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ON MINKOWSKI TYPE QUESTION MARK FUNCTIONS ASSOCIATED
WITH EVEN OR ODD CONTINUED FRACTIONS

FLORIN P. BOCA AND CHRISTOPHER LINDEN

ABSTRACT. We study analogues of Minkowski’s question mark function 7(x) related to con-
tinued fractions with even or odd partial quotients. We prove that these functions are Holder
continuous with precise exponents, and that they linearize the appropriate versions of the Gauss
and Farey maps.

1. INTRODUCTION

Minkowski [16] introduced a homeomorphism of [0,1], which he denoted ?(z), that gives
monotonic bijections between rational and dyadic numbers in [0, 1], and also between quadratic
irrationals in (0,1) and rationals in (0,1). The function 7 is singular, yet strictly increasing,
continuous, and surjective. The question mark can be defined inductively on rationals by

NS ANR: L Y
g+ 2 \q 2°\¢)’

whenever % and Zi: are rational numbers in lowest terms in [0, 1] with p’q — p¢’ = 1. Tt can also
be explicitly expressed by Denjoy’s formula [5] (see also [23])

, ! 1 1
!(la1,az,as,...]) = 5ei=T ~ gertard + e

in terms of the regular continued fraction expansion

X =|a1,a9,...| =
[17 2 ] a1+a

It is well-known (see, e.g., [4]) that ?(z) linearizes the classical Gauss and Farey maps

a1 — 1,as,as,...] ifa; >2
G([al,ag,ag,...]) = [ag,ag,a4,...], F([al,ag,ag,...]) = [ ! T ] . !
[ag, a3, aq, .. .] ifa; =1,

associated with regular continued fractions, or equivalently

1 1 1 £ ifze 0]
G = — = — — | — F = 1-z 72
(z) {x} x [m}’ () {1_—”3 if v € [4,1].
More precisely, the map ?7'G? is decreasing and linear on each interval (2_k_1,2_k), while

(?71F?)(x) = 2dist(z, Z).

Salem [23] proved that ?(z) is singular and Hélder continuous, with best exponent 5252

2logG
0.72021, where G = 1+—2‘/5 denotes the “big” golden ratio. Several significant results about ?(z)
have subsequently been proved [12} 20} 2], 8, 7], culminating with the very recent solution provided
by Jordan and Sahlsten [I0] to the longstanding Salem open problem [23] concerning the decay
of its Fourier-Stieltjes coefficients. A number of generalizations of this classical map have been
considered [9, 3], [19] 25| 17]. See http://uosis.mif.vu.1lt/~alkauskas/minkowski.htm for an
extensive bibliography of research in this area until 2014.
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This paper is concerned with natural analogues of Minkowski’s question mark function that
are related to continued fractions with odd or with even partial quotients, that we asimply going
to call even continued fractions (in short ECF) and respectively odd continued fractions (in short
OCF). See [24] for the definition and basic properties of these two classes of continued fractions
and [21] for a detailed treatment of odd continued fractions.

In Section 2 we consider the situation of even continued fractions, defining our even question
mark function Qg and proving a formula for Qg (z) in terms of the even continued fraction
expansion of z. As consequences, we prove that Qg is singular and Holder continuous with

best exponent % ~ 0.62324. We also show that Qg linearizes the even Gauss and

even Farey maps. As the formula in Theorem [I] makes clear, Qg is naturally a triadic version
of the Minkowski question mark function. Northshield has introduced [I7] a different triadic
generalization of the question mark function. At the end of the section we establish a precise
connection between our even continued fraction analogue of the Stern sequence and the sequence
in Z[v/2] that he considers.

In Section B] we focus on odd continued fractions, following Zhabitskaya’s work [25] and
considering the odd question mark function Qo (z) that coincides with her F9(z). We prove that

the function Q) is Holder continuous with best exponent % ~ 0.63317, where \ ~ 1.83929

denotes the unique real root of the equation > — 22 — 2 — 1 = 0. We also prove that the map

Qo linearizes the odd Gauss and the odd Farey maps.

2. EVEN PARTIAL QUOTIENTS

2.1. Even continued fraction generation and ordering of rational numbers. We con-
sider the ECF expansion in [—1, 1] given by

(1, a1), (e2, as), (€3, az), ..] = cl , (2.1)

€2
ay +

as +

€3
as + SN
where e; € {£1} and a; € 2N. For uniqueness, we require that in a finite expansion, the last e;

must equal 1, and in this case we allow a; to also equal 1. This convention allows all rational
numbers to have a unique finite even continued fraction expansion. Note that g will also have
a (unique) infinite expansion iff p + ¢ = 0 (mod 2) iff its finite expansion terminates in a 1.

If 2 = [(1,a1), (e2,a2), ..., (€n,an)], then let [(z), (€1, 1), (€2, a2), ...] denote the concatenated
expansion [(17 a1)7 (627 a2)7 ) (ena an)v (617 Oél), (627 a2)7 ] Define

yk: ::{III = [(1,&1), (62,02), ey (enyan)] € Q N [07 1] rap+-o-tap < 2k + 1}’
Xy =V \ V-1, Zy i =A{x € Yy :Vi,a; # 1}.

