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Abstract

Given a permutation σ = σ1 . . . σn in the symmetric group Sn, we say that σi matches the
marked mesh pattern MMP(a, b, c, d) in σ if there are at least a points to the right of σi in σ

which are greater than σi, at least b points to left of σi in σ which are greater than σi, at least
c points to left of σi in σ which are smaller than σi, and at least at least d points to right of σi

in σ which are smaller than σi.
Kitaev, Remmel, and Tiefenbruck [13, 14, 15] systematically studied the distribution of the

number of matches of MMP(a, b, c, d) in 132-avoiding permutations. The operation of reverse
and complement on permutations allow one to translate their results to find the distribution of
the number of MMP(a, b, c, d) matches in 231-avoiding, 213-avoiding, and 312-avoiding permu-
tations. In this paper, we study the distribution of the number of matches of MMP(a, b, c, d) in
123-avoiding permutations. We provide explicit recurrence relations to enumerate our objects
which can be used to give closed forms for the generating functions associated with such distri-
butions. In many cases, we provide combinatorial explanations of the coefficients that appear
in our generating functions.
Keywords: permutation statistics, marked mesh pattern, Catalan number, Dyck path

1 Introduction

Given a sequence w = w1 . . . wn of distinct integers, let red[w] be the permutation found by replacing
the i-th largest integer that appears in σ by i. For example, if σ = 2754, then red[σ] = 1432.
Given a permutation τ = τ1 . . . τj in the symmetric group Sj , we say that the pattern τ occurs in
σ = σ1 . . . σn ∈ Sn provided there exists 1 ≤ i1 < · · · < ij ≤ n such that red[σi1 . . . σij ] = τ . We
say that a permutation σ avoids the pattern τ if τ does not occur in σ. Let Sn(τ) denote the set
of permutations in Sn which avoid τ . In the theory of permutation patterns, τ is called a classical
pattern. See [8] for a comprehensive introduction to patterns in permutations.

The main goal of this paper is to study the distribution of quadrant marked mesh patterns in
123-avoiding permutations. The notion of mesh patterns was introduced by Brändén and Claesson
[2] to provide explicit expansions for certain permutation statistics as, possibly infinite, linear
combinations of (classical) permutation patterns. This notion was further studied in [1, 7, 9, 10,
19]. Kitaev and Remmel [10] initiated the systematic study of distribution of quadrant marked
mesh patterns on permutations. The study was extended to 132-avoiding permutations by Kitaev,
Remmel and Tiefenbruck in [13, 14, 15]. Kitaev and Remmel also studied the distribution of
quadrant marked mesh patterns in up-down and down-up permutations in [11, 12].

1

http://arxiv.org/abs/1705.00164v1


Let σ = σ1 . . . σn be a permutation written in one-line notation. Then we will consider the graph of
σ, G(σ), to be the set of points (i, σi) for i = 1, . . . , n. For example, the graph of the permutation
σ = 471569283 is pictured in Figure 1. Then if we draw a coordinate system centered at a point
(i, σi), we will be interested in the points that lie in the four quadrants I, II, III, and IV of that
coordinate system as pictured in Figure 1. For any a, b, c, d ∈ N where N = {0, 1, 2, . . .} is the
set of natural numbers and any σ = σ1 . . . σn ∈ Sn, we say that σi matches the quadrant marked
mesh pattern MMP(a, b, c, d) in σ if, in G(σ) relative to the coordinate system which has the point
(i, σi) as its origin, there are at least a points in quadrant I, at least b points in quadrant II, at
least c points in quadrant III, and at least d points in quadrant IV. For example, if σ = 471569283,
the point σ4 = 5 matches the marked mesh pattern MMP(2, 1, 2, 1) since, in G(σ) relative to the
coordinate system with the origin at (4, 5), there are 3 points in quadrant I, 1 point in quadrant II,
2 points in quadrant III, and 2 points in quadrant IV. Note that if a coordinate in MMP(a, b, c, d)
is 0, then there is no condition imposed on the points in the corresponding quadrant. Thus σi
matches the marked mesh pattern MMP(a, b, c, d) in σ if there are at least a points to the right of
σi in σ which are greater than σi, at least b points to left of σi in σ which are greater than σi, at
least c points to left of σi in σ which are smaller than σi, and at least at least d points to right of
σi in σ which are smaller than σi.

In addition, we shall consider the patterns MMP(a, b, c, d) where a, b, c, d ∈ N ∪ {∅}. Here when
a coordinate of MMP(a, b, c, d) is the empty set, then for σi to match MMP(a, b, c, d) in σ =
σ1 . . . σn ∈ Sn, it must be the case that there are no points in G(σ) relative to the coordinate
system with the origin at (i, σi) in the corresponding quadrant. For example, if σ = 471569283,
the point σ3 = 1 matches the marked mesh pattern MMP(4, 2, ∅, ∅) since, in G(σ) relative to the
coordinate system with the origin at (3, 1), there are 6 points in quadrant I, 2 points in quadrant
II, no points in quadrants III and IV. We let mmp(a,b,c,d)(σ) denote the number of i such that σi
matches MMP(a, b, c, d) in σ.
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Figure 1: The graph of σ = 471569283.

Next we give some examples of how the (two-dimensional) notation of Úlfarsson [19] for marked
mesh patterns corresponds to our (one-line) notation for quadrant marked mesh patterns. For
example,
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MMP(0, 0, k, 0) =
k

, MMP(k, 0, 0, 0) =
k

,

MMP(0, a, b, c) =
a

b c

and MMP(0, 0, ∅, k) =
k

.

Given a permutation τ = τ1 . . . τj ∈ Sj, it is a natural question to study the distribution of quadrant
marked mesh patterns in Sn(τ). That is, one wants to study generating function of the form

Q(a,b,c,d)
τ (t, x) = 1 +

∑

n≥1

tnQ(a,b,c,d)
n,τ (x)

where for any a, b, c, d ∈ {∅} ∪ N,

Q(a,b,c,d)
n,τ (x) =

∑

σ∈Sn(τ)

xmmp(a,b,c,d)(σ).

For any a, b, c, d, we will write Q
(a,b,c,d)
n,τ (x)|xk for the coefficient of xk in Q

(a,b,c,d)
n,τ (x). Given a

permutation σ = σ1σ2 . . . σn ∈ Sn, we let the reverse of σ, σr, be defined by σr = σn . . . σ2σ1, and
the complement of σ, σc, be defined by σc = (n+ 1− σ1)(n+ 1− σ2) . . . (n+ 1− σn). It is easy to

see that the family of generating functions Q
(a,b,c,d)
τr (t, x), Q

(a,b,c,d)
τc (t, x), and Q

(a,b,c,d)
(τr)c (t, x) can be

obtained from the family of generating functions Q
(a,b,c,d)
τ (t, x).

Kitaev, Remmel, and Tiefenbruck systematically studied the generating functions Q
(a,b,c,d)
132 (t, x).

Since Sn(132) is closed under inverses, there is a natural symmetry on these generating functions.
That is, we have the following lemma.
Lemma 1. ([13]) For any a, b, c, d ∈ {∅} ∪ N,

Q
(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x).

In [13], Kitaev, Remmel and Tiefenbrick proved the following.
Theorem 1. ([13, Theorem 4])

Q
(0,0,0,0)
132 (t, x) = C(xt) =

1−
√
1− 4xt

2xt

and, for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1− tQ
(k−1,0,0,0)
132 (t, x)

.

Theorem 2. ([13, Theorem 15])

Q
(0,0,∅,0)
132 (t, x) =

(1 + t− tx)−
√

(1 + t− tx)2 − 4t

2t
. (1)

For k ≥ 1,

Q
(k,0,∅,0)
132 (t, x) =

1

1− tQ
(k−1,0,∅,0)
132 (t, x)

. (2)
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Theorem 3. ([13, Theorem 8]) For k ≥ 1,

Q
(0,0,k,0)
132 (t, x) =

1 + (tx− t)(
∑k−1

j=0 Cjt
j)−

√

(1 + (tx− t)(
∑k−1

j=0 Cjtj))2 − 4tx

2tx

=
2

1 + (tx− t)(
∑k−1

j=0 Cjtj) +
√

(1 + (tx− t)(
∑k−1

j=0 Cjtj))2 − 4tx
.

By Lemma 1, Q
(0,k,0,0)
132 (t, x) = Q

(0,0,0,k)
132 (t, x) so the remaining two cases of Q

(a,b,c,d)
132 (t, x) where

a, b, c, d ∈ N and exactly one of a, b, c, d is not zero is covered by the following theorem.
Theorem 4. ([13, Theorem 12])

Q
(0,1,0,0)
132 (t, x) =

1

1− tC(tx)
. (3)

For k > 1,

Q
(0,k,0,0)
132 (t, x) =

1 + t
∑k−2

j=0 Cjt
j(Q

(0,k−1−j,0,0)
132 (t, x)− C(tx))

1− tC(tx)
(4)

and

Q
(0,k,0,0)
132 (t, 0) =

1 + t
∑k−2

j=0 Cjt
j(Q

(0,k−1−j,0,0)
132 (t, 0) − 1)

1− t
. (5)

In [14], Kiteav, Remmel, and Tiefenbruck used the results above to cover the cases Q
(a,b,c,d)
132 (t, x)

where a, b, c, d ∈ N and exactly two of a, b, c, d are not zero. For example, they proved the following.
Theorem 5. For all k, ℓ ≥ 1,

Q
(k,0,ℓ,0)
132 (t, x) =

1

1− tQ
(k−1,0,ℓ,0)
132 (t, x)

. (6)

Theorem 6. For all k, ℓ ≥ 1,

Q
(k,0,0,ℓ)
132 (t, x) =

Cℓt
ℓ +

∑ℓ−1
j=0Cjt

j(1− tQ
(k−1,0,0,0)
132 (t, x) + t(Q

(k−1,0,0,ℓ−j)
132 (t, x)−∑ℓ−j−1

s=0 Cst
s))

1− tQ
(k−1,0,0,0)
132 (t, x)

. (7)

Finally, in [15], Kitaev, Remmel, and Tiefenbruck used these results to find generating functions

to obtain similar recursions for Q
(a,b,c,d)
132 (t, x) for arbitrary a, b, c, d ∈ N.

The situation for the generating functions Q
(a,b,c,d)
123 (t, x) is different. First of all it is easy to see

that Sn(123) is closed under the operation reverse-complement. Thus we have the following lemma.
Lemma 2. For any a, b, c, d ∈ {∅} ∪ N,

Q
(a,b,c,d)
n,123 (x) = Q

(c,d,a,b)
n,123 (x).

Next it is obvious that if there is a σi in σ = σ1 . . . σn ∈ Sn such that σi matches MMP(a, b, c, d)
where a, c ≥ 1, then σ contains an occurrence of 123. Thus there are no permutations σ ∈ Sn(123)
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that can match a quadrant marked mesh pattern MMP(a, b, c, d) where a, c ≥ 1. Thus if a ≥ 1,

then Q
(a,b,0,d)
123 (t, x) = Q

(a,b,∅,d)
123 (t, x). Our first major result is that for all a, b, d ∈ N such that a > 0

Q
(a,b,∅,d)
123 (t, x) = Q

(a,b,∅,d)
132 (t, x). (8)

We will prove this result by using a bijection of Krattenthaler [16] between Sn(132) and Dn, the set
of Dyck paths of length 2n, and a bijection of Elizalde and Deutsch [5] between Sn(123) and Dn. It

is easier to compute the generating of the form Q
(a,b,∅,d)
132 (t, x) so that we will compute Q

(a,b,0,d)
123 (t, x)

by computing generating functions of the form Q
(a,b,∅,d)
132 (t, x). The only generating functions of

the form Q
(a,b,∅,d)
132 (t, x) where a > 0 that were computed by Kiteav, Remmel, and Tiefenbruck

were the generating functions of the form Q
(a,0,∅,0)
132 (t, x) given in Theorem 2 above. However their

techniques can be used to compute Q
(a,b,0,d)
123 (t, x) when a > 0 for arbitrary b and d. By Lemma 2,

Q
(a,b,0,d)
123 (t, x) = Q

(0,d,a,b)
123 (t, x) so that such computations will cover all the cases of Q

(a,b,c,d)
123 (t, x)

where one of a and c equals zero. Thus to complete our analysis of Q
(a,b,c,d)
123 (t, x) when a, b, c, d ∈ N,

we need only compute generating functions of the form Q
(0,b,0,d)
123 (t, x) which we will compute by

other methods.

As it was pointed out in [13], avoidance of a marked mesh pattern without quadrants containing
the empty set can always be expressed in terms of multi-avoidance of (possibly many) classical
patterns. Thus, among our results we will re-derive several known facts in permutation patterns
theory as well as several new results. However, our main goals are more ambitious aimed at finding
distributions in question.

The outline of this paper is as follows. In Section 2, we shall review the bijections of Krattenthaler
[16] and Elizalde and Deutsch [5]. In Section 3, we shall prove (8). We shall also prove that

Q
(k,ℓ,∅,m)
n,132 (x)

∣

∣

x0 = Q
(k,ℓ,0,m)
n,132 (x)

∣

∣

x0 ,

so that as far as constant terms that occur in the polynomials of the form Q
(k,ℓ,0,m)
n,123 , they reduce to

constant terms that appear in polynomials of the form Q
(k,ℓ,0,m)
n,132 which were analyzed in [13, 14, 15].

Finally, in Section 3, we shall prove some general results about the coefficients of the highest power

of x that occur in the polynomials Q
(a,b,c,d)
n,123 (x). In Section 4, we shall show how to compute

generating functions of the Q
(k,ℓ,0,m)
123 (x, t) = Q

(k,ℓ,∅,m)
132 (x, t). In Section 5, we will show how to

compute generating functions of the form Q
(0,k,0,0)
123 (x, t) and Q

(0,k,0,ℓ)
123 (x, t).

2 Bijections from Sn(132) and Sn(123) to Dyck paths on an n × n

Lattice

Given an n×n square, we will label the coordinates of the columns from left to right with 0, 1, . . . , n
and the coordinates of the rows from top to bottom with 0, 1 . . . , n. A Dyck path is a path made
up of unit down-steps D and unit right-steps R which starts at (0, 0) and ends at (n, n) has stays
on or below the diagonal x = y. Given a Dyck path P , we let

Return(P ) = {i ≥ 1 : P goes through the point (i, i)}

5



and we let return(P ) = |Return(P )|. For example, for the Dyck path

P = DDRDDRRRDDRDRDRRDR

shown on the right in Figure 2, Return(P ) = {4, 8, 9} and return(P ) = 3.

It is well known that for all n ≥ 1, |Sn(132)| = |Sn(123)| = |Dn| = Cn where Cn = 1
n+1

(2n
n

)

is the

nth Catalan number. In 2000, Christian Krattenthaler [16] gave a bijection between Sn(132) and
Dn. Later in 2003, Sergi Elizalde and Emeric Deutsch [5] gave a bijection between Sn(123) and
Dn. The main goal of this section is review these two bijections because the recursions that we can
derive from these two bijections which will help us develop recursions that allows us to compute

generating functions of the form Q
(a,b,c,d)
123 (x, t).

2.1 The bijection Φ : Sn(132) → Dn

In this subsection, we describe Krattenthaler’s [16] bijection between Sn(132) and Dn Given any
permutation σ = σ1 . . . σn ∈ Sn(132), we write it on an n× n table by placing σi in the ith column
and σth

i row, reading from bottom to top. Then, we shade the cells to the north-east of the cell that
contains σi. Then the path Φ(σ) is the path that goes along the south-west boundary of the shaded
cells. For example, this process is pictured in Figure 2 in this case where σ = 867943251 ∈ S9(132).
In this case, Φ(σ) = DDRDDRRRDDRDRDRRDR.

8

6

7

9

4

3

2

5

1

0th diagonal

1st diagonal

2nd diagonal

=⇒
return 1

return 2

return 3

Figure 2: Sn(132) to Dn

Given σ = σ1 . . . σn, we say that σj a left-to-right mininum of σ if σi > σj for all i < j. It is easy to
see that the left-to-right minima of σ correspond to peaks of the path Φ(σ), i.e., they occupy cells
along the inside boundary of the Φ(σ) that correspond to a down step D immediately followed by
a right-step R. We call such cells, the outer corners of the path. Thus we shall often refer to the
the left-to-right minima of the σ as the set of peaks of σ and the set σi which are not a left-to-right
minina as the non-peaks of σ. For example, for the permutation σ pictured in Figure 2, there are
6 peaks, {8, 6, 4, 3, 2, 1}, and 3 non-peaks, {7, 9, 5}. The horizontal segments of the path Φ(σ) are
the maximal consecutive sequences of R’s in Φ(σ). For example, in Figure 2, the lengths of the
horizontal segments, reading from top to bottom, are 1, 3, 1, 1, 2, 1. We will be interested in the set
of numbers that lie to the north of each horizontal segments in Φ(σ). For example, in our example,
{8} is the set associated with the first horizontal segment of Φ(σ), {6, 7, 9} is the set of numbers
associated with second horizontal segment of Φ(σ), etc.. Because σ is a 132-avoiding permutation,
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it follows that set of numbers above a horizontal segment must occur in increasing order. That is,
since the cell immediately above the first right-step of the horizontal segments must be occupied
with the least element in the set associated to the horizontal segment, then the remaining numbers
must appear in increasing order if we are to avoid 132.

We shall also label the diagonal that go through corners of squares that are parallel to and below
the main diagonal with 0, 1, 2, . . . starting at the main diagonal. In this way, each peak of the
permutation correspond to a diagonal. In the example in Figure 2, we have 1 peak on the 0th

diagonal, 4 peaks on the 1st diagonal and 1 peak on the 2nd diagonal.

The map Φ−1 is easy to describe. That is, given a Dyck path P , we first mark every cell corre-
sponding to a peak of the path with a ”×”. Then we look at the rows and columns which do not
have a cross. Starting form the left-most column, that does not contain a cross, we put a cross in
the lowest possible row without a cross that lies above the path. In this ways we will construct a
permutation σ = Φ−1(P ). This process is pictured in Figure 3.

=⇒

8

6

7

9

4

3

2

5

1

Figure 3: Dn to Sn(132)

Details that Φ : Sn(132) → Dn is a bijection can be found in [16]. However, given that Φ is a
bijection, the following properties are easy to prove.

