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Positive definite functions on Coxeter groups
with applications to operator spaces and
noncommutative probability

by Marek Bożejko, Światosław R. Gal, and WojciechMłotkowski

Uffe Haagerup (–) in Memoriam

Abstract. A new class of positive definite functions related to
colour-length function on arbitrary Coxeter group is introduced.
Extensions of positive definite functions, called the Riesz-Coxeter
product, from the Riesz product on the Rademacher (Abelian Cox-
eter) group to arbitrary Coxeter group is obtained. Applications
to harmonic analysis, operator spaces and noncommutative prob-
ability is presented. Characterization of radial and colour-radial
functions on dihedral groups and infinite permutation group are
shown.

Introduction

In  Uffe Haagerup in his seminal paper [haa], essentially
proved the positive definitness, for  ≤ q ≤ , of the function Pq(x) =

q|x| = exp(−t|x|), where | · | is the word lenght on a free Coxeter group
W = Z/∗· · ·∗Z/. From this he deduced also Khinchine type inequal-
ities. He has shown that the regular C∗-algebra of W has bounded
approximation property and later [dch] the completely bounded
approximation property (cbap). These results of Uffe Haagerup have
had significant impact on harmonic analysis on free groups and,
more generally, on Coxeter groups; they also influenced free proba-
bility theory and other noncommutative probability theories.

In the paper [bjs] it was shown that the function Pq(x) = q|x| is
positive definite for q ∈ [−,] and all Coxeter groups, where the
length | · | is the natural word length function on a Coxeter group
with repect to the set of its Coxeter generators. This fact implies
that infinite Coxeter groups have the Haagerup property and do not
have Kazhdan’s propery (T).

Mathematics Subject Classification. Primary f, a, l, Secondary
a, a.
Key words and phrases. Coxeter group, positive definite functions, operator spaces,
Sidon sets, Khinchine inequality, length function, de Finetti theorem.
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Later, Januszkiewicz [jan] and Fendler [fenb] showed, in the
spirit of Haagerup proof, thatw 7→ z |w| is a coefficient of a uniformely
bounded Hilbert representation of W for all z ∈ C such that |z| < .
As shown in a very short paper of Valette [val], this implies cbap.
See the book [bo] for futher extension of Uffe Haagerup results for
a big class of groups.

In the paper [bs] Bożejko and Speicher considered the free prod-
uct (convolution) of classic normal distribution N(,) and the new
length function on the permutation group Sn (i.e. the Coxeter group
of type a) was introduced, which we shall call the colour-length func-
tion ‖ · ‖. It is defined as follows: for w ∈ Sn in the minimal (reduced)
representationsw = s . . . sk , where each sj belong to the set S of trans-
posions of the form (i, i + ), we put ‖w‖ = #{s, s, . . . , sk}.
For our study one of the most important results of this paper is that
the function called Riesz-Coxeter product Rq defined on all Coxeter
groups (W,S) as

Rq(s) = qs, for s ∈ S, and Rq(xy) = Rq(x)Rq(y), if ‖xy‖ = ‖x‖+ ‖y‖
is positive definite for  ≤ qs ≤ .
This implies, in particular, that in an arbitrary Coxeter group the set
of its Coxeter generators is a weak Sidon set and also it is completely
bounded Λcb

p -set, see Theorems . and .. Equivalently, the span

of the linear operators {λ(s)|s ∈ S} in the noncommutative Lp-space
Lp(W) is completely boundedly isomorphic to row and column op-
erator Hilbert space (see Theorem .).

Another interesting connection between the two length functions | · |
and ‖ · ‖ appeared in [bs] in the formula for the moments of free
additive convolution power of the Bernoulli law µ− = (δ− + δ)/
(cf. Corollary  in cited paper):

mn
(
µ
⊞q
−

)
= qn

∑

π∈P(n)
(−)|π|q−‖π‖,

for q ∈N. (See also Section  of the present paper.)

Also, in [bbls] the colour-length function on the permutation group
Sn was studied. Some of its extensions to pairpartitions appeared in
the presentation of the proof that classical normal law N(,) is free
infinitely divisible under free additive convolution ⊞.

Since we have recent extensions of the free probability (which is re-
lated to type a Coxeter groups) to the free probability of type b Cox-
eter groups (see [beh]), it seems to be interesting to determine the
role of the colour-length functions for the Coxeter groups of type b
and d.
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The plan of the paper is as follows.

In Section we recall definitions of Coxeter groups and of the length
and the colour-length functions.

In Section  we recall the definition of positive definite funcios and
discuss various classes of those, namely radial, colour-radial, and
colour-dependant.

In Section  we discuss Abelian Coxeter groups.

In Section  we show the following formula characterizing the ra-
dial normalised positive definite functions on these Coxeter groups
which contain the infinite Rademacher group

⊕∞
i=

Z/ as a para-
bolic subgroup (these include the infinite permutation group S∞):
every radial positive definite function ϕ is of the form

ϕ(w) =

∫ 

−
q|w| µ(dq)

for a probability measure µ.

That characterisation is a variation on the classical de Finetti theo-
rem. A noncommutative version was shown by Köstler ans Speicher
[ks] (see also [leh]).

We also show in Theorem ., that the function exp(−t|w|p) is posi-
tive definite for all t ≥  if and only if p ∈ [,].
In Section  we give a short proof of the equivalence of the two
known results concerning positive definite functions on finite Cox-
eter groups.

In Section  we present the main properties of the colour-dependent
positive definite functions on Coxeter groups, in particular we show
in Proposition .. that on S∞ and some other Coxeter groups, the
function w 7→ r‖w‖ is positive definite if and only if r ∈ [,].
The Section  gives characterization of all colour-length functions on
finite and infinite dihedral groups Dm, for m = ,, . . . ,∞.

In Section  we prove that the set S of Coxeter generators is a weak
Sidon set in arbitrary Coxeter groups (W,S) with constant  and that
it is also a completely bounded Λ(p) set with contants as C

√
p, for

p > .

In Section  we prove for arbitrary finitely generated Coxeter group
an identity involving both lengths | · | and ‖ · ‖ (see Proposition .).
We apply it to give a proof of Corollary  from [bs], (see Equation
(.)) where the proof, involving probabilistic considerations, was
not presented in [bs].