Our convention is to take 0,1 € Vi and 0 € Z. It is plain to check that

0 01 01212
Zo={2b oz =424 oz =0 0 2 22
0 {1}7 1 {172}7 2 {174757273}7

Denote X, := ‘Xk’, Y, = D}k‘ and Z, = ’Zk’
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Yo f
Vi f
Y, {
N

FIGURE 1. The ternary ECF diagram Dg

Observe that Vi, = Ugzez, {z,[(2),(1,1)]}, and hence Y}, = 2Z;,. For x € Zj, consider ci(z) :=
2k +2 -3 a;. Then

Zim=| U A{=l@), Ga@)) @), (-1 e @)} | U{0,[(1 )}

ZBEZk ,m;ﬁO

Hence Zy.1 = 3Z;, — 1. Since Zy = 1, we have Z;, = % and we conclude that Y = 3% + 1.
Note that if z,y € 2, and = < y, then [(z),(e,a)] < [(v), (€, )] for e,e € {—1,1} and
a,« € {1} U 2Z. Inductively, this holds for any two continued fractions with initial expansions
equal to those of x and y, respectively.
Hence we may obtain the ordered set V11 from )y by replacing 0 with 0, [(1,¢x(0)), (1,1)],
[(1,¢£(0))] and each of the nonzero elements z = [(e1,a1), (€2, a2),...(en,an)] € Zj with the
following five elements:

[(x)v(lvck(x))L [(x)v(lvck(x))7(17l)]7 €, [(x)v(_Lck(‘T))v(lvl)]? [(‘T)7(_1vck(x))]'

These numbers are in this order if II?" ; (—e;) = —1 and are in the reverse order if II? | (—e;) = 1.
By induction, we have that for any x € Z, the neighbors of x in Y} are [(z), (1, cx—1(z)), (1,1)]
and [(z),(—1,ck—1(x)),(1,1)], with the understanding that if x € X} and cx_1(x) = 0, we
have [(:E)’ (17 0)7 (17 1)] = [(:E)’ (17 1)] and [(l‘), (_17 0)7 (17 1)] = [(:E)’ (_17 1)] In any case, we
observe that [(x), (1, cx(z))] is the mediant of = and its neighbor [(x), (1, cx—1(z)), (1,1)] in Y,
and [(z), (1,cx(x)), (1,1)] is the mediant of x and [(x), (1,ck(x))]. Likewise, [(z),(—1,ck(x))]
is the mediant of z and its neighbor [(z), (=1, cx—1(x)), (1,1)] and [(z), (=1, cx(x)), (1,1)] is the
mediant of x and [(x), (—1, cx(z))]. In other words, we obtain Yy from )} by inserting between
each pair of elements (say, % € Zj and £ € Vi \ Z) the successive mediants % ®L =2 and

S q+s
p ® g IZ = 3{1’ IZ This gives an ECF analogue Dg of the Stern-Brocot tree, which is illustrated

m Figure 1, in which the ternary tree structure of the Zj is also apparent.

2.2. The even Farey type map Fr and the even Gauss map Tp. The sets Vi and Z
arise naturally in connection with the map Fg : [0,1] — [0, 1] defined by

””x fo<z<

-2 ifi<a<
1 el

FE(l‘) =

= Wl

1
1
x
2 —

This map has an infinite invariant measure dvg(x) = w(ffm) and was considered in different

contexts in [I] and [22].
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(0,0) 13 112 (1,0) (0,0) 143 2/3 (1,0)

FIGURE 2. The even Farey map Fg and its linearization F

Symbolically, Fr acts on the ECF representation by subtracting 2 from the leading digit aq
of  when a; > 4 (which corresponds to x between 0 and %), and by simply removing (a1, e2)
when a; = 2 (which corresponds to = between % and 1), i.e.

_ [(1,@1 - 2)7 (62,&2), (63,&3), .. ] if ay > 4
Fg([(1,a1), (e2,a2), (e3,a3),...]) = {[(17a2)7 (o, a3). (es.02)... o o

Then the sets YV, and 2 can be described as
Vi = Fg*({0,1}) and 25 = Fg*({0}), k>o0.
The induced transformation Rg of Fj on [1,1] acts on the ECF expansion in [£,1] as:

RE([(L 2)7 (627 a2)7 (637 a3)7 .- ]) = [(17 2)7 (637 CL3), (647 CL4), .- ]
Recall that the even Gauss map Tg acts on [0,1] by

1 1 1
2 _ okl if N
PR 1$6[2k+1’2k—1]’

and it acts on ECF expansions (2.1)) restricted to [0, 1] by

TE([(l,CLl), (62,&2), (63, ag), .. ]) = [(1,&2), (63,&3), (64,&4), .. ]

Furthermore, dug(x) = (H% — 13-)dz is a T-invariant measure [24].

We will also consider the map T : [—1,1] — [—1,1] acting on the ECF expansion (1)) as

TE($) =

Tr([(e1,ar), (e, a2), (e3,a3),...]) = [(e2,a2), (e3,a3), (eq,as), .. ).

