
ULAM SEQUENCES AND ULAM SETS

NOAH KRAVITZ AND STEFAN STEINERBERGER

Abstract. The Ulam sequence is given by a1 = 1, a2 = 2, and then, for n ≥ 3, the element an
is defined as the smallest integer that can be written as the sum of two distinct earlier elements

in a unique way. This gives the sequence 1, 2, 3, 4, 6, 8, 11, 13, 16, . . . , which has a mysterious
quasi-periodic behavior that is not understood. Ulam’s definition naturally extends to higher

dimensions: for a set of initial vectors {v1, . . . , vk} ⊂ Rn, we define a sequence by repeatedly

adding the smallest elements that can be uniquely written as the sum of two distinct vectors
already in the set. The resulting sets have very rich structure that turns out to be universal

for many commuting binary operations. We give examples of different types of behavior, prove

several universality results, and describe new unexplained phenomena.

1. Introduction

1.1. Background. Stanis law Ulam introduced the sequence

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97 . . .

in a 1964 survey [15] on unsolved problems. The sequence is given by a1 = 1, a2 = 2, after which
we iteratively choose the next element to be the smallest integer that can be written as the sum of
two distinct earlier elements in a unique way. Ulam asks in [16] whether it is possible to determine
the asymptotic density of the sequence (which, empirically, seems to be somewhere around 0.079).
At first glance, this sequence seems somewhat arbitrary and contrived.

Figure 1. The Ulam set arising from {(9, 0), (0, 9), (1, 13)} shows both chaotic and regular
behavior. In §4 we will prove that it is periodic in both the x− and y−direction.

Ulam himself is not very clear about his motivation, and the original text reads only:

Another one-dimensional sequence was studied recently. This one was defined
purely additively: one starts, say, with integers 1,2 and considers in turn all in-
tegers which are obtainable as the sum of two different ones previously defined
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but only if they are so expressible in a unique way. The sequence would start as
follows:

1, 2, 3, 4, 6, 8, 11, 13, . . . ;

even sequences this simple present problems. (Ulam, 1964)

It is trivial to see that an ≤ Fn+1, where Fn is the n−th Fibonacci number. This is, in fact,
the only rigorously proven statement about the Ulam sequence that we are aware of. Different
initial values a1, a2 can give rise to more structured sequences [2, 4, 9]: for some, the sequence
of consecutive differences an+1 − an is eventually periodic. Ulam’s original sequence beginning
with 1, 2 does not seem to become periodic: Knuth [8] remarks that a4953 − a4952 = 262 and
a18858 − a18857 = 315. The understanding in the literature is that the sequence ‘does not appear
to follow any recognizable pattern’ [3] and is ‘quite erratic’ [12]. Other initial values sometimes
give rise to more regular sequences, a phenomenon investigated by Cassaigne & Finch [1], Finch
[2, 3, 4], Queneau [9] and, proving a conjecture of Finch, Schmerl & Spiegel [12].

Figure 2. The set arising from {(2, 5), (3, 1)} creates a regular pattern. The regularity
of this set is a consequence of a more general result in Section §2.1.

1.2. The Hidden Structure. The second author [13] recently discovered, more or less by acci-
dent, that the Ulam sequence has a nontrivial interaction with Fourier series: more precisely, if
we let (an)∞n=1 denote the sequence starting with a1 = 1, a2 = 2, then, empirically, there seems to
exist a real number α ∼ 2.571447 . . . such that

N∑
n=1

cos (αan) ∼ −0.79N.

If the sequence were truly random, we would expect the sum to be at scale ∼
√
N . Thus, this

finding indicates the presence of a strong intrinsic structure in the sequence αan. The underlying
structure is very rigid: for the first 107 terms of the sequence,

cos (2.5714474995 an) < 0 for all an /∈ {2, 3, 47, 69} .

This type of structure usually indicates periodic behavior, but the sequence does not seem to
have periodic behavior of any kind – the phenomenon, an unusual connection between additive
structures in N and quasi-periodic behavior, is not understood and also occurs for many other
initial conditions (although the arising constants vary). One interesting byproduct of this discovery
is the development of an algorithm by Philip Gibbs [5] (see also the description of Knuth [7]) which
is much faster than previously existing algorithms whenever such phenomena are present. This
allowed the verification of the presence of the phenomenon for the first 109 elements of the sequence.
Daniel Ross studied various aspects of the phenomenon in his 2016 PhD thesis [11].
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1.3. The Big Picture. If we return to the original setup, we see that the Ulam sequence is given
by a very simple greedy algorithm: to find the next element, perform all possible binary operations
on the given set and add the smallest element with a unique representation. Obviously, this scheme
can be implemented for any type of set equipped with a binary operation and a notion of size.
This generalization gives rise to an incredibly rich structure, which we discuss in this paper – we
focus our investigation on objects in R2 and R3 equipped with the standard addition. (We do
show, however, that the dynamics of lattice points is universal, and we also describe the behavior
of many Ulam sets over algebraic objects equipped with a notion of size and an associative and
commutative binary operation.) Generalizing the classical Ulam sequence is very much in the
spirit of Ulam’s musings; directly after introducing the sequence, he writes, in a passage that may
not be as well known:

For two dimensions one can imagine the lattice of all integral valued points or the
division of the plane into equilateral triangles (the hexagonal division). Starting
with one or a finite number of points of such a subdivision, one can ‘grow’ new
points defined recursively by, for example, including a new point if it forms with
two previously defined points the third vertex of a triangle, but only doing it
in the case where it is uniquely so related to a previous pair; in other words,
we don’t grow a point if it should be a vertex of two triangles with different pairs
previously taken. Apparently the properties of the figure growing by this definition
are difficult to ascertain. For example [...] it is not easy to decide whether or not
there will be infinitely long side branches coming off the ‘stems’. (Ulam, 1964)

It is evident that Ulam himself was considering a generalization of a more geometric flavor. Al-
though this line of inquiry is potentially interesting, we chose to pursue a more algebraic gen-
eralization, and the rest of this paper is devoted to studying the additive analogue for vectors.
However, the question of ‘whether or not there will be infinitely long side branches coming off the
stems’ also arises naturally in our setup (see Figure 3 below and Section §4).

