
ar
X

iv
:1

70
5.

03
15

0v
1

 [
cs

.I
T

]
 9

 M
ay

 2
01

7
1

Large Order Binary de Bruijn Sequences via Zech’s

Logarithms
Zuling Chang, Martianus Frederic Ezerman, Adamas Aqsa Fahreza, San Ling, and Huaxiong Wang

Abstract—This work shows how to efficiently construct binary
de Bruijn sequences, even those with large orders, using the cycle
joining method. The cycles are generated by an LFSR with a
chosen period e whose irreducible characteristic polynomial can
be derived from any primitive polynomial of degree n satisfying

e = 2
n
−1

t
by t-decimation. The crux is our proof that determining

Zech’s logarithms is equivalent to identifying conjugate pairs
shared by any pair of cycles. The approach quickly finds enough
number of conjugate pairs between any two cycles to ensure the
existence of trees containing all vertices in the adjacency graph
of the LFSR.

When the characteristic polynomial f(x) is a product of
distinct irreducible polynomials, we combine the approach via
Zech’s logarithms and a recently proposed method to determine
the conjugate pairs. This allows us to efficiently generate de
Bruijn sequences with larger orders. Along the way, we establish
new properties of Zech’s logarithms.

Index Terms—Binary de Bruijn sequence, conjugate pair,
decimation, Zech’s logarithm.

I. INTRODUCTION

A binary de Bruijn sequence of order n ∈ N has period

N = 2n in which each n-tuple occurs exactly once. There are

22
n−1−n such sequences [1].

We developed a de Bruijn sequence generator in [2] and

demonstrated that it performed well up to some decent design

parameters. The characteristic polynomials were mostly prod-

ucts of distinct irreducible polynomials. As the period grows

large, i.e., as the degree n of the characteristic polynomial

increases, we run into time complexity issues.

Motivated mostly by cryptographic purposes, there has been

a sustained interest in efficiently generating a good number of

de Bruijn sequences of large order.

Adding a 0 to the longest string of 0s in a maximal length

sequence (also known as an m-sequence) of period 2n − 1
produces a de Bruijn sequence of order n. There are Λn :=
1
n
φ(2n− 1) such shift-distinct m-sequences where φ(.) is the

Euler totient function. There is a bijection between the set

Z. Chang’s work is supported by the Joint Fund of the National Nat-
ural Science Foundation of China Grant U1304604. Research Grants TL-
9014101684-01 and MOE2013-T2-1-041 support the research carried out by
M. F. Ezerman, S. Ling, and H. Wang. Singapore Ministry of Education Grant
M4011381 provides a partial support for A. A. Fahreza.

Z. Chang is with the School of Mathematics and Statistics, Zhengzhou
University, Zhengzhou 450001, China, e-mail: zuling chang@zzu.edu.cn.

M. F. Ezerman, A. A. Fahreza, S. Ling, and H. Wang are with
the School of Physical and Mathematical Sciences, Nanyang Tech-
nological University, 21 Nanyang Link, Singapore 637371, e-mails:
{fredezerman,adamas,lingsan,HXWang}@ntu.edu.sg.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

of all such sequences and the set of primitive polynomials

of degree n in F2[x]. As n grows large, Λn soon becomes

miniscule compared to 22
n−1−n.

It is then natural to widen the choice of the character-

istic polynomials from primitive polynomials to irreducible

polynomials. Let µ(n) be the Möbius function. There are
1

n

∑

d|n

µ(d)2
n
d irreducible polynomials of degree n over F2.

All irreducible polynomials of (prime) degree n are primitive

if and only if 2n−1 is prime. Such an n is called a Mersenne

exponent. Mersenne exponents are sparse [3] although not

known to be finite. Thus, for most n, there are many more

irreducible than primitive polynomials.

Each irreducible non-primitive polynomial may yield a large

number of de Bruijn sequences if one can efficiently identify

the conjugate pairs to apply the cycle joining method on

them. A recent contribution using irreducible characteristic

polynomials of large degree n is [4]. It shows how to generate

de Bruijn sequences of large orders e.g., 128 without either

time or space complexity analysis.

In this paper we focus on producing large order de Bruijn

sequences and aim to vastly improve on the existing results. To

be more specific, we show how to handle much larger orders

than had been attempted and generate many of them faster.

At the core of our method is a new insight on how Zech’s

logarithms characterize the conjugate pairs.

We start by identifying a primitive polynomial p(x) ∈ F2[x]
of degree n having a (primitive) root α. Several approaches

to do so are given in [5, Section 4.4]. Many computer algebra

systems have routines that output primitive polynomial(s) of

a specified degree.

Combining a decimation technique and the Berlekamp-

Massey algorithm on input p(x) and a suitable divisor t of

2n − 1 we derive the associated irreducible polynomial f(x).
It has degree n, order e, and a root β = αt with e · t = 2n−1.

The cycle structure of the LFSR with f(x) as a characteristic

polynomial has t distinct nonzero cycles.

We establish a novel approach that transforms the problem

of finding conjugate pairs between any two distinct cycles into

computing Zech’s logarithms with respect to α. A property,

useful to compute new Zech’s logarithms from the already

known values, is proved. Taking modulo t of the appropriate

Zech’s logarithms characterizes the exact positions of the cor-

responding conjugate pairs. This eliminates the need to store

the pairs, reducing the memory requirement tremendously.

These positional markings pave the way to speedy generation

of the resulting sequences.

http://arxiv.org/abs/1705.03150v1

2

Trading completeness for efficiency, we compute for enough

number of conjugate pairs between any two distinct cycles

to create a connected subgraph G̃ = (VG̃ , EG̃) of the full

adjacency graph G = (VG , EG) associated with f(x), requiring

that VG̃ = VG . Any spanning tree Υ in G̃ can be used

to complete the cycle joining method, yielding de Bruijn

sequences. The method works for any order n and determining

the number of constructible sequences is straightforward.

We briefly discuss the case when f(x) is the product of

distinct irreducible polynomials. The conjugate pairs in this

case can similarly be determined by the Zech’s logarithms

relative to the roots of the primitive polynomials associated

with the respective irreducible polynomials. We end with some

conclusions.

II. PRELIMINARIES

Let N denote the set of positive integers. For integers k <
ℓ, let Jk, ℓK denote {k, k + 1, . . . , ℓ − 1, ℓ}. We recall some

definitions and results from [6, Chapter 4].

An n-stage shift register is a clock-regulated circuit with n
consecutive storage units, each containing a bit. As the clock

pulses, each bit is shifted to the next stage in line. A shift reg-

ister generates a binary code if one adds a feedback loop that

outputs a new bit sn based on the n bits s0 = (s0, . . . , sn−1)
called an initial state of the register. The Boolean function h
that outputs sn on input s0 is called its feedback function.

A feedback shift register (FSR) outputs a binary sequence

s = s0, s1, . . . , sn, . . . satisfying the recursive relation sn+ℓ =
h(sℓ, sℓ+1, . . . , sℓ+n−1) for ℓ ≥ 0. If si+N = si for all i ≥ 0,

then s is N -periodic or with period N and one denotes s =
(s0, s1, s2, . . . , sN−1). We call si = (si, si+1, . . . , si+n−1) the

i-th state of s and si+1 the successor of si. The all zero

sequence 0 has period 1. We also use 0 to denote a zero

vector.

In an FSR, distinct initial states generate distinct sequences,

forming the set Ω(h) of 2n elements.

A state operator T turns si into si+1, i.e., si+1 =
T si. If s has a state si and period e, then the e distinct

states of s are si, T si = si+1, . . . , T
e−1

si = si+e−1. The

shift operator L sends s to Ls = L(s0, s1, . . . , sN−1) =
(s1, s2, . . . , sN−1, s0) with the convention that L0

s = s. The

set [s] := {s, Ls, L2
s, . . . , LN−1

s} is a shift equivalent class

or a cycle in Ω(h). One partitions the set of sequences in Ω(h)
into cycles and writes the cycle structure as

[s1] ∪ [s2] ∪ . . . ∪ [sr] if

r⋃

i=1

[si] = Ω(h).