Lemma 3. Given any Dyck path P , let σ132(P ) = Φ−1(P ), Then

(a) Then for each horizontal segment H of P , the set of numbers associated to H form a consecutive
increasing sequence in σ132(P ) and the least number of the sequence sits immediately above the
first right-step of H. Hence the only decreases in σ132(P ) occur between two different horizontal
segments of P .

(b) The number n is in the column of last right-step before the first return.

(c) Suppose that σi is a peak of σ and the cell containing σi is on the kth-diagonal. Then there
are k elements in the graph G(σ) in the first quadrant relative to coordinate system centered at
(i, σi).

Proof. (1) easily follows from our description of the bijections Φ and Φ−1.

For (2), we consider two cases. First if 1 ∈ Return(P ), then P must start out DR . . . so that the
first outer corner of P is in row n, reading from bottom to top, which must be occupied by n so
that n is in the column of the last right-step before the first return. If i > 1 is the least element
of Return(P ), then there are i right-steps in the first 2i steps of P . The outer corners in the first
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2i steps of P must all be occupied by numbers greater than n − i. Thus we can only place the
numbers n, . . . , n − i + 1 in the columns above the horizontal segments that occur in the first 2i
steps of P . After we place numbers in the outer corners of the first 2i steps, then we always place
×’s in the lowest row that is above the path starting from the left-most column. This means that
we will place ×’s in the rows n−1, . . . , n− i+1, before we place a × in row n, reading from bottom
to top. It follows that the position of the × in row n is in column i.

For (3), suppose that σi is a peak of σ and σi is in the kth-diagonal. This means that the right-step
that sits directly below σi in P is the ith right-step in P and is preceded by i+k down-steps. Hence
there are i+ k − 1 rows above σi in the graphs of σ. There are i− 1 elements that are associated
with the horizontal segments to the left of σi which means by the time that we get to σi in the
construction of σ132(P ) from P , there are i− 1 elements to the left of σi in σ which are larger than
σi. Hence there must be exactly k elements to the right of σi in σ which are larger than σi.

2.2 The bijection Ψ : Sn(123) → Dn

In this section, we will describe the bijection Ψ : Sn(123) → Dn given by Elizalde and Deutsch [5].
Given any permutation σ ∈ Sn(123), Ψ(σ) is constructed exactly as in the previous section. Figure
4 shows an example of this map, from σ = 869743251 ∈ S9(123) to Dyck path DDRDDRRRDDR-
DRDRRDR.

8

6

9

7

4

3

2

5

1

=⇒

Figure 4: Sn(123) to Dn

Given any Dyck path P , we construct Ψ−1(P ) = σ123(P ) as follows. First we place an “×” in every
outer corner of P . Then we consider the rows and columns which do not have a ×. Processing
the columns from top to bottom and the rows from left to right, we place an × in the ith empty
row and ith empty column. This process is pictured in Figure 5. The details that Ψ is bijection
between Sn(123) and Dn can be found in [5].

We then have the following lemma about the properties of this map.

Lemma 4. Let P ∈ Dn and σ = σ123(P ) = Ψ−1(P ). Then the following hold.

(a) For each horizontal segment H of P , the least element of the set of numbers associated to H sits
directly above the first right-step of H and the remaining numbers of the set form a consecutive
decreasing sequence in σ.

8



=⇒
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Figure 5: Dn to Sn(123)

(b) σ can be decomposed into two decreasing subsequences, the first decreasing subsequence corre-
sponds to the peaks of σ and the second decreasing subsequence corresponds to the non-peaks of
σ.

(c) Suppose that σi is a peak of σ and the cell containing σi is on the kth-diagonal. Then there
are k elements in the graph G(σ) in the first quadrant relative to coordinate system centered at
(i, σi).

Proof. It is easy to see that parts (1) and (2) follow from the construction of Ψ−1. The proof of
part (3) is the same as the proof of part (3) of Lemma 3.

3 General results about Q
(a,b,c,d)
123 (t, x) and Q

(a,b,c,d)
132 (t, x)

In this section, we shall prove several general results about the generating functions Q
(a,b,c,d)
123 (t, x)

and Q
(a,b,c,d)
132 (t, x).

First suppose that k > 0. Then since in a 123-avoiding permutation σ = σ1 . . . σn ∈ Sn(123), no σi
can have elements in the first and third quadrants in G(σ) relative to the coordinate system centered
at (i, σi), it follows that σi matches MMP(k, ℓ, 0,m) in σ if and only if it matches MMP(k, ℓ, ∅,m)
in σ. Thus

Q
(k,ℓ,0,m)
123 (t, x) = Q

(k,ℓ,∅,m)
123 (t, x) for all k > 0 and ℓ,m ≥ 0.

Similarly, one can prove that

Q
(0,ℓ,k,m)
123 (t, x) = Q

(∅,ℓ,k,m)
123 (t, x) for all k > 0 and ℓ,m ≥ 0.

Next suppose that P is Dyck path in Dn and consider the differences between σ = Φ−1(P ) and
τ = Ψ−1(P ). Clearly, the elements corresponding to the outer corners of P are the same in both
σ and τ . The only difference is how construct the non-peaks. Thus σ and τ have the same peaks.
Note, by construction, the non-peaks in σ and τ cannot match a quadrant marked mesh pattern of
the form MMP(k, ℓ, ∅,m). That is, a non-peak σi of σ must have at least one element occurring in
the third quadrant of G(σ) relative to the coordinate system centered at (i, σi), namely, the least
element of the set associated with the horizontal segment H whose associated set contains σi. A
similar statement holds for τ . Now suppose that the number σj is a peak of σ. Thus σj sits directly
above the first right-step of some horizontal segment H of P in the graph of σ. By Lemma 3, if cell
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containing σi is in the rth-diagonal, then in G(σ), there are exactly r-elements in the first quadrant
relative to the coordinate system centered at (j, σj). It is easy to see that the number of elements
in the second quadrant in G(σ) relative to coordinate system centered (j, σj) is equal s = j − 1
where s is the sum of lengths of the horizontal segments to the left of H and, hence, the number
of elements in the fourth quadrant in G(σ) relative to coordinate system centered (j, σj) is equal
n − k − s − 1 = n − k − j. However, by Lemma 4, the exact same statement holds for σj in the
graph G(τ) relative to the coordinate system center at (j, σj). It follows that for any k, ℓ,m ≥ 0, σj
matches MMP(k, ℓ, ∅,m) in σ if and only if σj matches MMP(k, ℓ, ∅,m) in τ . For example, Figure
6 illustrates this correspondence. It follows that the map Ψ ◦Φ−1 : Sn(132) → Sn(123) shows that
for all k > 0 and ℓ,m ≥ 0,

Q
(k,ℓ,∅,m)
n,132 (x) = Q

(k,ℓ,∅,m)
n,123 (x).
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Figure 6: Sn(132) to Sn(123) keeps MMP(k, ℓ, ∅,m)

Combining the remarks above with Lemma 2, we have the following theorem.

Theorem 7. For any k > 0 and ℓ,m ≥ 0,

Q
(k,ℓ,0,m)
123 (t, x) = Q

(k,ℓ,∅,m)
123 (t, x) = Q

(k,ℓ,∅,m)
132 (t, x) (9)

= Q
(0,m,k,ℓ)
123 (t, x) = Q

(∅,ℓ,k,m)
123 (t, x).

It follows that the only generating functions of the form Q
(a,b,c,d)
123 (t, x) that cannot be reduced to

generating functions of the form Q
(a,b,c,d)
132 (t, x) are generating functions of the form Q

(0,b,0,d)
123 (t, x).

In the series of papers [13, 14, 15], the only generating function of the form Q
(k,ℓ,∅,m)
132 (t, x) that were

computed were the generating functions of the form Q
(k,0,∅,0)
132 (t, x) given in Theorem 2. Our main

interest in this paper is to compute generating functions of the form Q
(a,b,c,d)
123 (t, x) for a, b, c, d ∈ N.

Thus we will show how to compute generating functions of the form Q
(k,ℓ,∅,m)
132 (t, x) for k, ℓ,m ∈

N and of the form Q
(0,b,0,d)
132 (t, x) for b, d ∈ N. Before we do this, we shall prove some general

results about the constants terms and the coefficients of the highest power of x in the polynomials

Q
(a,b,c,d)
n,123 (x).
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4 The coefficients of x0 and x1 in polynomials Q
(k,ℓ,∅,m)
n,123 (x)

Since the coefficients of xk in polynomials of the form Q
(a,b,0,d)
n,123 (x) and Q

(0,d,a,b)
n,123 (x) can be found

from the coefficients of xk in polynomials of the form Q
(a,b,∅,d)
n,132 (x), we start out with an observation

about coefficients of x0 and x1 in polynomials of the form Q
(a,b,∅,d)
n,132 (x).

Theorem 8.
Q

(k,ℓ,∅,m)
n,132 (x)

∣

∣

x0 = Q
(k,ℓ,0,m)
n,132 (x)

∣

∣

x0 (10)

and
Q

(k,ℓ,∅,m)
n,132 (x)

∣

∣

x1 = Q
(k,ℓ,0,m)
n,132 (x)

∣

∣

x1 (11)

Proof. For (10), note that any permutation in Sn(132) avoiding pattern MMP(k, ℓ, 0,m) must also
avoid pattern MMP(k, ℓ, ∅,m). Thus to prove (10), we need to show that any permutation in
Sn(132) avoiding pattern MMP(k, ℓ, ∅,m) must also avoid pattern MMP(k, ℓ, 0,m). We know that
only the peaks of σ can match patterns of the from MMP(k, ℓ, ∅,m). Thus we must show that if
the peaks of σ don’t match MMP(k, ℓ, 0,m), then the non-peaks of σ don’t match MMP(k, ℓ, 0,m)
either.

To show this, we appeal to part (a) of Lemma 3. That is, we know that on each horizontal segment
H of Φ(σ), the elements in the columns above H form a consecutive increasing sequence in σ. But
it is easy to see that if σi < σi+1, then in the graph of G(σ), the number of elements in quadrant
A relative to the coordinate system centered at (i, σi) is greater than or equal to the number of
elements in quadrant A relative to the coordinate system centered at (i+1, σi+1) for A ∈ {I, II, IV }.
Thus if the peak corresponding to the horizontal segment H does not match MMP(k, ℓ, 0,m), then
no other element associated with H can MMP(k, ℓ, 0,m). For example, Figure 7 illustrate this
observation for the horizontal segment corresponding to the set {6, 7, 9}. Thus we have proved that
if the peaks of σ don’t match MMP(k, ℓ, 0,m), then the non-peaks of σ don’t match MMP(k, ℓ, 0,m)
either.
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Figure 7: Sn(132) to Sn(123) keeps MMP(k, ℓ, ∅,m)

To prove (11), suppose that σ = σ1 . . . σn ∈ Sn(132) is such that there is exactly one σi that
matches MMP(k, ℓ, 0,m). We claim that σi must be a peak. That is, by our argument above,
if σi sits above a horizontal segment H of Φ(σ), then if σi matches MMP(k, ℓ, 0,m), then the
peak corresponding to H must also match MMP(k, ℓ, 0,m). Thus if σi is the only element of σ
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that matches MMP(k, ℓ, 0,m), then it must be a peak and hence it also matches MMP(k, ℓ, ∅,m).
Clearly, there cannot be two elements of σ that matches MMP(k, ℓ, ∅,m) since otherwise we would
have two elements of σ which would match MMP(k, ℓ, 0,m). Thus (11) follows.

Thus we have the following corollary.

Corollary 1.

Q
(k,ℓ,∅,m)
123 (t, 0) = Q

(k,ℓ,∅,m)
132 (t, 0) = Q

(k,ℓ,0,m)
132 (t, 0)

and
Q

(k,ℓ,∅,m)
123 (t, x)

∣

∣

x1 = Q
(k,ℓ,∅,m)
132 (t, x)

∣

∣

x1 = Q
(k,ℓ,0,m)
132 (t, x)

∣

∣

x1 .

We note that [13, 14, 15] contains many results on special cases of of the coefficients of x0 and x1

in polynomials of the form Q
(k,ℓ,0,m)
132 (t, x).

4.1 The coefficients of the highest power of x that occurs in the polynomials

Q
(a,b,c,d)
n,123 (x)

By our results above, to analyze the coefficients of the highest power of x that occurs in the polyno-

mials Q
(a,b,c,d)
n,123 (x), we need only consider two cases. Namely, we need to analyze the coefficients of

the highest power of x that occurs in polynomials of the form Q
(0,k,0,ℓ)
n,123 (x) and we need to analyze

the coefficients of the highest power of x that occurs in polynomials of the form Q
(k,ℓ,∅,m)
n,132 (x).

We shall start with analyzing the coefficients of the highest power of x in polynomials of the

form Q
(0,k,0,ℓ)
n,123 (x). Clearly, in any permutation σ ∈ Sn(123), none of the numbers 1, . . . , ℓ or

n, n−1, . . . , n−k+1 can match MMP(0, k, 0, ℓ). It follows that if the highest possible power of x that

can occur in Q
(0,k,0,ℓ)
n,123 (x) is xn−k−ℓ and its coefficient can only be non-zero if n ≥ k+ℓ+1. Moreover,

if σi matches MMP(0, k, 0, ℓ) in σ, then i ∈ {k + 1, . . . , n − ℓ}. It follows that if mmp(0,k,0,ℓ)(σ) =
n− k − ℓ, then (a) n− k + 1, n − k + 2, . . . n must be positions 1, . . . , k, (b) ℓ+ 1, . . . , n − k must
be in positions ℓ+ 1, . . . , n− ℓ, and (c) 1, . . . , ℓ must be in positions n− ℓ+ 1, . . . , n.

These observations lead to the following theorem.

Theorem 9. If n ≥ k + ℓ+ 1, then

Q
(0,k,0,ℓ)
n,123 (x)

∣

∣

xn−k−ℓ = Q
(0,k,0,ℓ)
n,132 (x)

∣

∣

xn−k−ℓ = CkCn−k−ℓCℓ.

Proof. Suppose n ≥ k + ℓ+ 1.

To have a σ ∈ Sn(123) where mmp(0,k,0,ℓ)(σ) = n − k − ℓ, we need only have σ1 . . . σk be any
rearrangement of n − k + 1, . . . , n, which reduces to an element of Sk(123) which we can choose
in Ck ways, σk+1 . . . σn−ℓ be any rearrangement of ℓ + 1, . . . , n − k, which reduces to an element
of Sn−k−ℓ(123) which we can choose in Cn−k−ℓ ways, and σn−ℓ+1 . . . σn be any rearrangement of
1, . . . , ℓ, which is in Sℓ(123) which we can choose in Cℓ ways.
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In the special case where ℓ = 0, we have the following corollary.

Corollary 2. If n ≥ k + 1, then

Q
(0,k,0,0)
n,123 (x)

∣

∣

xn−k = Q
(0,k,0,0)
n,132 (x)

∣

∣

xn−k = CkCn−k.

If we are considering the pattern MMP(0, k, ∅, ℓ), we can do a similar analysis. The only difference
is that for the numbers ℓ+ 1, . . . , n− k to match MMP(0, k, ∅, ℓ) in a 123-avoiding permutation σ,
they must all be peaks of σ so that these numbers must occur in decreasing order. Thus we have
the following theorem.

Theorem 10. For any n ≥ k + ℓ+ 1,

Q
(0,k,∅,ℓ)
n,123 (x)

∣

∣

xn−k−ℓ = Q
(0,k,∅,ℓ)
n,132 (x)

∣

∣

xn−k−ℓ = CkCℓ.

In the special case where ℓ = 0, we have the following corollary.

Corollary 3.

Q
(0,k,∅,0)
n,123 (x)

∣

∣

xn−k = Q
(0,k,∅,0)
n,132 (x)

∣

∣

xn−k = Ck.

Notice that the numbers that match the pattern MMP(0, k, ∅, ℓ) are on the diagonal under the
maps Φ and Ψ which means that they also have nothing in their 1st quadrant. Thus we have the
following corollary.

Corollary 4.

Q
(∅,k,∅,ℓ)
n,123 (x)

∣

∣

xn−k−ℓ = Q
(∅,k,∅,ℓ)
n,132 (x)

∣

∣

xn−k−ℓ = CkCℓ,

Q
(∅,k,∅,0)
n,123 (x)

∣

∣

xn−k = Q
(∅,k,∅,0)
n,132 (x)

∣

∣

xn−k = Ck.

Next we continue our analysis of the coefficients of the highest power of x that can occur in a

polynomials of the form Q
(k,ℓ,∅,m)
n,123 (x). We start by considering the special case where m = 0. Again

the highest power of x that can occur in Q
(k,ℓ,∅,0)
n,123 (x) = Q

(k,ℓ,∅,m)
n,132 (x) is xn−k−ℓ if n ≥ k + ℓ+ 1.

Theorem 11. For all n ≥ k + ℓ+ 1,

Q
(k,ℓ,∅,0)
n,123 (x)

∣

∣

xn−k−ℓ = Q
(k,ℓ,∅,0)
n,132 (x)

∣

∣

xn−k−ℓ =
k + 1

k + ℓ+ 1

(

k + 2ℓ

ℓ

)

.

Proof. Given σ = σ1 . . . σn ∈ Sn(132), if σi is the match MMP(k, ℓ, ∅, 0), it must be the case that
σi is a peak and there must be k + ℓ numbers which are larger than σi in σ. Thus if we want
mmp(k,ℓ,∅,0)(σ) = n − k − 1, then the numbers {1, 2, . . . , n − k − ℓ} must be peaks and appear
between the ℓ + 1st position and n − kth position. Moreover, there should be k + ℓ numbers in
the first k + ℓ rows, of which ℓ numbers appear before the numbers {1, 2, . . . , n − k − ℓ} and k
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numbers appear after the numbers {1, 2, . . . , n − k − ℓ}. In Figure 8, the position of the numbers
{1, 2, . . . , n− k − ℓ} are marked red while the position of the k + ℓ numbers are marked blue. The
numbers {1, 2, . . . , n−k−ℓ} must appear in decreasing order since they are all peaks. The numbers
in the blue region must reduce to a 132-avoiding permutation τ of size k + ℓ with an additional
restriction that the numbers in the last k columns must be increasing. Thus, we must count the
number of Dyck paths of length 2(k+ ℓ) that end in k right-steps which is also equal to the number
of standard tableaux of shape (ℓ, k + ℓ) which is equal to k+1

k+ℓ+1

(

k+2ℓ
ℓ

)

by the hook formula for the
number of standard tableaux. This fact is also proved in [6, 17].