Equivalently Tg(x) = esTg(x) if # > 0 and Tg is an even function, that is

1 . 1 1
Tp(x) =42 2k Tf 2 € 31> 251)

Tp(—z) ifx e (—1,0),
dz_
to check that Rp and Tg are conjugated, or more precisely Tp = o Rpp~

[—1,1], p(z) = % — 2, with ¢~ 1(y) = ﬁ It is also plain to see that T is an extension of Tg.

and the push forward dug(x) = of vg|[1/3,1) under ¢ is a Tp-invariant measure. It is plain

1, where ¢ : [+,1] —

More precisely we have 715 = T, where 7 : [=1,1] — [0,1], 7(z) = |#|. The push forward of
g under 7 is the Tg-invariant measure pg.
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FIGURE 3. The maps T and TVO

2.3. The even Minkowski type question map (Qr. We are now ready to define the ECF
analogue of Minkowski’s question mark function, and prove an explicit formula for it in terms
of the ECF expansion.

Definition 1. For x € Y., define
ceV:y<zwz

Proposition 2. This does not depend on the choice of k and hence Qg(x) is well-defined for
Qnio,1].
Proof. Case 1. Suppose x € Z;. Then

Hyedr:y<az} =2/{z€ Z: 2 <z}

and

Hz € Zpp1: 2 <z} =3{z€ 2 : 2z < x}|
since if ,z € Z and 0 < z < z, then [(2), (£1, ¢k (2))] < z, and exactly one of [(z), (£1, ¢k (x))]
is less than x. We therefore have [{y € Vi+1 1y < 2} = 3|{y € Vi : y < z}|, so by induction,
I{ye)}k y<a}| _ |{y€3’k+7 Y<TH o any j € N, and Qg(z) is well-defined.

3%+
C’ase 2. Suppose T §é Z;.. Then

HyeVr:y<a} =2{z€Zp:z2<z} -1

and
Hz € Zkp:z<z}|=3{z€Zp:z<a} -1,
SO
Hy e i1y <z}|=2{z€ 2k :2<a} -1
=6{ze€Zr:z<zx}-3=3{ye€V:y <z},
and as in the previous case, we conclude by induction that Qg(z) is well-defined. O

Theorem 1. Let x = [0; (e1,a1), (e2,a2),...(en,an)]. Then

- el (—e)
QE(”C)_; 3T

where wi, = 2 if a € 2N and wi, = 1 if a, = 1.
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Proof. Let y = [(x), (ent1,ans1)]

Case 1. Suppose a,+1 = 1. In this case, e, 11 = 1 as well, so y € Xj. In the ordered Yy, y is
adjacent to z. If II7_, (—e;) = 1 then y > x, and if IT ;(—e;) = —1 then y < . Hence
HTL_—l—l —€;
Q) = Qula) - L=l )

3

Case 2. Suppose ap41 = 2j. In this case, y € Ajy;. At this level, the neighbors of
€T are [(:E)’ (17 2])]7 [(l‘), (17 2])7 (17 1)]7 €, [(:E)’ (_17 2])7 (17 1)]7 [(l‘), (_17 2])] in this order if
I ,(—e;) = —1, and in the opposite order if IT" ;(—e;) = 1. Hence

QH?_—H (—ei)
Qe(y) = Qe(z) — 5]17

Working backwards from the tail of the continued fraction, repeated application of these relations
yields the formula stated above. O

We will see that by continuity, the formula also holds for infinite even continued fraction
expansions, with the finite sum replaced by an infinite one. For rationals which have both an
infinite and a finite even continued fraction expansion, the infinite expansion is obtained from
the finite one by replacing the last term [...(1,1)] with ...(1,2),(—1,2),(—1,2),(—1,2)...]. Using
the fact that > 72, 3% =1, it is straightforward to check that the two sums coincide.

log 3

Theorem 2. Qg(x) is Holder continuous, with best exponent Tloa(L1 V3]

Before proving this, we need a fact about the growth of the continuants associated to even
continued fraction expansions.

Proposition 3. Let 2* = [(1,a1), (e2, a2), ..., (en, an)]. Then

an < (14 \/5)2?:1 e

Proof. Let =14 /2. Observe that ¢; = a; < 0%7/2 holds for all ¢; € R, and go = 1 = 6°. We
have the relation g = apqr_1 + €xqr_s. Assuming the claim holds for n = k — 2,k — 1, then

k—1 a; k—2 a
arQr—1 + exgr—o < apf>i=1 3 + i1
so it is sufficient to show that

ap—1 aptag_1
a2z +1<607 2
or equivalently, that
—ap
Zokot

ap+0 s <9F.