A conjugate pair consists of a state v = (v0, v1, . . . , vn−1)
and its conjugate v̂ = (v0 + 1, v1, . . . , vn−1). Cycles C1 and

C2 in Ω(h) are adjacent if they are disjoint and there exists

v in C1 whose conjugate v̂ is in C2. Adjacent cycles merge

into a single cycle by interchanging the successors of v and

v̂. The feedback function of the resulting cycle is

ĥ(x0, . . . , xn−1) = h(x0, . . . , xn−1) +

n−1∏

i=1

(xi + vi + 1).

Continuing this step, all cycles in Ω(h) join into one cycle,

which is a de Bruijn sequence. This is the cycle joining

method [7]. The feedback functions of the resulting de Bruijn

sequences are completely determined once the corresponding

conjugate pairs are found.

Definition 1. [8] The adjacency graph G of an FSR with

feedback function h is an undirected multigraph whose vertices

correspond to the cycles in Ω(h). There exists an edge between

two vertices if and only if they are adjacent. A conjugate pair

labels every edge. The number of edges between any pair of

cycles is the number of conjugate pairs that they share.

Clearly G contains no loops. There is a bijection between the

spanning trees of G and the de Bruijn sequences constructed

by the cycle joining method (see. e.g., [8] and [9]). A variant

of the BEST (de Bruijn, Ehrenfest, Smith, and Tutte) Theorem

from [10, Section 7] provides the counting formula.

Theorem 1. (BEST) Let G be the adjacency graph of an FSR

with VG := {V1, V2, . . . , Vk}. Let M = (mi,j) be the k × k
matrix derived from G in which mi,i is the number of edges

incident to vertex Vi and mi,j is the negative of the number of

edges between vertices Vi and Vj for i 6= j. Then the number

of the spanning trees of G is the cofactor of any entry of M.

The cofactor of entry mi,j in M is (−1)i+j times the

determinant of the matrix obtained by deleting the i-th row

and j-th column of M.

An FSR is called linear or an LFSR if its feedback function

is linear, and nonlinear or an NLFSR otherwise. Henceforth,

all FSRs are linear.

The characteristic polynomial of an n-stage LFSR is

f(x) = xn + cn−1x
n−1 + . . .+ c1x+ c0 ∈ F2[x] (1)

when the feedback function is h(x0, . . . , xn−1) =
∑n−1

i=0 cixi.

To ensure that all generated sequences are periodic, c0 6= 0. A

sequence s may have many characteristic polynomials with the

one having the lowest degree being its minimal polynomial. It

represents the LFSR of shortest length that generates s. Given

an LFSR with characteristic polynomial f(x), the set Ω(h) is

also denoted by Ω(f(x)).
If the minimal polynomial of s is primitive with degree n,

then s is the corresponding m-sequence with period 2n − 1,

which is the maximal period among all sequences generated

by any LFSR with minimal polynomial of degree n. Let m

denote an m-sequence.

A sequence u is a d-decimation sequence of s, denoted by

u = s
(d) if uj = sd·j for all j ≥ 0. A d-decimation m

(d) of

m is also an m-sequence if and only if gcd(d, 2n − 1) = 1.

More properties of sequences in relation to their character-

istic and minimal polynomials can be found in [6, Chapter 4]

and [11, Chapter 8].

To f(x) in (1), one associates a matrix

Af :=




0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cn−1




. (2)

3

On input state s0, the state vectors of the resulting sequence

are sj = s0A
j for j ∈ {0, 1, 2, . . .} and si+1 = siA = T si.

Let f(x) be an irreducible but not a primitive polynomial

with degree n. Suppose that β ∈ F2n is a root of f(x), then

there exists a primitive polynomial p(x) with degree n and a

root α ∈ F2n satisfying β = αt for some 1 < t ∈ N and

e = 2n−1
t

is the order of β. Notice that n is the least integer

satisfying 2n ≡ 1 (mod e).
Among computational devices over finite fields we have

Zech’s logarithm (see e.g., [6, page 39]). The logarithm is

also often referred to as Jacobi’s logarithm [11, Exercise

2.8 and Table B]. It was Jacobi who introduced the notion

and tabulated the values for Fp with p ≤ 103 in [12]. For

ℓ ∈ J1, 2n − 1K∪{−∞}, the Zech’s logarithm τ(ℓ) relative to

α is defined by 1 + αℓ = ατ(ℓ) where α−∞ = 0. It induces a

permutation on J1, 2n − 2K.

A cyclotomic coset of 2 modulo 2n − 1 containing i is

Di = {i, 2i, . . . , 2ni−1i} with ni the least positive integer

such that i ≡ 2nii (mod 2n − 1). Obviously ni | n. For

each i, call the least integer in Di its coset leader. The set of

all coset leaders form a complete set of coset representatives,

denoted by Rn.

The cyclotomic classes Ci ⊆ F2n , for 0 ≤ i < t, are

Ci = {αi+s·t | 0 ≤ s < e} = {αiβs | 0 ≤ s < e} = αiC0.
(3)

The cyclotomic numbers (i, j)t, for 0 ≤ i, j < t, are

(i, j)t = |{ξ | ξ ∈ Ci, ξ + 1 ∈ Cj}| . (4)

III. THE CYCLE STRUCTURE

This section orders the cycles in Ω(f(x)) using a method

from [9] to benefit from some useful relationships between

suitable sequences and cyclotomic classes.

Let {1, β, . . . , βn−1} be a basis for the F2-vector space F2n .

Then αj =

n−1∑

i=0

aj,iβ
i with aj,i ∈ F2 for j ∈ J0, 2n − 2K. In

vector form, the expression becomes

αj = (aj,0, aj,1, . . . , aj,n−1). (5)

Define the mapping ϕ : F2n → Fn
2 by

ϕ(0) = 0, ϕ(αj) = (aj,0, aj+t,0, . . . , aj+(n−1)t,0), (6)

where the subscripts are reduced modulo 2n − 1. By the

recursive relation determined by (5), ϕ is a bijection. Let

ui := (ai,0, ai+t,0, . . . , ai+(e−1)t,0). (7)

It is now straightforward to verify that

Ω(f(x)) = [0] ∪ [u0] ∪ [u1] ∪ . . . ∪ [ut−1] (8)

with ϕ(αi) as the initial state of ui for i ∈ J0, t− 1K. In

particular, the initial state of u0 is (1,0) ∈ Fn
2 .

Note that ϕ induces a correspondence between Ci and [ui]
(see [9, Thm. 3]). In other words, ui and the sequence of states

of ui, namely ((ui)0, (ui)1, . . . , (ui)e−1), where

(ui)j = (ai+jt,0, ai+(j+1)t,0, . . . , ai+(j+n−1)t,0) = ϕ(αiβj)

for j ∈ J0, e− 1K, are equivalent. The state ϕ(αiβj) corre-

sponds to the element αiβj ∈ Ci. Hence, ui ←→ Ci. This

provides a convenient method to find the exact position of any

state v = (v0, v1, . . . , vn−1) ∈ Fn
2 in some cycle in Ω(f(x)).

Let v = ϕ(αiβj) = ϕ(αi+tj) for some i ∈ J0, t− 1K. Then

v must be the j-th state of ui. Let k = i + tj and suppose

that αk = a0+a1β+ . . .+an−1β
n−1. We have a0 = v0 from

the definition of ϕ(αk). Note that if f(x) in (1) is irreducible,

then c0 = 1. Since β = αt,

αk+t =

n−1∑

ℓ=0

aℓβ
ℓ+1 =

n−2∑

ℓ=0

aℓβ
ℓ+1 +

n−1∑

ℓ=0

an−1cℓβ
ℓ =

an−1 + (a0 + an−1c1)β + . . .+ (an−2 + an−1cn−1)β
n−1.