Figure 3. The set arising from {(1, 0), (2, 0), (0, 1)}, the classical Ulam sequence on the
x−axis augmented by (0, 1). Regular columns branch away from the irregular sequence.

Figure 3, which shows the Ulam set generated by {(1, 0), (2, 0), (0, 1)} (see Figure 10 for a larger
scale), motivated much of our inquiry into the internal structure of these graphs. In particular, this
example recreates the classical Ulam sequence on the x−axis (about which little is known). One
main result of this paper (Section §4) implies that for every fixed value of x ∈ N, the y−coordinates
of elements in the set are either bounded in size or eventually become periodic (where the period
is some power of 2).
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1.4. Ulam sets. We define Ulam sequences in Rn
≥0 (the set of nonzero vectors all of whose entries

are nonnegative) by specifying a set of initial vectors {v1, . . . , vk} and then repeatedly adding the
smallest vector (by Euclidean norm; see Section §3) that can be uniquely written as the sum of
two distinct vectors already in the set. At any stage of the construction, there may be two or more
vectors with the same size each with a unique representation – in this case, we can simply add
all of them at once; having initial conditions contained in Rn

≥0 guarantees that they can be added
one by one in any arbitrary order without affecting the representations of the others. However,
this ambiguity makes it clear that there can be no canonical notion of sequence, which is why we
will refer to these objects as unordered Ulam sets.

Remarks.

(1) It is not clear how one would define an Ulam sequence allowing initial elements with
negative initial components. Even for a one-dimensional Ulam-type sequence, allowing
negative initial elements proves difficult. The greedy algorithm does not work because
two numbers with large absolute value can sum to a number with smaller absolute value.
This possibility can potentially destroy the set property of uniqueness of representation
retroactively, and the order in which we add vectors tied for smallest becomes a nontrivial
consideration. We thus restrict ourselves in the remainder of this paper to nonzero initial
elements {v1, . . . , vk} ⊂ Rn

≥0 containing only nonnegative components.

(2) It is not difficult to see that all such sequences are necessarily infinite. If such a sequence
were finite, we could select the two vectors with the largest x1-component (breaking ties
by considering the x2-component, etc.). The resultant sum of these two vectors would be
unique among sums of distinct vectors already in the set, which leads to a contradiction.

(3) The definition makes sense for arbitrary vectors equipped with a notion of size. In general,
however, the most interesting dynamics can be expected when a1v1 +a2v2 + · · ·+akvk = 0
has nontrivial solutions over Zk (Section §2). However, even an absence of nontrivial
solutions gives rise to many complexities (Section §2.4).

1.5. Outline of the paper. We start by presenting several examples in Section §2 and showing
how, in many cases, we can establish the existence of regular repeating patterns. §3 contains several
universality results stating that, for a large number of initial conditions, the arising behavior is
universal: in particular, the sets depend only very weakly on the notion of norm used (despite
the definition’s emphasis on adding the ‘smallest’ vector with a unique representation). §3 also
shows numerical results suggesting that the generic case of three initial conditions has surprisingly
complex structures and symmetry that we do not rigorously understand. §4 is devoted to the
column phenomenon: we provide at least a partial understanding of regular periodic structures
such as the ones observed to be branching away from the x−axis in Figure 3 (above). §5 concludes
the paper by listing several open problems.

2. Lattices and Non-Lattices

2.1. Lattices. We first consider the case of two vectors {v1, v2} ⊂ R2
≥0. If v2 = cv1, then we

merely recreate the one-dimensional classical Ulam sequence with initial conditions {1, c} where
c > 0. If c = p/q is rational, then we can reduce it to the one-dimensional Ulam sequence with
initial conditions {p, q}. If c is irrational, then we will be able to use Lemma 2 (Section §3.2) to
deduce that the elements in the one-dimensional sequence are isomorphic to the universal dynamics
created by the initial set {(1, 0), (0, 1)} ⊂ R2

≥0. We now determine the dynamics of such sets.

Theorem 1 (Lattice in Two Dimensions). The set arising from nonparallel {v1, v2} ⊂ R2
≥0 con-

sists of all vectors of the form v1+nv2 and nv1+v2 for n ∈ N and all vectors of the form mv1+nv2
with m,n ≥ 3 both odd integers.