Thus we have Q
(k,ℓ,∅,0)
n,132 (x)

∣

∣

xn−k−ℓ =
k+1

k+ℓ+1

(

k+2ℓ
ℓ

)

.

k + ℓ

ℓ k

Figure 8: structure of Q
(k,ℓ,∅,0)
n,132 (x)

∣

∣

xn−k−ℓ

Theorem 12. For n ≥ k + ℓ+m+ 1 and k > 0,

Q
(k,ℓ,∅,m)
n,123 (x)

∣

∣

xn−k−ℓ−m = Q
(k,ℓ,∅,m)
n,132 (x)

∣

∣

xn−k−ℓ−m =
(k + 1)2

(k + ℓ+ 1)(k +m+ 1)

(

k + 2ℓ

ℓ

)(

k + 2m

m

)

.

Proof. Assume that n ≥ k + ℓ + m + 1 and k > 0. Then for σi to match MMP(k, ℓ, ∅,m) in
σ = σ1 . . . σn ∈ Sn(132), σi must be a peak of σ and σi must have m numbers to its right in σ which
are smaller than σi, ℓ numbers to its left in σ which are larger than σi, and k numbers to its right in

σ which are larger than σi. It follows that the maximum power of x that can appear in Q
(k,ℓ,∅,m)
n,123 (x)

is xn−k−ℓ−m. Now if mmp(k,ℓ,∅,m)(σ) = n−k−ℓ−m, then the numbers {m+1,m+2, . . . , n−k−ℓ}
must be peaks and appear between the ℓ+1st position and n−k−mth position in a decreasing order.
These positions are marked red in Figure 9(a). There should be k + ℓ numbers in the first k + ℓ

rows, of which ℓ numbers appear before the numbers {m+ 1,m+ 2, . . . , n− k− ℓ} and k numbers
appear after the numbers {m+1,m+2, . . . , n− k− ℓ}; and there should be k+m numbers in the
last k +m columns, of which m numbers appear under the numbers {m+ 1,m+ 2, . . . , n− k − ℓ}
and k numbers appear above the numbers {m+ 1,m+ 2, . . . , n− k − ℓ}. In Figure 9, the position
of the these k + ℓ+m numbers are marked blue. The numbers in the blue region must reduce to
a 132-avoiding permutation τ of size k + ℓ with an additional restriction that the numbers in the
last k +m columns and top k + ℓ rows(region A in Figure 9(a)) should be increasing. It is easy to
see that under the map Φ such permutations correspond to Dyck paths in the join of the 3 blue

regions as pictured Figure 9(b). It follows that the coefficient of xn−k−ℓ−m in Q
(k,ℓ,∅,m)
n,132 (x) equals

the number of Dyck paths U of length 2(k + ℓ+m) which pass through the points P , Q and R in
Figure 9(b). For each such path U , we can uniquely associate two paths U1 and U2 where U1 starts
at P goes to the point Q and U2 starts at Q goes to the point R. By our results in the previous
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theorem the number of such P1 is k+1
k+ℓ+1

(

k+2ℓ
ℓ

)

and the number of such P2 is k+1
k+m+1

(

k+2m
m

)

. It

follows that Q
(k,ℓ,∅,m)
n,132 (x)

∣

∣

xn−k−ℓ =
(k+1)2

(k+ℓ+1)(k+m+1)

(

k+2ℓ
ℓ

)(

k+2m
m

)

.

k + ℓ

ℓ k +m

A

m

(a)

k + ℓ

ℓ k +m

m

A

P

Q

R(b)

Figure 9: structure of Q
(k,ℓ,∅,m)
n,132 (x)

∣

∣

xn−k−ℓ−m

Since Q
(k,ℓ,∅,m)
n,123 (x) = Q

(k,ℓ,∅,m)
n,132 (x), the theorem follows.

5 The functions of form Q
(k,ℓ,0,m)
123 (t, x) = Q

(k,ℓ,∅,m)
123 (t, x) = Q

(k,ℓ,∅,m)
132 (t, x)

In this section, we shall show how we can compute generating functions of the form Q
(k,ℓ,0,m)
123 (t, x) =

Q
(k,ℓ,∅,m)
123 (t, x) = Q

(k,ℓ,∅,m)
132 (t, x). In this case, it easier to compute generating functions of the form

Q
(k,ℓ,∅,m)
132 (t, x). To do this, we will start by computing the marginal distributions Q

(k,0,∅,0)
132 (t, x),

Q
(0,ℓ,∅,0)
132 (t, x), and Q

(0,0,∅,m)
132 (t, x). Then we can find expressions for Q

(k,ℓ,∅,0)
132 (t, x), Q

(0,ℓ,∅,m)
132 (t, x),

and Q
(k,0,∅,m)
132 (t, x) in terms of the marginal distributions Q

(k,0,∅,0)
132 (t, x), Q

(0,ℓ,∅,0)
132 (t, x), and

Q
(0,0,∅,m)
132 (t, x). Finally we show how we can express Q

(k,ℓ,∅,m)
132 (t, x) in terms of the distributions

Q
(k,ℓ,∅,0)
132 (t, x), Q

(0,ℓ,∅,m)
132 (t, x), and Q

(k,0,∅,m)
132 (t, x)

Recall that Kitaev, Remmel, and Tiefenbruck [13] proved that

Q
(0,0,∅,0)
132 (t, x) =

(1 + t− tx)−
√

(1 + t− tx)2 − 4t

2t

and, for k ≥ 1,

Q
(k,0,∅,0)
132 (t, x) =

1

1− tQ
(k−1,0,∅,0)
132 (t, x)

.

By Lemma 1, we have that Q
(0,ℓ,∅,0)
132 (t, x) = Q

(0,0,∅,ℓ)
132 (t, x), thus to complete our computations of

the marginal distributions we need only compute Q
(0,k,∅,0)
132 (t, x) when k > 0.

Let S(i)
n (132) be the set of σ = σ1 · · · σn ∈ Sn(132) such that σi = n. Then the graph G(σ) of

each σ ∈ S(i)
n (132) has the structure showed in Figure 10 (a). That is, in G(σ), the numbers to

the left of n, Ai(σ), have the structure of 132-avoiding permutation, the numbers to the right of n,
Bi(σ), have the structure of 132-avoiding permutation, and all the numbers in Ai(σ) lie above all
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the numbers in Bi(σ). If we apply the map Φ to such permutations, then for σ ∈ S(i)
n (132), Φ(σ)

will be a Dyck path of the form in Figure 10 (b) where the smaller Dyck path structures Ai(σ) and
Bi(σ) are correspond to 132-avoiding permutation structures Ai(σ) and Bi(σ).

Ai(σ)

i

Bi(σ)

1

1
n

n

(a)

Ai

i

Bi

1

1
n

n

(b)

Figure 10: Sn(132) to Dn

Now assume that k > 0. Then we can derive a simple recursion for based on the position of n
in a permutation σ = σ1 . . . σn ∈ Sn(132). That is, suppose σi = n and Ai(σ) and Bi(σ) are as
pictured in Figure 10. Clearly σi = n does not match MMP(0, k, ∅, 0) in σ. Then we have two cases.

Case 1. i < k.
Then elements in Ai(σ) can not match MMP(0, k, ∅, 0) in σ since no element of Ai(σ) as k ele-
ments it right which are larger than it. However, an element σj in Bi(σ) matches MMP(0, k, ∅, 0)
in σ if and only if it matches MMP(0, k − i, ∅, 0) in Bi(σ). Thus such permutations contribute

Ci−1Q
(0,k−i,∅,0)
n−i,132 (x) to Q

(0,k,∅,0)
n,132 (x).

Case 2. i > k.
Then elements in Ai(σ) match MMP(0, k, ∅, 0) in σ if and only if the corresponding element matches
MMP(0, k, ∅, 0) in the reduction of Ai(σ). An element σj in Bi(σ) automatically has k elements in
the graph G(σ) the second quadrant relative to the coordinate system centered at (j, σj), namely,
the elements in Ai(σ) ∪ {n} so that σj matches MMP(0, k, ∅, 0) in σ if and only if σj is peak of
σ, or, equivalently, if and only if σj matches MMP(0, 0, ∅, 0) in Bi(σ). Thus such permutations

contribute Q
(0,0,∅,0)
i−1,132 (x)Q

(0,0,∅,0)
n−i,132 (x) to Q

(0,k,∅,0)
n,132 (x).

It follows that n ≥ k + 1,

Q
(0,k,∅,0)
n,132 (x) =

k−1
∑

i=1

Ci−1Q
(0,k−i,∅,0)
n−i,132 (x) +

n
∑

i=k

Q
(0,k,∅,0)
i−1,132 (x)Q

(0,0,∅,0)
n−i,132 (x).

Multiplying both sides of the equation by tn and summing for n ≥ 1 gives that

Q
(0,k,∅,0)
132 (t, x) = 1 + t

k−1
∑

i=1

Ci−1t
i−1Q

(0,k−i,∅,0)
132 (t, x) + t(Q

(0,k,∅,0)
132 (t, x)−

k−2
∑

i=0

Cit
i)Q

(0,0,∅,0)
132 (t, x).

Thus, we have the following theorem.
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Theorem 13.

Q
(0,0,∅,0)
132 (t, x) =

1 + t− tx−
√

(1 + t− tx)2 − 4t

2t
.

For k > 0,

Q
(0,k,∅,0)
132 (t, x) =

1 + t
∑k−1

i=1 Ci−1t
i−1(Q

(0,k−i,∅,0)
132 (t, x)−Q

(0,0,∅,0)
132 (t, x))

1− tQ
(0,0,∅,0)
132 (t, x))

.

We list the first 10 terms of function Q
(0,k,∅,0)
132 (t, x) for k = 1 · · · 5.

Q
(0,1,∅,0)
132 (t, x) =1 + t+ (1 + x)t2 +

(

1 + 3x+ x2
)

t3 +
(

1 + 6x+ 6x2 + x3
)

t4

+
(

1 + 10x+ 20x2 + 10x3 + x4
)

t5 +
(

1 + 15x+ 50x2 + 50x3 + 15x4 + x5
)

t6

+
(

1 + 21x+ 105x2 + 175x3 + 105x4 + 21x5 + x6
)

t7

+
(

1 + 28x+ 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)

t8

+
(

1 + 36x+ 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)

t9 + · · ·

We note that if σi matches MMP(0, 1, ∅, 0) in σ = σ1 . . . σn ∈ Sn(132), then σi must be a peak of
σ which has at least one element to its left which is larger than σi. However, it is easy to see from
our description of Φ−1, the every peak except the first one in σ satisfies this condition. However

such peak are just the descents of σ so that Q
(0,1,∅,0)
n,132 (x) =

∑

σ∈Sn(132)
xdes(σ).

Q
(0,2,∅,0)
132 (t, x) =1 + t+ 2t2 + (3 + 2x)t3 +

(

4 + 8x+ 2x2
)

t4 +
(

5 + 20x+ 15x2 + 2x3
)

t5

+
(

6 + 40x + 60x2 + 24x3 + 2x4
)

t6 +
(

7 + 70x+ 175x2 + 140x3 + 35x4 + 2x5
)

t7

+
(

8 + 112x + 420x2 + 560x3 + 280x4 + 48x5 + 2x6
)

t8

+
(

9 + 168x + 882x2 + 1764x3 + 1470x4 + 504x5 + 63x6 + 2x7
)

t9 + · · ·

Q
(0,3,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + (9 + 5x)t4 +

(

14 + 23x+ 5x2
)

t5 +
(

20 + 65x+ 42x2 + 5x3
)

t6

+
(

27 + 145x + 186x2 + 66x3 + 5x4
)

t7

+
(

35 + 280x + 595x2 + 420x3 + 95x4 + 5x5
)

t8

+
(

44 + 490x + 1554x2 + 1820x3 + 820x4 + 129x5 + 5x6
)

t9 + · · ·

Q
(0,4,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (28 + 14x)t5 +

(

48 + 70x+ 14x2
)

t6

+
(

75 + 214x+ 126x2 + 14x3
)

t7 +
(

110 + 514x + 596x2 + 196x3 + 14x4
)

t8

+
(

154 + 1064x + 2030x2 + 1320x3 + 280x4 + 14x5
)

t9 + · · ·

Q
(0,5,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (90 + 42x)t6 +

(

165 + 222x + 42x2
)

t7

+
(

275 + 717x+ 396x2 + 42x3
)

t8

+
(

429 + 1817x + 1962x2 + 612x3 + 42x4
)

t9 + · · ·
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Next we consider Q
(k,ℓ,∅,0)
132 (t, x) where both k and ℓ are nonzero. Again we will develop a simple

recursion for Q
(k,ℓ,∅,0)
n,132 (x) based on the position of n in σ. That is, let σ = σ1 . . . σn ∈ Sn(132) and

σi = n. Again σi = n does not match MMP(k, ℓ, ∅, 0) in σ. Then we have two cases.

Case 1. i < ℓ.
Then no element in Ai(σ) can not match MMP(k, ℓ, ∅, 0) in σ since no element of Ai(σ) has ℓ

elements to its left which are larger than it. An element σj in Bi(σ) matches MMP(k, ℓ, ∅, 0)
in σ if and only if it matches MMP(k, ℓ − i, ∅, 0) in Bi(σ). Thus such permutations contribute
∑ℓ−1

i=1 Ci−1Q
(k,ℓ−i,∅,0)
n−i,132 (x) to Q

(k,ℓ,∅,0)
n,132 (x).

Case 2. i > ℓ.
Then an element σj in Ai(σ) matches MMP(k, ℓ, ∅, 0) in σ if and only if it, in the reduction of Ai(σ),
the corresponding element matches MMP(k, ℓ, ∅, 0). An element σj in Bi(σ) automatically has ℓ to
its left which are larger than in so that σj matches MMP(k, ℓ, ∅, 0) in σ if and only if it matches

MMP(k, 0, ∅, 0) in Bi(σ). Thus such permutations contribute
∑n

i=ℓQ
(k−1,ℓ,∅,0)
i−1,132 (x)Q

(k,0,∅,0)
n−i,132 (x) to

Q
(k,ℓ,∅,0)
n,132 (x).

It follows that for n ≥ k + ℓ+ 1,

Q
(k,ℓ,∅,0)
n,132 (x) =

ℓ−1
∑

i=1

Ci−1Q
(k,ℓ−i,∅,0)
n−i,132 (x) +

n
∑

i=ℓ

Q
(k−1,ℓ,∅,0)
i−1,132 (x)Q

(k,0,∅,0)
n−i,132 (x).

Multiplying both sides of the equation by tn and summing for n ≥ 1 gives that

Q
(k,ℓ,∅,0)
132 (t, x) = 1 + t

ℓ−1
∑

i=1

Ci−1t
i−1Q

(k,ℓ−i,∅,0)
132 (t, x) + (Q

(k−1,ℓ,∅,0)
132 (t, x)−

ℓ−2
∑

i=0

Cit
i)Q

(k,0,∅,0)
132 (t, x).

Thus, we have the following theorem.

Theorem 14. For all k, ℓ > 0,

Q
(k,ℓ,∅,0)
132 (t, x) = 1 + t

ℓ−1
∑

i=1

Ci−1t
i−1Q

(k,ℓ−i,∅,0)
132 (t, x) + (Q

(k−1,ℓ,∅,0)
132 (t, x)−

ℓ−2
∑

i=0

Cit
i)Q

(k,0,∅,0)
132 (t, x).

We list the first 10 terms of function Q
(k,ℓ,∅,0)
132 (t, x) for 1 ≤ k, ℓ ≤ 3.

Q
(1,1,∅,0)
132 (t, x) =1 + t+ 2t2 + (3 + 2x)t3 +

(

4 + 8x+ 2x2
)

t4 +
(

5 + 20x+ 15x2 + 2x3
)

t5

+
(

6 + 40x + 60x2 + 24x3 + 2x4
)

t6 +
(

7 + 70x+ 175x2 + 140x3 + 35x4 + 2x5
)

t7

+
(

8 + 112x + 420x2 + 560x3 + 280x4 + 48x5 + 2x6
)

t8

+
(

9 + 168x + 882x2 + 1764x3 + 1470x4 + 504x5 + 63x6 + 2x7
)

t9 + · · ·

Q
(1,2,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + (9 + 5x)t4 +

(

14 + 23x+ 5x2
)

t5 +
(

20 + 65x+ 42x2 + 5x3
)

t6

+
(

27 + 145x + 186x2 + 66x3 + 5x4
)

t7

+
(

35 + 280x + 595x2 + 420x3 + 95x4 + 5x5
)

t8

+
(

44 + 490x + 1554x2 + 1820x3 + 820x4 + 129x5 + 5x6
)

t9 + · · ·
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Q
(1,3,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (28 + 14x)t5 +

(

48 + 70x+ 14x2
)

t6

+
(

75 + 214x+ 126x2 + 14x3
)

t7 +
(

110 + 514x + 596x2 + 196x3 + 14x4
)

t8

+
(

154 + 1064x + 2030x2 + 1320x3 + 280x4 + 14x5
)

t9 + · · ·

Q
(2,1,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + (11 + 3x)t4 +

(

23 + 16x+ 3x2
)

t5 +
(

47 + 56x+ 26x2 + 3x3
)

t6

+
(

95 + 163x + 129x2 + 39x3 + 3x4
)

t7

+
(

191 + 429x+ 489x2 + 263x3 + 55x4 + 3x5
)

t8

+
(

383 + 1062x + 1583x2 + 1270x3 + 487x4 + 74x5 + 3x6
)

t9 + · · ·

Q
(2,2,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (33 + 9x)t5 +

(

72 + 51x+ 9x2
)

t6

+
(

151 + 186x + 83x2 + 9x3
)

t7 +
(

310 + 556x + 431x2 + 124x3 + 9x4
)

t8

+
(

629 + 1487x + 1688x2 + 875x3 + 174x4 + 9x5
)

t9 + · · ·

Q
(2,3,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (104 + 28x)t6 +

(

235 + 166x + 28x2
)

t7

+
(

505 + 627x + 270x2 + 28x3
)

t8

+
(

1054 + 1924x+ 1454x2 + 402x3 + 28x4
)

t9 + · · ·

Q
(3,1,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5 +

(

101 + 27x+ 4x2
)

t6

+
(

266 + 119x + 40x2 + 4x3
)

t7 +
(

698 + 439x + 232x2 + 57x3 + 4x4
)

t8

+
(

1829 + 1477x + 1044x2 + 430x3 + 78x4 + 4x5
)

t9 + · · ·

Q
(3,2,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (118 + 14x)t6 +

(

319 + 96x+ 14x2
)

t7

+
(

847 + 425x+ 144x2 + 14x3
)

t8

+
(

2231 + 1563x + 848x2 + 206x3 + 14x4
)

t9 + · · ·

Q
(3,3,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (381 + 48x)t7

+
(

1046 + 336x+ 48x2
)

t8 +
(

2801 + 1506x + 507x2 + 48x3
)

t9 + · · ·

If one compares the polynomials Q
(0,k,∅,0)
n,132 (x) and Q

(1,k−1,∅,0)
n,132 (x), one observes that they are equal

for k ≥ 1. Thus we make the following conjecture.