Hence, one has




a0 = v0

an−1 = v1

an−2 = v1cn−1 + v2

an−3 = v1cn−2 + v2cn−1 + v3
...

...

a1 = v1c2 + . . .+ vn−2cn−1 + vn−1

. (9)

Once a0 + a1β + . . .+ an−1β
n−1 and the Zech’s logarithms

relative to α are known, one gets αk and, thus, v’s position.

How can one efficiently generate the cycles in Ω(f(x))?
Directly using the above definition is not practical since it

requires costly computations over F2n . Simply generating

them by the LFSR with characteristic polynomial f(x) may

fail to guarantee that their respective initial states are ϕ(αi)
for i ∈ J0, t− 1K. We show that decimation is the right tool.

Equation (5) ensures that m = (a0,0, a1,0, . . . , a2n−2,0) is

an m-sequence with characteristic polynomial p(x) [6, Chapter

5]. The trace function Tr maps δ ∈ F2n to
∑n−1

i=0 δ2
i ∈ F2.

Recall, e.g., from [6, Section 4.6] that the entries in m are

ai,0 = Tr(γαi) : 0 6= γ ∈ F2n for i ∈ J0, 2n − 2K. From m,

construct t distinct t-decimation sequences of period e:

u0 = m
(t),u1 = (Lm)(t), . . . ,ut−1 = (Lt−1

m)(t).

The resulting sequences have (uk)j = Tr(γαk+t·j) for k ∈
J0, t− 1K and j ∈ J0, e− 1K. Each [ui] is a cycle in Ω(f(x))
since β = αt. We need to find an initial state v of m such

that the initial state of u0 is (1,0) ∈ Fn
2 .

Let Ap be the associate matrix of p(x). Then the respective

first elements of vA
(i·t)
p for t ∈ J0, n− 1K must be 1, 0, . . . , 0.

Construct a system of equations to derive v. Let κ be the

number of 1s in the binary representation of i · t. Computing

A
(i·t)
p is efficient using the square-and-multiply method, taking

at most log2 ⌊i · t⌋ squarings and κ multiplications.

Use v and p(x) to derive the first n · t entries of m. The

respective initial states ϕ(α0), . . . , ϕ(αt−1) of u0, . . . ,ut−1

in Ω(f(x)) immediately follow by decimation. Thus, one gets

ϕ(αj) for any j. This allows us to quickly find the desired

initial state of any cycle, even for large n. Given the state

(ui)j = ϕ(αiβj), we have T k[(ui)j] = ϕ(αiβj+k).
At this point, given an irreducible polynomial f(x) with root

β and order e = 2n−1
t

, we need a primitive polynomial p(x)

4

with the same degree as f(x) and root α satisfying β = αt.

In general, such a p(x) is not unique [2, Section 3]. Here we

provide a method to find one.

For k ∈ J1,ΛnK, let pk(x) be a primitive polynomial

of degree n that generates the m-sequence mk. The set

of all shift inequivalent m-sequences with period 2n − 1
is {m1,m2, . . . ,mΛn

}. The elements are the dj -decimation

sequences of any mk for all dj satisfying gcd(dj , 2
n−1) = 1.

Derive m
(t)
k of period e and check if it shares a common

string of 2n consecutive elements with a sequence whose

characteristic polynomial is f(x). If yes, then associate pk(x)
with f(x). Testing all ks guarantees a match between f(x)
and some pk(x) without costly operations over F2n .

As n or t grows, finding one such p(x) becomes more

computationally involved. To work around this limitation, one

starts instead with any primitive polynomial p(x) with a root

α and find the corresponding irreducible f(x) having β = αt

as a root. There are tools from finite fields (see, e.g., [11])

that can be deployed. We prefer another approach that does

not require computations over F2n .

Any primitive polynomial p(x) generates an m-sequence m.

Taking t-decimation, we get m(t). Input any 2n consecutive

bits of m(t) into the Berlekamp-Massey algorithm [13, Section

6.2.3] to get an irreducible polynomial f(x) having αt as a

root. Note that there are instances where f(x) has degree m | n
with m < n. This implies that, for this t, there is no irreducible

polynomial of degree n that can be associated with p(x).
As k traverses Rn, by k-decimation and the Berlekamp-

Massey algorithm, the process provides all irreducible poly-

nomials with root αt·k. The resulting polynomials form the

set of all irreducible polynomials with degree m | n.

Remark 1. Constructing irreducible polynomials is important

in the study of finite fields. The Ben-Or and Rabin tests for

irreducibility are widely used. Their implementation source

codes are given in [5, Section 4.4]. The latter is often

more efficient but requires a number of gcd computations for

polynomials which increases the running cost in many other

instances. A running time comparison is available in [14].

Our procedure determines irreducible polynomials of degree

m satisfying m | n given any primitive polynomial of degree n
using only decimation and the Berlekamp-Massey algorithm,

which is much faster than both of the above tests. The running

time is O(n2)

IV. CONJUGATE PAIRS AND ZECH’S LOGARITHMS

This section proves that the conjugate pairs shared by any

two distinct cycles in Ω(f(x)) are characterized by Zech’s

logarithms. We further discover that determining the respec-

tive initial states of [ui] : i ∈ J1, t− 1K is not necessary.

Ensuring that (1,0) is the initial state of [u0] is sufficient for

implementation.

Our main contribution is the following theorem.

Theorem 2. Let α be a root of a primitive polynomial p(x)
of degree n and τ() be the Zech’s logarithm with respect to α.

Let f(x) be the irreducible polynomial of degree n and order

e = 2n−1
t

having a root β = αt, i.e., f(x) is associated with

p(x).

Let [ui] and [uℓ] be distinct nonzero cycles in Ω(f(x))
constructed above, i.e., i, ℓ ∈ J0, t− 1K. Let v := T jϕ(αi) =
ϕ(αi+tj) be the j-th state of [ui] and v̂ := T kϕ(αℓ) =
ϕ(αℓ+tk) be the k-th state of [uℓ]. Then (v, v̂) forms a

conjugate pair if and only if ℓ+ tk = τ(i + tj).

Proof. Let η and γ be elements of F2n . Then ϕ(η) is a state

of ui if and only if η = αj and j ∈ Ci. It is therefore clear

that ϕ(η) + ϕ(γ) = ϕ(η + γ). Observe that ϕ(α0 = 1) and 0

are conjugate. The conjugate of ϕ(αj) with j ∈ J1, 2n − 2K is

ϕ̂(αj) = ϕ(1) + ϕ(αj) = ϕ(1 + αj) = ϕ(ατ(j)).

The conjugate of an arbitrary state ϕ(αj) belonging to cycle

[uj (mod t)] must then be ϕ(ατ(j)), which belongs to cycle

[uτ(j) (mod t)]. In other words, the conjugate of the j-th state

of cycle [ui], which is T jϕ(αi) = ϕ(αiβj) = ϕ(αi+tj), must

be ϕ(ατ(i+tj)). Writing τ(i+ tj) = kt+ℓ with k ∈ J0, e− 1K
and ℓ ∈ J0, t− 1K, ϕ(ατ(i+tj)) = T kϕ(αℓ) belongs to [uℓ].

Thus, knowing the Zech’s logarithms relative to α enables

us to easily determine all conjugate pairs between two arbitrary

cycles in Ω(f(x)). By the definition of cyclotomic numbers,

[ui] and [uj] share (i, j)t conjugate pairs.