Proof. All terms in the sequence are contained in the set

{k1v1 + k2v2 : k1, k2 ∈ N} .
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Figure 4. The set arising from {(1, 0), (0, 1)}

Since v1 and v2 are linearly independent, the above representation is unique. Whether mv1 + nv2
is contained in the set can be determined by knowing which elements of the form

{k1v1 + k2v2 : 0 ≤ k1 ≤ m ∧ 0 ≤ k2 ≤ n}

are contained in the Ulam set. First, v1 + v2 is uniquely representable and is thus in the Ulam
set. We can now see inductively that all elements

{v1 + nv2 : n ∈ N} and {nv1 + v2 : n ∈ N}

are uniquely representable and hence are contained in the set. We will now show by induction
that for m,n ≥ 2, the vector mv1 + nv2 is an element iff both m and n are odd. The base case is
m = 2 or n = 2. We have

2v1 + 2v2 = (2v1 + v2) + v2 = (v1 + 2v2) + v1,

implying that it is not included. By the same token, for n ≥ 3,

2v1 + nv2 = (v1 + v2) + (v1 + (n− 1)v2) = (v1 + nv2) + v1

is is not unique either. Symmetrically, vectors of the form nv1 + 2v2 are excluded for the same
reason. We now consider vectors mv1 + nv2 with m,n ≥ 3 and note that we always have a
representation of the type

mv1 + nv2 = (v1 + (n− 1)v2) + ((m− 1)v1 + v2),

using vectors already established to be in the set. Depending on the parity of m and n, we can
now distinguish four cases. If m,n are both even, then we get a second representation

mv1 + nv2 = ((m− 1)v1 + (n− 1)v2) + (v1 + v2),

where (m− 1)v1 + (n− 1)v2 is contained in the set by the inductive hypothesis. If m is even and
n odd, then

mv1 + nv2 = ((m− 1)v1 + nv2) + v1

is a second representation, and the case of m odd, n even follows by symmetry. It remains to
show that there is no second representation when both m and n are both odd. Let S1 denote
the set of vectors of the form v1 + nv2 or nv1 + v2, and let S2 denote all the other vectors in the
Ulam set with x−coordinate at most m and y−coordinate at most n. Note that, by hypothesis,
the coefficients of v1 and v2 are both odd for all elements of S2. The fact that m,n ≥ 3 means
that mv1 + nv2 can be written uniquely as the sum of 2 elements of S1: this is the representation
we found before beginning casework. The sum of any 2 elements of S2 has even coefficients for v1
and v2, so mv1 + nv2 cannot be expressed in this way. Similarly, the sum of an element of S1 and
an element of S2 must have at least 1 even coefficient (from the sum of the 1 in the S1 element
and an odd coefficient in the S2 element). This exhausts all possibilities. �

2.2. Special cases with regular behavior. The purpose of this section is to demonstrate that
a variety of cases can actually be rigorously dealt with; the proofs mainly rely on using the right
type of induction and are only sketched.
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2.2.1. {(2, 0), (0, 1), (3, 1)}. This sequence consists of exactly the points (2, 0) and (0, 1), and all
points of the form (n, 1), (2, n), and (3, n) where n ≥ 2.

Figure 5. The set arising from {(2, 0), (0, 1), (3, 1)}.

Proof. We start by noting that there can be no point other than (2, 0) on the x−axis since (2, 0)
is the only point with y−component 0. The same argument tells us that (0, 1) is the only point on
the y−axis, and, by the same token, there can never be any point with x−component 1. Now for
n ≥ 2, we have (n, 1) = (n− 2, 1) + (2, 0) uniquely. (This is simple n→ n+ 2 induction with base
case (2, 1) and (3, 1), which one can easily verify by brute-force computation.) Inductively, we also
have (2, n) = (2, n − 1) + (0, 1) uniquely for n ≥ 2, so all points of the form (2, n) are included.
Similarly, (3, n) = (3, n− 1) + (0, 1) uniquely. Note that, again, the absence of any element of the
Ulam set with x−component 1 makes uniqueness easy to see. Next, we have (4, 2) = (2, 2)+(2, 0) =
(4, 1)+(0, 1) not uniquely. And for n ≥ 5, (n, 2) = (n, 1)+(0, 1) = (n−2, 1)+(2, 1) is also excluded.
For n ≥ 4, we have (4, n) = (2, 0)+(2, n) = (2, 1)+(2, n−1) not uniquely. Finally, for any remaining
‘interior point with m ≥ 5, n ≥ 3, we have that (m,n) = (m−2, 1)+(2, n−1) = (m−3, 1)+(3, n−1)
is not unique and is thus excluded. �

2.2.2. {(1, 0), (0, 1), (2, 3)}. This sequence consists of all points of the form (n, 1) and (1, n) where
n ∈ N, the point (2, 3), and all points of the form (2n+4, 2m+3) for m,n ∈ N. The proof proceeds
using parity distinctions as in Theorem 1.

Figure 6. The set arising from {(1, 0), (0, 1), (2, 3)}.

2.2.3. {(3, 0), (0, 1), (1, 1)}. This sequence splits R2
≥0 in a stable way into two regions with different

lattice behavior. We did not attempt to obtain a complete proof because at this point it seems
to require an enormous amount of casework. However, we do not see a fundamental obstruction
to obtaining a proof using the methods employed above. (Perhaps unsurprisingly, this sort of
statement is fairly easy to prove via induction once the correct induction hypothesis is found).
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Figure 7. The set arising from {(3, 0), (0, 1), (1, 1)} splits the domain into two lattices.

2.3. Linear Transformations. There is a useful invariance under certain linear transformations
which we actively exploit in the study of three initial vectors {v1, v2, v3} ⊂ R2

≥0.

Lemma 1. Let {v1, . . . , vk} ⊂ R2
≥0 span R2. There exists a linear transformation T : R2 → R2

that maps {v1, . . . , vk} ⊂ R2
≥0 to another set in R2

≥0 having at least one of the transformed vectors
lies on the x−axis and at least one on the y−axis with the arising Ulam sets isomorphic.

Proof. The proof is fairly simple: it is easy to see that sets are invariant under small rotations
that keep all the vectors in the positive quadrant R2

≥0. This allows us to map the vector(s) with
the smallest slope to the x−axis. Finally, it is also easy to see that Ulam sets of this type are
invariant under shear transformations

T : (x, y)→ (x− cy, y),

and the result follows from composition. �

This property is quite useful when studying the case of three initial vectors in R2
≥0. Invariance

under certain types of linear transformation easily generalizes to higher dimensions and should be
a valuable symmetry in the systematic investigation of these sets. We also remark that if all the
initial vectors are contained in N2, then the transformed vectors will all be in Q2

≥0, and scaling all

the vectors will yield another set in N2.