Conjecture 1. For all k ≥ 1, we have

Q
(0,k,∅,0)
132 (t, x) = Q

(1,k−1,∅,0)
132 (t, x).

We have verified the conjecture for k = 1, 2, 3 by directly computing the generating functions. That
is, we can prove that
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Q
(0,1,∅,0)
132 (t, x) = Q

(1,0,∅,0)
132 (t, x),

Q
(0,2,∅,0)
132 (t, x) = Q

(1,1,∅,0)
132 (t, x),

Q
(0,3,∅,0)
132 (t, x) = Q

(1,2,∅,0)
132 (t, x).

However, it is not obvious from the corresponding recursions for Q
(0,k,∅,0)
n,132 (x) and Q

(1,k−1,∅,0)
n,132 (x)

that these two polynomials are equal.

Next we consider the generating functions Q
(0,k,∅,ℓ)
132 (t, x) = Q

(0,k,∅,ℓ)
123 (t, x) where k, ℓ > 0.

When n ≤ k + l, there is no element of a σ ∈ Sn(132) that can match MMP(0, k, ∅, ℓ) in σ. Thus

Q
(0,k,∅,ℓ)
n,132 (x) = Cn in such cases. Thus assume that n ≥ k + ℓ + 1 and σ = σ1 . . . σn ∈ Sn(132) is

such that σi = n. Clearly σi can not match MMP(0, k, ∅, ℓ) in σ. We then have 3 cases.

Case 1. i < k.
Clearly no σj in Ai(σ) can not match MMP(0, k, ∅, ℓ) since it cannot have k elements to its
left which are larger than it. A σj ∈ Bi(σ) matches MMP(0, k, ∅, ℓ) in σ if and only if it

matches MMP(0, k − i, ∅, ℓ) in Bi(σ). Thus such permutations contribute
∑k−1

i=1 Ci−1Q
(0,k−i,∅,ℓ)
n−i,132 (x)

to Q
(0,k,∅,ℓ)
n,132 (x).

Case 2. k ≤ i ≤ n− l.
For each peak σj ∈ Ai(σ), there are n−i ≥ ℓ numbers inBi(σ) which are to its right and smaller than
it so that σj matches MMP(0, k, ∅, ℓ) in σ if and only if, in the reduction of Ai(σ), its corresponding
element matches MMP(0, k, ∅, 0). For each peak σj ∈ Bi(σ), there are ≥ k numbers in Ai(σ)∪ {n}
which are to its left and larger than it so that σj matches MMP(0, k, ∅, ℓ) in σ if and only if σj

matches MMP(0, 0, ∅, ℓ) in Bi(σ). Thus such permutations contribute
∑n−ℓ

i=k Q
(0,k,∅,0)
i−1,132 (x)Q

(0,0,∅,ℓ)
n−i,132(x)

to Q
(0,k,∅,ℓ)
n,132 (x).

Case 3. i ≥ n− ℓ+ 1.
For each peak σj ∈ Ai(σ), there are n− i ≥ ℓ numbers in Bi(σ) which are to its right and smaller
than it so that σj matches MMP(0, k, ∅, ℓ) in σ if and only if, in the reduction of Ai(σ), its corre-
sponding element matches MMP(0, k, ∅, 0). Clearly no element of Bi(σ) can match MMP(0, k, ∅, ℓ)
since it cannot have ℓ to its right which are smaller than it. Thus such permutations contribute
∑n

i=n−ℓ+1Q
(0,k,∅,ℓ−(n−i))
i−1,132 (x)Cn−i to Q

(0,k,∅,ℓ)
n,132 (x).

It follows that for n ≥ k + ℓ+ 1,

Q
(0,k,∅,ℓ)
n,132 (x)Q

(0,k,∅,ℓ)
n,132 (x) =

k−1
∑

i=1

Ci−1Q
(0,k−i,∅,ℓ)
n−i,132 (x) +

n−ℓ
∑

i=k

Q
(0,k,∅,0)
i−1,132 (x)Q

(0,0,∅,ℓ)
n−i,132(x) +

n
∑

i=n−ℓ+1

Q
(0,k,∅,ℓ−(n−i))
i−1,132 (x)Cn−i.
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Multiplying both sides of the equation by tn and summing for n ≥ k + ℓ+ 1 gives that

Q
(0,k,∅,ℓ)
132 (t, x)−

k+ℓ
∑

i=0

Cit
i = t

k−1
∑

i=1

Ci−1t
i−1(Q

(0,k−i,∅,ℓ)
132 (t, x) −

k+ℓ−i−1
∑

j=0

Cjt
j)

+t(Q
(0,k,∅,0)
132 (t, x)−

k−2
∑

i=0

Cit
i)(Q

(0,0,∅,ℓ)
132 (t, x)−

ℓ−1
∑

i=0

Cit
i)

+t

ℓ−1
∑

i=0

Cit
i(Q

(0,k,∅,ℓ−i)
132 (t, x)−

k+ℓ−i−2
∑

j=0

Cjt
j).

Note the first term of the last term t
∑ℓ−1

i=0 Cit
i(Q

(0,k,∅,ℓ−i)
132 (t, x)−∑k+ℓ−i−2

j=0 Cjt
j) on the right-hand

side of the equation above is t(Q
(0,k,∅,ℓ)
132 (t, x)−∑k+ℓ−2

j=0 Cjt
j), so we can bring tQ

(0,k,∅,ℓ)
132 (t, x) to the

other side and solve Q
(0,k,∅,ℓ)
132 (t, x) to obtain the following theorem.

Theorem 15. For all k, ℓ > 0,

Q
(0,k,∅,ℓ)
132 (t, x) =

Γk,ℓ(t, x)

1− t
,

Where

Γk,ℓ(t, x) =

k+ℓ
∑

i=0

Cit
i −

k+ℓ−2
∑

i=0

Cit
i+1 + t

k−1
∑

i=1

Ci−1t
i−1(Q

(0,k−i,∅,ℓ)
132 (t, x)−

k+ℓ−i−1
∑

j=0

Cjt
j)

+t(Q
(0,k,∅,0)
132 (t, x)−

k−2
∑

i=0

Cit
i)(Q

(0,0,∅,ℓ)
132 (t, x)−

ℓ−1
∑

i=0

Cit
i)

+t

ℓ−1
∑

i=1

Cit
i(Q

(0,k,∅,ℓ−i)
132 (t, x)−

k+ℓ−i−2
∑

j=0

Cjt
j).

We list the first 10 terms of function Q
(0,k,∅,ℓ)
132 (t, x) for 1 ≤ k ≤ ℓ ≤ 3.

Q
(0,1,∅,1)
132 (t, x) =1 + t+ 2t2 + (4 + x)t3 +

(

7 + 6x+ x2
)

t4 +
(

11 + 20x+ 10x2 + x3
)

t5

+
(

16 + 50x+ 50x2 + 15x3 + x4
)

t6 +
(

22 + 105x + 175x2 + 105x3 + 21x4 + x5
)

t7

+
(

29 + 196x + 490x2 + 490x3 + 196x4 + 28x5 + x6
)

t8

+
(

37 + 336x + 1176x2 + 1764x3 + 1176x4 + 336x5 + 36x6 + x7
)

t9 + · · ·

Q
(0,1,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + (12 + 2x)t4 +

(

25 + 15x+ 2x2
)

t5 +
(

46 + 60x+ 24x2 + 2x3
)

t6

+
(

77 + 175x + 140x2 + 35x3 + 2x4
)

t7

+
(

120 + 420x+ 560x2 + 280x3 + 48x4 + 2x5
)

t8

+
(

177 + 882x+ 1764x2 + 1470x3 + 504x4 + 63x5 + 2x6
)

t9 + · · ·

Q
(0,1,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (37 + 5x)t5 +

(

85 + 42x+ 5x2
)

t6

+
(

172 + 186x + 66x2 + 5x3
)

t7 +
(

315 + 595x + 420x2 + 95x3 + 5x4
)

t8

+
(

534 + 1554x + 1820x2 + 820x3 + 129x4 + 5x5
)

t9 + · · ·
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Q
(0,2,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5 +

(

91 + 37x+ 4x2
)

t6

+
(

192 + 176x + 57x2 + 4x3
)

t7 +
(

365 + 595x + 385x2 + 81x3 + 4x4
)

t8

+
(

639 + 1624x + 1750x2 + 736x3 + 109x4 + 4x5
)

t9 + · · ·

Q
(0,2,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (122 + 10x)t6 +

(

316 + 103x + 10x2
)

t7

+
(

724 + 540x + 156x2 + 10x3
)

t8

+
(

1493 + 1995x+ 1145x2 + 219x3 + 10x4
)

t9 + · · ·

Q
(0,3,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (404 + 25x)t7

+
(

1119 + 286x+ 25x2
)

t8 +
(

2762 + 1649x + 426x2 + 25x3
)

t9 + · · ·

We are now in position to compute the generating functions Q
(a,k,∅,ℓ)
132 (t, x) = Q

(a,k,0,ℓ)
123 (t, x) =

Q
(a,k,∅,ℓ)
123 (t, x) in the case where a, k, ℓ > 0. Again, we shall show that the polynomials Q

(a,k,∅,ℓ)
n,132 (x)

satisfy simple recursions.

When n ≤ a+k+ℓ, there is no element of a σ ∈ Sn(132) that can match MMP(a, k, ∅, ℓ) in σ. Thus

Q
(a,k,∅,ℓ)
n,132 (x) = Cn in such cases. Thus assume that n ≥ a+ k + ℓ+ 1 and σ = σ1 . . . σn ∈ Sn(132)

is such that σi = n. Clearly σi can not match MMP(a, k, ∅, ℓ) in σ. We then have 3 cases.

Case 1. i < k.
Clearly no σj in Ai(σ) can not match MMP(a, k, ∅, ℓ) since it cannot have k elements to its
left which are larger than it. A σj ∈ Bi(σ) matches MMP(a, k, ∅, ℓ) in σ if and only if it

matches MMP(a, k − i, ∅, ℓ) in Bi(σ). Thus such permutations contribute
∑k−1

i=1 Ci−1Q
(a,k−i,∅,ℓ)
n−i,132 (x)

to Q
(a,k,∅,ℓ)
n,132 (x).

Case 2. k ≤ i ≤ n− ℓ.
For each peak σj ∈ Ai(σ), there are n− i ≥ ℓ numbers in Bi(σ) which are to its right and smaller
than it. Moreover, the number n is to its right and is larger than it. Thus σj matches MMP(a, k, ∅, ℓ)
in σ if and only if, in the reduction of Ai(σ), its corresponding element matches MMP(a−1, k, ∅, 0).
For each peak σj ∈ Bi(σ), there are ≥ k numbers in Ai(σ) ∪ {n} which are to its left and larger
than it so that σj matches MMP(a, k, ∅, ℓ) in σ if and only if σj matches MMP(a, 0, ∅, ℓ) in Bi(σ).

Thus such permutations contribute
∑n−ℓ

i=k Q
(a−1,k,∅,0)
i−1,132 (x)Q

(a,0,∅,ℓ)
n−i,132(x) to Q

(a,k,∅,ℓ)
n,132 (x).

Case 3. i ≥ n− ℓ+ 1.
For each peak σj ∈ Ai(σ), there are n− i ≥ ℓ numbers in Bi(σ) which are to its right and smaller
than it and the number n is to its right. Thus σj matches MMP(a, k, ∅, ℓ) in σ if and only if, in the
reduction of Ai(σ), its corresponding element matches MMP(a − 1, k, ∅, 0). Clearly no element of
Bi(σ) can match MMP(0, k, ∅, ℓ) since it cannot have ℓ to its right which are smaller than it. Thus

such permutations contribute
∑n

i=n−ℓ+1Q
(a−1,k,∅,ℓ−(n−i))
i−1,132 (x)Cn−i to Q

(a,k,∅,ℓ)
n,132 (x).
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It follows that for n ≥ a+ k + ℓ+ 1,

Q
(a,k,∅,ℓ)
n,132 (x) =

k−1
∑

i=1

Ci−1Q
(a,k−i,∅,ℓ)
n−i,132 (x) +

n−ℓ
∑

i=k

Q
(a−1,k,∅,0)
i−1,132 (x)Q

(a,0,∅,ℓ)
n−i,132(x) +

n
∑

i=n−ℓ+1

Q
(a−1,k,∅,ℓ−(n−i))
i−1,132 (x)Cn−i.

Multiplying both sides of the equation by tn and summing for n ≥ 1 gives that

Q
(a,k,∅,ℓ)
132 (t, x) =

k+ℓ−1
∑

i=0

Cit
i + t

k−1
∑

i=1

Ci−1t
i−1(Q

(a,k−i,∅,ℓ)
132 (t, x)−

k+ℓ−i−1
∑

j=0

Cjt
j)

+t(Q
(a−1,k,∅,0)
132 (t, x)−

k−2
∑

i=0

Cit
i)(Q

(a,0,∅,ℓ)
132 (t, x)−

ℓ−1
∑

i=0

Cit
i)

+t

ℓ−1
∑

i=0

Cit
i(Q

(a−1,k,∅,ℓ−i)
132 (t, x)−

k+ℓ−i−2
∑

j=0

Cjt
j),

and we have the following theorem.

Theorem 16. For all a, k, ℓ > 0,

Q
(a,k,∅,ℓ)
132 (t, x) =

k+ℓ−1
∑

i=0

Cit
i + t

k−1
∑

i=1

Ci−1t
i−1(Q

(a,k−i,∅,ℓ)
132 (t, x)−

k+ℓ−i−1
∑

j=0

Cjt
j)

+t(Q
(a−1,k,∅,0)
132 (t, x)−

k−2
∑

i=0

Cit
i)(Q

(a,0,∅,ℓ)
132 (t, x)−

ℓ−1
∑

i=0

Cit
i)

+t

ℓ−1
∑

i=0

Cit
i(Q

(a−1,k,∅,ℓ−i)
132 (t, x)−

k+ℓ−i−2
∑

j=0

Cjt
j),

We list the first few terms of function Q
(a,k,∅,ℓ)
132 (t, x) for 1 ≤ a ≤ 3 and 1 ≤ k ≤ ℓ ≤ 3.

Q
(1,1,∅,1)
132 (t, x) =1 + t+ 2t2 + 5t3 + (10 + 4x)t4 +

(

17 + 21x+ 4x2
)

t5 +
(

26 + 65x+ 37x2 + 4x3
)

t6

+
(

37 + 155x + 176x2 + 57x3 + 4x4
)

t7

+
(

50 + 315x + 595x2 + 385x3 + 81x4 + 4x5
)

t8

+
(

65 + 574x + 1624x2 + 1750x3 + 736x4 + 109x5 + 4x6
)

t9 + · · ·

Q
(1,1,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (32 + 10x)t5 +

(

62 + 60x+ 10x2
)

t6

+
(

107 + 209x + 103x2 + 10x3
)

t7 +
(

170 + 554x + 540x2 + 156x3 + 10x4
)

t8

+
(

254 + 1239x + 1995x2 + 1145x3 + 219x4 + 10x5
)

t9 + · · ·
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Q
(1,1,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (104 + 28x)t6 +

(

219 + 182x + 28x2
)

t7

+
(

410 + 684x + 308x2 + 28x3
)

t8

+
(

704 + 1948x + 1720x2 + 462x3 + 28x4
)

t9 + · · ·

Q
(1,2,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (107 + 25x)t6 +

(

233 + 171x + 25x2
)

t7

+
(

450 + 669x + 286x2 + 25x3
)

t8

+
(

794 + 1968x + 1649x2 + 426x3 + 25x4
)

t9 + · · ·

Q
(1,2,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (359 + 70x)t7 +

(

842 + 518x+ 70x2
)

t8

+
(

1754 + 2184x + 854x2 + 70x3
)

t9

+
(

3332 + 6896x + 5238x2 + 1260x3 + 70x4
)

t10 + · · ·

Q
(1,3,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + (1234 + 196x)t8

+
(

3098 + 1568x + 196x2
)

t9 +
(

6932 + 7120x + 2548x2 + 196x3
)

t10

+
(

14137 + 24117x + 16612x2 + 3724x3 + 196x4
)

t11 + · · ·

Q
(2,1,∅,1)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (33 + 9x)t5 +

(

71 + 52x+ 9x2
)

t6

+
(

146 + 189x + 85x2 + 9x3
)

t7 +
(

294 + 557x + 443x2 + 127x3 + 9x4
)

t8

+
(

587 + 1463x + 1722x2 + 903x3 + 178x4 + 9x5
)

t9 + · · ·

Q
(2,1,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (105 + 27x)t6 +

(

235 + 167x + 27x2
)

t7

+
(

494 + 637x + 272x2 + 27x3
)

t8

+
(

1004 + 1938x+ 1489x2 + 404x3 + 27x4
)

t9 + · · ·

Q
(2,1,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (345 + 84x)t7 +

(

800 + 546x+ 84x2
)

t8

+
(

1724 + 2168x + 886x2 + 84x3
)

t9

+
(

3557 + 6803x + 5042x2 + 1310x3 + 84x4
)

t10 + · · ·

Q
(2,2,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (348 + 81x)t7 +

(

811 + 538x+ 81x2
)

t8

+
(

1747 + 2163x + 871x2 + 81x3
)

t9

+
(

3587 + 6826x + 5017x2 + 1285x3 + 81x4
)

t10 + · · ·

Q
(2,2,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + (1178 + 252x)t8

+
(

2848 + 1762x + 252x2
)

t9 +
(

6311 + 7395x + 2838x2 + 252x3
)

t10

+
(

13201 + 24156x + 17011x2 + 4166x3 + 252x4
)

t11 + · · ·
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Q
(2,3,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + 1430t8 + (4078 + 784x)t9