Since aj # 0, we must have ax_1 > 2, so it is sufficient to prove
ay + 1 < Qar/2
0
which is always true: we verify that
1 1
1+§<91/2 and2+§:9

For a; > 2, it is sufficient to observe that #%/2 — z is increasing for z > 2, with derivative
3(0)*/%1og(6) — 1 > 0. O

Remark. The exponent in the proposition is the best possible, and it is attained by the con-
vergents of v2 — 1 = [(1,2),(1,2),(1,2),...].
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Proof. Notice that since each a; = 2, the denominators satisfy the recurrence relation ¢, =
2qi_1 + qr_2, and hence are given by the sequence 1,1,3,7,17, ..., which has the closed form

1+Vv2)F+ (1 - V2)*
5 .

qr =

ag

Asymptotically, ¢ ~ —Hk so the bound ¢, < 92213 = g% cannot be improved. O

Proof of Theorem[2. Let z < 2’ € QN [0,1], and let y = Qg(z), v = Qr(z’). Consider Yy
for the first k such that we have x < r < v’ < 2’ for some r,7’ € ). From the bound on the
denominators proved in proposition Blwe must have 2’ —x > r’ —r > 9%1 — and since there can be

at most 5 elements of Y, between x and 2/, we have 3/ —y < < 3r. We have (2k+2)log 6 > log ~ =
and (k — logs6)log 3 < log y,_y which together give

log 3

Yy —y < C(z) — z)2los0

To see that this is the best possible exponent, consider z = v2 — 1 = [(1,2), (1,2), (1 2), ]
Let 2 be the kth convergent, [(1,2),(1,2),...,(1,2)]. We have Qp(z) = 3272, 2l éj) , and

k times
. ko 2(=1)t! . .
QE(JZ_Z) =Y i1 207 3J ,50 |QE(z)— QE(’;—:)| is oforder . Observe that |x—f| < Z:—E—Z—: <
qlz. We know that g, is of the same order as 6%, so we have
k
log 3
2log 6 o)
z— Dk\7 §9_2k'2‘1k% :i.
Tk F
log3 __ log 3 . :
Hence the exponent 57 080 = Tloa(11v) is best possible. O
Theorem 3. Qg(x) is singular.
Proof. Let = = [(e1,a1), (e2,a2),...] with ECF convergents % = [(e1,a1), ... (en,ay)], and let
Qp(r) =y. Let t, := [(ént2, an+2), (€n+3, Ants),...]. We have

_ (an—i-l + tn)pn + €n+1Pn—1
(an-l—l + tn)Qn + €n+14n—1

and (see [13])

1
a qn((an-i-l + tn)Qﬂ + en-i—lQn—l) ‘

en—l—l(ann—l - ann—l)
Qn((an-l-l + tn)Qn + en—i—lQn—l)

‘ P
x R —
In

Since |t,| < 1, we have (in the case where a, 41 > 2)

1
(J%(an+1 +2)

1
(J%(an—l—l —-2) '

Pn
xr— —

an

< <

ok (—e.
Applying the formula for Qg(z), we have y — QE(%) => . 21;571(%61) )
n 32i=1 "2

e < -2 ()| < smmm
SRS PR L 3T, Bl
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Let r, = M‘. Then

x pn/‘]n
2 2

-2 2 2
qn(an+1 ) < qn(cimif ), and
3y B)+1 32z )1

o _ 262 (a1 + 2) 3T )+
Tn_l 3(21 1 22) 1 qn_l(an - 2)

_ 18 2 218 2

a(nan+1 +2) < dn ) - a(nan+1 +2) (an +1)?
3 2 (an — 2) n—1 3T(an — 2)
18(an+1 +2)(an + 1)

3%
If for some x, the a; are unbounded, then we may take a subsequence a;, such that 2 <
= 0, which implies that if the derivative of ?(z)
k—1
exists and is finite, it must be equal to 0. As we will see in the next proposition, the a; are in

fact unbounded for almost every z. Since Qg(z) is monotone, the derivative must in fact exist
almost everywhere, and hence Qg(x) is singular. O

a;, < a,_,. The above will imply that lim -

Proposition 4. The set of © with bounded even partial quotients has measure 0.

Proof. 1t is well known that almost every number is normal with respect to the regular continued
fraction. (The results of [14] can perhaps be extended to show that this in fact implies being
normal with respect to the even continued fraction, although we only need a much weaker result.)

For k > 0 a number which is normal with respect to the regular continued fraction expansion
will have at some point in its expansion three consecutive a;, a;+1,a;+2 > k, so after applying
the singularization and insertion algorithm (see [I5] for example) to obtain the even continued
fraction expansion we must have at least one even partial quotient a; > k. Hence almost every
number has unbounded even partial quotients. O

2.4. The linearization of the map Fr. The formula proved in Theorem [ and the continuity
of Qg provide the formula

0 n 1

Qe ([(1,2k1), (e1,2k2), (e2, 2k3),. Z 3k1+ "Fkn - n (2.2)

Consider the continuous piecewise linear maps Fg, T : [0,1] — [0,1] defined by

3y if y € [0, 3] b
— , 2—3y if y € [37%,2-37%]
3y—2 ifye(s,1] ’ '

Lemma 5. The homeomorphism Qg of [0,1] linearizes the maps Fr and Gg as follows:

(i) Qp'FrQE :FE-
(i) Qz'TeQr =Tk.