2.4. Unit Vectors in Three Dimensions. A natural topic of further inquiry is the case of
the three canonical unit vectors in R3 because their behavior is the universal behavior for three
vectors {v1, v2, v3} that are linearly independent over Z (see Section §3.2). Computation using
the initial set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} reveals this structure to be highly nontrivial. The co-
ordinate planes naturally contain 2-dimensional lattices generated pairwise by the initial vectors
characterized above. There is a second type of regular structure appearing in the hyperplane{

(x, y, z) ∈ R3 : x = 2
}

(and, by symmetry, the other two hyperplanes) because it contains the
points (2, 0, 1), (2, 1, 0), and (2, 2m + 3, 2n + 3) for m,n ∈ N. However, beyond these two planes
(or, a total of six hyperplanes with symmetry), there is a secondary structure unfolding in the
interior that seems to have a roughly hexagonal shape and to be centered in the direction (1, 1, 1)
(as is to be expected because of symmetry under permutation of the coordinates). Simple nu-
merical experiments reveal that the point (4, 6, 10) (along with the five other points arising from
permutation) seems to make the largest angle with the vector (1, 1, 1); the second largest angle
comes from (94, 136, 230). Our only rigorous result (besides the behavior of the hyperplanes and
the obvious hexagonal symmetry) is that (n, n, n) is never in the set.
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Figure 8. The first few points with all coordinates larger than 2 in the Ulam set generated
by the unit vectors of R3 (left) and a projection of the same points onto the xy−plane (right).

Proposition. The Ulam set arising from the canonical basis vectors in R3 does not contain a
point of the form (n, n, n) ∈ N3.

Proof. Suppose the statement is false and (n, n, n) ∈ N3 is the smallest such element in the set.
(Observe that (0, 0, 0) is not included in the set.) Then (n, n, n) = (a1, a2, a3) + (b1, b2, b3) for
some unique elements (a1, a2, a3) 6= (b1, b2, b3) in the set. It is clear that not all entries of these
elements can be identical because (n, n, n) is the smallest element in the set with that property.
Then, however, at least one of the six possible permutations of the coordinates yields a second
representation, and the resulting non-uniqueness implies the result. �

Figure 9. Projection of the set onto the orthogonal complement of (1, 1, 1).

3. Independence of Norms and Universal Embeddings

3.1. Independence of Norms. This section establishes a simple result that we believe to be
fairly fundamental: Ulam sets depend strongly on initial conditions but much less so on the
notion of size that is used. Our definition of Ulam sets uses the Pythagorean `2−distance to
determine the ‘smallest’ element, but the arising sets are actually independent of the notion of
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size. More precisely, if the initial vectors are {v1, v2, . . . , vk} ⊂ Rn, then any function

f : {a1v1 + a2v2 + · · ·+ akvk : ai ∈ N ∧max(a1, a2, . . . , ak) > 0} → R

satisfying

f(u+ v) > max (f(u), f(v)) for all vectors u, v in its domain

will give rise to the same universal set independent of the particular function f used. This property
guarantees that it does not matter in what order we add new elements that are tied for smallest
length. For example, all `p−norms with 1 ≤ p < ∞ (including the Euclidean norm `2) have
this property, as do all functions f : Rn

≥0 → R that are strictly monotonically increasing in each

coordinate. For a given set of initial conditions {v1, . . . , vk} ⊂ Rn
≥0 and any admissible function

f , one can define the f−Ulam set as the set obtained by adding, in a greedy manner, the smallest
elements according to f−value that are uniquely representable as a sum of two earlier terms.

Theorem 2 (Independence of Norms). f−Ulam sets are independent of the function f .

Proof. The proof is by contradiction. Suppose that for a given set of k initial vectors in Rn
≥0, there

are two functions f1, f2 giving rise to different Ulam sets, and suppose without loss of generality
that x ∈ Rn

≥0 is the f1−smallest element that is contained in the first set but not the second set.
Since the initial conditions and subsequently added points are all contained in Rn

≥0, whether the
point x is added to a set depends only on the points{

y ∈ Rn
≥0 : ∀ 1 ≤ i ≤ n yi ≤ xi

}
.

By assumption, these sets coincide, which yields a contradiction. �

This theorem shows the Ulam sets to depend on the underlying algebraic structure of addition
but only very weakly on the ordering by a notion of size. We remark that, in practice, the order
in which elements are added to the set depends rather strongly on the f−function used but the
resulting (unordered) sets are ultimately the same.

3.2. Universal embeddings. The next statement deals with a large number of initial cases and
shows that the dynamics for ‘generic’ initial conditions is unique. Here, ‘generic’ refers to the fact
that for ‘most’ (i.e. in the sense of Lebesgue measure) sets of initial vectors {v1, . . . , vk} ⊂ Rn

≥0,
the equation

a1v1 + a2v2 + · · ·+ akvk = 0 has no solution (a1, . . . , ak) ∈ Zk \ 0.

In this case, things drastically simplify because each possible element of the set has a unique
representation in {vi}, which in turn implies universal behavior.

Lemma 2. Let {v1, . . . , vk} ⊂ Rn
≥0 such that

a1v1 + a2v2 + . . . akvk = 0 has no solution (a1, . . . , ak) ∈ Zk \ 0.

