥ d(�i+1,�0), in which case condition 1 is violated for the adjacent

pair �i and �i+1 and we are done.

Case #4 : d(�i+1,�0) > d(�i,�0). This implies d(�i+1,�0) > d(�j,�0), so condition 1

is violated for the pair �i+1 and �j and we are done.

Appendix B: Proof related to Lemma 2

This section provides a formal proof to an intuitive claim made during the proof of Lemma

2. Let a, b be two fixed alternatives. Let C(a > b) be the set of preferences by which

a � b and C(b > a) the set of preferences by which b � a. Let wab : C(b > a)→ C(a > b) be

a function that takes a preference-relation and creates a new preference-relation by switching

the position of a and b in the ranking.

Lemma 4. If a �0 b, then for every preference �∈ C(b > a):

d(�,�0) > d(wab(�),�0)

Proof. Define D(�,�0) as the set of pairs-of-alternatives {i, j} that are ranked differently

in � and in �0. By definition, the inversion distance is the cardinality of this set:

d(�,�0) = |D(�,�0)|

so it is sufficient to show that there are more pairs in D(�,�0) than in D(wab(�),�0).

To show this, we consider all possible pairs-of-alternatives; for each pair, we calculate its

contribution to the difference in cardinalities |D(�,�0)| − |D(wab(�),�0)|, and show that

the net difference is positive.

• The pair {a, b} is in D(�,�0) but not in D(wab(�),�0), so this pair contributes +1

to the difference.

• Any pair that contains neither a nor b is not affected by the switch. I.e, each pair {c, e}

where c, e 6= a, b is in D(�,�0) if-and-only-if it is in D(wab(�),�0), so it contributes

0 to the difference.

• Let c be an alternative that is ranked by � above b or below a, i.e, either c � b � a

or b � a � c. Then, the order between c to a and b is not affected by the switch, so
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{c, a} is in D(�,�0) if-and-only-if it is in D(wab(�),�0), and similarly for {c, b}, so

it contributes 0 to the difference.

• Let c be an alternative that is ranked by � between a and b, i.e, b � c � a. Then, the

switch wab changes the direction of both the pair {c, a} and the pair {c, b}. We have

to calculate how much these two pairs contribute to the difference.

Suppose that the pair {c, a} contributes −1 to the difference. This means that this

pair is in D(wab(�),�0) but not in D(�,�0). This means that {c, a} is ranked by �

the same as by �0. By assumption c � a, so also c �0 a.

By assumption a �0 b, so by transitivity, c �0 b. But b � c. This means that the pair

{c, b} is in D(�,�0) but not in D(wab(�),�0), so it contributes +1 to the difference.

Similarly, if the pair {c, b} contributes −1 to the difference, then the pair {c, a} con-

tributes +1.

Therefore, the net contribution of the two pairs {c, a} and {c, b} is at least 0.

We proved that the contribution of each pair is at least 0, and the contribution of the pair

{a, b} is +1. Therefore, the difference d(�,�0) − d(wab(�),�0) is positive and the lemma

is proved.
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