 Marek Bożejko, Światosław R. Gal, and Wojciech Młotkowski

. Coxeter groups

In this part we recall the basic facts regarding Coxeter groups and
introduce notation which will be used throughout the rest of the
paper. For more details we refer to [bou, hum].

A group W is called a Coxeter group if it admits the following pre-
sentation:

W =
〈
S
∣∣∣∣
{
(ss)

m(s,s) =  : s, s ∈ S,m(s, s) ,∞
}〉

,

where S ⊂W is a set andm is a functionm : S×S→ {,,, . . . ,∞} such
that m(s, s) = m(s, s) for all s, s ∈ S and m(s, s) =  if and only
if s = s. The pair (W,S) is called a Coxeter system. In particular,
every generator s ∈ S has order two and every element w ∈W can be
represented as

(.) w = ss . . . sm

for some s, s, . . . , sm ∈ S. If the sequence (s, . . . , sm) ∈ Sm is chosen
in such a way that m is minimal then we write |w| = m and call it
the length of w. In such a case the right hand side of (.) is called
a reduced representation or reduced word of w. This is not unique in
general, but the set of involved generators is unique [bou, Ch. iv,
§, Prop. ], i.e. if w = ss . . . sm = tt . . . tm are two reduced rep-
resentations of w ∈ W then {s, s, . . . , sm} = {t, t, . . . , tm}. This set
{s, s, . . . , sm} ⊆ S will be denoted Sw and called the colour of w.

Given a subset T ⊂ S by WT we denote the subgroup generated by T
and call it the parabolic subgroup associated with T. To see that Sw is
independent of the reduced representation of w notice that

(.) s ∈ Sw ⇐⇒ w <WSr{s}.

We define the colour-length of w putting ‖w‖ = #Sw (the cardinality of
Sw). Both lengths satisfy the triangle inequality and we have ‖w‖ ≤
|w|.

In the case of the permutation group the colour-length has the fol-
lowing pictorial interpretation. If σ is a permutation in Sn+ then ‖σ‖
equals nminus the number of connected components of the diagram
representing σ. Notice, that |σ| equals to the number of crossings in
the diagram (the number of pairs of chords that cross).
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σ e () ()() ()()()

|σ|    

‖σ‖    

It would be convenient to define

(.) ‖w‖s : =

{
 if s < Sw,

 if s ∈ Sw,
then, clearly, ‖w‖ =∑

s∈S ‖w‖s.

. Positive defined functions

A complex function ϕ on a group Γ is called positive definite if we
have ∑

x,y∈Γ
ϕ(y−x)α(x)α(y) ≥ 

for every finitely supported function α : Γ→ C.

A positive definite ϕ function is Hermitian and satisfies |ϕ(x)| ≤ ϕ(e)
for all x ∈ Γ. Usually it is assumed, that ϕ is normalised, i.e. that
ϕ(e) = .

In this and the following sections we discuss the radial functions on
Coxeter groups. These are functions which depend on |w| rather then
on w.

We call a function ϕ on (W,S) colour-dependent if ϕ(w) depends only
on Sw. We call it colour-radial if it depends only on ‖w‖.
An Abelian Coxeter group generated by S is isomorphic to the direct
product ⊕s∈SZ/. On these groups the lengths | · | and ‖ · ‖ coincide
and all functions are colour dependent.

The main example of a positive definite function will be the Riesz–
Coxeter function. Given a sequence q = (qs)s∈S we define Rq(w) =∏

s∈S q
‖w‖s
s =

∏
s∈Sw qs. We will abuse notation and denote by Rq also

the associated operator
∑

w∈WRq(w)w. That is

Rq = +
∑

s∈S
qss +

∑

w:Sw={s,s}
qsqsw +

∑

w:Sw={s,s,s}
qsqsqsw+ . . .
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In the case all qs = q we get Rq =
∑
q‖w‖w.

This generalises the classical case of Rademacher–Walsh functions in
the Rademacher group Radn. If we denote the generator of the i-th
factor Z/ of the latter by the symbol ri then, by definition, r = 
and rirj = rjri and

Rq =
n∏

i=

(+ qiri ).

. Rademacher groups

In this section we are going to study positive definite radial func-
tions on the Abelian Coxeter groups, (W,S) = RadS. Since positive
definiteness is tested on functions with finite support, we can as-
sume that S is countable. If #S = n we will write Radn instead of
RadS. Given n ∈ N ∪ {∞}, we denote by Pn the class of all func-
tions f : {,, . . . ,n} → R for n finite and f : N → R if n = ∞ such
that ϕ(w) = f (|w|) is a normalised positive definite on Radn.

The following observation is straightforward.

Proposition .. Assume that  ≤ m < n ≤ ∞ and f ∈ Pn. Then the
restriction of f to {, . . . ,m} belongs to Pm. A fuction f belogs to P∞ if
and only if all its restrictions to {, . . . ,m} for any m ∈N belong to Pm.

Theorem .. Assume n is finite. The set Pn form a simplex whose ver-

tices (extreme points) are f n
l (k) =

(n
l

)−∑l
i=(−)i

(k
i

)(n−k
l−i

)
, where  ≤ l ≤

n. Equivalently, every normalised radial positive definite function on the
group Radn is of the form

ϕ(x) =
n∑

l=

λlf
n
l (|x|),

where the sequence of nonnegative numbers (λl )
n
l= is unique and satisfies∑n

l=λl = .

Proof. We can indentify the dual R̂adn group of Radn with Radn
via the paring (x,y) = (−)

∑n
i= xiyi . By Bochner’s theorem every nor-

malised positive definite function ϕ on Radn is of the form

ϕ(x) =

∫

R̂ad∞
(x,y)µ(dy),

for some probability measure µ. Clearly, such a function is radial if
and only if µ is invariant under the action of Sn.
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Among such measures extreme ones are measures µl for  ≤ l ≤ n,
where µl is equally distributed among elements of length l. More-
over,

ϕ(x) =

∫

R̂ad∞
(x,y)µl(dy) = f n

l (|x|)

as claimed. �

The following theorem is a version of the classical de Finetti Theo-
rem (see [fel, p. ]) for the infinite Rademacher group.