Then the arising Ulam set A is structurally equivalent to the Ulam set E arising from the set
{e1, . . . , ek} ⊂ Rk (where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) is the i−th canonical basis vector in Rk) in
the sense that

a1v1 + a2v2 + · · ·+ akvk ∈ A if and only if (a1, . . . , ak) ∈ E.

Proof. The argument is a straightforward application of Theorem 2:

a1v1 + a2v2 + · · ·+ akvk = b1v1 + · · ·+ bkvk

with ai, bi ∈ N implies that ai = bi for all 1 ≤ i ≤ k and thus that each potential element of the
Ulam set has a unique representation in {vi} over N as coefficients. We observe that we can, for
all relevant lattice points that could ever be under consideration, define a f−function via

f (a1v1 + a2v2 + · · ·+ akvk) =
√
a21 + a22 + · · ·+ a2k.

Theorem 2 implies that A does not depend on the f−function, so the fact that this particular
choice of f−function gives rise to the canonical Ulam set E concludes the argument. �
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This simple statement has quite serious implications. For example, the Ulam set generated by{
(1, 0), (1,

√
2)
}

behaves exactly like the set generated by {(1, 0), (0, 1)} (which is structurally
fairly simple; see Figure 4). By the same token, the initial sets{

(1, 0, 0), (1,
√

2, 0), (1, 1,
√

3)
}
⊂ R3

≥0 and {3,
√

5, 2 + π} ⊂ R≥0

both evolve exactly the same way as the initial set

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3
≥0.

The following statement extends Lemma 2 and establishes even more general equivalence classes
for Ulam sets (but is stated separately for clarity of exposition).

Lemma 3. Suppose {u1, . . . uk} and {v1, . . . , vk} give rise to Ulam sets U and V , respectively,
under admissible notions of length fu and fv. Then U and V are structurally equivalent (in the
sense of Lemma 2) if

a1u1 + a2u2 + · · ·+ akuk = 0

and

a1v1 + a2v2 + · · ·+ akvk = 0

have the same set of solutions (a1, a2, . . . ak) ∈ Zk.

Proof. We proceed by contradiction. The condition above guarantees that representations of possi-
ble elements of U and V are completely equivalent: if an element of U has multiple representations
a1u1 + a2u1 + · · ·+ akuk = b1u1 + b2u1 + · · ·+ bkuk, then the corresponding element of V has the
same representations given by a1v1 + a2v1 + · · ·+ akvk = b1v1 + b2v1 + · · ·+ bkvk. Now suppose
(without loss of generality) that there is a smallest element x0 ∈ U (measured according to fu)
representable by

a1u1 + a2u2 + · · ·+ akuk = x0 ∈ U
such that the corresponding element

a1v1 + a2v2 + · · ·+ akvk = y0 /∈ V

and such that U and V agree for all elements that are smaller than x0 with respect to fu. Since
x0 is included in U , it is the unique sum x0 = x1 + x2 of two smaller elements x1, x2 ∈ U . Thus,
the corresponding elements y1 and y2 are included in V and sum to y0. But in order for y0
to be excluded from V , it must have a second representation: there exist y3, y4 ∈ V such that
y3 + y4 = y0. But by comparing coefficients, we see that the corresponding elements x3, x4 ∈ U
sum to x0, a contradiction. �

3.3. More general objects. These arguments easily generalize to a more general setting. Sup-
pose we have set A of elements, a binary operation ◦ : A × A → A, a finite set of elements of A
that generates A under ◦, and a function f : A→ R such that, for all a1, a2 ∈ A,

f(a1 ◦ a2) > max(f(a1), f(a2)).

Then we can define an Ulam set arising from the initial set {a1, a2, . . . , ak} ⊂ A by repeatedly
adding, among all elements with a unique representation a = ai ◦ aj (with i 6= j), one that mini-
mizes the value of f in that set. (If ◦ is commutative, then the canonical definition restricts our
consideration to sums of unique pairs of elements.) As before, the order in which we break ties is
inconsequential because of the constraint on f , and the same argument as above implies that the
arising set A is independent of the function f .

Example 1. Let {A1, . . . , Ak} ⊂ Rn×n be a set of commuting n× n matrices with det(Ai) > 1 for
all 1 ≤ i ≤ k. Then define our binary operation as standard matrix multiplication, and let

f(A) := det(A)

be our notion of size. It is easy to see that

f(AB) = det(AB) = det(A) det(B) > max(det(A),det(B)) = max(f(A), f(B)).
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Since all of the matrices commute, there exists a change of basis under which they all become
upper triangular, and this property is preserved under multiplication.

Example 2. Let {g1, . . . , gk} ⊂ C([0, 1],R>0) be a set of continuous functions each enclosing strictly
positive area, let the binary operation ◦ be given by addition, and set

f(g) :=

∫ 1

0

g(x)dx.

For instance, the Ulam set arising from {1, sinx, cosx} is isomorphic to the set obtained from
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3, and the set arising from {sin2 x, cos2 x, 1} is isomorphic to the
set arising from {(1, 0), (0, 1), (1, 1)} ⊂ R2.

3.4. Embedding into the real line. The previous section shows that many general initial con-
ditions can be reduced to universal dynamical behavior on a lattice, the dimension of which is
determined by the initial values. Perhaps surprisingly, one can also reduce dynamical behavior
to the case of one-dimensional Ulam sequences (possibly with real initial conditions). We believe
this to be one of the reasons why Ulam sequences with more than two initial elements have never
been actively investigated: the underlying dynamics can be of a higher-dimensional nature.

Lemma 4. Let {v1, . . . , vk} ∈ Nn be a set of nonzero vectors. The arising Ulam set A is isomor-
phic to a suitable one-dimensional Ulam set.