+
(

10236 + 5776x + 784x2
)

t10 +
(

23405 + 25349x + 9248x2 + 784x3
)

t11

+
(

50086 + 85921x + 57717x2 + 13504x3 + 784x4
)

t12 + · · ·

Q
(3,1,∅,1)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (116 + 16x)t6 +

(

308 + 105x+ 16x2
)

t7

+
(

807 + 446x+ 161x2 + 16x3
)

t8 +
(

2108 + 1586x + 919x2 + 233x3 + 16x4
)

t9

+
(

5507 + 5169x + 4029x2 + 1754x3 + 321x4 + 16x5
)

t10 + · · ·

Q
(3,1,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (373 + 56x)t7 +

(

998 + 376x+ 56x2
)

t8

+
(

2615 + 1609x + 582x2 + 56x3
)

t9

+
(

6813 + 5701x + 3382x2 + 844x3 + 56x4
)

t10 + · · ·

Q
(3,1,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + (1238 + 192x)t8

+
(

3347 + 1323x + 192x2
)

t9 +
(

8798 + 5751x + 2055x2 + 192x3
)

t10

+
(

22909 + 20509x + 12197x2 + 2979x3 + 192x4
)

t11 + · · ·

Q
(3,2,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + (1234 + 196x)t8

+
(

3314 + 1352x + 196x2
)

t9 +
(

8643 + 5849x + 2108x2 + 196x3
)

t10

+
(

22345 + 20688x + 12497x2 + 3060x3 + 196x4
)

t11 + · · ·

Q
(3,2,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + 1430t8 + (4190 + 672x)t9

+
(

11354 + 4770x + 672x2
)

t10 +
(

29639 + 21023x + 7452x2 + 672x3
)

t11

+
(

76326 + 75014x + 45194x2 + 10806x3 + 672x4
)

t12 + · · ·

Q
(3,3,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + 1430t8 + 4862t9

+ (14492 + 2304x)t10 +
(

39625 + 16857x + 2304x2
)

t11

+
(

103494 + 75853x + 26361x2 + 2304x3
)

t12

+
(

265047 + 273660x + 163720x2 + 38169x3 + 2304x4
)

t13 + · · ·

From the functions list above, we see the coefficient of the biggest power of x, xn−a−k−ℓ, satisfies

that Q
(a,k,∅,ℓ)
n,132 (x)

∣

∣

xn−a−ℓ =
(a+1)2

(a+k+1)(k+ℓ+1)

(

a+2k
k

)(

a+2ℓ
ℓ

)

as predicted by Theorem 12.

6 Quadrant Mesh Patterns and hills of Sn(132)

In this section, we want to study the generating function Q
(∅,k,∅,ℓ)
132 (t, x) where k, ℓ ≥ 0. Note that

by part (c) of Lemma 3, a σj can match MMP(∅, k, ∅, ℓ) in σ = σ1 . . . σn ∈ Sn(132) if and only if σj
is a peak of σ which is on the 0th. In terms of the Dyck path Φ(σ), this the number of steps DR
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which start and end on the main diagonal which are called hills of the Dyck path [3, 4]. We will
call such σi, the hills of σ. Moreover, if σi = n where i > 1, then there can be no hills in Ai(σ) as
one can see from Figure 10.

First we shall show that Q
(∅,0,∅,0)
n,132 (x) satisfies a simple recursion. We have two cases.

Case 1 σ1 = n.
In this case σ1 matches MMP(∅, 0, ∅, 0) which contributes an x and a σj where j > 1 matches
MMP(∅, 0, ∅, 0) in σ if and only if σj matches MMP(∅, 0, ∅, 0) in B1(σ). Thus such permutations

contribute xQ
(∅,0,∅,0)
n−1,132(x) to Q

(∅,0,∅,0)
n,132 (x).

Case 2. σi = n where i ≥ 2.
In this case no element of Ai(σ) ∪ {n} matches MMP(∅, 0, ∅, 0) and a σj in Bi(σ) matches
MMP(∅, 0, ∅, 0) in σ if and only if σj matches MMP(∅, 0, ∅, 0) in Bi(σ). Thus such permutations

contribute Ci−1Q
(∅,0,∅,0)
n−i,132 (x) to Q

(∅,0,∅,0)
n,132 (x).

It follows that for n ≥ 1,

Q
(∅,0,∅,0)
n,132 (x) = xQ

(∅,0,∅,0)
n−1,132(x) +

n
∑

i=2

Ci−1Q
(∅,0,∅,0)
n−i,132 (x).

Multiplying both sides of the equation by tn and summing for n ≥ 1 gives that

Q
(∅,0,∅,0)
132 (t, x) = 1 + t(C(t) + x− 1)Q

(∅,0,∅,0)
132 (t, x).

Thus,

Q
(∅,0,∅,0)
132 (t, x) =

1

1− t(C(t) + x− 1)
.

Now we calculate Q
(∅,k,∅,ℓ)
132 (t, x) for the case when k > 0 and ℓ ≥ 0. Notice by Lemma 1,

Q
(∅,k,∅,ℓ)
132 (t, x) = Q

(∅,ℓ,∅,k)
132 (t, x). Thus Q

(∅,k,∅,0)
132 (t, x) = Q

(∅,0,∅,k)
132 (t, x).

First we shall show that Q
(∅,k,∅,ℓ)
n,132 (x) satisfies a simple recursion. Clearly, if n ≤ k + ℓ, no element

in a σ ∈ Sn(132) can match MMP(∅, k, ∅, ℓ). If n ≥ k + ℓ+ 1, then we have two cases.

Case 1 σi = n where i < k.
In this case, even in the case where i = 1, σi = n cannot match MMP(∅, k, ∅, ℓ). Moreover if
i > 1, then no element in Ai(σ) can match MMP(∅, k, ∅, ℓ). For any σj in Bi(σ), all the elements
in Ai(σ) ∪ {n} are to its left and are greater than or equal to σj . Thus, a σj in Bi(σ) matches
MMP(∅, 0, ∅, 0) in σ if and only if σj matches MMP(∅, k− i, ∅, ℓ) in B1(σ). Thus such permutations

contribute Ci−1Q
(∅,k−i,∅,ℓ)
n−1,132 (x) to Q

(∅,k,∅,k)
n,132 (x).

Case 2. σi = n where i ≥ k.
In this case no element of Ai(σ)∪{n} matches MMP(∅, k, ∅, ℓ). For any σj in Bi(σ), all the elements
in Ai(σ)∪{n} are to its left and are greater than or equal to σj so that such a σj automatically has k
elements to its left which are larger than σj . Thus, a σj in Bi(σ) matches MMP(∅, k, ∅, ℓ) in σ if and

only if σj matches MMP(∅, 0, ∅, ℓ) in Bi(σ). Thus such permutations contribute Ci−1Q
(∅,0,∅,ℓ)
n−i,132(x)
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to Q
(∅,0,∅,0)
n,132 (x).

It follows that for n ≥ k + ℓ+ 1,

Q
(∅,k,∅,ℓ)
n,132 (x) =

k−1
∑

i=1

Ci−1Q
(∅,k−i,∅,ℓ)
n−i,132 (x) +

n
∑

i=k

Ci−1Q
(∅,0,∅,ℓ)
n−i,132(x).

Multiplying both sides of the equation by tn and summing for n ≥ 1 gives that

Q
(∅,k,∅,ℓ)
132 (t, x) = 1 + t

k−1
∑

i=1

Ci−1t
i−1Q

(∅,k−i,∅,ℓ)
132 (t, x) + t(C(t)−

k−2
∑

i=0

Cit
i)Q

(∅,0,∅,ℓ)
132 (t, x).

Thus, we have the following theorem.

Theorem 17.

Q
(∅,0,∅,0)
132 (t, x) =

1

1− t(C(t) + x− 1)
.

For k > 0,

Q
(∅,0,∅,k)
132 (t, x) = Q

(∅,k,∅,0)
132 (t, x),

and

Q
(∅,k,∅,0)
132 (t, x) = 1 + t

k−1
∑

i=1

Ci−1t
i−1Q

(∅,k−i,∅,0)
132 (t, x) + t(C(t)−

k−2
∑

i=0

Cit
i)Q

(∅,0,∅,0)
132 (t, x).

For k, ℓ > 0,

Q
(∅,k,∅,ℓ)
132 (t, x) = 1 + t

k−1
∑

i=1

Ci−1t
i−1Q

(∅,k−i,∅,ℓ)
132 (t, x) + t(C(t)−

k−2
∑

i=0

Cit
i)Q

(∅,0,∅,ℓ)
132 (t, x).

By Corollary 4, we know that the highest power of x that appears in Q
(∅,k,∅,ℓ)
n,123 (x) is xn−k−ℓ and

that
Q

(∅,k,∅,ℓ)
n,123 (x)

∣

∣

xn−k−ℓ = CkCℓ.

We start out by listing the first 10 terms in Q
(∅,k,∅,0)
132 (t, x) for k = 0, . . . , 5.

Q
(∅,0,∅,0)
132 (t, x) =1 + xt+

(

1 + x2
)

t2 +
(

2 + 2x+ x3
)

t3 +
(

6 + 4x+ 3x2 + x4
)

t4

+
(

18 + 13x+ 6x2 + 4x3 + x5
)

t5 +
(

57 + 40x+ 21x2 + 8x3 + 5x4 + x6
)

t6

+
(

186 + 130x+ 66x2 + 30x3 + 10x4 + 6x5 + x7
)

t7

+
(

622 + 432x+ 220x2 + 96x3 + 40x4 + 12x5 + 7x6 + x8
)

t8

+
(

2120 + 1466x + 744x2 + 328x3 + 130x4 + 51x5 + 14x6 + 8x7 + x9
)

t9 + · · ·
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Q
(∅,1,∅,0)
132 (t, x) =1 + t+ (1 + x)t2 +

(

3 + x+ x2
)

t3 +
(

8 + 4x+ x2 + x3
)

t4

+
(

24 + 11x+ 5x2 + x3 + x4
)

t5 +
(

75 + 35x + 14x2 + 6x3 + x4 + x5
)

t6

+
(

243 + 113x + 47x2 + 17x3 + 7x4 + x5 + x6
)

t7

+
(

808 + 376x + 156x2 + 60x3 + 20x4 + 8x5 + x6 + x7
)

t8+
(

2742 + 1276x + 532x2 + 204x3 + 74x4 + 23x5 + 9x6 + x7 + x8
)

t9 + · · ·

Q
(∅,2,∅,0)
132 (t, x) =1 + t+ 2t2 + (3 + 2x)t3 +

(

9 + 3x+ 2x2
)

t4 +
(

26 + 11x+ 3x2 + 2x3
)

t5

+
(

81 + 33x+ 13x2 + 3x3 + 2x4
)

t6 +
(

261 + 108x + 40x2 + 15x3 + 3x4 + 2x5
)

t7

+
(

865 + 359x + 137x2 + 47x3 + 17x4 + 3x5 + 2x6
)

t8

+
(

2928 + 1220x + 468x2 + 168x3 + 54x4 + 19x5 + 3x6 + 2x7
)

t9 + · · ·

Q
(∅,3,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + (9 + 5x)t4 +

(

28 + 9x+ 5x2
)

t5+
(

85 + 33x+ 9x2 + 5x3
)

t6 +
(

273 + 104x + 38x2 + 9x3 + 5x4
)

t7

+
(

901 + 349x+ 123x2 + 43x3 + 9x4 + 5x5
)

t8

+
(

3042 + 1186x + 430x2 + 142x3 + 48x4 + 9x5 + 5x6
)

t9 + · · ·

Q
(∅,4,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (28 + 14x)t5

+
(

90 + 28x+ 14x2
)

t6 +
(

283 + 104x+ 28x2 + 14x3
)

t7

+
(

931 + 339x + 118x2 + 28x3 + 14x4
)

t8

+
(

3132 + 1161x + 395x2 + 132x3 + 28x4 + 14x5
)

t9 + · · ·

Q
(∅,5,∅,0)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (90 + 42x)t6

+
(

297 + 90x+ 42x2
)

t7 +
(

959 + 339x + 90x2 + 42x3
)

t8

+
(

3216 + 1133x + 381x2 + 90x3 + 42x4
)

t9 + . . .

It is known that the sequence {Q(∅,0,∅,0)
n,132 (x)

∣

∣

x0}n≥1 is the Fine numbers which is sequence A000957

in the On-line Encyclopedia of Integer Sequences(OEIS) [18]. Similarly, {Q(∅,0,∅,0)
n,132 (x)

∣

∣

x1}n≥1 is

sequence A065601 in the OEIS. However the sequence {Q(∅,0,∅,0)
n,132 (x)

∣

∣x2}n≥2 which starts out
1, 0, 3, 6, 21, 66, 220, 744, . . . does not appear in the OEIS. This counts the number of Dyck paths
with exactly 2 hills. Nevertheless, it easy to compute the generating function for the sequence by

taking the second derivative of Q
(∅,0,∅,0)
132 (t, x) with respect to x, dividing it by 2, and setting x = 0.

In this case, the generating function is 16t2

2(1+
√
1−4t+2t)3

.
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The sequence {Q(∅,1,∅,0)
n,132 (x)

∣

∣x0}n≥1 which starts 1, 1, 3, 8, 24, 75, 243, 808, . . . is sequence A000958 in
the OEIS and counts the number of ordered rooted trees with n edges have root of odd degree.

None of sequences {Q(∅,k,∅,0)
n,132 (x)

∣

∣x0}n≥1 where 2 ≤ k ≤ 5 appear in the OEIS. None of sequences

{Q(∅,k,∅,0)
n,132 (x)

∣

∣x1}n≥1 where 1 ≤ k ≤ 5 appear in the OEIS. In both cases, we can easily compute
the generating functions of these sequences.

We list the first 10 terms of function Q
(∅,k,∅,ℓ)
132 (t, x) for 1 ≤ k ≤ ℓ ≤ 3.

Q
(∅,1,∅,1)
132 (t, x) =1 + t+ 2t2 + (4 + x)t3 +

(

11 + 2x+ x2
)

t4 +
(

32 + 7x+ 2x2 + x3
)

t5

+
(

99 + 22x+ 8x2 + 2x3 + x4
)

t6 +
(

318 + 73x+ 26x2 + 9x3 + 2x4 + x5
)

t7

+
(

1051 + 246x + 90x2 + 30x3 + 10x4 + 2x5 + x6
)

t8

+
(

3550 + 844x + 312x2 + 108x3 + 34x4 + 11x5 + 2x6 + x7
)

t9 + · · ·

Q
(∅,1,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + (12 + 2x)t4 +

(

35 + 5x+ 2x2
)

t5 +
(

107 + 18x+ 5x2 + 2x3
)

t6

+
(

342 + 60x+ 20x2 + 5x3 + 2x4
)

t7 +
(

1126 + 206x+ 69x2 + 22x3 + 5x4 + 2x5
)

t8

+
(

3793 + 714x + 246x2 + 78x3 + 24x4 + 5x5 + 2x6
)

t9 + · · ·

Q
(∅,1,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (37 + 5x)t5 +

(

113 + 14x+ 5x2
)

t6

+
(

358 + 52x+ 14x2 + 5x3
)

t7 +
(

1174 + 180x+ 57x2 + 14x3 + 5x4
)

t8

+
(

3943 + 634x + 204x2 + 62x3 + 14x4 + 5x5
)

t9 + · · ·

Q
(∅,2,∅,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5 +

(

116 + 12x+ 4x2
)

t6

+
(

368 + 45x+ 12x2 + 4x3
)

t7 +
(

1207 + 158x+ 49x2 + 12x3 + 4x4
)

t8

+
(

4054 + 561x + 178x2 + 53x3 + 12x4 + 4x5
)

t9 + · · ·

Q
(∅,2,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (122 + 10x)t6 +

(

386 + 33x+ 10x2
)

t7

+
(

1259 + 128x + 33x2 + 10x3
)

t8 +
(

4216 + 465x + 138x2 + 33x3 + 10x4
)

t9 + · · ·

Q
(∅,3,∅,3)
132 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (404 + 25x)t7

+
(

1315 + 90x+ 25x2
)

t8 +
(

4386 + 361x + 90x2 + 25x3
)

t9 + · · ·

From the functions list above, we see the coefficient of the biggest power of x satisfies that

Q
(∅,k,∅,ℓ)
n,123 (x)

∣

∣

xn−k−ℓ = CkCℓ as predicated by Corollary 4.

7 The functions Q
(0,k,0,0)
123 (t, x) and Q

(0,k,0,ℓ)
123 (t, x)

In this section, we will discuss how to compute the generating functions Q
(0,k,0,0)
123 (t, x) and

Q
(0,k,0,ℓ)
123 (t, x). These generating functions cannot be reduced to Q

(a,b,c,d)
132 (t, x) so that we will use the
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Ψ map to develop recursions for such functions. Since we are considering quadrant mesh patterns
where neither the first of third quadrants need to be empty, this means both peaks and non-peaks
can match such patterns.