Theorem .. Assume that ϕ is a radial function on the Rademacher
group Rad∞. Then ϕ is a normalised positive definite if and only if there
exists a probability measure µ on [−,] such that

ϕ(x) =

∫ 

−
q|x|µ(dq).

This measure µ is unique.

Proof. Since the function q|x| is normalised positive definite for q ∈
[−,], the “if” implication is obvious.

Assume that ϕ is normlised positive definite. The group Rad∞ is dis-

crete andAbelian and its dual is the compact group R̂ad∞ =
∏∞

i=Z/.

By Bochner’s theorem, there exists a probability measure η on R̂ad∞
such that

ϕ(x) =

∫

R̂ad∞
(x,y)dη(y),

where for x = (x,x, . . .) ∈ Rad∞, y = (y,y, . . .) ∈ R̂ad∞ we put (x,y) =

(−)
∑∞

i= xiyi . The radiality of ϕ is equivalent to the fact that for every
permutation σ ∈ S∞ we have ϕ(x) = ϕ(σ(x)), where σ(x) = (xσ(),xσ(), . . .).
This, in turn, implies that η is σ-invariant for every σ ∈ S∞, i.e. we

have η(A) = η(σ(A)) for every Borel subset A⊂ R̂ad∞.

For a sequence ǫ = (ǫi)
n
i= ∈ {,}n we define Cn(ǫ) ⊆ R̂ad∞ by

Cn(ǫ) = {y ∈ R̂ad∞|yi = ǫi :  ≤ i ≤ n},
in particular C(∅) = R̂ad∞. Then we have η(Cn(ǫ)) = η(Cn(ǫ

′)) if
ǫ′i = ǫσ(i) for some σ ∈ Sn and every  ≤ i ≤ n. For ε ∈ R we put

εn = ε,ε, . . . ,ε
︸   ︷︷   ︸

n

and an = η(Cn(
n)). Moreover, for n,k ≥  we define the difference

operators ∆kan by induction: ∆an = an and ∆k+an = ∆
kan+ −∆kan.

We claim that

(.) (−)k∆kan = η
(
Cn+k

(
nk

))
.
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Denoting the right hand side of (.) by c(n,k) we note that c(n,) =
an and

Cn+k+

(
nk

)
∪Cn+k+

(
nk

)
= Cn+k

(
nk

)
,

is a disjoint union. This implies

c(n,k + ) = c(n,k)− c(n+ ,k).
This formula, by induction on k, leads to (.).

From (.) we see that the sequence (an) is completely monotone, i.e.
that (−)k∆kan ≥  for all n,k ≥ . By the celebrated theorem of Haus-
dorff (see [hau, Sätze ii und iii]), there exists a unique probability
measure ρ on [,] such that

(.) (−)k∆kan =

∫ 



un(− u)k dρ(u).

(Note that Equation (.) for arbitrary k ≥  follows from the case
k = .)

For x = (n∞) ∈ Rad∞ so that |x| = n, we have

ϕ(x) =

∫

R̂ad∞
(x,y)dη(y) =

∫

R̂ad∞
(−)

∑n
i= yi dη(y)

=
∑

ǫ∈{,}n
(−)

∑n
i= ǫiη(Cn(ǫ)) =

n∑

k=

(
n

k

)
(−)kη

(
Cn

(
kn−k

))

=
n∑

k=

(
n

k

)
(−)k

∫ 



uk(− u)n−k dρ(u) =
∫ 



(− u)ndρ(u)

=

∫ 

−
qn dµ(q),

where µ is defined by µ(A) = ρ
(

 +


A

)
for a Borel set A⊆ [−,]. �

. Remarks on radial positive definite functions on some infin-
itely generated Coxeter groups

In this Section we extend the last theorem of the previous section to
a certain class of Coxeter groups.

Theorem .. Assume that (W,S) is a Coxeter system and that there is
an infinite subset S ⊆ S such that st = ts for s, t ∈ S. Assume that ϕ is
a radial function on W with ϕ(e) = . Then ϕ is positive definite if and
only if there exists a probability measure µ on [−,] such that

ϕ(σ) =

∫ 

−
q|σ|µ(dq).

This measure µ is unique.
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Proof. It is sufficient to note that the group generated by S is a par-
abolic subgroup isomorphic with Rad∞. �

Example. For W = S∞ we have S = {(n,n + ) : n ∈ N}. Then we can
take S = {(n − ,n) : n ∈ N}. Similar S can be found in infinitely
generated groups of type b and d.

Problem .. When − ≤ q ≤ , q ,  is the positive definite function
q|x| on S∞ an extreme point in the set of normalised positive definite
functions?

Theorem .. The function ϕp(σ) = e−t|σ|
p
is positive definite on S∞ if

and only if  ≤ p ≤ .

Proof. A contrario. Assume that for some p >  and t >  the function
ψp(σ) = e−t|σ|

p
is positive definite on S∞.

For q = e−t, choosing σ such that |σ| = nwe have q
(n)p

 =
∫ 
− q

n dµ(q)

for some probability measure µ on [−,]. Since
(∫ 
− q

n dµ(q)
)/n

tends to max{q|q ∈ suppµ} while
(
q
(n)p



)/n
→ , we conclude that

µ is the Dirac measure at , which is a contradiction.

The “if” part is standard. We need to show that f (x) = e−tx
p
is the

Laplace transform of some probability measure supported on [,∞),
so f is a convex combination of functions of the form e−sx.

By characterisation of Laplace transforms (see [hau, Satz iii]) this
is equivalent to complete monotonicity, that is (−)nf (n) >  for all

n = ,, . . . . And indeed, by induction, (−)nf (n) is a positive linear
combination of positive functions of the form xpj−nf (x) for  ≤ j ≤
n. �

The measures with Laplace transforms e−tx
p
for t ≥  and  ≤ p ≤ 

are studied in detail in [yos, Ch. ix.] (see Propositions  and 
there).

Let us note that for such groups like Zk or Rk with the Euclidean
distance d the functions exp(−tdp) are positive definite for all t ≥ 
and  ≤ p ≤  (the case p =  corresponds to the Gaußian Law).