Conversely, knowing all of the conjugate pairs allows us to

derive the Zech’s logarithms relative to α. Let a conjugate pair

(v, v̂) with v = T jϕ(αi) = ϕ(αi+tj) and v̂ = T kϕ(αℓ) =
ϕ(αℓ+tk) be given. Then τ(i + tj) = ℓ+ tk since v̂ must be

ϕ(ατ(i+tj)). If all of the conjugate pairs are known, a complete

Zech’s logarithm table, relative to α, follows.

Example 1. Given f(x) = x4 + x3 + x2 + x + 1, which

is irreducible, of order 5 with β as a root, choose p(x) =
x4 + x+ 1 with a root α satisfying α3 = β as the associated

primitive polynomial. Let m be the corresponding m-sequence

with initial state (1, 0, 0, 0). By 3-decimating one derives

Ω(f(x)) = [0] ∪ [u0] ∪ [u1] ∪ [u2] with u0 = (1, 0, 0, 0, 1),
u1 = (0, 1, 1, 1, 1), and u2 = (0, 0, 1, 0, 1). The nonzero 4-

stage states are:

ϕ(α0) = ϕ(α0β0) = (1, 0, 0, 0) = (u0)0
ϕ(α1) = ϕ(α1β0) = (0, 1, 1, 1) = (u1)0
ϕ(α2) = ϕ(α2β0) = (0, 0, 1, 0) = (u2)0
ϕ(α3) = ϕ(α0β1) = (0, 0, 0, 1) = (u0)1
ϕ(α4) = ϕ(α1β1) = (1, 1, 1, 1) = (u1)1
ϕ(α5) = ϕ(α2β1) = (0, 1, 0, 1) = (u2)1
ϕ(α6) = ϕ(α0β2) = (0, 0, 1, 1) = (u0)2
ϕ(α7) = ϕ(α1β2) = (1, 1, 1, 0) = (u1)2
ϕ(α8) = ϕ(α2β2) = (1, 0, 1, 0) = (u2)2
ϕ(α9) = ϕ(α0β3) = (0, 1, 1, 0) = (u0)3
ϕ(α10) = ϕ(α1β3) = (1, 1, 0, 1) = (u1)3
ϕ(α11) = ϕ(α2β3) = (0, 1, 0, 0) = (u2)3
ϕ(α12) = ϕ(α0β4) = (1, 1, 0, 0) = (u0)4
ϕ(α13) = ϕ(α1β4) = (1, 0, 1, 1) = (u1)4
ϕ(α14) = ϕ(α2β4) = (1, 0, 0, 1) = (u2)4

.

The Zech’s logarithm table is

i 1 2 3 4 5 6 7

τ(i) 4 8 14 1 10 13 9

i 8 9 10 11 12 13 14

τ(i) 2 7 5 12 11 6 3

.

5

All conjugate pairs between any two nonzero cycles can be

determined from the table by Theorem 2. Knowing τ(3) = 14,

for example, one concludes that [u0] and [u2] share the pair

ϕ(α3) = (0, 0, 0, 1) and ϕ(α14) = (1, 0, 0, 1). Conversely,

knowing a conjugate pair is sufficient to determine the cor-

responding Zech’s logarithm. Since (0, 0, 1, 1) = ϕ(α6) and

(1, 0, 1, 1) = ϕ(α13) form a conjugate pair between [u0] and

[u1], for instance, one gets τ(6) = 13.

Remark 2. In Theorem 2, if f(x) is primitive, then the output

sequence is an m-sequence m = (m0,m1, . . . ,m2n−2). Let

m0 := (m0, . . . ,mn−1) = (1,0). The i-th state mi and the

τ(i)-th state mτ(i) form a conjugate pair. To compute τ(i)
for i ∈ J1, 2n − 2K it suffices to determine the position of the

state m(τ(i)) = mi +m0 by searching. This fact can be used

to find the Zech’s logarithms when n is not very large.

Huber established some important properties of Zech’s

logarithms over Fq and provided the Zech’s logarithm tables

for F2n with 2 ≤ n ≤ 11 in [15]. We recall relevant results.

1) It suffices to find the logarithms relative to one primitive

element. Let distinct primitive polynomials p(x) and

q(x) be of degree n with respective roots α and δ. Then

δ = αb for some integer b with gcd(b, 2n − 1) = 1. Let

τn,α(k) and τn,δ(k) denote the respective logarithms of

k ∈ J1, 2n − 2K relative to α and δ. Note that

1 + δk = 1 + αb·k = ατn,α(b·k) =

αbb−1τn,α(b·k) = δb
−1τn,α(b·k).

Hence, τn,δ(k) ≡ b−1τn,α(b · k) (mod (2n − 1)). With

a primitive element fixed, we use the notation τ(k), or

τn(k) to emphasize n.

2) The Flip map is given by τn(τn(k)) = k. Knowing

τn(k) for any k in a cyclotomic coset Dj is sufficient

to find τn(2
ik) by using the Double map

τn(2k) ≡ 2τn(k) (mod (2n − 1)). (10)

Based on Flip and Double, the Zech’s logarithm maps

cosets onto cosets of the same size.

3) Let Inv(j) = 2n − 1− j ≡ −j (mod (2n − 1)). Then

τn(Inv(j)) ≡ τn(j)− j (mod (2n − 1)). (11)

Inv(k) maps a coset onto a coset of the same size.

4) Let h(x) be a primitive polynomial of degree m having a

root β. Let m | n and β = αr with r = (2n − 1)/(2m − 1).

If the Zech’s logarithms relative to β are known, then

1 + αr·j = 1 + βj = βτm(j) = αr·τm(j). Hence,

τn(r · j) ≡ r · τm(j) (mod (2n − 1)). (12)

Repeatedly applying Flip and Inv induces a cycle of 6
cosets, except in 3 rare cases (see [15]). Using the Double
map, one then gets the value of τn(k) for all k in the union of

these cosets. To complete the table, Huber suggested the use

of key elements, each corresponding to a starting coset. The

following lemma reduces the storage need.

Lemma 1. For known τn(i), τn(j), and τn(i− j),

τn(τn(i)−τn(j)) ≡ τn(i−j)+j−τn(j) (mod (2n−1)). (13)

TABLE I
ZECH’S LOGARITHMS FOR ELEMENTS IN REMAINING COSETS

(i, j) τ(τ(i)− τ(j)) Cosets in the induced cycle Dk #

(12, 5) τ(550) = 512 k ∈ {77, 1, 511, 19, 251, 187} 60

(12, 7) τ(43) = 523 k ∈ {43, 23, 125, 63, 15, 245} 60

(76, 28) τ(11) = 200 k ∈ {11, 25, 223, 45, 189, 253} 60

(3, 1) τ(956) = 78 k ∈ {239, 39, 123, 439, 73, 49} 60

(3, 2) τ(879) = 948 k ∈ {447, 237, 75, 375, 69, 9} 60

(12, 2) τ(909) = 874 k ∈ {111, 347, 149, 35, 247, 57} 60

(12, 10) τ(37) = 161 k ∈ {37, 379, 31} 30

(37, 31) τ(426) = 316 k ∈ {213, 79, 59, 55, 121, 171} 60

(37, 6) τ(141) = 744 k ∈ {93, 105, 183} 30

(77, 43) τ(501) = 142 k ∈ {351, 71, 119, 235, 83, 21} 60

(77, 34) τ(402) = 958 k ∈ {147, 479, 17, 221, 89, 219} 60

(68, 12) τ(181) = 971 k ∈ {181, 191, 13, 157, 91, 173} 60

(749, 255) τ(29) = 566 k ∈ {29, 109, 151, 207, 51, 95} 60

(702, 136) τ(343) = 746 k ∈ {343, 85, 155} 30

(434, 109) τ(27) = 206 k ∈ {27, 103, 115, 205, 179, 159} 60

(349, 333) τ(33) = 660 k ∈ {33, 165, 363, 99, 231, 495} 30

(785, 151) τ(87) = 619 k ∈ {87, 215, 117, 367, 101, 41} 60

(274, 51) τ(107) = 376 k ∈ {107, 47, 175, 61, 167, 53} 60

Proof. For i, j ∈ J1, 2n − 2K, 1 + αi = ατn(i) if and only if

αj+αi+j = ατn(i)+j . This is equivalent to ατn(j)+ατn(i+j) =
ατn(i)+j . Thus, 1 + ατn(i+j)−τn(j) = ατn(i)+j−τn(j).