We start by considering generating functions of the form Q
(0,k,0,0)
123 (t, x). In this case, it will be

useful to separately track peaks and non-peaks. Thus if σ = σ1 . . . σn ∈ Sn(123), then we will
say that σi matches the pattern MMP(0,

(

k1
k2

)

, 0, 0) if σi is peak of σ and it matches the pattern
MMP(0, k1, 0, 0) or σi is a non-peak of σ and it matches the pattern MMP(0, k2, 0, 0). Then we
define

Q
(0,(k1k2),0,0)
123 (t, x0, x1) =

∞
∑

n=0

tn
∑

σ∈Sn(123)

x
# MMP(0,k1,0,0)-mch of peaks
0 x

# MMP(0,k2,0,0)-mch of non-peaks
1

and

Q
(0,(k1k2),0,0)
n,123 (x0, x1) =

∑

σ∈Sn(123)

x
# MMP(0,k1,0,0)-mch of peaks
0 x

# MMP(0,k2,0,0)-mch of non-peaks
1 .

Clearly, Q
(0,k,0,0)
123 (t, x) = Q

(0,(kk),0,0)
123 (t, x, x).

First we will compute Q
(0,(00),0,0)
123 (t, x0, x1). When k1 = k2 = 0, in the generating function

Q
(0,(00),0,0)
123 (t, x0, x1), the variable x0 is used to keep track of the number of peaks in σ and the

variable x1 is used to keep track of the number of non-peaks of σ. Since the number of peaks

and non-peaks in any σ ∈ Sn(123) add up to n, we can write Q
(0,(00),0,0)
123 (t, x0, x1) in terms of

Q
(0,0,∅,0)
123 (t, x) which track the number of peaks. That is,

Q
(0,(00),0,0)
123 (t, x0, x1) = Q

(0,0,∅,0)
123 (tx1,

x0

x1
)

=
1− tx0 + tx1 −

√

(1− tx0 + tx1)2 − 4tx1
2tx1

.

When k1 and k2 are not both nonzero, we need to analyze the difference between Ψ−1(P ) where P
a Dyck path in Dn and Ψ−1 on the lift of the path P , lift(P ), which is the Dyck path DPR ∈ Dn+1.
The lifting operation is pictured in Figure 11. It is easy to see that the peaks of P and lift(P ) are
labeled with the same numbers under Ψ−1. Since under Ψ−1 we label the rows and column and
that do not contain peaks from left to right with the numbers of non-peaks in decreasing order, it
is easy to see that n+1 will be in the column of the first non-peak and that all the remaining shift
over one to the next column that does not contain a peak. This is illustrated in Figure 11.

The change in the labeling of the non-peaks is as follows. It is easy to see from Figure 11 in the
red cells in the case where Ψ−1(P ) = σ = (8, 6, 9, 7, 4, 3, 2, 5, 1) ∈ S9(123) and Ψ−1(lift(P )) = σ′ =
(8, 6, 10, 9, 4, 3, 2, 7, 1, 5). It is easy to see that the action of lift does not change the number of
elements in the 2nd quadrant of the peak numbers; but increases the number of elements in the 2nd

quadrant of the non-peak numbers by 1 since the number n+ 1 is in the 2nd quadrant of the non-
peaks. In addition, the action of lift creates a new non-peak, namely, n+ 1. For our convenience,
we write lift(σ) for the permutation Ψ−1(lift(P )).

With the lift action, we can apply the Dyck path recursion for permutations in Sn(123). For any
permutation σ ∈ S123, we suppose that the first return of the Dyck path Ψ(σ) of σ is located after
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Figure 11: σ = (8, 6, 9, 7, 4, 3, 2, 5, 1) and lift(σ)

the ith column. Then we can partition σ according to the structure Ai(σ) before the return on a
height 1 trapezoid and a Dyck path structure Bi(σ) after the return as illustrated in Figure 12(a).
Note that if σj in B(σi), then σj is peak of σ if and only if it is peak of Bi(σ).

Ai

i

Bi

1

1
n

n

(a)

lift(Ai(σ))

i

Bi(σ)

1

1
n

n

(b)

Figure 12: Dyck path recursion of Sn(123)

We first calculate the function Q
(0,(k10 ),0,0)
123 (t, x0, x1) for k1 > 0. We can develop simple recur-

sions for Q
(0,(k10 ),0,0)
n,123 (x0, x1). Note that when n ≤ k1, then no peak in a σ ∈ Sn(123) can match

MMP(0, k1, 0, 0) so that Q
(0,(k10 ),0,0)
n,123 (x0, x1) = Q

(0,(00),0,0)
n,123 (1, x1).

Next assume that n ≥ k1 + 1. We are tracking the number of peaks matching MMP(0, k1, 0, 0)

by x0 and tracking the number of non-peaks by x1 in the polynomial Q
(0,(k10 ),0,0)
n,123 (x0, x1). We will

classify the permutations σ ∈ Sn(123) according to the column i of the first return in Ψ(σ). If the
1st return of Ψ(σ) occurs in ith column of σ, then we shall partition σ into lift(Ai(σ)) and Bi(σ) as
pictured in Figure 12. We then have three cases.

Case 1. i = 1.
In this case σ1 = n is peak and the path Ψ(σ) starts out DR . . .. σ1 does not match MMP(0, k1, 0, 0)
in σ in this case. For any σj in B1(σ), n is always an element which is to the left of σj which is larger
than σj so that σj matches MMP(0, k1, 0, 0) in σ if and only if σj matches MMP(0, k1 − 1, 0, 0) in

B1(σ). Thus such permutations contribute Q
(0,(k1−1

0 ),0,0)
n−1,123 (x0, x1) to Q

(0,(k10 ),0,0)
n,123 (x0, x1).
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Case 2. 1 < i ≤ k1.

In this case, the only thing that has changed with respect to matches of MMP(0, k1, 0, 0) for peaks
and the matches of MMP(0, 0, 0, 0) for non-peaks in moving to lift(Ai(σ)) from Ai(σ) is that we have
one more non-peak. Clearly, no peak of σ that is in lift(Ai(σ)) can match MMP(0, k1, 0, 0) because
it will automatically have less than k1 elements to left which larger than it. Moreover, for any σj in
Bi(σ), the elements in the lift(Ai(σ)) are elements to the left of σj which is larger than σj so that a
peak σj of σ matches MMP(0, k1, 0, 0) in σ if and only if σj matches MMP(0, k1 − i, 0, 0) in Bi(σ).

Thus such permutations contribute x1Q
(0,(00),0,0)
i−1,123 (1, x1)Q

(0,(k1−i

0 ),0,0)
n−i,123 (x0, x1) to Q

(0,(k10 ),0,0)
n,123 (x0, x1).

Case 3. i > k1.
Again, the only thing that has changed with respect to matches of MMP(0, k1, 0, 0) for peaks and
the matches of MMP(0, 0, 0, 0) for non-peaks in moving to lift(Ai(σ)) from Ai(σ) is that we have
one more non-peak. A peak σj of σ that is in Bi(σ) automatically matches MMP(0, k1, 0, 0) since
all the elements in lift(Ai(σ)) are to the left of σj and greater than σj . Thus such permutations

contribute x1Q
(0,(k10 ),0,0)
i−1,123 (x0, x1)Q

(0,(k1−i

0 ),0,0)
n−i,123 (x0, x1) to Q

(0,( 0
k2
),0,0)

n,123 (x0, x1).

It follows that for n ≥ k1 + 1,

Q
(0,(k10 ),0,0)
n,123 (x0, x1) = Q

(0,(k1−1
0 ),0,0)

n−1,123 (x0, x1) + x1

k1
∑

i=2

Q
(0,(00),0,0)
i−1,123 (1, x1)Q

(0,(k1−i
0 ),0,0)

n−i,123 (x0, x1)

+x1

n
∑

i=k1+1

Q
(0,(k10 ),0,0)
i−1,123 (x0, x1)Q

(0,(00),0,0)
n−i,123 (x0, x1).

Multiplying both sides of the equation by tn and summing for n ≥ k1 + 1 gives that

Q
(0,(k10 ),0,0)
123 (t, x0, x1)−

k1
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1) =

t(Q
(0,(k1−1

0 ),0,0)
123 (t, x0, x1)−

k1−1
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1)) +

tx1

k1
∑

i=2

ti−1Q
(0,(00),0,0)
i−1,123 (1, x1)(Q

(0,(k1−i
0 ),0,0)

123 (t, x0, x1)−
k1−i
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1)) +

tx1Q
(0,(00),0,0)
123 (t, x0, x1)(Q

(0,(k10 ),0,0)
123 (t, x0, x1)−

k1−1
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1))).

Simplifying the equation gives

Q
(0,(k10 ),0,0)
123 (t, x0, x1) =

∆k1(x0, x1, t)

1− tx1Q
(0,(00),0,0)
123 (t, x0, x1)
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where

∆k1(x0, x1, t) = Kk1(x1) + tQ
(0,(k1−1

0 ),0,0)
123 (t, x0, x1) +

tx1

k1
∑

i=2

ti−1Q
(0,(00),0,0)
i−1,123 (1, x1)Q

(0,(k1−i
0 ),0,0)

123 (t, x0, x1)−

tx1Q
(0,(00),0,0)
123 (t, x0, x1)(

k1−1
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1)))

and

Kk1(x1) =

k1
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1)− t

k1−1
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1)−

tx1

k1
∑

i=2

ti−1Q
(0,(00),0,0)
i−1,123 (1, x1)(

k1−i
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1)).

However, it is easy to see using our recursions for Q
(0,(k10 ),0,0)
n,123 (x0, x1) that

0 =

k1
∑

j=1

tjQ
(0,(00),0,0)
j,123 (1, x1)− t

k1−1
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1)−

tx1

k1
∑

i=2

ti−1Q
(0,(00),0,0)
i−1,123 (1, x1)(

k1−i
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1))

so that

Q
(0,(k10 ),0,0)
123 (t, x0, x1) =

1

1− tx1Q
(0,(00),0,0)
123 (t, x0, x1)

(

1 + t(Q
(0,(k1−1

0 ),0,0)
123 (t, x0, x1)+

tx1

k1
∑

i=2

ti−1Q
(0,(00),0,0)
i−1,123 (1, x1)Q

(0,(k1−i
0 ),0,0)

123 (t, x0, x1)−

tx1Q
(0,(00),0,0)
123 (t, x0, x1)(

k1−1
∑

j=0

tjQ
(0,(00),0,0)
j,123 (1, x1)))

)

Next we will calculate the function Q
(0,( 0

k2
),0,0)

123 (t, x0, x1) for k2 > 0. In this case, we tracking the
number of non-peaks matching MMP(0, k2, 0, 0) by x1 and tracking the number of peaks by x0. We
will classify the permutations σ ∈ Sn(123) according to the column i of the first return in Ψ(σ).
If the 1st return of Ψ(σ) occurs in ith column of σ, then we shall partition σ into lift(Ai(σ)) and
Bi(σ) as pictured in Figure 12. We then have three cases.

Case 1. i = 1.
In this case σ1 = n is peak and the path Ψ(σ) starts out DR . . .. σ1. For any σj in B1(σ), n is always
an element which is to the left of σj which is larger than σj so that σj matches MMP(0, k2, 0, 0)
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in σ if and only if σj matches MMP(0, k2 − 1, 0, 0) in B1(σ). Thus such permutations contribute

x0Q
(0,( 0

k2−1),0,0)
n−1,123 (x0, x1) to Q

(0,( 0
k2
),0,0)

n,123 (x0, x1).

Case 2. 1 < i ≤ k2
In this case, the only thing that has changed with respect to matches of MMP(0, 0, 0, 0) for peaks
and the matches of MMP(0, k2, 0, 0) for non-peaks in moving to lift(Ai(σ)) from Ai(σ) is that we
have one more non-peak which is in the first row. This new non-peak will be to the left of and larger
than any non-peak in σ. None of the non-peaks in lift(Ai(σ)) match MMP(0, k2, 0, 0) in σ since no
element in lift(Ai(σ)) has k2 elements to its left. For any σj in Bi(σ), all the elements in lift(Ai(σ))
are elements to the left of and larger than σj so that a non-peak σj of σ matches MMP(0, k2, 0, ℓ)
in σ if and only if σj matches MMP(0, k2 − i, 0, ℓ) in Bi(σ). Thus such permutations contribute

Q
(0,(00),0,0)
i−1,123 (x0, 1)Q

(0,( 0
k2−i),0,0)

n−i,123 (x0, x1) to Q
(0,( 0

k2
),0,0)

n,123 (x0, x1).

Case 3. i > k2.
Again, the only thing that has changed with respect to matches of MMP(0, 0, 0, 0) for peaks
and the matches of MMP(0, k2, 0, 0) for non-peaks in moving to lift(Ai(σ)) from Ai(σ) is that
we have one more non-peak which is in the first row. This new non-peak will be to the left of
and larger than any non-peak in σ. For any remaining non-peak σj in lift(Ai(σ)), it will match
MMP(0, k2, 0, 0) in σ if and only if its corresponding non-peak matches MMP(0, k2 − 1, 0, 0) in
Ai(σ). A non-peak σj of σ that is in Bi(σ) automatically matches MMP(0, k2, 0, 0) since all the
elements in lift(Ai(σ)) are to the left of σj and greater than σj. Thus such permutations contribute

Q
(0,( 0

k2−1),0,0)
i−1,123 (x0, x1)Q

(0,(00),0,0)
n−i,123 (x0, x1) to Q

(0,( 0
k2
),0,0)

n,123 (x0, x1)..

It follows that for n ≥ k2 + 1,

Q
(0,( 0

k2
),0,0)

n,123 (x0, x1) = x0Q
(0,( 0

k2−1),0,0)
n−1,123 (x0, x1) +

k2−1
∑

i=2

Q
(0,(00),0,0)
i−1,123 (x0, 1)Q

(0,( 0
k2−i),0,0)

n−i,123 (x0, x1)

+

n
∑

i=k2

Q
(0,( 0

k2−1),0,0)
i−1,123 (x0, x1)Q

(0,(00),0,0)
n−i,123 (x0, x1).

From this recursion, one can compute in essentially the same way that we computed

Q
(0,(k10 ),0,0)
123 (t, x0, x1) that

Q
(0,( 0

k2
),0,0)

123 (t, x0, x1) = 1 + tx0Q
(0,( 0

k2−1),0,0)
123 (t, x0, x1)

+t

k2−1
∑

i=2

ti−1Q
(0,(00),0,0)
i−1,123 (x0, 1)Q

(0,( 0
k2−i),0,0)

123 (t, x0, x1)

+tQ
(0,(00),0,0)
123 (t, x0, x1)(Q

(0,( 0
k2−1),0,0)

123 (t, x0, x1)−
k2−2
∑

i=0

tiQ
(0,(00),0,0)
i,123 (x0, 1)).

Next we will show that the polynomials Q
(0,(k1k2),0,0)
n,123 (x0, x1) satisfy a simple recursion for any

k1, k2 > 0 that involve the polynomials Q
(0,(a0),0,0)
n,123 (x0, x1) and Q

(0,(0b),0,0)
n,123 (x0, x1). We first con-
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sider the case when k1 ≥ k2 ≥ 1. We will classify the permutations σ ∈ Sn(123) according to the
column i of the first return in Ψ(σ). If the 1st return of Ψ(σ) occurs in ith column of σ, then we
shall partition σ into lift(Ai(σ)) and Bi(σ) as pictured in Figure 12. We then have two cases.

Case 1. i < k1.
In this case no peak in lift(Ai(σ)) can match MMP(0, k1, 0, 0). Thus in lift(Ai(σ)), we need only
track the number of non-peaks which match MMP(0, k2, 0, 0). The new non-peak that is created
in going from Ai(σ) to lift(Ai(σ)) has no elements to its left which are greater than it so it cannot
match MMP(0, k2, 0, 0) since k2 ≥ 1. However the new non-peak is larger than and to the left
of any other non-peak in lift(Ai(σ)). Thus for all the remaining non-peaks in lift(Ai(σ)), they
match MMP(0, k2, 0, 0) in σ if and only if they match MMP(0, k2 − 1, 0, 0) in Ai(σ). Since all
the elements of lift(Ai(σ)) are larger than and to the left of all the elements in Bi(σ), a peak in
Bi(σ) matches MMP(0, k1, 0, 0) in σ if and only it matches MMP(0, k1− i, 0, 0) in Bi(σ) and a non-
peak in Bi(σ) matches MMP(0, k2, 0, 0) in σ if and only it matches MMP(0,max(k2 − i, 0), 0, 0) in

Bi(σ). It follows that such permutations contribute Q
(0,( 0

k2−1),0,0)
i−1,123 (1, x1)Q

(0,( k1−i

max(k2−i,0)),0,0)
n−i,123 (x0, x1)

to Q
(0,(k1k2),0,0)
n,123 (x0, x1).

Case 2. i ≥ k1.
By our analysis in Case 1, each non-peak in lift(Ai(σ), except the new non-peak created in going
from Ai(σ) to lift(Ai(σ)), matches MMP(0, k2, 0, 0) in σ if and only if it matches
MMP(0, k2 − 1, 0, 0) in lift(Ai(σ). Each peak in lift(Ai(σ) matches MMP(0, k1, 0, 0) in σ if and
only it matches MMP(0, k1, 0, 0) in Ai(σ). Every peak in Bi(σ) matches MMP(0, k1, 0, 0) in σ and
every non-peak matches MMP(0, k2, 0, 0) in σ. It follows that that such permutations contribute

Q
(0,( k1

k2−1),0,0)
i−1,123 (x0, x1)Q

(0,(00),0,0)
n−i,123 (x0, x1) to Q

(0,(k1k2),0,0)
n,123 (x0, x1).

It follows that

Q
(0,(k1k2),0,0)
n,123 (x0, x1) =

k1−1
∑

i=1

Q
(0,( 0

k2−1),0,0)
i−1,123 (1, x1)Q

(0,( k1−i

max(k2−i,0)),0,0)
n−i,123 (x0, x1)

+

n
∑

i=k1

Q
(0,( k1

k2−1),0,0)
i−1,123 (x0, x1)Q

(0,(00),0,0)
n−i,123 (x0, x1).