Proof. Let x = [(1,2k1), (e1,2k2), (e2,2ks), .. .].
(i) There are three cases to be considered:
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Case 1. x € (%, 1), where k1 = 1 and e; = —1. The we successively infer:
1 1 €9
QE(:E) = QE([(172)7 (_172]{72)7 (62,2]{73), .- ]) =2 g + W - 3]@2—-1-]@, +eee

(FeQe)a) =3Q5(0) -2 =2( 30 — o + g~ )

372 o 3ka+ks Jko+ka+ka
(QeFr)(x) = Qe ([(1,2k2), (e2, 2k3), (€3, 2k4), . . ])
1 €9 €9€3 —
~ 2ok~ gt + g ) = (P

Case 2. x € (%, %), where k1 = 1, e; = 1, and we have

1 1
QE(:E) = QE([(172)7 (172k2)7 (62,2]{73), e ]) = 2<§ - 3ha+1 + 3]@2_’6_13_’_1 - '>7
(FeQp)(z) =2 -3Qp(r) = 2<3%2 - 3k:-2+k3 + 3k2i2:33—|—k4 - > = (QrFE)(z).

Case 3. z € (0, %), where k; > 2 and we have:
_ 1 €1 €1€2
QE(ﬂj) = 2<3T1 — 3k1+k2 + 3k1+k2+k3 — .. .>’
il 1 €1 e1€e2
(FEQE)(z) = 3Qp(zx) = 2<3k1_1 ~ goivh T g )

(QEFE)(QU) = QE([(l, 2]€1 — 2), (61, 2]€2), (62, 2k3), .. ])

1 €1 e1e2 _
N 2<3k1_1  3ki—1tke + gki—I+kotks > = (FeQE)(x).

(ii) We always have

1 €9 €o€3
(QETE)(z) = 2<3TQ " Skatks + Skotkstks ">’
and consider separately the following two possible situations:
Case 1. © € (Tlﬂ, ﬁ), where ky =k, e; =1, y := Qg(x) € [37%,2-37%], and

(T5@e)(o) = Tolo) =T (235 - gorss + o0 st )

3_k - 3k+k2 k+ka+ks o 3k+k1+ka+ks

1 e ese
_ ko _ 2 2€3 B
=2-3y= 2<3T2 " Skatks + Skatks ks > = (QrTE)(x).
Case 2. x € (i, —2k1—1)’ where k1 =k, e1 = -1, y := QE(ﬂf) c [2 . 3—k,3—k+1]’ and
T ol ol 1 1 €2 eses
(TeQEe)(z) = T(y) =Tk <2(3—k + 25 ~ SRR T SRR )>
1 e ese
_ qk _ 2 2€3 _
=3y-2= 2<3T2 T SEaths | 3atheth > = (QrTE)(x). 0

2.5. The ECF Stern Sequence and Stern Polynomials. We now consider the integer
sequence of denominators of the fractions in our analogue Dg of the Stern-Brocot tree, giving
an ECF version of the Stern sequence. As we will see, this ends up being closely related to
a triadic version of the Stern sequence that has been constructed by Northshield in [I7]. It is
convenient to work on [—1,1), since [{z € [~1,1) : Y. a; < k}| = 2- 3% so n + 3n corresponds
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to moving down a level in the extension of the diagram Dpg to [—1,1). Let {b,} be the sequence
of the denominators of the fractions in the extension of Dg to [—1,1). We have the relations
b3n = bTLa
b3n+1 = w(n)bn + bn—l—la
b3n+2 = bn -+ w(n + 1)bn+1,

where w(n) = 2 if n is even and 1 if n is odd. We let by = 0. From these relations, we derive

— Z bnl'n: Z b3n$3n+ Z b3n+1$3n+1+ Z b3n+2$3n+2

n odd n odd n even n odd
=@+ 1+2%) D bpa” + 2 +x) Y b
n odd n even
and
Z bnl'n — Z b3n$3n + Z b3n+1x3n+1 + Z b3n+2x3n+2
n even n even n odd n even
= (z7 2+ 1+ 2?) Z b 4 (x7' + 1) Z bpa3"
n even n odd

Although we do not immediately obtain an infinite product form for the generating function (as
in the case of the Stern sequence), we will see that this is possible for a slight modification of
our sequence. Rewriting the above in matrix form, we have

() - (e 20 ) (20
2 +1+22 2@ !+0a)

(x7 +2) 272+1+22
V2rt 4+ 1+ V2z + x2), so we obtain the relation

V2B,(x) + Be(z) = (72 + V227 + 1+ V22 + 2)(V2B,(2°) + Be(z%)),

from which we obtain the infinite product representation
V2B,(2) + Be(z) = H(m‘ﬁn + V2273 4+ 14 V223"  2).

The sequence obtained from {b,} by multiplying the odd terms by /2 is what Northshield
denotes {b,} in [I7], in which many properties of the sequence are proved, including an infi-
nite product representation in Section 4. Our {b,} are A277750 in [18], which appear as the
denominators of Northshield’s R,,.