To apply Lemma 1, one looks for an (i, j) pair such that

the respective Zech’s logarithms of i, j, and i− j are already

known, i.e., i, j, and i − j are elements in the union U of

cosets with known Zech’s logarithms, but τ(i)− τ(j) /∈ U . In

many cases, a given Zech’s logarithm is sufficient to deduce

all others values.

Example 2. We reproduce the table in [15, Appendix] for

p(x) = x10+x3+1 without any key element. The computations

are done modulo 210−1 with = replacing ≡ for brevity. There

are 107 cyclotomic cosets of 2 modulo 1023: the trivial coset

D0, a coset of cardinality 2, 6 cosets, each of cardinality 5,

and 99 cosets, each of cardinality 10.

The coset {341, 682} implies τ(341) = 682.

The cycle of 6 cosets beginning from τ(3) = 10 is

3 ∈ D3 Flip←→ 10 ∈ D5 Inv←→ 1013 ∈ D383 Flip←→ 1016 ∈ D127

Inv←→ 7 ∈ D7 Flip←→ 1020 ∈ D255 Inv←→ 3 ∈ D3,

giving the logarithms of all 60 elements in
⋃
Dk with k ∈

{3, 5, 7, 127, 255, 383}.
To generate the remaining logarithms, search for an (i, j)

pair such that τ(i) − τ(j) is not in any of previously known

cosets but i − j is. A simple python routine completes the

task. Table I summarizes the computations for the remaining

cosets. The rows follow chronological order.

Remark 3. The approach in Example 2 may fail to yield the

complete table. We tested all trinomials xn + xj + 1 with

n ∈ {15, 17, 18, 20, 22} and j ≤ ⌊n/2⌋. The reciprocals give

identical conclusions.

For n = 15, the full table is obtained for j ∈ {1, 4, 7}. For

n = 17, Lemma 1 produces the full table for j ∈ {3, 5} while

it fails for j = 6. It also fails for n = 18, j = 7 but works

for n = 20, j = 3 and n = 22, j = 1. In case of failure,

incorporating the computation in (12) becomes necessary.

6

V. SPANNING TREES

This section takes a close look at the spanning trees in the

adjacency graph G.

A. Constructing Some Spanning Trees

When n is large or when t is a large valid divisor of

2n−1, building the complete adjacency graph G is possible but

consumes too much resources. It is also very often unnecessary

to generate all of the de Bruijn sequences that the construction

can produce. We aim to find enough Zech’s logarithms to

identify some spanning trees in G. Since there is a unique

pair that joins [0] and [u0] into one cycle, the focus is on the

set of nonzero cycles {[ui] : i ∈ J0, t− 1K}.
Let j = a1 · t + a2. If τn(j) = b1 · t + b2 with a2, b2 ∈

J0, t− 1K, then [ua2
] and [ub2] are adjacent. They are joined

into one cycle using the conjugate pair

v = ϕ(αj) = T a1ϕ(αa2) and v̂ = ϕ(ατn(j)) = T b1ϕ(αb2).
(14)

with ϕ(αa2) the initial state of ua2
and ϕ(αb2) that of ub2 .

Continue the process by identifying some conjugate pairs

between enough pairs of adjacent cycles until all of the cycles

in Ω(f(x)) can be joined into one. The identified spanning

tree(s) in G generates de Bruijn sequences. Using more Zechs

logarithms yields more spanning trees, producing more such

sequences.

Let τ(j) for some j ∈ J1, 2n − 2K be known. This induces

a mapping from Dj onto Dτ(j) with nj := |Dj | = |Dτ(j)|.
If j 6≡ τ(j) (mod t), then, for i ∈ J0, nj − 1K, states ϕ(α2ij)

and ϕ(α2iτ(j)) belong to distinct cycles. These states join their

corresponding cycles into one.

Let mj be the least positive integer such that (2mj − 1)j ≡
0 (mod t). Observe that ϕ(αj) and ϕ(αj·2mj

) are states of the

same cycle and mj | nj . Hence, given cosets Dj and Dτ(j),

one derives
nj

mj
distinct conjugate pairs between each of the

mj distinct pairs of cycles.

The Zech’s logarithms supply the exact positions of the

conjugate pair(s) in the relevant cycles. Once enough conjugate

pairs to construct a spanning tree are identified, the precise

positions to apply the cycle joining method, i.e., to exchange

successors, appear. Thus, with (1,0) as the initial state of

u0, we just need to keep track of the precise positions, in

terms of the operator T and the power of α, governed by

the (j, τn(j)) pair. The actual construction of the de Bruijn

sequences no longer requires storing the initial states of the t
nonzero sequences in Ω(f(x)).

Example 3. Consider p(x) = x300 + x7 + 1 and let α be

a root of p(x), implying τ(7) = 300. Choosing t = 31, the

Berlekamp-Massey algorithm outputs

f(x) = x300 + x194 + x176 + x158 + x97 + x88 + x79+

x52 + x43 + x25 + x16 + x7 + 1.

Hence, Ω(f(x)) = [0] ∪ ⋃30
i=0[ui]. Let (1,0) ∈ F300

2 be the

initial state of u0. For i ∈ {1, 3, 5, 7, 15, 35}, let Zi := τ(i).
Knowing a specific (i, Zi) pair gives us {(j, Zj) : j ∈ Di}.
Note that |Di| = 300 for all i.

Since Z7 ≡ 21 (mod 31), there are 5 distinct pairs of cycles,

each sharing 60 conjugate pairs. The indices of the cycles are

the (a2, b2) pairs (7, 21), (14, 11), (28, 22), (25, 13), (19, 26).
One of the 60 conjugate pairs between [u7] and [u21] is

(ϕ(α7), T 9ϕ(α21)) since
⌊

7
31

⌋
= 0 and

⌊
300
31

⌋
= 9. Com-

puting a1 and b1 are easy given the relevant logarithms, so

we omit them from the rest of this example.

Since Z1 ≡ Z3 ≡ 0 (mod 31), [u0] shares 60 conjugate

pairs each with [uj] for j ∈ {1, 2, 4, 8, 16}∪{3, 6, 12, 24, 17}.
Similarly, adjacent cycles in Table II share 60 conjugate pairs.

TABLE II
THE REST OF THE ADJACENT CYCLES IN EXAMPLE 3

(i, Zi (mod 31)) Indices of Adjacent Cycles

(5, 3) (3, 5), (6, 10), (12, 20), (24, 9), (17, 18)

(15, 22) (21, 27), (11, 23), (22, 15), (13, 30), (26, 29)

(35, 7) (4, 7), (8, 14), (16, 28), (1, 25), (2, 19)

We order the cycles as [0], [u0], [u1], . . . , [u30] and build an

adjacency subgraph G̃ from the computational results. Apply-

ing Theorem 1 with G replaced by G̃, the approach produces

≈ 2177.21 de Bruijn sequences. Figure 1 is a spanning tree.

Using more Zech’s logarithms leads to a larger number of de

Bruijn sequences.

[u0][0]

[u4][u2][u1] [u8] [u16]

[u7][u19][u25] [u14] [u28]

[u21][u26][u13] [u11] [u22]

[u27][u29][u30] [u23] [u15]

[u12][u6][u3] [u24] [u17]

[u20][u10][u5] [u9] [u18]

Fig. 1. A spanning tree in an adjacency subgraph G̃ of Ω(f(x)).