. The longest element

If a Coxeter group W is finite, then it contains the unique element
ω◦ which has the maximal length with respect to | · |.
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From the definition it is clear, that a function ϕ on a group Γ with
values in the field of complex numbers C is positive definite if and
only

∑
g∈Γϕ(g)g is a nonnegative (bounded if the group is finite) op-

erator on ℓΓ. (We will identify g ∈ Γ with λ(g) ∈ B(ℓΓ), where λ is
the left regular representation, for short.)

Let W be a finite Coxeter group. The following two statements are
well known.

(a) The function q|w| is positive definite for any  ≤ q ≤ .
(b) The function ∆(w) = |ω◦|/− |w| is positive definite.

The first one was proven in [bjs] (even for infinite Coxeter groups
and also for − ≤ q ≤ ) while the second — in [bs, Proposition ].
Here we give a short direct prove of the following.

Proposition .. The above statements (a) and (b) are equivalent.

Proof. Let q = e−t (with t ≥ , as we assume q ≤ ). The case (a) is

equivalent to Φt =
∑

w∈W et∆(w)w = et|ω◦|/
∑

w∈W q|w|w being nonnega-
tive.

Assume (a). Recall first, that |ω◦w| = |ω◦| − |w| = |wω◦|. Therefore
|ω◦|/ − |ω◦w| = −(|ω◦|/ − |w|), ie. ∆(ω◦w) = −∆(w) and similarly,
∆(wω◦) = −∆(w).
The equality ∆(ω◦w) = ∆(wω◦) implies that ω◦ (and thus Q = ( −
ω◦)/) commutes with ∆ (and thus Φt). Since Q = Q is nonnegative
we conclude that

t−ΦtQ =
∑

w∈W

et(|ω◦|/−|w|) − et(|ω◦|/−|wω◦|)
t

w =
∑

w∈W

sinh(t∆(w))

t
w.

is nonnegative. Therefore, taking the limit as t → , we obtain that∑
w∈W∆(w)w is nonnegative. Thus (b).

Assuming (b) and using the Schur lemma, which says that the (point-
wise) product of positive definite functions is positive definite, we
get that

Φt =
∑

w∈W
et∆(w)w =

∑

n≥

tn

n!



∑

w∈W
∆(w)nw




is nonnegative. Thus (a). �

. Colour-dependent positive definite functions onCoxeter groups

The question which colour-dependant or colour-radial functions are
positive functions on Coxeter groups is wide open. In this section
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we provide some sufficient conditions. In the next section we will
examine the dihedral groups in full details.

Lemma .. Let H be a subgroup of a group Γ of index d. Then the func-
tion ϕr defined by ϕr(x) =  if x ∈ H and ϕr(x) = r otherwise is positive
definite on Γ if and only if r ∈ [−/(d − ),], with natural convention
that if d =∞ then −/(d − ) = .

Note, that if H = {} then d = |Γ|.

Proof. First assume that d is finite and let us enumerate the left cosets:

{gH : g ∈ Γ} = {H,H, . . . ,Hd }.
Note, that for x ∈ Hi ,y ∈ Hj we have y−x ∈ H if and only if i = j.
Therefore, for r = −/(d − ) and for a finitely supported complex
function f on Γ we have

∑

x,y∈Γ
ϕr(y

−x)f (x)f (y) =


d − 
∑

≤i<j≤d

∣∣∣∣∣∣∣∣

∑

x∈Hi

f (x)−
∑

y∈Hj

f (y)

∣∣∣∣∣∣∣∣



,

which proves that ϕr is positive definite. For r ∈ [−/(d − ),] the
function ϕr is positive definite as a convex combination of ϕr and
the constant function ϕ.

On the other hand, if we choose xi ∈ Hi for each i ≤ d and define f
as the characteristic function of the set {x, . . . ,xd } then
(.)

∑

x,y∈Γ
ϕr(y

−x)f (x)f (y) = d + (d − d)r,

which proves that r ≥ −/(d −) is a necessary condition for positive
definiteness of ϕr .

If d = ∞ then r =  and the function ϕ is positive definite as the
characteristic function of the subgroup H. For “only if” part we
chose an arbitrarily long sequence x, . . . ,xd ′ of elements from dif-
ferent left cosets and use (.) with d ′ instead of d. �

Theorem .. Assume that for every s ∈ S we are given a number qs,
−

ds − 
≤ qs ≤ ,

where ds denotes the index if the parabolic subgroup generated by Sr {s}
in W: ds = [W : WSr{s}]. Then the Riesz–Coxeter Rq is positive definite
on W.

Proof. From Lemma . the function w 7→ q
‖w‖s
s is positive definite

for s ∈ S and −/(ds − ) ≤ qs ≤ . Since the pointwise product of
positive definite functions is positive definite, the statement holds.

�
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Example. Take W = Sn, the permutation group on the set {,, . . . ,n}.
It is generated by the transpositions S = {si = (i, i + ), ≤ i ≤ n −
}. For  ≤ i ≤ n −  the parabolic subgroup generated by Sr {si } is
isomorphic with Si− ×Sn−i−, so its index is i

(n
i

)
.

It would be interesting to determine for which r the function w 7→
r‖w‖ is positive definite. By Proposition . this holds for r ∈ [−/(d −
),], where d is the maximal index of the parabolic subgroups of
the form WSr{s}. We note a necessary condition.

Proposition .. Assume that we have distinct generators s, s, . . . , sn ∈
S such that ssk , sks (i.e. m(s, sk) > ) for  ≤ k ≤ n. If the function

w 7→ r‖w‖ is positive definite on W, then − /(n − ) ≤ r ≤ .
If there is an element s ∈ S for which there are infinitely many s ∈ S such

that ss , ss then r‖w‖ is positive definite on W if and only if  ≤ r ≤ .

Proof. Consider elements wk = ssks. Note, that for k , l we have
‖w−l wk‖ = . If ϕr is positive definite on W then we have

 ≤
n∑

k,l=

ϕr(x
−
l xk) = n+ (n − n)r,

which implies r ≥ − /(n − ). �

Corollary .. The function w 7→ q‖w‖ on S∞ is positive definite if and
only if  ≤ q ≤ .
Problem .. Thus, it is valid to ask the following. Is it true that ev-
ery normalised positive definite colour-lenght-radial function φ : S∞→
R is of the form φ(σ) =

∫ 

q‖σ‖ dµ(q) for some probability measure µ

on [,]?