Dilcher and Stolarsky have considered a polynomial version of the Stern sequence in [6]. The
ECF Stern sequence can be similarly generalized, by setting b(0,z) = 0, b(1,z) =1, b(2,z) = 1,
and

The matrix < ) has an eigenvector < \{5 ) with eigenvalue (z72+

4 3 4 . .
b(B3n+1,z) = (1+ 4)( 2)+wb(7}1+17$) %fn?seven
b(n,z%) + z°b(n + 1,2%) if n is odd,
a(3n+2,z) = b(n,xj) + x2;)(n +1,2%) \ %f n %s even
b(n,z*) + (z* +z)b(n + 1,2%) if n is odd.
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.1

(0,0) 13 12 (1,0) (0,0 1A% 1-1/A (1,0)

FIGURE 4. The odd Farey map Fp and its linearization Fo

The above relations are derived from replacing the mediant construction with the polynomial
version used by Dilcher and Stolarsky. It is immediate from the definition that b(n, 1) recovers
the ECF Stern seqence, and that is a b(n, z) has coefficients in {0, 1}. It would be interesting to
find a combinatorial interpretation of the ECF Stern sequence or its polynomial generalization.

3. ODD PARTIAL QUOTIENTS
3.1. Odd continued fraction generation and ordering of rational numbers. In this

section, we consider the OCF in [—1, 1] given by

[(e1,a1), (e2,a2), (e3,a3),..] = a : (3.1)

€2
ay +
as +

€3

where e; € {£1}, a; is odd, e; = 1, and a; + ;41 > 0. For uniqueness of representations, we
require that in a finite expansion, if the last a; = 1, then e; = 1.

3.2. The odd Farey type map Fp and the odd Gauss map Tp. We consider the Farey
type map Fp : [0,1] — [0, 1] associated to OCF expansions and defined by

: 1

1_x2m 1f0§£17<§

Fo(x)=43-2 ifi<a<i (3.2)
11 ifi<a<l

Symbolically, Fp acts on the OCF representation by subtracting 2 from the leading digit a; of
x when (a1,e2) # (3,—1) and (ay,e1) # (1,1) (which correspond to x between 0 and %), and
by simply removing (a1, e) when (ay, e2) € {(3,—1),(1,1)} (which corresponds to z between %

and 1), i.e.

[(17 ai — 2)7 (627 a2)’ (63,&3)] if (al’ 62) ¢ {(37 _1)’ (1’ 1)}

Fo([(1,a1), (e2, a2), (€3, a3), .. ]) = {[(1,a2), (e3,a3). (eavas),...] if (a1, e2) € {(3, 1), (1,1)}.

The following result follows from direct verification:

Lemma 6. The infinite measure dvo(z) = % + ﬁ 18 Fp-invariant.

The induced transformation Ro of Fp on [4,1] acts on the OCF expansion in [3,1] as:

Ro([(l,al), (62,&2), (63, ag), .. ]) = [(1,&1), (63,&3), (64,&4), .. .],
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where (a1, e2) € {(3,—1),(1,1)}. Recall that the odd Gauss map Tp acts on [0, 1] by
TR 11
To(x): 21k+1—5 lfﬂjé [21k‘+1’1%]
E—(Zk‘—l) lfﬂfe[ﬁ,m],
and it acts on OCF expansions (3.I]) restricted to [0, 1] by
To([(1,a1), (€2, a2), (e3,a3),...]) = [(1,a2), (e3,a3), (s, aa), .. .].

Recall also that duo(z) = (5% —=ta +11_ —)dx is a finite To-invariant measure [24].

We will consider instead the map Tp : [-1,1] — [—1,1] acting on the OCF expansion (3.1
in [—-1,1] as:

To([(el, al), (62,&2), (63, ag), .. ]) = [(62, ag), (63,&3), (64, a4), .. ]

Equivalently Tp () = esTo(x) if # > 0 and Tp is an even function, that is

i1 ify e (3,1)
To(x) =491 —-(2k—1) ifz€ (5,505 k>2
To(—x) if x € (—1,0).

It is plain to check that Rp and T o are conjugated, or more precisely Tvo = Roy !, where

. 1 1 .
w(gj): %— 1fx€(§,1) and w_l(y): m 1f—1<y<0
13 ifze(},d) Fly and 0 <y < 1.

xr
The push-forward fzp of the measure l/o|[1 /3,1] by ¥ yields a T, o-invariant measure given by

[ i - [ G-+ G )

/3
1 o~
z/lf(y)duo(y),
that is ) J ) J
~ _ Y - %Y
duo(y) = AR R + 5 ST G 1 X0

Again, Tp is an extension of Tp with 7T = Gomr, where 7 : [=1,1] — [0,1], 7(x) = |z|. The
push forward of 1o under 7 is the Tp-invariant measure up.

The map Tvo coincides with the map 7" introduced and investigated by Rieger in Chapters 2
and 3 of [2I]. Note also that Gduo(y) = dp(y), where p is the T-invariant measure considered
in [21, Theorem 6.1].

3.3. The odd Minkowski type question mark function QQp. Let A be the unique real root

of 23 — 2% —x — 1 = 0. Following [25], we define the map
> —Hk_ (—ei)
Qolw) = —5—, (3.3)
1 ADiz1 @i

which coincides with Zhabitskaya’s FO(z).

log A

Theorem 4. Qo is is Hélder continuous, with best exponent TTog G °

In preparation for this result, we need two preliminary facts about the (ordered) set
Vo :={z€Qn0,1] : 2 = [(e1,a1), (e2,a2), ..., (e, ax)] and a1 + -+ + a, < n+1}.