Our python implementation performs the following tasks

as a proof of concept. The input consists of p(x), a valid t,
and a desired number of de Bruijn sequences.

1) Produce the associated irreducible polynomial f(x).
2) Generate the (possibly partial) Zech’s logarithm table.

3) Ensure that (1,0) is the initial state of [u0].
4) Attempt to build an adjacency subgraph from the

table. If not all vertices are connected, then iden-

tify pairs of vertices that still need to be con-

nected. Use the information to get needed Zech’s log-

arithms through calls to MAGMA online calculator

http://magma.maths.usyd.edu.au/calc/ until a connected

adjacency subgraph containing all vertices is obtained.

http://magma.maths.usyd.edu.au/calc/

7

5) Choose the required number of spanning trees and apply

the cycle joining method to produce de Bruijn sequences

using the procedure explained in [2, Section VI].

Example 4. There are ≈ 2145.73 de Bruijn sequences that can

be produced on input x10 + x3 + 1 and t = 31. The program

takes 0.072 seconds and a negligible amount of memory to

output one of the sequences. On input x22+x+1 and t = 89,

it consumes 480.10 seconds and around 680 MB of memory

to produce one of ≈ 21286.65 de Bruijn sequences.

B. A Note on Dong and Pei’s Construction

We examine a recent construction of de Bruijn sequences

with large order proposed by Dong and Pei in [4]. Given an

irreducible characteristic polynomial f(x) of degree n, order

e, and t = 2n−1
e

, they defined a shift register matrix T in the

form of (2) satisfying f∗(T) = 0 where f∗(x) is the reciprocal

polynomial of f(x).
Given the sequence u0 with initial state α0 = (1,0), write

any sequence as g(T)u0, where g(x) is some polynomial with

degree less than n. If (1 + xk)e 6≡ 1 (mod f(x)), then [u0]
and [(1 + T k)2

j

u0] are distinct cycles sharing the conjugate

pair
(
T k2jα0, (1 + T k)2

j

α0

)
. Here T k2jα0 is a state of [u0].

The claim is that [u0] shares some conjugate pairs with each

of the other nonzero cycles. This does not hold in general.

First, as n and e grow large, it soon becomes prohibitive to

compute (1 + xk)e (mod f(x)).
Second, after (1 + xk)e 6≡ 1 (mod f(x)) is verified, it

remains unclear which cycle [(1 + T k)2
j

u0] corresponds to.

One is still unable to judge whether it is possible to join all of

the cycles in Ω(f(x)) even after a lot of the conjugate pairs

have been determined.

Third, and most importantly, t <
√
2n − 1 is a necessary

condition for their method to work [4, Section 5]. In fact, a

sufficient and necessary condition is (0, i)t > 0 for all i ∈
J1, t− 1K. This does not hold in general. Take, e.g., n = 10
with p(x) = x10 + x3 + 1 and t = 31 <

√
31 · 33. All values

1 ≤ i ≤ 210 − 2 such that τ(i) ≡ 0 (mod t) forms the set

X := {85, 105, 141, 170, 210, 277, 282, 291, 325, 337, 340,
341, 379, 420, 431, 493, 554, 564, 582, 650, 657, 674,

680, 682, 701, 727, 758, 840, 862, 875, 949, 986}.

Hence, [u0] can be joined only to [uℓ] with

ℓ ∈ {3, 6, 7, 12, 14, 15, 17, 19, 23, 24, 25, 27, 28, 29, 30}.

Since only 15 out of the required 30 cycles can be joined

with [u0], Dong and Pei’s approach fails to produce de Bruijn

sequences here. We show in the next subsection that our

method handles such a situation perfectly.

C. Star and Almost-Star Spanning Trees

In cases where [u0] is adjacent to [uj] for j ∈ J1, t− 1K,

our characterization via Zech’s logarithm rapidly certifies the

existence of a star spanning tree centered at [u0]. This helps

in quickly generating at least a de Bruijn sequence of order

n. The certificate contains the following information.

1) A witness W that generate ∆W := {i := k · t for k ∈
W} satisfying, with Yi := τ(i) (mod t),

J1, t− 1K ⊂
⋃

i∈∆W

{j (mod t) : j ∈ DYi
}. (15)

2) There are ≥ #cp conjugate pairs between [u0] and [uj].

3) A matrix M̃ derived from the adjacency subgraph G̃.

4) The number #dBSeqs of de Bruijn sequences.

Algorithm 1 outlines the required computations.

Algorithm 1 Certifying a Star Spanning Tree Exists

Input: n and p(x).

Output: Witness W , #cp, Matrix M̃ and #dBSeqs.

1: N ← 2n − 1
2: F2n is the extension field of F2 defined by p(x)

3: for t from 3 to s do ⊲ M̃ will be a t× t matrix

4: if t | N then

5: f(x)← BM(p(x), t) ⊲ Berlekamp-Massey Alg.

6: if deg(f(x)) < n then

7: Go to next t
8: end if

9: Create sets Done := {0}, MinSet, and W
10: Create t× t zero matrix M̃ = (mi,j)
11: for i ∈ {(2k − 1)t : 1 ≤ k ≤ z} do

12: L← τ(i) (mod t)
13: Construct the coset DL

14: cL ← coset leader of DL

15: if cL (mod t) /∈ Done then

16: Append i to MinSet
17: Append 2k − 1 to W
18: Done← Done ∪ {y (mod t) : y ∈ DL}
19: if |Done| = t then

20: Output W and #cp← n
|DL|

21: m1,1 ← #cp · (t− 1) + 1
22: for r from 2 to t do

23: mr,r ← #cp
24: m1,r = mr,1 ← −#cp
25: end for

26: Output #dBSeqs← det(M̃)
27: break i
28: end if

29: end if

30: end for

31: if |Done| < t then

32: No star spanning tree centered at [u0] found

33: end if

34: end if

35: end for

The value of s in Line 3 of Algorithm 1 upper bounds the

choice of t. Running the algorithm with a random choice of

p(x) for all n ∈ J10, 300K, we set s = 2000 for n ≤ 100 and

s = 1000 for 100 < n ≤ 300. Limiting z in Line 11 to 2000
was enough for all but very few parameter sets.

Algorithm 1 is practical. Averaging over 10 randomly

selected primitive polynomials of degree 300, it took about

3 hour 46 minutes to compute the certificates for all valid

3 ≤ t < 1000 given a p(x).

8

TABLE III
STAR AND ALMOST-STAR SPANNING TREE CERTIFICATES

No. n p(x) t f(x) Star Witness W #cp #dBSeqs Time

1 20 {3} 155 {16, 15, 14, 13, 11, 10, 9, 8, 5, 4, 3} {1, 3, 5, 7, 9, 11, 13, 15, 4 2308 0.01s

17, 23, 27, 61, 157}

2 60 {1} 31 {39, 35, 31, 20, 18, 16, 10, 8, 4, 2, 1} {1, 5, 7, 9, 11, 25} 12 ≈ 2107.55 0.00s

3 100 {37} 25 {96, 68, 64, 37, 36, 32, 4} {1, 15} 25 ≈ 2111.45 0.00s

4 120 {49, 341 {117, 116, 112, 103, 100, 96, 95, 94, 93, {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 12 ≈ 21218.89 4.39s

2, 92, 91, 88, 86, 84, 79, 78, 77, 74, 71, 70, 23, 25, 31, 33, 35, 37, 39, 41,

1} 68, 66, 65, 64, 63, 62, 57, 51, 48, 43, 42, 49, 53, 59, 61, 65, 67, 77, 87,

39, 38, 37, 35, 34, 32, 30, 27, 26, 24, 21, 91, 93, 97, 113, 115, 119,

17, 16, 15, 12, 10, 8, 7, 5, 3, 2, 1} 137, 159, 167, 189, 199}

5 128 {7, 255 {128, 127, 126, 125, 123, 122, 119, 118, {1, 3, 5, 7, 9, 11, 13, 15, 17, 64 21524 1m37s