Multiplying both sides of the equation by tn and summing for n ≥ 1 gives that

Q
(0,(k1k2),0,0)
123 (t, x0, x1) = 1 + t

k1−1
∑

i=1

Q
(0,( 0

k2−1),0,0)
i−1,123 (1, x1)t

i−1Q
(0,( k1−i

max(k2−i,0)),0,0)
123 (t, x0, x1) +

tQ
(0,(00),0,0)
123 (t, x0, x1)(Q

(0,( k1
k2−1),0,0)

123 (t, x0, x1)−
k1−2
∑

i=0

Q
(0,( 0

k2−1),0,0)
i,123 (x0, x1)t

i).
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Similarly, for k2 > k1 ≥ 1, we can do similar analysis and obtain that

Q
(0,(k1k2),0,0)
123 (t, x0, x1) = 1 + t

k2−1
∑

i=1

Q
(0,(k10 ),0,0)
i−1,123 (x0, 1)t

i−1Q
(0,(max(k1−i,0)

k2−i ),0,0)
123 (t, x0, x1)

+tQ
(0,(00),0,0)
123 (t, x0, x1)(Q

(0,( k1
k2−1),0,0)

123 (t, x0, x1)−
k2−2
∑

i=0

Q
(0,(k10 ),0,0)
i,123 (x0, x1)t

i).

Theorem 18. For all k1, k2 > 0, we have

Q
(0,(k10 ),0,0)
123 (t, x0, x1) =

1

1− tx1Q
(0,(00),0,0)
123 (t, x0, x1)

(

1 + tQ
(0,(k1−1

0 ),0,0)
123 (t, x0, x1)

+tx1

k1−1
∑

i=2

ti−1Q
(0,(00),0,0)
i−1,123 (1, x1)Q

(0,(k1−i

0 ),0,0)
123 (t, x0, x1)

−tx1Q
(0,(00),0,0)
123 (t, x0, x1)

k1−2
∑

i=0

tiQ
(0,(00),0,0)
i−1,123 (1, x1)

)

,

Q
(0,( 0

k2
),0,0)

123 (t, x0, x1) = 1 + tx0Q
(0,( 0

k2−1),0,0)
123 (t, x0, x1)

+t

k2−1
∑

i=2

Q
(0,(00),0,0)
i−1,123 (x0, 1)t

i−1Q
(0,( 0

k2−i),0,0)
123 (t, x0, x1)

+tQ
(0,(00),0,0)
123 (t, x0, x1)(Q

(0,( 0
k2−1),0,0)

123 (t, x0, x1)−
k2−2
∑

i=0

Q
(0,(00),0,0)
i,123 (x0, 1)t

i).

When k1 ≥ k2 ≥ 1,

Q
(0,(k1k2),0,0)
123 (t, x0, x1) = 1 + t

k1−1
∑

i=1

Q
(0,( 0

k2−1),0,0)
i−1,123 (1, x1)t

i−1Q
(0,( k1−i

max(k2−i,0)),0,0)
123 (t, x0, x1)

+tQ
(0,(00),0,0)
123 (t, x0, x1)(Q

(0,( k1
k2−1),0,0)

123 (t, x0, x1)

−
k1−2
∑

i=0

Q
(0,( 0

k2−1),0,0)
i,123 (x0, x1)t

i);

for k2 > k1 ≥ 1,

Q
(0,(k1k2),0,0)
123 (t, x0, x1) = 1 + t

k2−1
∑

i=1

Q
(0,(k10 ),0,0)
i−1,123 (x0, 1)t

i−1Q
(0,(max(k1−i,0)

k2−i ),0,0)
123 (t, x0, x1)

+tQ
(0,(00),0,0)
123 (t, x0, x1)(Q

(0,( k1
k2−1),0,0)

123 (t, x0, x1)−
k2−2
∑

i=0

Q
(0,(k10 ),0,0)
i,123 (x0, x1)t

i).

Finally, we have

Q
(0,k,0,0)
123 (t, x) = Q

(0,(kk),0,0)
123 (t, x, x).

36



We list the first few terms of function Q
(0,k,0,0)
132 (t, x) for k = 1 · · · 5.

Q
(0,1,0,0)
123 (t, x) =1 + t+ (1 + x)t2 +

(

3x+ 2x2
)

t3 +
(

9x2 + 5x3
)

t4 +
(

28x3 + 14x4
)

t5

+
(

90x4 + 42x5
)

t6 +
(

297x5 + 132x6
)

t7

+
(

1001x6 + 429x7
)

t8 +
(

3432x7 + 1430x8
)

t9 + · · ·

Q
(0,2,0,0)
123 (t, x) =1 + t+ 2t2 + (3 + 2x)t3 +

(

1 + 9x+ 4x2
)

t4 +
(

5x+ 27x2 + 10x3
)

t5

+
(

20x2 + 84x3 + 28x4
)

t6 +
(

75x3 + 270x4 + 84x5
)

t7

+
(

275x4 + 891x5 + 264x6
)

t8 +
(

1001x5 + 3003x6 + 858x7
)

t9 + · · ·

Q
(0,3,0,0)
123 (t, x) =1 + t+ 2t2 + 5t3 + (9 + 5x)t4 +

(

5 + 27x+ 10x2
)

t5 +
(

1 + 25x+ 81x2 + 25x3
)

t6

+
(

7x+ 100x2 + 252x3 + 70x4
)

t7 +
(

35x2 + 375x3 + 810x4 + 210x5
)

t8

+
(

154x3 + 1375x4 + 2673x5 + 660x6
)

t9 + · · ·

Q
(0,4,0,0)
123 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + (28 + 14x)t5 +

(

20 + 84x+ 28x2
)

t6

+
(

7 + 100x + 252x2 + 70x3
)

t7 +
(

1 + 49x+ 400x2 + 784x3 + 196x4
)

t8

+
(

9x+ 245x2 + 1500x3 + 2520x4 + 588x5
)

t9

+
(

54x2 + 1078x3 + 5500x4 + 8316x5 + 1848x6
)

t10

+
(

273x3 + 4459x4 + 20020x5 + 28028x6 + 6006x7
)

t11 + · · ·

Q
(0,5,0,0)
123 (t, x) =1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (90 + 42x)t6 +

(

75 + 270x+ 84x2
)

t7

+
(

35 + 375x + 810x2 + 210x3
)

t8 +
(

9 + 245x+ 1500x2 + 2520x3 + 588x4
)

t9

+
(

1 + 81x+ 1225x2 + 5625x3 + 8100x4 + 1764x5
)

t10

+
(

11x+ 486x2 + 5390x3 + 20625x4 + 26730x5 + 5544x6
)

t11

+
(

77x2 + 2457x3 + 22295x4 + 75075x5 + 90090x6 + 18018x7
)

t12

+
(

440x3 + 11340x4 + 89180x5 + 273000x6 + 308880x7 + 60060x8
)

t13 + · · ·

7.1 The function Q
(0,k,0,ℓ)
123 (t, x)

In this section, we will show how to compute Q
(0,k,0,ℓ)
123 (t, x) for small values of k and ℓ. In this

case, we have not been able to obtain simple recursions for the polynomials Q
(0,k,0,ℓ)
n,123 (x) because the

process of going from Ai(σ) to lift(Ai(σ)) is not nicely behaved with respect to elements in fourth
quadrant of the graph of σ centered at an element (j, σj) when j ≤ i. However, in this case, we

establish formulas for the coefficients of Q
(0,1,0,1)
123 (t, x), Q

(0,2,0,1)
123 (t, x) and Q

(0,2,0,2)
123 (t, x) by direct

counting arguments.

Suppose that σ ∈ Sn(123). It is easy to see that no number in the top k rows or the left-most
k columns in the graph of σ can match MMP(0, k, 0, 0) in σ. Similarly, it is easy to see that no
number in the bottom ℓ rows or right-most ℓ columns in the graph of σ can match MMP(0, 0, 0, ℓ)
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in σ. Given σj in σ, consider the graph of G(σ) of σ relative to the coordinate system centered
at the point (j, σj). Since σ is 123-avoiding, σj can not have elements in both its first and third
quadrant. σj is peak if and only if it has no elements in its third quadrant and σj is non-peak if
and only if it has at least one element in its third quadrant and no element in its first quadrant.
Now suppose that σj is peak that is not in the top k-rows or the left-most k columns and is not in
bottom ℓ rows or left-most ℓ columns. The elements in its first quadrant are the elements to the
north-east of (j, σj). Since σj has no elements in its third quadrant, it follows that the elements of
σ in the first k columns must all be in the second quadrant for σj and the elements in bottom ℓ

rows of σ must all be in the fourth quadrant for σj. Thus σj matches MMP(0, k, 0, ℓ). Next suppose
that σj is a non-peak that is not in the top k-rows or the left-most k columns and is not in bottom
ℓ rows or left-most ℓ columns. Then σj has no elements in its first quadrant and the elements in
its third quadrant are the elements south-west of (j, σj). Again it follows that the elements of σ in
the top k rows must all be in the second quadrant for σj and the elements in left-most ℓ columns
of σ must all be in the fourth quadrant for σj . Thus σj matches MMP(0, k, 0, ℓ). For example,
Figure 13, we have pictured this situation in the case where k = 2 and ℓ = 1 where the red cells
represent the cells are not in the top k-rows or the left-most k columns and are not in bottom ℓ

rows or left-most ℓ columns. Thus we have the following theorem.

Theorem 19. For any 123-avoiding permutation σ = σ1 . . . σn, σj matches MMP(0, k, 0, ℓ) in σ if
and only if, in the graph G(σ) of σ, (j, σj) does not lie in the top k rows or the bottom ℓ rows and
it does not lie in the left-most k columns or the right-most ℓ columns. Thus

mmp(0,k,0,ℓ)(σ) =

∣

∣

∣

∣

{j|k < j ≤ n− ℓ and k < σj ≤ n− ℓ}
∣

∣

∣

∣

.

8

6

9

7

4

3

2

5

1

Figure 13: MMP(0, 2, 0, 1) match of permutation σ = 869743251

Thus, for any permutation σ ∈ Sn(123), Theorem 19 tells that we need to count the numbers in the
rectangle that obtained by deleting the top k rows and bottom ℓ rows and deleting the left-most
k columns and the right-most ℓ columns. We have pictured this region in red in Figure 14 and it
complement in blue. We shall call the blue area the k, ℓ-frame area and the numbers in corners
A ∪ B ∪ C ∪D the k, ℓ-corner area. Now suppose that σ ∈ Sn(123) and in the graph of σ, there
are r elements in the k, ℓ-corner area and a total of s numbers in the k, ℓ-frame area. In Figure
14, we have labeled the rectangles in the k, ℓ-frame area that are not part of the k, ℓ-corner area as
E,F,G,H starting at the top and proceeding clockwise. Suppose that in σ are a elements in region
A, b elements in region B, c elements in region C, d elements in region D, e elements in region E,
f elements in region F , g elements in region G, and h elements region H. . Then a+ e+ b = k and
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c+ g+ d = ℓ since there are k elements of σ in the top k rows and ℓ elements of σ in the bottom ℓ

rows. Similarly, a+h+c = k and b+f+d = ℓ since there are k elements in the left-most k columns
and ℓ elements in the right-most ℓ columns. Adding these equation to together we see that

2(k + ℓ) = 2a+ 2b+ 2c+ 2d+ e+ f + g + h = r + s.

Thus we have the following theorem.
Theorem 20. For any k, ℓ ≥ 0, n > k + ℓ and σ ∈ Sn(123), suppose there are r numbers in the
k, ℓ-corner area and s numbers in the k, ℓ-frame area the graph of σ. Then

0 ≤ r ≤ k + ℓ, s = 2(k + ℓ)− r, and mmp(0,k,0,ℓ)(σ) = n− s = n− 2(k + ℓ) + r.

When n ≤ k + l, mmp(0,k,0,ℓ)(σ) = 0.

A

C

B

D

E

F

G

H

k

k

ℓ

ℓ

Figure 14: The division of permutations in Sn(123) to count pattern MMP(0, k, 0, ℓ) match

Theorem 20 tells us that for each n > k+ ℓ, the coefficients Q
(0,k,0,ℓ)
123 (t, x)

∣

∣

tn
have at most k+ ℓ+1

terms since the numbers in the k, ℓ-corner area can only range from 0 to k + ℓ. In particular,

the coefficient Q
(0,k,0,ℓ)
123 (t, x)

∣

∣

tnxn−2(k+ℓ)+r equals the number of permutations in σ ∈ Sn(123) with
r numbers in the k, ℓ-corner area in the graph of σ. Figure 15 show the squares in the k, ℓ-

corner regions that we must consider for the generating functions Q
(0,1,0,0)
123 (t, x), Q

(0,2,0,0)
123 (t, x),

Q
(0,1,0,1)
123 (t, x), Q

(0,2,0,1)
123 (t, x), and Q

(0,2,0,2)
123 (t, x), respectively. In the next few subsections, we shall

present and analysis of the coefficients in such generating functions based on these observations.

A

(a)

A B

C D

(b)

A B

C D

(c)

A B C

D E F

G H I

(d)

columns

1 2 3 4

1

2

rows

3

4

A B C D

E F G H

I J K L

M N O P

(e)

Figure 15: Q
(0,1,0,0)
123 (t, x), Q

(0,2,0,0)
123 (t, x), Q

(0,1,0,1)
123 (t, x), Q

(0,2,0,1)
123 (t, x) and Q

(0,2,0,2)
123 (t, x)
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7.1.1 Q
(0,1,0,0)
123 (t, x)

∣

∣

tnxn−2 and Q
(0,1,0,0)
123 (t, x)

∣

∣

tnxn−1

A formula for the generating function Q
(0,1,0,0)
123 (t, x) was calculated in Section 5.1. It follows from

Theorem 20 that there are exactly two terms in the polynomial Q
(0,1,0,0)
n,123 (x) for any n ≥ 2. Our

next theorem shows that we can explicitly calculate these two terms.

Theorem 21. For n ≥ 2, Q
(0,1,0,0)
123 (t, x)

∣

∣

tnxn−2 = Cn − Cn−1 and Q
(0,1,0,0)
123 (t, x)

∣

∣

tnxn−1 = Cn−1.
Hence,

Q
(0,1,0,0)
123 (t, x) = (1 + t− 2t

x
− 1

x2
) + (

1

x2
+

t

x
+ 1)C(tx).

Proof. By Theorem 20, to the coefficients of function Q
(0,1,0,0)
123 (t, x), we only need to enumerate

the 123-avoiding permutations based on how many elements in the graph of σ lie in 1, 0-corner
area. In other words, referring to Figure 15(a), the permutations in Sn(123) whose graphs have a

number in square A contribute to the coefficient of tnxn−1 in Q
(0,1,0,0)
123 (t, x) and the permutations

in Sn(123) whose graphs have no element in square A contribute to the coefficient of tnxn−2 in

Q
(0,1,0,0)
123 (t, x). Let NA(n) be the number of permutations in Sn(123) whose graph has a number in

square A. Then NA(n) = Cn−1 since NA(n) counts those σ such that σ1 = n which means that the
corresponding Dyck path Ψ(σ) has a peak at position A. All such paths start out with DR. Thus,

Q
(0,1,0,0)
123 (t, x)

∣

∣

tnxn−1 = Cn−1. This means that the number of permutations in Sn(123) which do

not have an element in square A in its graphs is Cn−Cn−1. Thus Q
(0,1,0,0)
123 (t, x)

∣

∣

tnxn−2 = Cn−Cn−1.
It follows that

Q
(0,1,0,0)
123 (t, x) = 1 + t+

∞
∑

n=2

tn((Cn − Cn−1)x
n−2 +Cn−1x

n−1)

= 1 + t+
C(tx)− 1− xt

x2
+

tC(tx)− t

x
+ C(tx)

= (1 + t− 2t

x
− 1

x2
) + (

1

x2
+

t

x
+ 1)C(tx).

7.1.2 Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−4, Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−3 and Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−2

It follows from Theorem 20 that there are exactly three terms in the polynomial Q
(0,1,0,0)
n,123 (x) for

any n ≥ 2. Our next theorem shows that we can explicitly calculate these to terms.

Theorem 22. For n ≥ 4,

Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−4 = Cn − 3Cn−1 + Cn−2,

Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−3 = 3(Cn−1 − Cn−2), and

Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−2 = 2Cn−2.

Proof. To find the coefficients of function Q
(0,2,0,0)
123 (t, x), we need to enumerate the 123-avoiding

permutations that have 0, 1 or 2 numbers in the 2, 0-corner area as pictured in Figure 15(b). Let
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φi(n) be the number of permutations in Sn(123) whose graphs have i numbers in 2, 0-corner area,

colored blue in the picture, then in Q
(0,2,0,0)
123 (t, x), φ0(n) is the coefficient of tnxn−4, φ1(n) is the

coefficient of tnxn−3 and φ2(n) is the coefficient of tnxn−2.

In this case, we can use inclusion-exclusion to count the number of permutations σ ∈ Sn(123) whose
graph has exactly r elements in the 2, 0-corner area. We will labels the cells in 2, 0-corner area as
pictured in Figure 15(b). For S ⊆ {A,B,C,D}, we let NS(n) be the number of permutations σ in
Sn(123) such that there is an element in each square of S in the graph of σ. Then it easy to see by
inclusion-exclusion that

φ2(n) = NA,D(n) +NB,C(n),

φ1(n) = NA(n) +NB(n) +NC(n) +ND(n)− 2(NA,D(n) +NB,C(n)),

φ0(n) = Cn − φ1(n)− φ2(n).

The problem is reduced to computing NA(n), NB(n), NC(n), ND(n), NA,D(n) and NB,C(n). From
the proof of Theorem 21, we have NA(n) = Cn−1. For NC(n), we are counting the number of
permutations σ = σ1 . . . σn ∈ Sn(123) such that σ1 = n − 1 which means that P = Ψ(σ) has a
peak at position C. Any such path P must start with DDR and then we can remove the DR at
steps 2 and 3 and obtain a Dyck path of length 2n − 2. Thus NC(n) = Cn−1. For NB(n), we are
counting the number of σ = σ1 . . . σn ∈ Sn(123) such that σ2 = n. It is easy to see for for such σ, σ
is 123-avoiding if and only if σ1σ3 . . . σn is 123-avoiding so that NB(n) = Cn−1. For ND(n), we are
counting the permutations such that σ = σ1 . . . σn ∈ Sn(123) such that σ2 = n− 1. It follows that
σ1 = n since otherwise 123 would occur in σ. Thus ND(n) = NA,D(n) = Cn−2. For NB,D(n), we
are counting the permutations such that σ = σ1 . . . σn ∈ Sn(123) such that σ1 = n− 1 and σ2 = n.
Hence NB,C(n) = Cn−2. It follows that

Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−2 = φ2(n) = 2Cn−2,

Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−3 = φ1(n) = 3(Cn−1 −Cn−2),

Q
(0,2,0,0)
123 (t, x)

∣

∣

tnxn−4 = φ0(n) = Cn − 3Cn−1 + Cn−2.