Note that in this section we use the same notation ), and X, as in Section 2], but now they
denote odd continued fraction analogues. The facts that we need follow from the structure of
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the analogue of the Stern-Brocot tree for odd continued fractions, which we denote D, as in [25].

Proposition 7. For a reduced fraction g € Vn,
q < Gn+2‘

Proof. In fact, the largest denominator in ), is given by the n+2th Fibonacci number. This can
be directly verified for the first few n, and follows inductively from the fact that every element
of X1 := Vn+1 \ Yy is the mediant of two adjacent elements of },. Since no two elements of
Xn+1 are adjacent in Y, 11, the largest denominator in Y9 is at most the sum of the largest
denominator in Y, 41 and the largest denominator in Y,,. Since this recurrence relation is in fact
satisfied by the convergents of [(1,1),(1,1),(1,1),...], we obtain the stated (sharp) upper bound
for the denominators. O

X1

>W

1 2

A2 3 3
1 3 3
Xg /4\ /5\ /

1 2 2 4 5 4
A A A A
X 1 3 3 3 2 5 8 e 5 7 5

5 K K ; 8 A ﬂ K ! A K 6
X 12 2 4 5 4 4 5 4 6 9 7 11 13 S 7 8 10 11 6
6 7 11 9 15 18 13 11 12 9 11 16 12 18 21 14 10 11 13 14 7
5 5 12 9
17 13 19 11

FIGURE 5. Zhabitskaya’s odd Farey tree

Proposition 8. There ezists an absolute constant C such that if  and y are adjacent elements
Of yn; then
[Qo(x) = Qo(y)| < CA™".

Proof. First, suppose that y € X,. We have already noted that no two elements of A}, are
adjacent in ), so it must be the case that y € X, is a descendant of x, in the sense that it is ob-
tained from x by (perhaps repeatedly) taking mediants. Suppose x = [(e1,a1), (€2, a2)..., (e;,a;)].
There are three possible “moves” in the tree D, each corresponding to a possible relationship
between an element x € X} and its descendant in Xy or Xjyio. The first type of move is ap-
pending (1, 1) to the tail of the continued fraction of . The second (possible only when a; > 1)
is appending (—1,1),(1,1) to the tail, and the third (possible only when a; = 1) is to remove
(ej,a;) = (1,1) and replace (ej_1,aj—1) with (ej_1,aj—1 +2). Suppose we call a move (of any
of the three types) a left move if the result is less than the input, and a right move if the result
is greater than the input. Not only is y obtained from z by a series of these moves, but since
y is adjacent to x, it must be obtained either by a right move followed by only left moves, or a
left move followed by only right moves. Note that moves of the first type will be right moves iff
II)_,(—e;) = 1, and hence moves of the second or third types are left moves in this case. Note
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also that each move has the end result of switching the sign of the product of the —e;. We now
consider three cases:

Case 1. If the first move is of the first type, then the second move must be as well, in
order to switch direction. Subsequent moves must all have the same direction as the second,
so they must alternate between type three moves (since the type one moves leave (1,1) as
the last term) and type one moves. In this case, the continued fraction of y is of the form
[(e1,a1), (e2,a2)..., (€5, a;), (1,1 4 2k)] or [(e1,a1), (e2,a2)..., (ej,a;), (1,1 4+ 2k), (1,1)].

Case 2. If the first move is of second type, then the second move must be of third type,
after which it must alternate between first type and third type. Hence the continued fraction of
y is of the form [(61, a1)7 (627 a2)"'7 (ejv aj)v (_17 1+ 2]{7)] or [(617 al)v (627 (12)..., (ej7 aj)7 (_17 1+
2%), (1,1)]

Case 3. If the first move is of third type, then the second move must be of second type, after
which it must alternate between first type and third type. Hence the contined fraction of y is of
the form [(61, al)v (627 a2)"'7 (ej—la aj—1+2)7 (_17 1)7 (17 1+2k)] or [(617 al)v (627 (12)..., (ej—lv aj—1+
2)7 (_17 1)7 (17 1+ 2]{7)7 (17 1)]

In any case, what we need is that fact that |Qo(z) — Qo(y)] < CA~2i=19\~2k=1 and the
consequence that since y € A}, then

[Qo(z) — Qo(y)l < CAT".

For the first two cases this is an immediate consequence of the forumla for (o and the possible
continued fractions for y. In the third case, we note that

Qo () — Qoly)] = A~ ZI=1 4 ](1 = A7) — (A2 4 A3 = A472k gy a2k,
From the definition of A, 1 = A™' = A72 = Xx73 =0, so
[Qo(@) = Qo(y)] < 2A~H2A7 Xisi o < gp= Xhar ey 2L,

Essentially, what we have used in the third case is that Qo(x) does not depend on the repre-
sentation of x. Although we have adopted a convention that if the last a; = 1 then we require
e; = 1, the formula for Qo gives the same results for [(e1, a1), (e2,a2)..., (ej—1,aj-1),(1,1)] and
the equivalent [(e1,a1), (€2, a2)..., (ej—1,aj—1 + 2),(—1,1)], as a consequence of the definition of
A