Proof. The proof is constructive. We map each vector to a unique number via

φ(x) = φ(x1, x2, . . . , xn) := log (2x13x2 . . . pxn
n ),

where pi is the i−th prime number. We now claim that the set

{φ(v1), . . . , φ(vk)} ⊂ R,

interpreted as the initial conditions of a one-dimensional Ulam sequence, exhibits the same dy-
namics. It is clear that

φ(u) + φ(v) = φ(u+ v)

is equivalent to the additive relationship of the vectors in Nn. It remains only to note that φ can
be interpreted as a continuous function φ : Rn

≥0 → R that is strictly monotonically increasing in
each of its coordinates. �

4. The Column Phenomenon

This section is devoted to a curious phenomenon that we first observed in the set arising from
{(1, 0), (2, 0), (0, 1)} (the classical Ulam sequence on the x−axis augmented by a vector in the
orthogonal direction). The picture (Figure 10) is rather stunning: seemingly chaotic behavior
close to the x−axis and periodic structures evolving in the direction of the y−axis. The list of
x−coordinates for which nonempty columns arise is given by

1, 4, 6, 9, 14, 20, 23, 25, 30, 33, 49, 56, 60, 248, 270, 280, 302, 385, 474, 479, . . .

At this point, we do not understand whether and how this sequence evolves further. This example
naturally leads to defining a column as, loosely, a structure that periodically extends to infinity in
one direction. The purpose of this section is to prove the existence of such periodic structures. We
begin by considering columns in 2 dimensions extending in the direction of the y− axis. Then, after
proving several results about the behavior of these columns, we provide natural generalizations to
more complex column behavior.



12

Figure 10. The set arising from {(1, 0), (2, 0), (0, 1)}. We see a gap in nonempty columns
between x = 60 and x = 248. Two more nonempty columns follow at x = 270 and x = 280.

4.1. A Combinatorial Lemma. Our proof of the existence of columns requires a simple com-
binatorial fact that we prefer to state independently. We consider X to be the set of infinite
words over the alphabet {0, 1, 2} and Y to be the set of infinite words over {0, 1}. We define a
transformation T : X → Y by setting

T (x)0 :=

{
1 if x0 = 1

0 otherwise.

and, for i ≥ 1,

T (x)i :=

{
1 if xi + T (x)i−1 = 1

0 otherwise.

We are interested in how this map affects infinite words that are eventually periodic. For example,

110011001 . . .
T−→ 100010001 . . .

is a word with period 4 that is mapped to another word with period 4. By contrast,

010101010 . . .
T−→ 011001100 . . .

is a word with period 2 mapped to a word with period 4. Our next statement shows this to be an
exhaustive case distinction.

Lemma 5 (T preserves periodicity.). If x ∈ X is eventually periodic with period p, i.e. xj+p = xj
for all j sufficiently large, then T (x) is eventually periodic with period either p or 2p. T (x) is
periodic with period 2p iff the periodic portion of x contains no 2’s and has an odd number of 1’s.

Proof. Fix m sufficiently large for the word x to be periodic after the first m symbols, and consider
the action of T on the three quantities xm, xm+p, xm+2p (all three of which are identical because of
the eventual periodicity of x). If T (x)m = T (x)m+p, then we clearly have T (x)m+1 = T (x)m+p+1

since T (x)i only depends on xi and T (x)i−1. It follows by induction that T (x) becomes periodic
with period p. Suppose now that T (x)m 6= T (x)m+p. Then, since there are only two symbols in
Y , we have either T (x)m+2p = T (x)m or T (x)m+2p = T (x)m+p. The second case is identical to
the previously considered case and implies that T (x) will be periodic with period p. If T (x)m =
T (x)m+2p, then we can infer that T (x) is periodic with period 2p.
Now we come to the second part of the statement. If xj = 2 for some j in the periodic section of x,
then we must have T (x)j = 0 (and therefore the p−periodicity of x implies T (x)j = 0 = T (x)j+p),
so we obtain that T (x) is periodic with period p. We may thus limit ourselves to considering
periodic words in x containing only 0’s and 1’s in the periodic section. We observe for l ≥ m that
flipping the value of xl (either from 0 to 1 or from 1 to 0) has the effect of flipping all values T (x)i
for i ≥ l. We can thus start with the basic word

0000 . . .
T−→ 0000 . . .

and add 1’s one-by-one until we re-create the original string x: we place 1’s in the proper position
starting from the top of the range we are interested in and work our way down. If there is an even
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number of 1’s in each period of x, then T (x)m+p = T (x)m, whereas an odd number of 1’s in each
period implies T (x)m+2p = T (x)m 6= T (x)m+p. �

Remark. We have shown only that T (x) must be periodic with period either p or 2p. The minimal
period, however, can be any divisor of p (in the first case) or any divisor of 2p but not of p (in the
second case).

4.2. Existence and Doubling. This section is devoted to an analysis of columns in the two-
dimensional case. We consider an initial set {v1, v2, . . . , vk} ⊂ N2 with the property that one of
the vectors is (0, 1) and no other vector lies on the y−axis. In this setting, the columns naturally
extend in the direction of the y−axis. We will say that the set has a column with period p over
x ∈ N if, for y large enough,

(x, y) is in the Ulam set if and only if (x, y + p) is also in the set.

We will usually talk about the period of a column and not necessarily the minimal period. More-
over, for fixed x ∈ N, the case where there are no (x, y) in the set for y beyond a certain threshold
will also be denoted a column (the empty column). We now show that columns extend all the
way to infinity: for every fixed x ∈ N, the behavior along the y−axis ultimately becomes periodic
with a period that is a power of 2.

period 2 and 4 period 8

Figure 11. The set arising from {(2, 0), (3, 0), (0, 1)}. This example shows columns of period
1, 2, 4 and 8, and we mark the first occurrences of periods 2,4, and 8.