. Dihedral groups

In this part we are going to examine the class of colour-dependent
positive definite functions on the case the simplest nontrivial Cox-
eter groups. Assume that W =Dn = 〈s, t|(st)n〉 (i.e. the group of sym-
metries of a regular n-gon), and define a colour-dependent function
on W:

(.) φ(w) =



 if w = e,

p if w = s,

q if w = t,

r otherwise.

If p = q then φ is colour radial. We are going to determine for which
parameters p,q,r the function φ is positive definite on W. It is easy
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to observe necessary conditions: p,q,r ∈ [−,]. Moreover, since 〈st〉
is a cyclic subgroup of order n, Lemma ., implies a necessary con-
dition: −/(n − ) ≤ r ≤ .

Finite dihedral groups. Assume that W is a finite dihedral group,
W = Dn, so that (st)n = . We will use the following version of
Bochner’s theorem: A function f on a compact group G is positive
definite if and only if its Fourier transform:

f̂ (π) =

∫

G
f (x)π(x−)dx

is a positive operator for every π ∈ Ĝ, where Ĝ denotes the dual ob-
ject of G, i.e. the family of all equivalency classes of unitary irre-
ducible representations of G, see [sim]. Then we have

f (x) =
∑

π∈Ĝ

dπ tr
[
f̂ (π)π(x)

]
.

Therefore, for every irreducible representation π ofDn we are going
to find

φ̂(π) =


n

∑

g∈G
φ(g)π(g−).

We will identify s with (,−) and t with (,−). If n is odd then Dn
possesses two characters: χ+,+ such that χ+,+(w) =  for everyw ∈Dn
and χ−,− such that χ−,−(s) = χ−,−(t) = −. If n is even then we have two
additional characters χ+,− and χ−,+ such that χ+,−(s) = χ−,+(t) =  and
χ+,−(t) = χ−,+(s) = −. It is easy to check that

nφ̂(χ+,+) = + p + q + (n − )r,
nφ̂(χ−,−) = − p − q + r,

which gives
−− (n − )r ≤ p + q ≤ + r

and, for n even,

nφ̂(χ+,−) = + p − q − r,
nφ̂(χ−,+) = − p + q − r,

which implies
|p − q| ≤ − r.

We have also the family of two dimensional representations Ua:

Ua(k,) =

(
eπika/n 

 e−πika/n

)
,

Ua(k,−) =
(
 eπika/n

e−πika/n 

)
,
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where a = ,, . . . ,
⌊
n−


⌋
. Then for the function given by (.) we have

nφ̂(Ua) = (− r)Id+ (p − r)Ua(,−) + (q − r)Ua(,−)

=

(
− r p − r + (q − r)eπia/n

p − r + (q − r)e−πia/n − r

)
.

This matrix is positive definite if and only if r ≤  and
∣∣∣p − r + (q − r)eπia/n

∣∣∣ ≤ − r.
Therefore we have

Proposition .. The function φ given by (.) is positive definite on
Dn if and only if

+ p + q + (n − )r ≥ , − p − q+ r ≥ 
(plus

+ p − q − r ≥ , − p + q − r ≥ 
whenever n is even) and∣∣∣p − r + (q − r)eπia/n

∣∣∣ ≤ − r.

for a = ,, . . . ,
⌊
n−


⌋
.

Let us confine ourselves to colour-radial functions.

Corollary .. Assuming that p = q, the function φ defined by (.) is
positive definite on W=Dn if and only if

max

{
−p − 
n −  ,p − 

}
≤ r ≤ + p cos(

π/n)

+ cos(π/n)
,

i.e. if and only if the point (p,r) belongs to the triangle whose vertices are
(
− n − cos(π/n)
+ (n − )cos(π/n) ,

− cos(π/n)
+ (n − )cos(π/n)

)
,

(
n − 
n −  ,

−
n − 

)
, (,).

Proof. For p = q the conditions from Proposition . reduce to

p −  ≤ r, −− p ≤ (n − )r, and cos(π/n)|p − r | ≤ − r.
It is sufficient to note that p− ≤ r implies cos(π/n)(p−r) ≤ −r for
p ≤ . �

Example. ForD we have the positive definiteness of φ is equivalent
to

−+ |p + q| ≤ r ≤ − |p − q|,
which means that the set of all possible (p,q,r) forms a tetrahedron
with vertices (−,,−), (,−,−), (−,−,), (,,). For p = q the
condition reduces to |p| −  ≤ r ≤ .
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In the case of D Proposition . leads to the following conditions:

− p − q + r ≥ , + p + q + r ≥ ,

− r ≥
√
p + q + r − pq − pr − qr,

which can be expressed as

max

{
−− p − q


,p + q − 
}
≤ r ≤ − p

 − q + pq

− p − q .

The infinite dihedral group. Here we are going to study W =D∞.

Proposition .. The function φ given by (.) is positive definite on
W=D∞ if and only if  ≤ r and |p − r |+ |q − r | ≤ − r, i.e.

(.) max {,p + q − } ≤ r ≤min

{
− |p − q|, + p + q



}
.

Proof. First we note that the set of (p,q,r) ∈ R satisfying (.) con-
stitutes a pyramid which is the convex hull of the points (±,,),
(,±,) and (,,) (apex). For these particular parameters it is
easy to see that φ is positive definite: (,,) corresponds to the
constant function , (,,) to the characteristic function of the sub-
group 〈s〉 = {, s}, and (−,,) to the character χ−,− times the char-
acteristic function of 〈s〉. Similarly for (,±,). This, by convexity,
proves that (.) is a sufficient condition.

On the other hand, we know already that r ≥  is a necessary con-
dition. Let us fix n and define W+(n) = {x ∈ W : |sx| < |x| ≤ n},
W−(n) = {x ∈W : |tx| < |x| ≤ n} and

f (x) =

{
± if x ∈W±(n),
 otherwise.