2, 117, 114, 112, 109, 108, 106, 105, 103, 19, 21, 27, 29, 31, 33, 37,

1} 99, 98, 96, 94, 93, 91, 89, 87, 83, 82, 81, 43, 45, 47, 53, 57, 65, 77,

74, 70, 68, 67, 66, 65, 63, 60, 59, 56, 53, 79, 83, 101, 107, 123, 133,

52, 51, 50, 46, 45, 44, 43, 42, 41, 40, 39, 141, 145, 177, 187, 929}

38, 36, 31, 30, 29, 28, 27, 26, 25, 24, 22,

15, 13, 11, 10, 9, 6, 4, 1}

6 130 {3} 93 {97, 89, 64, 63, 48, 47, 43, 42, {1, 3, 5, 9, 11, 15, 23, 31, 26 ≈ 2432.44 0.10s

21, 11, 10, 5, 3, 2, 1} 33, 35, 43, 73, 101}

7 300 {7} 15 {280, 260, 240, 220, 200, 180, 160, 140, {1, 3, 5, 9} 150 ≈ 2101.20 9.01s

120, 100, 80, 60, 40, 20, 7}

8 77 {273, 220, 219, 193, 192, 191, 165, 164, {1, 3, 5, 97, 125} 100 ≈ 2504.93 57.57s

139, 111, 110, 86, 85, 83, 82, 30, 29,

28, 7, 6, 5, 4, 3, 2, 1}

No. n p(x) t f(x) Almost-Star Witness W and ℓ #cp #dBSeqs Time

1 20 {3} 205 {18, 17, 15, 14, 9, 8, 4, 2, 1} {1, 3, 5, 7, 9, 11, 21, 23, 25, 20 ≈ 2881.67 0.04s

41, 53, 155}, ℓ = 2

2 825 {19, 14, 11, 5, 4, 1} {1, 3, 5, 7, 9, 11, 13, 15, 17, 23, 25, 4 ≈ 21913.27 0.40s

27, 31, 35, 39, 41, 43, 45, 47, 49,

53, 57, 61, 63, 65, 69, 71, 89, 93,

105, 111, 115, 123, 171, 175, 179,

187, 211, 237, 239, 255, 265, 377,

381, 685, 821, 1297}, ℓ = 10

3 29 {2} 233 {24, 22, 20, 18, 16, 15, 14, 13, 12, 11, {1, 3, 5, 9, 15, 17, 19, 33, 79}, ℓ = 2 29 ≈ 21127.05 0.08s

10, 9, 8, 7, 5, 4, 2}

4 128 {7, 255 See Entry 5 above {1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 128 21778 7m38s

2, 29, 31, 33, 37, 45, 49, 53, 55, 57,

1} 67, 89, 91, 103, 107, 111, 119,

139, 143, 159, 201, 237, 251,

343, 465}, ℓ = 2

5 130 {3} 131 {96, 72, 65, 48, 36, 34, 24, 17, 12, 10, 5, 4, 2} {1, 171}, ℓ = 2 130 ≈ 2912.91 3.88s

In instances where no star spanning tree can be certified,

one sets aside the unique edge E0 between [0] and [u0] and

modifies Algorithm 1 to find a certificate for star trees centered

at [uℓ] for a chosen ℓ ∈ J1, t− 1K with vertices [ui] for all

i ∈ J0, t− 1K\ ℓ as leaves. Adding E0 back yields almost-star

spanning trees centered at [uℓ].

To be more precise, we replace 0 by ℓ in Line 9 and replace

(2k − 1)t by (2k − 1)t+ ℓ in Line 11. The entries of Matrix

M̃ defined in Lines 21 to 25 are now given as follows.

1: m1,1 ← 1 + #cp, m1,ℓ+1 = mℓ+1,1 ← −#cp
2: for r from 2 to t do

3: mr,r ← #cp, mℓ+1,r = mr,ℓ+1 ← −#cp
4: end for

5: mℓ+1,ℓ+1 ← #cp · (t− 1)

We have seen that for x10 + x3 + 1 and t = 31 there is

no star spanning tree centered at [u0]. There are ≈ 299.68

almost-star spanning trees centered at [u6] with witness W =
{1, 3, 7, 9, 13, 17, 21}. The associated irreducible polynomial

is x10 + x9 + x5 + x + 1. Similarly, for x20 + x3 + 1 and

t ∈ {165, 341, 451, 465, 615, 775, 825}, there is no star span-

ning tree certificate produced. Going through ℓ ∈ J1, t− 1K
produces certificates for almost-star spanning trees, e.g., with

ℓ = 10 for t ∈ {615, 825} and ℓ = 2 for all other ts.

There are parameter sets for which there is a unique star

spanning tree each, yielding only 1 de Bruijn sequence.

Examples include x20 + x3 + 1 with t ∈ {41, 123, 205, 275},
x29 + x2 + 1 with t ∈ {233, 1103, 2089}, and x130 + x3 + 1
with t = 131. There are certificates for almost-star spanning

trees for all of them, ensuring the existence of a large number

of de Bruijn sequences in each case. The search takes longer

but remains practical.

Counting the number of, respectively, star and almost-star

9

spanning trees (with center [u2]) for p(x) = x128 +x7+x2+
x+1 and t = 255 gives us 21524 and 21778 sequences while [4,

Example 3] yields 21032 sequences.

Table III lists down some samples in two parts: star and

almost-star. For a compact presentation we use sparse primitive

polynomials. They are either trinomials, i.e., p(x) = xn+xk+
1 with 1 ≤ k < n, or p(x) = xn + xk + xj + xi + 1 with

1 ≤ i < j < k < n. MAGMA [16] easily generates a primitive

polynomial of either type for n ≤ 920.

Given n and t, the polynomials p(x) and f(x) are presented

as sets whose elements are the powers of x between 1 and n−1
whose coefficients are 1. Hence, for n = 130 and t = 31,

p(x) = x130 + x3 + 1 and f(x) = x130 + x63 + x31 + x15 +
x7 + x3 + 1. Its witness W = {1, 3, 7, 9, 17, 45} generates

∆W = {31, 93, 217, 279, 527, 1395}, implying

{Yi = τ(i) (mod 31) : i ∈ ∆W} = {20, 16, 14, 13, 23, 12}.

The corresponding sets {j (mod t) : j ∈ DYi
} are

{20, 9, 18, 5, 10}, {16, 1, 2, 4, 8}, {14, 28, 25, 19, 7},
{13, 26, 21, 11, 22}, {23, 15, 30, 29, 27}, {12, 24, 17, 3, 6}.

Their union is J1, 30K. Note that [u0] and [uℓ] share 130
5 = 26

conjugate pairs for ℓ ∈ J1, 30K. Computing for #dBSeqs
is then straightforward. The other entries can be similarly

interpreted. The recorded running time is for the specified

(n, p(x), t) with ℓ added for cases where the center of the

almost-star trees is [uℓ].
Computations for the certificates are done on a laptop with

Ubuntu 16.04 OS powered by an Intel Hasswell i5-4300U

CPU 1.90GHz running MAGMA V2.20-10. The current limit

for an efficient computation is n = 300 without a companion

file of size 1.8 GB. With the file, n goes up to 460.

VI. PRODUCT OF IRREDUCIBLES

The approach via Zech’s logarithm can be used in tandem

with the one we proposed in [2] to generate de Bruijn

sequences of even larger orders. To keep the exposition brief,

we retain the notations from the said reference.