Theorem 3 (Periodicity in the y−direction). Let {v1, v2, . . . , vk} ⊂ N2 contain (0, 1) and no
other vector on the y−axis. Then there exists a function φ : N→ N such that a nonempty column
extends over x if and only if there is an element (x, y) in the set with y ≥ φ(x). All columns
(including empty columns) are eventually periodic and the period is a power of 2. Moreover, the
period is either the period of a preceding column or twice the period of a preceding column.

Proof. The proof proceeds by induction. The set clearly contains no points (0, n) with n ≥ 2,
which means that an empty column extends over x = 0 with period 20. We now assume that
the statement is true up to some x− 1 and investigate the possible behavior of the set for lattice
points with first coordinate fixed to be x. We consider vectors of the form (x, y) for y much larger
than any of the previously obtained bounds φ(0), φ(1), φ(2), . . . , φ(x−1) and the y− values of any
possible initial vectors with x−coordinate x. We want to use these elements to show the existence
of an infinitely periodic column over x. To that end, we first completely ignore the existence of
the vector (0, 1) in the set and obtain a complete description without it; we then add (0, 1) and
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explain its effect using Lemma 5. We begin by arguing that any vector that is the sum of two
elements from preceding columns with y−coordinates significantly larger than the cutoff function
φ has at least 2 representations. In this case, the periodicity of the preceding columns means
that once there is a single representation, a second representation of the point can also be found
easily. (By taking points significantly larger than the previous φ−bounds, we can work in the
regime where at least one summand comes from well within the periodic region.) At the same
time, 2 max0≤i≤x−1 φ(i) bounds the y−coordinate of any sum of two elements each with second
coordinate smaller than φ, then we can exclude this case by moving past that number.

x

φ

Figure 12. A splitting into two regions.

This implies that any hypothetical element (x, y), for y sufficiently large, can, if it exists, be
uniquely written as

(x, y) = (x1, y1) + (x2, y2)

with y1 ≥ φ(x1) and y2 < φ(x2). This uniqueness, along with the periodicity of the column over
x1, then implies (denoting the period of the column over x1 by p) that

(x, y + p) = (x1, y1 + p) + (x2, y2) uniquely.

Likewise, the existence of a second representation for (x, y+p) would automatically create a second
representation for (x, y), which is a contradiction. This implies that the “pre-correction-column”
over x has the same period as that of a preceding column (which, by induction, is a power of
2). An application of Lemma 5 then accounts for the additional vector (0, 1) and shows that the
period may double, which would yield another power of 2. �

Remarks.

(1) We note that in the case where doubling does not occur, the minimal period of the post-
correction column may be a smaller power of 2 than the minimal period of the pre-
correction column (due to Lemma 5), but it still matches the minimal period of some
previous column.

(2) Another immediate consequence of this application of Lemma 5 is that the periodic portion
of any column that doubles from period 2n to period 2n+1 has the property that exactly
one of the points (x, y) and (x, y + 2p) is included in the Ulam set.

(3) A careful inspection of the proof of Theorem 3 allows us to derive that φ(n) ≤ c · 3n for
some constant c depending on the initial vectors. However, in practice φ seems to be much,
much smaller, and we consider it an interesting problem to gain a better understanding
of in which regions periodicity starts being enforced. (Numerically, it does seem that φ
could very well be linear or at most polynomial in most cases.)

4.3. Generalizations. One notes that the above discussion applies equally well to columns ex-
tending in the direction of the x−axis arising due to that action of the initial vector (1, 0). This
structure result thus applies to sets of the form {(1, 0), (0, 1), v3, . . . , vk} ⊂ N2, where all the
vectors v3, . . . , vk have both coordinates strictly positive. Thus, there may be regions where all
elements of the Ulam set are periodic in both the x− and y−directions. (See Figure 13.) If
{v1, v2, . . . , vk} ⊂ N2

≥0 contains (0, a) (where a is any positive integer) but no other vector on the
y−axis, then the argument above still applies with the main difference being that columns are
now periodic with periods a · 2n: if we split the y−coordinates with respect to their residue class
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columns

columns?

?

?

? columns

columns
?

lattice

Figure 13. Regions bounded by y = φ(x) and x = φ(y) and two conceivable types of
behavior. It is also conceivable for the curves to intersect multiple times (not shown here).

mod a, the proof above essentially applies verbatim. We also remark that the argument extends
easily to extremal directions in high-dimensional cases, and we leave the details to the interested
reader.

5. Open Problems

It is clear that Ulam sets are incredibly rich in structure and that we have barely managed to
scrape the surface. Among the many natural questions, we explicitly point out a few that seem
particularly promising for future investigation.

5.1. Higher-dimensional Examples. We have been almost exclusively concerned with exam-
ples in R2

≥0 and the example

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3
≥0.

We emphasize that this three-dimensional example provides the universal dynamics for ‘generic’
sets of three elements in fairly general sets A (including the generic case of Ulam-type sequences
in R with an initial set of three elements that are linearly independent over Z). This set seems to
have an extraordinary amount of structure and symmetry and should be of great interest.

5.2. Lattice structures. One natural question is how unavoidable lattice structures are: if the
initial set {v1, . . . , vk} ⊂ R2

≥0 has exactly one vector of the form (x, 0) and exactly one vector of

the form (0, y), must the resulting set ultimately exhibit lattice-type structure for sufficiently large
x and y? Conversely, does the existence of aperiodic behavior (for instance, the classical Ulam
sequence) on one axis always preclude regular column structures in that direction?