Finally, by increasing the constant C' by a factor of A\, we may remove our initial assumption
that y € A}, since given any two adjacent elements of ), at least one of them must be in &),
or X,_1. ]

We are now ready to prove Theorem [, in much the same manner as Theorem 2l

Proof of Theorem[j]. Suppose z < 2’ € [0,1]. Let y = Qo(z) and ¥ = Qo(a’). Let k be the
least integer such that we have x < r <1’ < 2/ for some 7,7’ € ). The bound from proposition
Mgives ' —x > ' —r > G~2*. Since we have taken k to be the least possible, there are at most
3 elements of ) in the interval [z,2'], so 3 —y < 5CA™F. We have 2klog G > log —— and

(k —logy 3C) log A < log y,—l_y, which together give

y —y< (' - a:);fC;ggAG.
To see that this is best possible, consider x = G—1 = [(1,1), (1,1), (1, 1)...] and its convergents.
If x, = [(1,1),(1,1),...,(1,1)] then |x — z,] is of the order G~2". On the other hand,

n times

oo

1Qo(x) — Qolwn)l =

k=n

_H§:1 (—e;)
AZ?:l 1
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log A

log A o
is of order A™". Since |z — x| 210G is of order (G_Q”)QloggG = A7", we conclude that this is the
best possible exponent. O
3.4. The linearization of the map Fp. With notation as in (B.1]), formula (33]) provides

1 €1 €1€9
QO('Z') _ /\al—l - )\al—i-ag—l /\a1+a2+a3—1 B

(3.4)

Consider the piecewise linear maps Fo,To : [0,1] — [0,1] defined by
A2y if y € [0,\%]

Foly) =<¢ XNy —1) ifye [)\2,1_1%
Al-y) ifye[l-3,1]

To(y) = ANy ity e ()\A2k_-—11 ) >\21172)7 k>1
)\2k—1y_)\ iny( 1 A—1 )7 k

Lemma 9. The homeomorphism Qo of [0,1] linearizes the maps Fo and Tp as follows:

(i) Q5'FoQo =Fo.
(i) Q5'ToQo =To.

Proof. Let x = [(1,a1), (e1,a2), (e2,a3),...] € [0,1] be as in (BI)).
(i) There are three cases that have to be considered:
Case 1. z € (0, 3), where (ay,e1) ¢ {(3,—1),(1,1)}. The we successively infer:

1 €1 €169 1
QO('Z') = Jai—1 - \ai1taz—1 + \a1taz+az—1 - € <0’ p)’
(QoFo)(x) = Qo([(L, a1 — 2), (e1,a2), (e2, a3), - . ])
1 €1 €1€2 2 —
- \a1—3 B \a1+az—3 + \a1+az+az—3 - =A QO(:E) = (FoQo)(l‘)
Case 2. x € (%, %), so a1 = 3, e = —1 and we have:
1 €1 €169
Qo(x) - A(E o \ai+az + \aitaz+as o )

B 1 1 €2 €2€3

- A(ﬁ + \a2+3  \aztasz+3 + \aztastas+3 >

. 1 1 €92 €o2€3 1 1

T T ez T Jatwtz T yatataiz S (ﬁ’l B X)?

— 1 e ese
(FOQO)(x) = )‘(AzQO(x) o 1) - A(E N )\a2-21-a3 + )\“2-51133-1-&4 o )

= QQ([(17a2)7 (627a3)7 (637(14)7 .- ]) = (QOFO)(x)
Case 3. x € (3,1), so a; = e; = 1 and we have:

. 1 €9 €oe3
Qo(x) =1~ a2 + \e2+az  )\aztaztas o

— 1 e ese
(FOQO)(:E) = )\(1 - QO(QZ‘)) = Aa2—1 o /\az-ljas—l + )\a2+t123-‘fa4—1 B

= (QoFo)(x).
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(ii) Note first that

1 1 €2 €oe3
Qo(z) = Nai—1 ~ Nartas—1 T yaitaatas—1  ya1taztastai—1

+...’

€9 €o2€3
(QoTo)(x) = \a2—1  Nag+az—1 * Naztastasi—1 0

and for every k € N we have

1 1 1 1 1 A—1
Q0<2k_ 1> =z and Qo (%) T N2kh—2  ZZh—1  ek-1

Two situations can occur:
Case 1. x € (3, 52=), k> 1,50 a; =2k — 1, e; = 1 and we have

2k 2k—1
1 A—1 1 1
QO(ﬁ) = N1 < Qo(x) < QO(Zk — 1) = N3
(ToQo)(z) = A — X 'Qo(x)

1 1 .
— 2k—1 2 B
=A-A <)\2k—2 T \Zh3twm T \ok—rastas > = (QoTo)(x).

Case 2. = € (Tl—p ﬁ), k>2,s0a; =2k—1, e; = —1 and we have

(1]
2]

1 1 1 A—1  A+1
QO(% - 1> = ks < Qola) < QO(% - 2> T3 T BT
(ToQo)(x) = X 1Qo(x) — A

1 1 e
\2k—1 2 _
=A <)\2k—2 + N2k—2+az  \2k—2+astas T > —A=(QoTo)(z). U
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