For x,y ∈ W+(n) we have Sy−x = ∅ in n cases (namely, if x = y)
Sy−x = {s} in n −  cases (namely if |x| = k, |y| = k +  or vice-
versa, k = , . . . ,n − ) Sy−x = {t} in n cases (namely if |x| = k, |y| =
k −  or vice-versa, k = , . . . ,n) and Sy−x = {s, t} in all the other
(n − )(n − ) cases. Similarly, for x,y ∈ W−(n) we have Sy−x = ∅
in n cases, Sy−x = {s} in n cases, Sy−x = {t} in n −  cases and
Sy−x = {s, t} in (n − )(n − ) cases. If x ∈W+(n), y ∈W−(n) or vice-
versa then Sy−x = {s, t}. Summing up, we get

∑

x,y∈W
φ(y−x)fn(x)fn(y)

= n+ (n − )p + (n − )q + (n − )(n − )r − nr
= n+ (n − )p + (n − )q − (n − )r.
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Therefore for every n ∈N we have a necessary condition

+
(
− 
n

)
p +

(
− 
n

)
q −

(
− 

n

)
r ≥ .

Letting n→∞ we get + p + q ≥ r.
Put xk = stst . . ., |xk | = k. Fix n and define

g(x) =

{
χ−,+(x) if x = xk for  ≤ k ≤ n,
 otherwise,

where, as before, χ−,+ is the character on W for which χ−,+(s) = −,
χ−,+(t) = . Then

∑

x,y∈W
φ(y−x)g(x)g(y) =

n∑

k,l=

φ(x−l xk)g(xk)g(xl ).

Denote ck,l = φ(x
−
l xk)g(xk)g(xl). Then we have ck,k = ,  ≤ k ≤ n,

ck,k− = q if k is even, ck,k− = −p if k is odd,  ≤ k ≤ n and ck,l = cl,k
for all  ≤ k, l ≤ n. If  ≤ k, l ≤ n and |k − l | ≥  then ck,l = (−)jr,
where j is the total number of s appearing in xk and xl . Now it is not
difficult to check that

n∑

l=

ck,l =

{
+ q − r if k =  or k = n,

− p + q − r if  < k < n,

which implies
∑

x,y∈W
φ(y−x)g(x)g(y) = n − (n − )p + nq − (n+ )r

and leads to necessary condition r ≤ −p+q. In a similar manner we
get r ≤ + p − q.
Finally, define a function h similarly like g , but now we use the char-
acter χ−,−:

h(x) =

{
χ−,−(x) = (−)k if x = xk for  ≤ k ≤ n,
 otherwise.

Putting dk,l = φ(x
−
l xk)h(xk)h(xl ) we have dk,k = , dk,k− = −p if  ≤

k ≤ n is even and dk,k− = −q if k is odd. Moreover, if |k − l | ≥ ,
 ≤ k, l ≤ n then dk,l = (−)k+lr. Now one can check that

n∑

l=

dk,l =

{
− q if k =  or k = n,

− p − q+ r if  < k < n,

which yields −p − q+ r ≥  and completes the proof that the condi-
tions (.) are necessary. �
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. Weak Sidon sets and operator Khinchin inequality

The aim of this section is to show that the set of Coxeter generators
S in an arbitrary Coxeter group W is a weak Sidon set, ie. an interpo-
lation set for the Fourier–Stieltjes algebra B(W).

Given a group Γ, the Fourier–Stieltjes algebra consists of linear com-
binations of positive definite functions on Γ, ie. every element of
B(Γ) is of the form f = ϕ −ϕ + i(ϕ −ϕ) for some positive definite
functions ϕi ( ≤ i ≤ ) on Γ. The norm on B(Γ) is defined as

‖f ‖B(Γ) = inf
{∑

ϕi(e)|where f decomposes as above
}

Theorem .. The set of Coxeter generators S in an arbitrary Coxeter
group W is a weak Sidon set, ie. for every bounded function f : S →
[−,] there exists positive definite functions ϕ±, such that f (s) = ϕ+(s)−
ϕ−(s) for any s ∈ S. One can take ϕ± = Rq± for a suitable choice of q±.
Moreover

‖ϕ+ −ϕ−‖B(W) ≤ 

Proof. Put S±(f ) = {s ∈ S| ± f (s) > }. Set

q±s =

{
±f (s) for s ∈ S±(f ),
 otherwise.

Then f (s) = Rq+(s) − Rq−(s) as claimed. The rest of the statement
hold as the Riesz-Coxeter function at the identity element equals to
one. �

Given a matrix A ∈Mn(C) and p ≥  the Schatten p-class norm ‖A‖Sp
is defined as ‖A‖pSp = (tr |A|)/p, where |A| = (A∗A)/.

Let λ denote the left regular representation of a group Γ. Given a
finite sum f =

∑
cgλ(g) ∈ C[Γ] we define noncommutative Lp-norm

‖f ‖pLp(Γ) =
(
τ
(
(f ∗ ∗ f )/

))/p

where τ(f ) = ce is the von Neumann trace and Lp(Γ) is a completion
of C[Γ] with respect to the above norm.

We recall, that a scalar-valued map ϕ on a group Γ is called a com-
pletely bounded Fourier multiplier on Lp(Γ) if the associated operator

Mϕ(λ(g)) = ϕ(g)λ(g), g ∈ Γ
extends to a completely bounded operator on Lp(Γ).

We let Mcb(L
p(Γ)) to be an algebra of completely bounded Fourier

multipliers equipped with the norm

‖ϕ‖Mcb(L
p(Γ)) = ‖Mϕ ⊗ idSp ‖.
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Following Pisier [pis], for as ∈Mn(C), where s ∈ S, we define

‖(as)s∈S‖R∩C =max



∥∥∥∥∥∥∥

∑

s∈S
(asa

∗
s)
/

∥∥∥∥∥∥∥Sp
,

∥∥∥∥∥∥∥

∑

s∈S
(a∗sas)

/

∥∥∥∥∥∥∥Sp

.

For a set E ∈ Γ we define the completely bounded constant Λcb
p (E) as

infimum of C such that∥∥∥∥∥∥∥

∑

s∈S
as ⊗ λ(s)

∥∥∥∥∥∥∥
Lp(W)

≤ C‖(as)s∈S‖R∩C

for all matrices as ∈Mn(C) and n ∈N.

Theorem .. If as ∈Mn(C), then for all p ≥  and any Coxeter system
(W,S) we have

‖(as)s∈S‖R∩C ≤
∥∥∥∥∥∥∥

∑

s∈S
as ⊗ λ(s)

∥∥∥∥∥∥∥
Lp(W)

≤ A′√p ‖(as)s∈S‖R∩C .