5.3. Classical Ulam sequence and (0, 1). Clearly, one of the most striking examples is given by
{(1, 0), (2, 0), (0, 1)}. As already discussed, we recover the classical Ulam sequence on the x−axis,
then we see fairly intricate behavior close to the x−axis and occasional nonempty vertical columns.
We observe that in the first 100.000 elements of this sequence, no column seems to have period
larger than 2. We also observe that all elements in the sequence with x−coordinate fixed (x ≥ 2)
have their second coordinate either always even or always odd. If true, this would imply that all
nonempty columns are of period 2. (See Section §4.2.) We also observe that the Fourier frequency
phenomenon from [13] seems to appear if we look at points for which the y−coordinate is fixed.
It would be quite fascinating if the dynamical behavior of this Ulam set could shed some light on
the classical Ulam sequence in one dimension.

5.4. Columns and their properties. Figure 11 shows the first few points in the evolution of
{(2, 0), (3, 0), (0, 1)}. We observe doubling of the column period three times in the elements we
have calculated so far. While we have shown that columns (empty or nonempty) eventually arise,
we do not understand columns very well: when are there infinitely many nonempty columns? Do
they generically double their period (as observed in Figure 11), or do they not (which seems to be
the case for the extended Ulam sequence)?
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5.5. Classification. A complete classification of the behavior of {(1, 0), (0, 1), (m,n)} for the case
m,n ∈ N≥1 seems within reach (and, using linear invariance, naturally includes many other initial
conditions as well). If (m,n) is included in the lattice generated by (1, 0) and (0, 1), then the Ulam
sequence is degenerate: the new vector does not contribute anything and we obtain the lattice
generated by {(1, 0), (0, 1)} alone.

(1) If both coordinates of (m,n) are even, we observe that the resulting set consists of a
series of repeating, equally spaced L−shaped figures parallel to the coordinate axes. More
specifically, all elements of the L’s have both coordinates odd, and each L consists of m/2
horizontal columns of period 2 and n/2 vertical columns of period 2, with all columns
spaced 2 apart. Interestingly, this means that many of the columns exhibit periodic
behavior for the intervals before they begin exhibiting the pattern that continues to infinity.
It also shows that the function φ (such that y ≥ φ(x) forces periodicity) can grow linearly.

Figure 14. The set arising from {(1, 0), (0, 1), (6, 4)} with L−shapes. Like in Figure 7, the
interior region splits into two regions each containing a lattice.

(2) If m is even and n > 3 is odd, then the set is the usual lattice coming from {(1, 0), (0, 1)}
for all x /∈ {m,m+ 1}. Clearly, at x = m, we have the extra point (m,n), and the column
(otherwise of period 2) at x = m + 1 is truncated at y = n because of the extra sums
generated by the interaction of (m,n) and the column over x = 1. Then, for larger values
of x, the structure returns to the same lattice as before because for (m,n) to interfere, it
would have to be summed with a vector with odd x−coordinate and even y−coordinate,
but these vectors only exist at x = 1, which we have already discussed.

(3) If m is even and n = 3, then the set is the usual lattice created by {(1, 0), (0, 1)} set for
all x < m. There is no element (x, y) at x = m for y > 3. For x > m, the normal
lattice is shifted to the right: all subsequent elements have even x−coordinate and odd
y−coordinate.

Figure 15. The graphs arising from {(1, 0), (0, 1), (10, 9)}, with a temporarily disrupted but
ultimately unchanged lattice (left), and {(1, 0), (0, 1), (10, 3)}, with the lattice shifted (right).
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5.6. More initial conditions. Our active investigation was mainly restricted to initial sets con-
taining three vectors in N2. The investigation of larger sets of initial vectors seems like a daunting
but also very promising avenue for further research.

5.7. Ulam’s variant. We recall that Ulam originally proposed another variant on the hexagonal
lattice based on the idea of ‘including a new point if it forms with two previously defined points
the third vertex of a triangle, but only doing it in the case where it is uniquely so related to a
previous pair’. We have not investigated this more geometrical variant.

5.8. Other variants. It is clear that Ulam sets can be considered on other algebraic structures
equipped with a binary operation and some notion of ‘size’ (though, as observed above in the case
of Rn

≥0, the dependence on the notion of size is rather weak, and the sets are fairly universal).

Multiplication over the complex numbers. One natural example that comes to mind is C
equipped with multiplication for elements with norm larger than 1. The introduction of polar
coordinates shows that

(r1]φ1) (r2]φ2) = r1r2](φ1 + φ2),

which allows us to reduce to transform the problem to R>1 × T. Moreover, as above, we can
replace multiplication by addition via the logarithm. For an initial set {v1, . . . , vk} ⊂ R>0×T, we
can use as our notion of length f(x, y) = x or any other function that is strictly increasing in x.

Ulam sets in N× Zn. One particularly natural setting, inspired by multiplication in C, is that
of N× Zn.

Figure 16. The set arising from {(1, 3), (3, 4)} in N×Z6. We observe, empirically, that the
y−coordinates 0 and 2 do not seem to appear.

For the Ulam set to be well-defined, it is important that all initial elements (x, y) have x > 0. Note
also that not all Ulam sets defined this way contain an infinite number of elements (for example,
initial vectors given by {(1, 0), (1, 1), (1, 2)} ⊂ N × Z3), and deriving a condition to determine
which initial sets exhibit this property is an interesting question for future investigation.

Figure 17. The set arising from {(1, 0), (1, 1)} in N× Z11.
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