It is technically possible to write the generating function Q
(0,2,0,0)
123 (t, x) in terms of the generating

function of Catalan numbers, C(x), like we did in Theorem 21. However the formula is messy so
that we will not write it down here.

7.1.3 Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−4, Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−3 and Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−2

To find the coefficients of function Q
(0,1,0,1)
123 (t, x), we need to enumerate the 123-avoiding permuta-

tions that have 0, 1 or 2 numbers in the 1, 1-corner area as pictured in Figure 15(c). Let φi(n) be
the number of permutations in Sn(123) whose graphs have i numbers in 1, 1-corner area, colored

blue in the picture, then in Q
(0,1,0,1)
123 (t, x), φ0(n) is the coefficient of tnxn−4, φ1(n) is the coefficient

of tnxn−3 and φ2(n) is the coefficient of tnxn−2.
Theorem 23. For n ≥ 4,

Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−4 = Cn − 2Cn−1 + Cn−2 − 2,

Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−3 = 2Cn−1 − 2Cn−2 + 2, and

Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−2 = Cn−2.
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Proof. The four cells in the blue area are still denoted by A, B, C and D, though the positions
these cells are different from Figure 15(b). For S ⊆ {A,B,C,D}, we let NS(n) be the number of
permutations σ in Sn(123) such that there is an element in each square of S in the graph of σ.
Then

φ2(n) = NA,D(n) +NB,C(n),

φ1(n) = NA(n) +NB(n) +NC(n) +ND(n)− 2(NA,D(n) +NB,C(n)),

φ0(n) = Cn − φ1(n)− φ2(n).

Thus we must compute NA(n), NB(n), NC(n), ND(n), NA,D(n) and NB,C(n), which are different
from Theorem 22. Assume that n ≥ 4. By our previous results, NA(n) = Cn−1. For NC(n), we are
counting the number of σ = σ1 . . . σn ∈ Sn(123) such that σ1 = 1. The only such σ is the identity
permutation so that NC(n) = 1. For NB(n), we are counting the number of σ = σ1 . . . σn ∈ Sn(123)
such that σn = n. Again the only such σ is the identity permutation so that NB(n) = 1. For
ND(n), we are counting the number of σ = σ1 . . . σn ∈ Sn(123) such that σn = 1. Clearly if
we remove 1 from such a permutation and reduce the remaining numbers of 1, we obtain a 123-
avoiding permutation in Sn−1(123). Thus ND(n) = Cn−1. For NB,C , we are counting the number
of σ = σ1 . . . σn ∈ Sn(123) such that σ1 = 1 and σn = n which is impossible for n ≥ 3. For NA,D,
we are counting the number of σ = σ1 . . . σn ∈ Sn(123) such that σ1 = n and σn = n. For such
σ, we can remove 1 and n to and reduce the remaining numbers by 1 to obtain a 123-avoiding
permutation in Sn(123). Thus NA,D = Cn−2.

It follows that for n ≥ 4,

Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−2 = φ2(n) = Cn−2,

Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−3 = φ1(n) = 2Cn−1 − 2Cn−2 + 2,

Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−4 = φ0(n) = Cn − 2Cn−1 +Cn−2 − 2.

Theorem 23 gives the coefficient of tn in Q
(0,1,0,1)
123 (t, x) for n ≥ 4. One can easily compute the

required coefficients at n = 1, 2, 3 to obtain that

Q
(0,1,0,1)
123 (t, x) = 1 + t+ 2t2 + (4 + x)t3 +

∑

n≥4

tn
(

(Cn − 2Cn−1 + Cn−2 − 2)xn−4 + (2Cn−1 − 2Cn−2 + 2)xn−3 + Cn−2x
n−2

)

= 1 + t+ 2t2 + (4 + x)t3 +
(

4 + 8x+ 2x2
)

t4 +
(

17x+ 20x2 + 5x3
)

t5

+
(

60x2 + 58x3 + 14x4
)

t6 +
(

205x3 + 182x4 + 42x5
)

t7

+
(

702x4 + 596x5 + 132x6
)

t8 +
(

2429x5 + 2004x6 + 429x7
)

t9 + · · · .

7.1.4 Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−6, Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−5, Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−4 and Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−3

In this section, we shall sketch the proof of the following theorem.
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Theorem 24. For n ≥ 5,

Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−6 = Cn − 4Cn−1 + 4Cn−2 − Cn−3 − 2n+ 6,

Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−5 = 4Cn−1 − 9Cn−2 + 4Cn−3 + 2n− 12,

Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−4 = 5Cn−2 − 5Cn−3 + 6, and

Q
(0,1,0,1)
123 (t, x)

∣

∣

tnxn−3 = 2Cn−3.

Proof. To count the coefficients of function Q
(0,2,0,1)
123 (t, x), we need to enumerate the 123-avoiding

permutations that have 0, 1, 2 or 3 numbers in the 2, 1-corner area. Referring to Figure 15(d), let
φi(n) be the number of permutations in Sn(123) whose graphs have i numbers in 2, 1-corner area,

colored blue in the picture, then in Q
(0,2,0,1)
123 (t, x), φ0(n) is the coefficient of tnxn−6, φ1(n) is the

coefficient of tnxn−5, φ2(n) is the coefficient of tnxn−4 and φ3(n) is the coefficient of tnxn−3.

There are 9 cells in the blue area denoted by A, B, C, D, E, F , G, H, I in Figure 15(d). For any
S ⊆ {A,B,C,D,E, F,G,H, I}, we let NS(n) denote the number of σ ∈ Sn(123) such that there
elements in each cell of S in the graph of σ. Let Ni(n) =

∑

S⊆{A,B,C,D,E,F,G,H,I},|S|=iNS(n). Then
it follows from inclusion-exclusion that

φ3(n) = N3(n),

φ2(n) = N2(n)− 3N3(n),

φ1(n) = N1(n)− 2N2(n) + 3N3(n),

φ0(n) = Cn − φ1(n)− φ2(n)− φ3(n).

To compute N1(n), we must compute NS(n) for 9 sets of size 1. To compute N2(n), we must
compute NS for 18 allowable sets of size 2. To compute N3(n), we must compute NS for 6 allowable
sets of size 3. It is tedious, but not difficult to carry out required calculations. For space reasons, we
will not provide explanations for each NS(n), but we will simply list the results of our calculations.

For n ≥ 5,

NA(n) = NB(n) = ND(n) = NI(n) = Cn−1, NE(n) = Cn−2,

NC(n) = NG(n) = 1, NF (n) = NH(n) = n− 1, so

N1(n) = 4Cn−1 + Cn−2 + 2n.

NA,E(n) = NA,I(n) = NB,D(n) = NB,I(n) = ND,I(n) = Cn−2, NE,I(n) = Cn−3,

NA,F (n) = NA,H(n) = NB,F (n) = NB,G(n) = NC,D(n) = ND,H(n) = 1,

NC,E(n) = NC,G(n) = NC,H(n) = NE,G(n) = NF,G(n) = NF,H(n) = 0, so

N2(n) = 5Cn−2 + Cn−3 + 6.

NA,E,I(n) = NB,D,I(n) = Cn−3,

NA,F,H(n) = NB,F,G(n) = NC,D,H(n) = NC,E,G(n) = 0, so

N2(n) = 2Cn−3, and
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Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−3 = φ3(n) = 2Cn−2,

Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−4 = φ2(n) = 5Cn−2 − 5Cn−3 + 6,

Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−5 = φ1(n) = 4Cn−1 − 9Cn−2 + 4Cn−3 + 2n− 12,

Q
(0,2,0,1)
123 (t, x)

∣

∣

tnxn−6 = φ0(n) = Cn − 4Cn−1 + 4Cn−2 − Cn−3 − 2n+ 6.

Theorem 24 gives the coefficient of tn inQ
(0,2,0,1)
123 (t, x) for n ≥ 5. One can easily computeQ

(0,2,0,1)
n,123 (x)

for n ≤ 4 to obtain the following:

Q
(0,2,0,1)
123 (t, x) = 1 + t+ 2t2 + 5t3 + (12 + 2x)t4

+
∑

n≥5

tn
(

(Cn − 4Cn−1 + 4Cn−2 − Cn−3 − 2n+ 6)xn−6

+(4Cn−1 − 9Cn−2 + 4Cn−3 + 2n − 12)xn−5

+(5Cn−2 − 5Cn−3 + 6)xn−4 + 2Cn−3x
n−3

)

= 1 + t+ 2t2 + 5t3 + (12 + 2x)t4 +
(

17 + 21x+ 4x2
)

t5

+
(

9 + 62x + 51x2 + 10x3
)

t6 +
(

47x+ 208x2 + 146x3 + 28x4
)

t7

+
(

190x2 + 700x3 + 456x4 + 84x5
)

t8

+
(

714x3 + 2393x4 + 1491x5 + 264x6
)

t9 + · · · .

7.1.5 Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−8, Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−7, Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−6, Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−5 and

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−4

In this section, we will sketch the proof of the following theorem.

Theorem 25. For n ≥ 7,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−8 = Cn − 6Cn−1 + 11Cn−2 − 6Cn−3 + Cn−4 − 2n2 + 16n− 34,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−7 = 6Cn−1 − 24Cn−2 + 24Cn−3 − 6Cn−4 + 2n2 − 28n + 80,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−6 = 13Cn−2 − 30Cn−3 + 13Cn−4 + 12n− 64,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−5 = 12Cn−3 − 12Cn−4 + 18,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−4 = 4Cn−4.

Proof. To count the coefficients of function Q
(0,1,0,1)
123 (t, x), we need to enumerate the 123-avoiding

permutations that have 0, 1, 2, 3 or 4 numbers in the 2, 2-corner area. Referring to Figure 15(e),
let φi(n) be the number of permutations in Sn(123) whose graphs have i numbers in 2, 2-corner

area, colored blue in the picture, then in Q
(0,2,0,2)
123 (t, x), φ0(n) is the coefficient of tnxn−8, φ1(n) is

the coefficient of tnxn−7, φ2(n) is the coefficient of tnxn−6, φ3(n) is the coefficient of tnxn−5 and
φ4(n) is the coefficient of tnxn−4.

There are 16 cells in the blue area denoted by letters A ∼ P in Figure 15(e). For any S ⊆
{A, . . . , P}, we let NS(n) denote the number of σ ∈ Sn(132) such that in the graph of σ, there is an
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element in each square of S. We let Ni(n) =
∑

S⊆{A,...,P},|S|=iNS(n), then by inclusion-exclusion,

φ4(n) = N4(n),

φ3(n) = N3(n)− 4N4(n),

φ2(n) = N2(n)− 3N3(n) + 6N4(n),

φ1(n) = N1(n)− 2N2(n) + 3N3(n)− 4N4(n),

φ0(n) = Cn − φ1(n)− φ2(n)− φ3(n)− φ4(n).

There are huge number positions and combination of positions in the 2, 2-corner area. Since the

selected letters should be in different rows and columns, we need to consider
(4
i

)2
i! combinations

for calculation each Ni(n), i.e. 16 singletons to calculate N1(n), 72 pairs to calculate N2(n), 96
groups of size 3 to calculate N3(n) and 24 groups of size 4 to calculate N4(n), totally 208 separate
calculations. Again we shall simply list the results of the relevant calculations that we carried out.

NC(n) = NI(n) = n− 1, Nk(n) = Cn−2,

NO(n) = NL(n) = Cn−1, NJ(n) = NG(n) = (n− 2)2, so

N1(n) = 4Cn−1 +Cn−2 + 2n+New

= 6Cn−1 + 2Cn−2 + 2n2 − 4n+ 6.

NC,E(n), NO,H(n), NB,I(n), NL,N (n), NG,A(n), NG,P (n), NJ,A(n), NJ,P (n), NG,B(n), NG,L(n),
NJ,E(n),NJ,E(n), NJ,O(n) = k − 2,
NC,H(n), NI,N (n), NC,L(n), NI,O(n), NC,P (n), NI,P (n), NO,D(n), NL,M (n) = 1,
NK,P (n), NO,A(n), NL,A(n), NO,B(n), NL,E(n), NO,E(n), NB,L(n), NO,L(n) = Cn−2,

NK,A(n), NK,B(n), NK,E(n), NF,O(n), NF,L(n) = Cn−3, NK,F (n) = Cn−4,

NC,F (n), NK,H(n), NF,I(n), NK,N (n), NC,I(n), NC,J (n), NH,J(n), NG,I(n), NN,G(n), NC,M (n),
ND,I(n), NC,N (n), NH,I(n), NG,D(n), NJ,M (n), NG,J(n), NG,M (n), NJ,D(n), NK,D(n), NK,M(n) = 0,
so

N2(n) = 5Cn−2 + Cn−3 + 6 + New

= 13Cn−2 + 6Cn−3 + Cn−4 + 12n − 10.

To calculate N3(n), other than calculating the new combinations in the 96 enumerations, we calcu-
late the case by symmetry. Notice that there are 4 columns and rows, namely, column 1, 2, 3, 4 and
row 1, 2, 3, 4 in the 2, 2-corner area, marked in Figure 15(e). In any combination of three letters, we
are taking 3 columns and 3 rows. We let N(c1c2c3, r1r2r3)(n) be the contribution that we are taking
3 letters from the columns c1c2c3 and rows c1c2c3, then by symmetry of 123-avoiding permutations,

N(123,123)(n) = N(234,234)(n),

N(134,134)(n) = N(124,124)(n),

N(123,124)(n) = N(134,234)(n) = N(124,123)(n) = N(234,134)(n),

N(123,134)(n) = N(124,234)(n) = N(134,123)(n) = N(234,124)(n),

N(123,234)(n) = N(234,123)(n),

N(134,124)(n) = N(124,134)(n).
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Then we calculate the 6 cases:

NA,F,K(n) = NE,B,K(n) = Cn−4, NA,J,G(n) = NE,J,C(n) = NB,G,I(n) = NI,F,C(n) = 0, so

N(123,123)(n) = N(234,234)(n) = 2Cn−4;

N(124,124)(n) is N3(n) in Theorem 24, so

N(134,134)(n) = N(124,124)(n) = 2Cn−3;

NA,F,O(n) = NE,B,O(n) = Cn−3, NA,N,G(n) = NE,N,C(n) = NM,B,G(n) = NM,F,C(n) = 0, so

N(123,124)(n) = N(134,234)(n) = N(124,123)(n) = N(234,134)(n) = 2Cn−3;

NA,J,O(n) = NI,B,O(n) = 1, NA,N,K(n) = NI,N,C(n) = NM,B,K(n) = NM,J,C(n) = 0, so

N(123,134)(n) = N(124,234)(n) = N(134,123)(n) = N(234,124)(n) = 2;

NE,J,O(n) = 1, NI,F,O(n) = NE,N,K(n) = NI,N,G(n) = NM,F,K(n) = NM,J,G(n) = 0, so

N(123,234)(n) = N(234,123)(n) = 1;

NA,G,P (n) = NA,O,H(n) = NE,C,P (n) = NE,O,D(n) = 1, NM,C,H(n) = NM,J,D(n) = 0, so

N(134,124)(n) = N(124,134)(n) = 4, and

N3(n) = 12Cn−3 + 4Cn−4 + 18

To calculate N4(n), we need to use all the 4 columns and rows in the 2, 2-corner area. To make
things easier, we only consider the 14 collection of 4-letter groups that avoid 123. We have
NA,F,K,P (n) = NA,F,O,L(n) = NE,B,K,P (n) = NE,B,O,L(n) = Cn−4, and
NA,J,G,O(n), NI,B,G,P (n), NE,J,C,P (n), NA,J,O,H(n), NA,N,G,L(n), NI,N,C,H(n), NM,B,G,L(n),
NJ,E(n),NE,J,O,D(n), NI,B,O,H(n), NE,N,C,L(n) = 0, so

N4(n) = 4Cn−4.

With all N1(n), N2(n), N3(n) and N4(n) calculated, one can apply inclusion-exclusion and obtain
that for n ≥ 7,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−8 = φ0(n) = Cn − 6Cn−1 + 11Cn−2 − 6Cn−3 + Cn−4 − 2n2 + 16n− 34,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−7 = φ1(n) = 6Cn−1 − 24Cn−2 + 24Cn−3 − 6Cn−4 + 2n2 − 28n + 80,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−6 = φ2(n) = 13Cn−2 − 30Cn−3 + 13Cn−4 + 12n− 64,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−5 = φ3(n) = 12Cn−3 − 12Cn−4 + 18,

Q
(0,2,0,2)
123 (t, x)

∣

∣

tnxn−4 = φ4(n) = 4Cn−4.

Note that have a lower bound, n ≥ 7 for these formulas, which is because when n ≤ 6, NG,J 6= 0
since permutation 321654 matches both the positions G and J .

Theorem 25 gives the coefficient of tn in Q
(0,2,0,1)
123 (t, x) for n ≥ 7. We calculated the initial 7
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coefficients by a computer program to obtain the following:

Q
(0,2,0,2)
123 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5 + (70 + 54x+ 8x2)t6

+
∑

n≥7

tn
(

(Cn − 6Cn−1 + 11Cn−2 − 6Cn−3 + Cn−4 − 2n2 + 16n− 34)xn−8

+(6Cn−1 − 24Cn−2 + 24Cn−3 − 6Cn−4 + 2n2 − 28n+ 80)xn−7

+(13Cn−2 − 30Cn−3 + 13Cn−4 + 12n − 64)xn−6

+(12Cn−3 − 12Cn−4 + 18)xn−5 + (4Cn−4)x
n−4

)

= 1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5 +
(

70 + 54x+ 8x2
)

t6

+
(

72 + 211x + 126x2 + 20x3
)

t7 +
(

36 + 314x + 670x2 + 354x3 + 56x4
)

t8

+
(

199x + 1190x2 + 2207x3 + 1098x4 + 168x5
)

t9

+
(

838x2 + 4356x3 + 7492x4 + 3582x5 + 528x6
)

t10

+
(

3241x3 + 15848x4 + 25951x5 + 12030x6 + 1716x7
)

t11

+
(

12180x4 + 57752x5 + 91158x6 + 41202x7 + 5720x8
)

t12 + · · · .
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