Proof. It was shown by Harcharras [lp, Prop. .] that Λcb
p (E) if

finite if and only if E is an interpolation set for Mcb(L
p(Γ)), i.e. every

bounded function on E can be extended to a multiplier, and

Λcb
p (E) ≤Λcb

p (R)µcbp (E),

where R is the generating set in the Rademacher group Rad∞ and
µcbp (E) is the interpolation constant.

As shown by Buchholz [buc, Thm. ] for p = n, and S te stan-

dart generating set in Rad∞, Λcb
n(R) = ((n − )!!)/n ≤ A

√
p for some

absolute A. This was extended by Pisier [pis, Thm. ..] for any
p ≥ , i.e

Λcb
p (R) ≤ A′

√
p,

for an absolute constant A′.

We have shown in Theorem . that in an arbitrary Coxeter group W
its Coxeter generating set S is a weak Sidon set, i.e. it is interpolation
set for the Fourier–Stieltjes algebra B(W). Since for p ≥ , B(Γ) is a
subalgebra of Mcb(L

p(Γ)) and

‖ϕ‖Mcb(L
p(Γ)) ≤ ‖ϕ‖B(Γ),

we see that µcbp (S) ≤ . Thus Λcb
p (S) ≤ A′√p. This finishes the proof

of the right inequality.

The left inequality holds for any group Γ and any S ⊂ Γ (see [lp]).
�
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Remark .. Fendler [fena] has shown that if for all s, t ∈ S, s , t,
we have ms,t ≥ , then

Λcb
p (S) ≤ 

√
.

See also [boż] and [buc] for related results in the case of free
Coxeter groups. Also Haagerup and Pisier have shown that Λcb

∞ (S) =
, where Λcb

∞ (E) = supp≥Λ
cb
p (E) [hp]. See the paper of Haagerup

[haa] where the best constant was calculated for the set of Cox-
eter generators of the Rademacher group in case when as are scalars.

. Chromatic length function for Coxeter groups and pairparti-
tions

Let [n] = {, . . . ,n}. Let [n] denote the set of subsets of [n]. By
a partition of [n] we mean π ⊂ s[n] such that

⋃
π = [n] and if

π′,π′′ ∈ π then π′ = π′′ or π′ ∩ π′′ = ∅. We say, that partition ̺ is a
coarsening of a partition π if for any π′ ∈ π there exists ̺′ ∈ ̺ such
that π′ ⊂ ̺′.
A partition is called crossing if there exist  ≤ a < b < c < d ≤ n and
π,π ∈ π with a,c ∈ π , π ∋ b,d; otherwise it is called noncrossing.
For any partition π there exists th the smallest noncrossing coars-
ening Φ(π) of π (ie. if ̺ is a noncrosing coarsening of π then it is a
coarsening of Φ(π)). We define ‖π‖ = n − #Φ(π). The notion for the
map Φ was introduced in [by].

We say that π is a pairpartition if every member of π has cardinality
two. The set of pairpartitions of [n] is denoted by P(n). Given
π ∈ P(n) we write |π| to denote the number of ordered quadruples
 ≤ a < b < c < d ≤ n such that both {a,c} and {b,d} belong to π. Note,
that |π| =  precisely when π is noncrossing. The set of noncrossing
pairpartitions is denoted NC(n).
Given a noncrossing pairpartition ̟ we call {b,c} ∈ ̟ an inner block if
there exists {a,d} ∈ ̟ with a < b < c < d. The number of inner blocks
of ̟ we denote as inn(̟).

In [bs, Cor. ] Bożejko and Speicher observed the following iden-
tity.

(.)
∑

π∈P(n)
(−)|π|q‖π‖ =

∑

̟∈N C(n)
(− q)inn(̟).

Let fn(q) =
∑
̟∈N C(n)(− q)

inn(̟). It is elementary to derive

fn(q) = Cn F

(
n,− n
n+ 

∣∣∣∣ q
)
,
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where Cn =
(n
n

)− ( n
n−

)
= #NC(n) denote the n-th Catalan number

and F is the classical hypergeometric funcion. If we write f (q) =∑n−
j= t

n
j q

j , then the triangle (tnj )≤j<n appears in [slo] as “sequence”

a). Since we are not going to use this formula, we leave
it as an exercise to the reader. For the expansion of fn( − t) and
the Delanoy triangle appearing there the reader may consult [bw,
Prop .].

In what follows, we prove a result about an arbitrary finitely gen-
erated Coxeter group, which for permutation groups implies the
above one. Given a permutation σ ∈ Sn, we construct a pairparti-
tion σ = {{i,n +  − σ(i)}| ≤ i ≤ n}. Note, that |σ| is equal to the
length of σ with respect to the Coxeter generators (,), . . . , (n−,n)
of Sn. Therefore, denoting by |w| the Coxeter length of an element w
of some Coxeter group W will not lead into any confusion.

It is also clear that, with respect to the identification of permutations
with a subset of pairpartitions, the two definitions of ‖ · ‖ agree (see
Equations (.) and (.)).

By W(t) we denote a growth series of a finitely generated Coxeter

group W (length function). That is, a power series W(t) =
∑

w∈W t|w|.
(Note, that the coefficient at t equals to #S. This explains why here
and in the rest of this section we consider only finitely generated
Coxeter groups. We will not repeat this assumption for short.) More-

over, for X ⊂W we write X(t) =
∑

w∈X t
|w|.

Let us define a multivariable formal power series (chromatic length
function. For any X ⊂W define

X(t,q) =
∑

w∈X
t|w|

∏

s∈Sw
qs.

In particular X(t) = X(t,), where  = ()s∈S.

Proposition .. The polynomial (or formal power series, if W is infi-
nite) W(t,q) satisfies

W(t,q) =
∑

T⊂S
WT(t)

∏

r∈T
rs

∏

s∈SrT
(− qs).

Proof. Let W◦R denote the set of all elements of WR not contained
in any proper parabolic subgroup of WR, ie. W

◦
R : = WR −

⋃
T RWT.