Let {f1(x), f2(x), . . . , fs(x)} be a set of s pairwise distinct

irreducible polynomials over F2. Each fi(x) has degree ni,

order ei with ti = 2ni−1
ei

, and a root βi. Let the respective

associated primitive polynomials be pi(x) with degree ni and

root αi. Hence, Ω(fi(x)) = [0] ∪ [ui
0] ∪ [ui

1] ∪ . . . ∪ [ui
ti−1].

Let the initial state of ui
0 be (1,0) ∈ F

ni

2 . The initial states

of uj for j ∈ J1, ti − 1K follows by decimating the appropriate

m-sequence mi generated by pi(x). From hereon, let

f(x) :=

s∏

i=1

fi(x) and n :=

s∑

i=1

ni. (16)

We use the expression for the cycle structure of Ω(f(x))
given in [2, Lemma 3 Eq. (7)]. For any cycle Γ1 := [u1

i1
+

Lℓ2u
2
i2

+ · · · + Lℓsu
s
is
] containing a state v the goal is to

identify a cycle Γ2 that contains v̂.

Letting P be the matrix defined in [2, Section III.B],

v = (v1, . . . ,vs)P with vi := ϕ(αji
i) for i ∈ J1, sK .

One then gets a state ai of some nonzero sequence in Ω(fi(x))
satisfying (a1, . . . , as)P = (1,0). The exact position of each

ai in the corresponding cycle in Ω(fi(x)), i.e., the exact value

of γi satisfying ai = ϕ(αγi

i) is computed using the method

from Section III or by an exhaustive search when ni is small.

The conjugate state v̂ = (b1, . . . ,bs)P of v must then be

bi = ϕ(αji
i) + ϕ(αγi

i) = ϕ(αji
i + αγi

i)

= ϕ(αγi

i (1 + αji−γi

i)) = ϕ(α
γi+τi(ji−γi)
i), (17)

with τi based on pi(x). If bi is the ji-th state of ui
ki

for all i,
then v̂ must be in cycle

[
Lj1u

1
k1

+ Lj2u
2
k2

+ · · ·+ Ljsu
s
ks

]
.

Thus, given any nonzero cycle Γ1 in Ω(f(x)) we can

determine any of its state v, find the conjugate state v̂, and the

cycle Γ2 that v̂ is a state of. If so desired, all conjugate pairs

shared by any adjacent cycles can be determined explicitly.

Finally, to produce actual de Bruijn sequences, one follows

the steps detailed in [2, Sections IV and VI].

Using f(x) in (16) may become crucial when substantially

more than Λn de Bruijn sequences of order a Mersenne

exponent n need to be produced. The simplest choice is to

use s = 2 with f1(x) an irreducible polynomial of a small

degree, e.g., 1 + x or 1 + x + x2, and f2(x) any irreducible

non-primitive polynomial of degree n−1 or n−2, respectively.

If even more de Bruijn sequences are required, one uses s ≥ 3
and choose small ni for i ∈ J1, s− 1K since computing the

Zech logarithm tables relative to small nis is easy.

VII. CONCLUSIONS

We propose a novel approach to generate binary de Bruijn

sequences via Zech’s logarithms. It is guaranteed to work

for all order n. Its practical feasibility is demonstrated by

producing many such sequences of large orders within reason-

able time and memory expenditures. Many design parameters

certify the existence of star or near-star spanning trees. The

information supplied by the certificate significantly expedites

the sequence generation.

We establish a salient property of Zech’s logarithm and a

rapid method to generate irreducible polynomials of degree

m | n from a primitive polynomial of degree n.

Our approach is capable of generating de Bruijn sequences

of orders larger than the current limit of MAGMA’s efficient

computation of Zech’s logarithms. One uses LFSRs whose

characteristic polynomial are products of distinct irreducible

polynomials to reach this goal.

For large n, storing a de Bruijn sequence of order n is

not feasible. One may opt to output subsequent states up to

some specified total length, e.g., measured in file size. The

initial state and the spanning tree(s) can be chosen randomly

to cater to application-specific requirements.

ACKNOWLEDGEMENTS

M. F. Ezerman gratefully acknowledges the hospitality

of the School of Mathematics and Statistics of Zhengzhou

University, in particular Prof. Yongcheng Zhao, during a visit

where this work was initiated.

10

REFERENCES

[1] N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederlandse

Akademie v. Wetenschappen, vol. 49, pp. 758–764, 1946.
[2] Z. Chang, M. F. Ezerman, S. Ling, and H. Wang, “On binary

de Bruijn sequences from LFSRs with arbitrary characteristic
polynomials,” CoRR, vol. abs/1611.10088, 2016. [Online]. Available:
http://arxiv.org/pdf/1611.10088

[3] N. J. A. Sloane, “Mersenne exponents,” primes p such that 2p − 1 is
(Mersenne) prime. [Online]. Available: https://oeis.org/A000043

[4] J. Dong and D. Pei, “Construction for de Bruijn sequences with
large stage,” Designs, Codes and Cryptography, pp. 1–16, Dec 2016.
[Online]. Available: http://dx.doi.org/10.1007/s10623-016-0309-1

[5] J. Arndt, Matters Computational: Ideas, Algorithms, Source Code,
1st ed. New York, NY, USA: Springer-Verlag New York, Inc., 2010.

[6] S. W. Golomb and G. Gong, Signal Design for Good Correlation:
for Wireless Communication, Cryptography, and Radar. New York:
Cambridge Univ. Press, 2004.

[7] H. Fredricksen, “A survey of full length nonlinear shift register cycle
algorithms,” SIAM Review, vol. 24, no. 2, pp. 195–221, 1982.

[8] E. R. Hauge and J. Mykkeltveit, “On the classification of de Bruijn
sequences,” Discrete Math., vol. 148, no. 13, pp. 65 – 83, 1996.

[9] E. R. Hauge and T. Helleseth, “De Bruijn sequences, irreducible codes
and cyclotomy,” Discrete Math., vol. 159, no. 1-3, pp. 143–154, 1996.

[10] T. van Aardenne-Ehrenfest and N. G. de Bruijn, “Circuits and trees in
oriented linear graphs,” Simon Stevin, vol. 28, pp. 203–217, 1951.

[11] R. Lidl and H. Niederreiter, Finite Fields, ser. Encyclopaedia of Mathe-
matics and Its Applications. New York: Cambridge Univ. Press, 1997.

[12] C. Jacobi, “Über die kreistheilung und ihre anwendung auf die zahlen-
theorie.” Journal für die reine und angewandte Mathematik, vol. 30, pp.
166–182, 1846.

[13] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of

Applied Cryptography, 1st ed. Boca Raton, FL, USA: CRC Press,
Inc., 1996.

[14] S. Gao and D. Panario, “Tests and constructions of irreducible polynomi-
als over finite fields,” in Foundations of Computational Mathematics: Se-

lected Papers of a Conference, Rio de Janeiro, January 1997, F. Cucker
and M. Shub, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, pp. 346–361.

[15] K. Huber, “Some comments on Zech’s logarithms,” IEEE Trans. on

Inform. Theory, vol. 36, no. 4, pp. 946–950, Jul 1990.
[16] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I.

The user language,” J. Symbolic Comput., vol. 24, no. 3-4, pp. 235–265,
1997.

http://arxiv.org/pdf/1611.10088
https://oeis.org/A000043
http://dx.doi.org/10.1007/s10623-016-0309-1

	I Introduction
	II Preliminaries
	III The Cycle Structure
	IV Conjugate Pairs and Zech's Logarithms
	V Spanning Trees
	V-A Constructing Some Spanning Trees
	V-B A Note on Dong and Pei's Construction
	V-C Star and Almost-Star Spanning Trees

	VI Product of Irreducibles
	VII Conclusions
	References