Then, by inclusion-exclusion principle, W◦R(t) =
∑

T⊂R(−)#(R−T)WT(t).
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Therefore,

W(t,q) =
∑

w∈W
t|w|

∏

s∈Sw
qs =

∑

R⊂S
W◦R(t)

∏

r∈R
qr

=
∑

R⊂S

∑

T⊂R
WT(t)(−)#(R−T)

∏

r∈R
qr

=
∑

T⊂S
WT(t)

∏

r∈T
qr

∑

T⊂R⊂S

∏

s∈RrT
(−qs)

=
∑

T⊂S
WT(t)

∏

r∈T
qi

∏

s∈SrT
(− qs).

�

Corollary .. If W is a finite Coxeter group then

(.) W(−,q) =
∏

s∈S
(− qs).

Proof. Choose s ∈ T and put W
{s}
T = {w ∈ W : |w| < |ws|}. Clearly,

WT = W
{s}
T WT therefore WT(t) = W

{s}
T (t)W{s}(t). Since W is a finite

group, W
{s}
T is a polynomial. Thus WT(−) =  if T is nonempty (and

W∅(−) = ). �

In order to prove Equation (.) we define the Wick map P(n) ∋
π 7→ :π: ∈ N C(n) (related to the normal order in quantum field
theory). Given a pairpartition π we define :π: by repetitive resolving
crossings. That is, we replace repetitively every crossing pair {a,c}
and {b,d}with a < b < c < d by {a,d} and {b,c}. In order to see that the
result is independent of the order of resolution we describe :π: in an
equivalent way.

Let Φ(π) be the smallest noncrossing coarsening of π. For each
block β of Φ(π) define β+ = {y|(∃x) x ∈ β, y > x, {x,y} ∈ π} and
β− = {x|(∃y) y ∈ β, y > x, {x,y} ∈ π}. Order β+ = {y, . . . ,yk} in in-
creasing way and β− = {x, . . . ,xk} in decreasing way. Then all pairs
{xi ,yi } will be parts of :π:.

Equation (.) will follow from a more refined statement.

Proposition .. For every ̟ ∈ N C(n)

(.)
∑

π∈P(n)
:π:=̟

(−)|π|q‖π‖ = (− q)inn(̟).

Proof. Let us first consider the case of ̟ =  = {(i,n+− i)| ≤ i ≤ n}.
Clearly, {π|:π: = } = {σ|σ ∈ Sn}. And Equation (.) is equivalent to
Equation (.) (as all qs are set to q) for W = Sn.



 Marek Bożejko, Światosław R. Gal, and Wojciech Młotkowski

π

:π:

Φ(π)

Figure. Examples of π, :π:, and Φ(π).

In a general case observe, thatΦ(π) is a coarsening of ̟ = :π:. Yet, not
every coarsening may appear. The obvious condition is that for each
block β of :π: the pair {minβ,maxβ} belong to ̟. For the purpose
of this proof we will call such a coarsening admissible. Its clear,
that abmissible coarsenings ρ are in one to one correspondence with
subsets of ̟ containing all outer (not inner) parts of ̟ of the form
{{minρ′,maxρ′}|ρ′ ∈ ρ}.
Let us refine Equation (.) further. For every ̟ ∈ N C(n) and any
admissible coarsening η of ̟ we have

(.)
∑

π∈P(n)
:π:=̟, Φ(π)=ρ

(−)|π| = (−)#ρ.

Equation (.) follows from (.) by multiplying by qn−#η and sum-
ming over all admissible coarsenings η of ̟.

Equation (.) is again equivalent to to Equation (.) (for all aper-
mutation groups and all qs set to q) as both sides factor as a product
over blocks of ρ. �

Question .. We have proven Equation . with the help of an em-
bedding Sn ∋ σ 7→ σ ∈ N C(n) (or several such embeddings, one for
each outer block of ̟). Corollary . holds for any Coxeter group.
Is there a corresponding formula concerning some generalization of
pairpartitions?

In the proof of Proposition . we have not assumed that W was
finite. Let us finish this section with a discussion of infinite Coxeter
groups. Recall, that − does not lie in the radius of convergence
on W(t) if W is not finite. Nevertheless, W(t) represents a rational
function as follows from the following result.
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Proposition .. ([ste],[ser, Prop. ]) Let (W,S) be an an infi-
nite Coxeter system. Then

(.)


W(t)
=

∑

T∈F

(−)#T
WT(/t)

.

Where F denote the family of subsets T ⊂ S, such that the group WT gen-
erated by T is finite. In particular, W(t) is a series of a rational function
(i.e. a quotient of polynomials).

Onemay ask a question what is the class of (infinite) Coxeter groups
such that WT(−) =  for any nonempty subset T of generators. A naı̈ve
argument that

W(t) = W{s}(t)W
{s}(t) = (+ t)W{s}(t)

shows, that the question if W(−) ,  is equivalent to whether W{s}(t)
can have a pole at t = −. On the other hand note, that if W is of type
ã, ie. W is given by a presentation 〈si :  ≤ i ≤ |si , (sisj) :  ≤ i <

j ≤ 〉 then, by Equation (.), W(t) = +t+t


(−t) and W(−) = /.

More generally, it is known ([bou]) that in each coset of WT there
exists the unique shortest element. Let WT denote the set of those
shortest representatives. Moreover if w = wTwT with wT ∈ WT and
wT ∈WT then |w| = |wT |+ |wT |. Therefore WT(t)WT(t) = W(t). In par-
ticular, WT(t) represents a rational function, and it is legitimate to
ask about the value of WT(−).
In the case of finite Coxeter group W, Eng [eng] observed that

WT(−) = #
{
w ∈WT|www ∈WT

}
,

where w is the longest element in W. (Eng’s proof was case-by-case.
Later, a general classification-free proof of Eng’s theorem was given
in [rsw]).

Subsequently, Reiner [rei] has shown that if W is crystallographic
(ie. the Weyl group in a compact Lie group G), then both sides of
the above equality compute the signature of the corresponding flag
variety G/QT, where QT is a parabolic subgroup associated to T.

What is the meaning of W(−) or WT(−) for infinite W?

We do not know if it possible for W(−) to be negative. If one takes
W = 〈si :  ≤ i ≤ |si , (sisj ) :  ≤ i < j ≤ 〉. Then, by Equation (.),

W(t) =
(+t)(+t+t)
t−t−t+ and Wsi (−) = − /.
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